Lecture 6 Tue. 9.11.2014
 Dynamics of Potentials and Force Fields

(Ch. 7 and Ch. 8 of Unit 1)
(From Lect 5.) A lesson in geometry of fractions and fractals: Ford Circles and Farey Sums [Lester. R. Ford, Am. Math. Monthly 45,586(1938)] [John Farey, Phil. Mag.(1816)]
Potential energy geometry of Superballs and related things
Thales geometry and "Sagittal approximation"
Geometry and dynamics of single ball bounce
Examples: (a) Constant force (like kidee pool) (b) Linear force (like balloon)
Some physics of dare-devil-divers
Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and dynamics of 2-ball bounce (again with feeling)
The parable of RumpCo. vs CrapCorp.
The story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of 3-ball bounce
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Other bangings-on: The western buckboard and Newton's balls
Crunch energy geometry of freeway crashes and related things
Crunch energy played backwards: This really is "Rocket-Science"
A Thales construction for momentum-energy

Potential energy geometry of Superballs and related things

\longrightarrow Thales geometry and "Sagittal approximation"
Geometry and dynamics of single ball bounce
Examples: (a) Constant force (like kidee pool) (b) Linear force (like balloon)
Some physics of dare-devil-divers
Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and dynamics of 2-ball bounce (again with feeling)
The parable of RumpCo. vs CrapCorp.
The story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of 3-ball bounce
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Other bangings-on: The western buckboard and Newton's balls

Potential Energy Geometry of Superballs and Related things
(a)

(b)

$(\approx \sqrt{2 R x}$ for : $x \ll R)$ y and "Sagittal ${ }^{\dagger}$ " approx. \dagger "bow"

Unit 1
Fig. 7.1
(modified)

$$
\begin{aligned}
F_{\text {balloon }}(x)=\stackrel{\text { PPressure }}{P} \cdot A & =P \cdot \pi r^{2} \\
& \approx P \cdot \pi 2 R x
\end{aligned}
$$

Potential Energy Geometry of Superballs and Related things
(a)

(b)

$(\approx \sqrt{2 R x}$ for : $x \ll R)$ and "Sagittal ${ }^{\dagger}$ " approx. \dagger "bow"

Unit 1
Fig. 7.1
(modified)

$$
\begin{aligned}
& \text { If superball was a balloon its bounce force lay would be linear } F=-k \\
& F_{\text {balloon }}(x)=\stackrel{\text { (Pressere }}{P} A=P \cdot \pi r^{2} \\
& \approx P \cdot \pi 2 R x=P \underbrace{P \cdot 2 \pi R x}_{k x}
\end{aligned}
$$

Potential Energy Geometry of Superballs and Related things
(a)

(b)

$(\approx \sqrt{2 R x}$ for : $x \ll R)$ and "Sagittal ${ }^{\dagger}$ " approx. \dagger "bow"

Unit 1
Fig. 7.1
(modified)

If superball was a balloon its bounce force law would be linear $F=-k \cdot x_{(H o o k e L a w)}$

$$
\begin{aligned}
F_{\text {balloon }}(x)=\stackrel{\text { PPreswe) }}{P \cdot A} & =P \cdot \pi r^{2} \\
& \approx P \cdot \pi \underset{\sim 2 R x}{ }=P \cdot \underbrace{2 \pi R x}_{k x} \\
& =\text { Hfookespring constant } k)
\end{aligned}
$$

Instead superball force law depends on bulk volume modulus and is non-linear $F \sim x^{p}$? + (Pover Law?)

$$
\operatorname{Volume}(X)=\int_{0}^{X} \pi r^{2} d x=\int_{0}^{X} \pi x(2 R-x) d x=\int_{0}^{X} 2 R \pi x d x-\int_{0}^{X} \pi x^{2} d x=R \pi X^{2}-\frac{\pi X^{3}}{3} \approx \begin{cases}R \pi X^{2} & (\text { for }: X \ll R) \\ \frac{4}{3} \pi R^{3} & (\text { for }: X=2 R)\end{cases}
$$

It also depends on velocity $\dot{x}=\frac{d x}{d t}$. Adiabatic differs from Isothermal as shown by "Project-Ball*"

Potential energy geometry of Superballs and related things

Thales geometry and "Sagittal approximation"
\longrightarrow Geometry and dynamics of single ball bounce (See Simulation)
Examples: (a) Constant force (like kidee pool) (b) Linear force (like balloon)
Some physics of dare-devil-divers
Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and dynamics of 2-ball bounce (again with feeling)
The parable of RumpCo. vs CrapCorp.
The story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of 3-ball bounce
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Other bangings-on: The western buckboard and Newton's balls
(a) Drop height

(b) Maximum kinetic energy (Zero total force)

Details of each case follows in simulation

© Let mouse set: ($\mathrm{x}, \mathrm{y}, \mathrm{Vx}, \mathrm{Vy}$)Let mouse set force: $\mathrm{F}(\mathrm{t})$
\bigcirc Plot solid paths
© Plot dotted paths

- Plot no paths
\bigcirc Plot V1 vs. V2Plot Y1(t), Y2(t), ...
© Plot PE of m1 vs. Y1
\bigcirc Plot Y2 vs. Y1
○ Plot user defined i.e - Y1 vs. Y2
\bigcirc Balls initially falling
© Balls initially fixed
\bigcirc No preset initial values

Number of masses
Θ
1 (
Balls
Acceleration of gravity
$\infty-$
0.5 (6)

Draw force vectors
V
Pause (once) at top
V Constrain motion to Y-axis

- Plot v2 vs v1Plot p 2 vs p 1Plot V2 vs V1Plot EllipsesPlot Bisector LinesOld Color Scheme

Collision friction (Viscosity)
$\left.0=0 \times 0 \times 10^{\wedge}=0<\mathrm{g}\right\}$
Initial gap between balls
5.45 ($-10^{\wedge}-\bigcirc=-1$ (g $\}$

Force power law exponent
$\Theta=1$ (-
Force Constant
$\Theta 500$ (C)
Canvas Aspect Ratio - W/H i.e. 0.75 \& 1.0
$=0.75$ (

Zero Gap 2-Ball Collision (m1:m2 $=1: 7)$
Linear 2-Ball Collision (m1:m2 $=1: 7)$
Newton's Balls (Zero gap, Nonlinear force)
Newton's Balls (Zero gap, Linear force)
3-Ball Tower
Potential Plot (1 Ball, Nonlinear force)
Potential Plot (1 Ball, Linear force)
Gravity Potential (1 Ball, Nonlinear force)
Gravity Potential (1 Ball, Linear force)

http://www.uark.edu/ua/modphys/markup/BounceltWeb.html
(See Simulations)

http://www.uark.edu/ua/modphys/markup/BounceltWeb.html

Display of Force vector using similar triangle constuction based on the slope of potential curve.

Force F(x) and
Potential $U(x)$ for soft heavy non-linear superball

Unit 1
Fig. 7.5

$$
\begin{aligned}
& U^{\operatorname{total}\left(y_{\max }\right)=\int_{y_{\text {static }}}^{y_{\text {max }}} F^{\text {cotal }}(y) d y+\int_{y=h}^{y_{\text {static }}} F^{\text {total }}(y) d y+U(h)=U(h)=E} \\
& \quad F(x)=-\frac{d U(x)}{d x}
\end{aligned}
$$

Force F(x) and
Potential $U(x)$ for soft heavy non-linear superball

Unit 1
Fig. 7.5

$$
U^{\operatorname{total}\left(y_{\max }\right)=\int_{y_{\text {static }}}^{y_{\max }} F^{\text {cotal }}(y) d y+\int_{y=h}^{y_{\text {static }}} F^{\operatorname{total}}(y) d y+U(h)=U(h)=E}
$$

Work $=W=\int F(x) d x=$ Energy acquired $=$ Area of $F(x)=-U(x)$

$$
F(x)=-\frac{d U(x)}{d x}
$$

Unit 1
Fig. 7.5

Work $=W=\int F(x) d x=$ Energy acquired $=$ Area of $F(x)=-U(x)$

$$
F(x)=-\frac{d U(x)}{d x}
$$

Impulse $=P=\int F(t) d t=$ Momentum acquired $=$ Area of $F(t)=P(t)$

$$
F(t)=\frac{d P(t)}{d t}
$$

Potential energy geometry of Superballs and related things
Thales geometry and "Sagittal approximation"
Geometry and dynamics of single ball bounce
\longrightarrow Examples: (a) Constant force (like kidee pool) (b) Linear force (like balloon)
Some physics of dare-devil-divers
Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and dynamics of 2-ball bounce (again with feeling)
The parable of RumpCo. vs CrapCorp.
The story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of 3-ball bounce
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Other bangings-on: The western buckboard and Newton's balls
Force
$F(x)$

Unit 1 Fig. 7.3

Models:
$F(x)=k$,
$U(x)=-k x$

Work $=W=\int F(x) d x=$ Energy acquired $=$ Area of $F(x)=-U(x)$

$$
\begin{aligned}
& F(x)=-\frac{d U(x)}{d x} \\
& F(t)=\frac{d P(t)}{d t}
\end{aligned}
$$

Impulse $=P=\int F(t) d t=$ Momentum acquired $=$ Area of $F(t)=P(t)$

Potential energy geometry of Superballs and related things

Thales geometry and "Sagittal approximation"
Geometry and dynamics of single ball bounce
Examples: (a) Constant force (like kidee pool) (b) Linear force (like balloon)
Some physics of dare-devil-divers
(See Simulation)
Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and dynamics of 2-ball bounce (again with feeling)
The parable of RumpCo. vs CrapCorp.
The story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of 3-ball bounce
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Other bangings-on: The western buckboard and Newton's balls
(a)Force F(Y) Units Mg (N)

(b)Rotential U(Y)Units of $M g \bigvee(J)$

(c)Force F(Y) Units Mg (N)

(d)Potintial U(Y)Units of $\operatorname{MgY}(J)$ '

Unit 1

Fig. 7.4

$$
\begin{aligned}
& F^{\text {Total }}=F^{\text {grav }}+F^{\text {target }}=\left\{\begin{array}{lr}
-M g & (y \geq 0) \\
-M g-k y & (y<0)
\end{array}\right. \\
& U^{\text {Total }}=U^{\text {grav }}+U^{\text {target }}=\left\{\begin{array}{lr}
M g y & (y \geq 0) \\
M g y+\frac{1}{2} k y^{2} & (y<0)
\end{array}\right.
\end{aligned}
$$

© Let mouse set: (x,y,Vx,Vy)Let mouse set force: $\mathrm{F}(\mathrm{t})$
\bigcirc Plot solid paths
© Plot dotted paths
○ Plot no paths
○ Plot V1 vs. V2Plot Y1(t), Y2(t), ...
© Plot PE of ml vs. Y1
\bigcirc Plot Y2 vs. Y1
○ Plot user defined i.e - Y1 vs. Y2
Balls initially falling
© Balls initially fixed
No preset initial values

Number of masses
Θ
1 (
Balls
Acceleration of gravity
O^{-}
0.5 (6)

Draw force vectors
V
Pause (once) at top
V Constrain motion to Y-axis
\checkmark Plot v2 vs v1Plot p 2 vs p 1Plot V2 vs V1Plot EllipsesPlot Bisector LinesOld Color Scheme

Collision friction (Viscosity)
$\left.\Theta=0 \times 10^{\wedge}=0<1 \mathrm{~g}\right\}$
Initial gap between balls
5.45 ($\times 10^{\wedge}-\bigcirc=-1$ ($\{\mathrm{g}\}$

Force power law exponent
$\Theta=1$
Force Constant
$\bigcirc=500$ (-)
Canvas Aspect Ratio - W/H i.e. 0.75 \& 1.0
$\because 0.75$

		$\mathrm{y} \operatorname{Max}=$	7
Initial $\mathrm{x} 1=$	0.5	(6) y Min $=$	0
$\mathrm{Max} \times \mathrm{PE}$ plot $=$		(6) T Max $=$	6
F -Vector scale $=$	0.003	V2y Max =	3
Error step $=$	0.000	V2y	-2

Zero Gap 2-Ball Collision (m1:m2 $=1: 7)$
Linear 2-Ball Collision (m1:m2 $=1: 7)$
Newton's Balls (Zero gap, Nonlinear force)
Newton's Balls (Zero gap, Linear force)
3-Ball Tower
Potential Plot (1 Ball, Nonlinear force)
Potential Plot (1 Ball, Linear force)
Gravity Potential (1 Ball, Nonlinear force)
Gravity Potential (1 Ball, Linear force)

Potential energy geometry of Superballs and related things

Thales geometry and "Sagittal approximation"
Geometry and dynamics of single ball bounce
Examples: (a) Constant force (like kidee pool) (b) Linear force (like balloon)
Some physics of dare-devil-divers
\longrightarrow Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and dynamics of 2-ball bounce (again with feeling)
The parable of RumpCo. vs CrapCorp.
The story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of 3-ball bounce
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Other bangings-on: The western buckboard and Newton's balls

Unit 1
Fig. 7.5

$$
U^{\text {total }\left(y_{\max }\right)=\int_{y_{\text {static }}}^{y_{\max }^{\text {total }}(y) d y+\int_{y=h}^{y_{\text {static }}^{\text {total }}(y)} F^{\text {tancel }} d y+U(h)=U(h)=E} \text { Ftotal }(h)}
$$

Work $=W=\int F(x) d x=$ Energy acquired $=$ Area of $F(x)=-U(x)$

$$
F(x)=-\frac{d U(x)}{d x}
$$

Impulse $=P=\int F(t) d t=$ Momentum acquired $=$ Area of $F(t)=P(t)$

$$
F(t)=\frac{d P(t)}{d t}
$$

Potential energy geometry of Superballs and related things

Thales geometry and "Sagittal approximation"
Geometry and dynamics of single ball bounce
Examples: (a) Constant force (like kidee pool) (b) Linear force (like balloon)
Some physics of dare-devil-divers
Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and dynamics of 2-ball bounce (again with feeling)
\longrightarrow The parable of RumpCo. vs CrapCorp.
The story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of 3-ball bounce
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Other bangings-on: The western buckboard and Newton's balls

Unit 1
Fig. 7.6

Tora Rumpany ©fld 3

$02=1.03$
$97=0.996$

Unit 1
Fig. 7.7

Potential energy geometry of Superballs and related things

Thales geometry and "Sagittal approximation"
Geometry and dynamics of single ball bounce
Examples: (a) Constant force (like kidee pool) (b) Linear force (like balloon)
Some physics of dare-devil-divers
Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and dynamics of 2-ball bounce (again with feeling)
The parable of RumpCo. vs CrapCorp.
The story of USC pre-meds visiting Whammo Manufacturing Co.
\longrightarrow Geometry and dynamics of 3-ball bounce
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Other bangings-on: The western buckboard and Newton's balls

$$
F(y)=k y^{4}
$$

Unit 1

Fig. 8.1a-c
Independent Bang Model (IBM)
3-Body Geometry

Potential energy geometry of Superballs and related things

Thales geometry and "Sagittal approximation"
Geometry and dynamics of single ball bounce
Examples: (a) Constant force (like kidee pool) (b) Linear force (like balloon)
Some physics of dare-devil-divers
Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and dynamics of 2-ball bounce (again with feeling)
The parable of RumpCo. vs CrapCorp.
The story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of 3-ball bounce
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Other bangings-on: The western buckboard and Newton's balls

A story of Stirling Colgate (Palmolive) and core-collapse supernovae

http://hubblesite.org/newscenter/archive/releases/2007/10/image/a/

Core-burning nuclear fusion stages for a 25 -solar mass star

Process	Main fuel	Main products		$25 \mathbf{M}_{\odot}$ star $^{[6]}$		
			Temperature $($ Kelvin $)$	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Duration	
hydrogen burning	hydrogen	helium	7×10^{7}	10	10^{7} years	
triple-alpha process	helium	carbon, oxygen	2×10^{8}	2000	10^{6} years	
carbon burning process	carbon	$\mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$	8×10^{8}	10^{6}	10^{3} years	
neon burning process	neon	O, Mg	1.6×10^{9}	10^{7}	3 years	
oxygen burning process	oxygen	$\mathrm{Si}, \mathrm{S}, \mathrm{Ar}, \mathrm{Ca}$	1.8×10^{9}	10^{7}	0.3 years	
silicon burning process	silicon	nickel (decays into iron)	2.5×10^{9}	10^{8}	5 days	

Source http://hubblesite.org/newscenter/archive/releases/2007/10/image/a/

Author NASA. ESA. P. Challis. and R. Kirshner (Harvard-Smithsonian Center for Astrobhvsics)

Within a massive, evolved star (a) the onion-layered shells of elements undergo fusion, forming a nickel-iron core (b) that reaches Chandrasekhar-mass and starts to collapse. The inner part of the core is compressed into neutrons (c), causing infaling material to bounce (d) and form an outward-propagating shock front (red). The shock starts to stall (e), but it is re-invigorated by neutrino interaction. The surrounding material is blasted away (f), leaving only a degenerate remnant.

Core-burning nuclear fusion stages for a 25-solar mass star

Process	Main fuel	Main products	$25 \mathrm{M}_{\odot} \mathbf{s t a r}^{[6]}$		
			Temperature (Kelvin)	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Duration
hydrogen burning	hydrogen	helium	7×10^{7}	10	10^{7} years
triple-alpha process	helium	carbon, oxygen	2×10^{8}	2000	10^{6} years
carbon burning process	carbon	$\mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$	8×10^{8}	10^{6}	10^{3} years
neon burning process	neon	O, Mg	1.6×10^{9}	10^{7}	3 years
oxygen burning process	oxygen	$\mathrm{Si}, \mathrm{S}, \mathrm{Ar}, \mathrm{Ca}$	1.8×10^{9}	10^{7}	0.3 years
silicon burning process	silicon	nickel (decays into iron)	2.5×10^{9}	10^{8}	5 days

Potential energy geometry of Superballs and related things

Thales geometry and "Sagittal approximation"
Geometry and dynamics of single ball bounce
Examples: (a) Constant force (like kidee pool) (b) Linear force (like balloon)
Some physics of dare-devil-divers
Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and dynamics of 2-ball bounce (again with feeling)
The parable of RumpCo. vs CrapCorp.
The story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of 3-ball bounce
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
\longrightarrow Other bangings-on: The western buckboard and Newton's balls

(c) Bouncing column

$$
m_{k} / m_{k+1}=1
$$

(4)
(d) Single pop-up
 (1,0)

Unit 1
Fig. 8.2a-b
4-Body IBM Geometry
Fig. 8.2c-d
4-Equal-Body Geometry

4-Equal-Body
"Shockwave" or pulse wave
Dynamics
Opposite of continuous wave dynamics introduced in Unit 2

\longrightarrow Crunch energy geometry of freeway crashes and related things

 Crunch energy played backwards: This really is "Rocket-Science"Speeding car and five stationary cars

Unit 1

Fig. 8.5
Pile-up:
One 60 mph car
hits
five standing cars

Of course, these examples neglect friction and "crunch-energy" losses Five speeding cars and a stationary car

$V_{M(543210)}=50$

Unit 1

Fig. 8.5
Pile-up:
One 60 mph car hits
five standing cars

Fig. 8.6
Pile-up:
Five 60 mph cars
hit
one standing car

Of course, these examples neglect friction and "crunch-energy" losses Five speeding cars and a stationary car

$=10000$
$V_{M(543210)}=50$

(Fug-gedda-aboud-dit!!)

Unit 1

Fig. 8.5 Pile-up:
One 60 mph car hits
five standing cars

Fig. 8.6
Pile-up:
Five 60 mph cars
hit
one standing cars

Fig. 8.7
Pile-up:
Five 60 mph cars
hit
five standing cars

Crunch energy geometry of freeway crashes and related things \longrightarrow Crunch energy played backwards: This really is "Rocket-Science"

By calculus: $M \cdot \Delta V=-v_{e} \cdot \Delta M \quad$ or: $d V=-v_{e} \frac{d M}{M}$ Integrate: $\quad \int_{V_{I N}}^{V_{F N}} d V=-v_{e} \int_{M_{I N}}^{M_{F N}} d M$
The Rocket Equation: $\quad V_{F I N}-V_{I N}=-v_{e}\left[\ln M_{F I N}-\ln M_{I N}\right]=v_{e}\left[\ln \bar{M}_{\bar{M}_{F I N}}\right]$

A Thales construction for momentum-energy

(Made obsolete by Estrangian scaling to circular $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ plots. Still, one has to construct $V_{m_{1}} / /_{m_{2}} \backslash$ slopes.)

Unit 1

Fig. 8.4a-d
This is a construction of the energy ellipse in a Largangian (v_{1}, v_{2}) plot given the initial (v_{1}, v_{2}).

The Estrangian (V_{1}, V_{2}) plot makes the (v_{1}, v_{2}) plot and this construction obsolete.
(Easier to just draw circle through initial ($\left.V_{1}, V_{2}\right)$.)

