Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and $-k r^{1}$ force fields
Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields
Compare mks units of Coulomb Electrostatic vs. Gravity
Geometry of idealized "Sophomore-physics Earth"
Coulomb field outside Isotropic Harmonic Oscillator (IHO) field inside
Contact-geometry of potential curve(s)
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter:
Introducing the "neutron starlet" and "Black-Hole-Earth"
Introducing 2D IHO orbits and phasor geometry
Phasor "clock" geometry

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and $-k r^{1}$ force fields
Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields
Compare mks units of Coulomb Electrostatic vs. Gravity

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
\rightarrow Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and $-k r^{1}$ force fields
Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields
Compare mks units of Coulomb Electrostatic vs. Gravity

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
\longrightarrow Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and $-k r^{1}$ force fields Coulomb geometry of -1/r-potential and $-1 / r^{2}$-force fields

Compare mks units of Coulomb Electrostatic vs. Gravity

Each $y=x^{2}$ parabola pointofound by just one "Zig-Zag"

1. Pick an ($x=$?)-line
2. "Zig" from its $y=x$ intersection to $x=1$ line
3. "Zag" from origin back to ($x=$?)-line

Each $y=x^{2}$ parabola pointofound by just one "Zig-Zag"
$\begin{array}{ll}\text { 1. Pick an (} x=\text { ?)-line } & \text { 2. "Zig" from its } y=x \\ & \text { intersection to } x=1 \text { line }\end{array}$

3. "Zag" from origin
back to ($x=$?)-line

Unit 1
Fig. 9.1

Each $y=x^{2}$ parabola pointofound by just one "Zig-Zag"
$\begin{array}{ll}\text { 1. Pick an (} x=\text { ?)-line } & \text { 2. "Zig" from its } y=x \\ & \text { intersection to } x=1 \text { line }\end{array}$

3. "Zag" from origin
back to ($x=$?)-line

Unit 1
Fig. 9.1

Each $y=x^{2}$ parabola pointofound by just one "Zig-Zag"
$\begin{array}{ll}\text { 1. Pick an }(x=?) \text {-line } & \text { 2. "Zig" from its } y=x \\ & \text { intersection to } x=1 \text { line }\end{array}$

3. "Zag" from origin
back to ($x=$?)-line

Unit 1
Fig. 9.1

Each $y=x^{2}$ parabola pointofound by just one "Zig-Zag"

1. Pick an ($x=$?)-line
 2. "Zig" from its $y=x$ intersection to $x=1$ line

3. "Zag" from origin
back to ($x=$?)-line

Unit 1
Fig. 9.1

Each $y=x^{2}$ parabola pointofound by just one "Zig-Zag"

1. Pick an ($x=$?)-line
 2. "Zig" from its $y=x$ intersection to $x=1$ line

3. "Zag" from origin back to ($x=$?)-line

Each $y=x^{2}$ parabola pointofound by just one "Zig-Zag"

1. Pick an ($x=$?)-line
 2. "Zig" from its $y=x$ intersection to $x=1$ line

3. "Zag" from origin back to ($x=$?)-line

Each $y=x^{2}$ parabola pointofound by just one "Zig-Zag"

1. Pick an ($x=$?)-line 2. "Zig" from its $y=x$ intersection to $x=1$ line

3. "Zag" from origin back to ($x=$?)-line

Fig. 9.1

Each $y=x^{2}$ parabola pointofound by just one "Zig-Zag"

1. Pick an ($x=$?)-line

2. "Zig" from its $y=x$
intersection to $x=1$ line
3. "Zag" from origin back to ($x=$?)-line

(a) Oscillator potential $U(x)=x^{2}$
(b) Hooke-Law Force $\mathbb{F}(x)=-2 x$

A more conventional parabolic geometry...(uses focal point)

Unit 1
Fig. 9.3

A more conventional parabolic geometry...

Better name for λ : latus radius

Unit 1
$\dagger{ }^{\text {Old term }}$ latus rectum is exclusive copyright of

Fig. 9.3
...conventional parabolic geometry...carried to extremes...

Unit 1
Fig. 9.4

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and $-k r^{1}$ force fields
\longrightarrow Coulomb geometry of - $1 / r$-potential and $-1 / r^{2}$-force fields
Compare mks units of Coulomb Electrostatic vs. Gravity

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and $-k r^{1}$ force fields Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields
\rightarrow Compare mks units of Coulomb Electrostatic vs. Gravity

Compare mks units for Coulomb fields

1. Electrostatic force between q (Coulombs) and $Q(C$.
$F^{\text {elec. } . ~}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$

Compare mks units for Coulomb fields

1. Electrostatic force between q (Coulombs) and $Q(C$.
$F^{\text {elec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
More precise value for electrostatic constant : $1 / 4 \pi \varepsilon_{0}=8.987,551 \cdot 10^{9} \mathrm{Nm}^{2} / C^{2} \sim 9 \cdot 10^{9} \sim 10^{10}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Repulsive $(+)(+)$ or $(-)(-)$ Attractive (+)(-) or $(-)(+)$

Compare mks units for Coulomb fields

1. Electrostatic force between q (Coulombs) and $Q(C$.
$F^{\text {elee. } . ~}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
More precise value for electrostatic constant : $1 / 4 \pi \varepsilon_{0}=8.987,551 \cdot 10^{9} \mathrm{Nm}^{2} / C^{2} \sim 9 \cdot 10^{9} \sim 10^{10}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Repulsive $(+)(+)$ or $(-)(-)$
Attractive $(+)(-)$ or $(-)(+)$
"Fingertip Physics" of Ch. 9 notes that $1(\mathrm{~cm})^{3}=1 \mathrm{gm}$ of water (1/18 Mole) has (1/18) $6 \cdot 10^{23}$ molecules
$\mathrm{H}_{2} \mathrm{O}$ Molecular weight ~ 18
$\sim 0.3 \cdot 10^{23}$

Compare mks units for Coulomb fields

1. Electrostatic force between q (Coulombs) and $Q(C$.
$F^{\text {elec. } .}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
More precise value for electrostatic constant : $1 / 4 \pi \varepsilon_{0}=8.987,551 \cdot 10^{9} \mathrm{Nm}^{2} / C^{2} \sim 9 \cdot 10^{9} \sim 10^{10}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Repulsive $(+)(+)$ or $(-)(-)$
Attractive $(+)(-)$ or $(-)(+)$
"Fingertip Physics" of Ch. 9 notes that $1(\mathrm{~cm})^{3}=1$ gm of water $\left(1 / 18\right.$ Mole) has $(1 / 18) 6 \cdot 10^{23}$ molecules or $\sim 3 \cdot 10^{23}$ electrons
$\sim 0.3 \cdot 10^{23}$
and $\sim 3 \cdot 10^{23}$ protrons.
$\mathrm{H}_{2} \mathrm{O}$ Molecular weight ~ 18 Atomic number $=10$

10 electrons
$16 \mathrm{O}_{8}$
10 protons

Compare mks units for Coulomb fields

1. Electrostatic force between q (Coulombs) and $Q(C$.
$F^{\text {elec. } .}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
More precise value for electrostatic constant : $1 / 4 \pi \varepsilon_{0}=8.987,551 \cdot 10^{9} \mathrm{Nm}^{2} / C^{2} \sim 9 \cdot 10^{9} \sim 10^{10}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Repulsive $(+)(+)$ or $(-)(-)$
Attractive $(+)(-)$ or $(-)(+)$
"Fingertip Physics" of Ch. 9 notes that $1(\mathrm{~cm})^{3}=1$ gm of water (1/18 Mole) has (1/18) $6 \cdot 10^{23}$ molecules or $\sim 3 \cdot 10^{23}$ electrons
$\mathrm{H}_{2} \mathrm{O}$ Molecular weight $\sim 18 \sim \sim 0.3 \cdot 10^{23}$ and $\sim 3 \cdot 10^{23}$ protrons.
$\mathrm{H}_{2} \mathrm{O}$ Molecular weight~18 Atomic number $=10$

10 electrons That is $\sim-3 \cdot 10^{23} 1.6022 \cdot 10^{-19}$ Coulomb or about $-0.5 \cdot 10^{+5} \mathrm{C}$ or $-50,000$ Coulomb $16 \mathrm{O}_{8}$ 10 protons plus $\sim+3 \cdot 10^{23} 1.6022 \cdot 10^{-19}$ Coulomb or about $+0.5 \cdot 10^{+5} \mathrm{C}$ or $+50,000$ Coulomb Equals zero total charge

Compare mks units for Coulomb fields

1. Electrostatic force between $q(C o u l o m b s)$ and $Q(C$.

$$
F^{\text {elec. } . ~}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}
$$

More precise value for electrostatic constant : $1 / 4 \pi \varepsilon_{0}=8.987,551 \cdot 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \sim 9 \cdot 10^{9} \sim 10^{10}$

$$
\uparrow \text { COMPARE! } \uparrow \underset{\substack{\text { vs } \\ \text { vsmall } \\ \text { sna }}}{\substack{\text { IG } \\ \hline}}
$$

2. Gravitational force between m(kilograms) and M(kg.)
$F^{\text {grav. }}(r)=-G \frac{m M}{r^{2}}$ where $: G=0.000,000,000,067 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
More precise value for gravitational constant : $G=6.67384(80) \cdot 10^{-11} \mathrm{Nm}^{2} / \mathrm{C}^{2} \sim(2 / 3) 10^{-10}$

Compare mks units for Coulomb fields

1. Electrostatic force between $q(C o u l o m b s)$ and $Q(C$.
$F^{\text {elec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$

1 (a). Electrostatic potential energy between q (Coulombs) and Q(C.)

$$
U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Joule }}{\text { per square Coulomb }}
$$

Compare mks units for Coulomb fields

1. Electrostatic force between $q($ Coulombs) and $Q(C)$.
$F^{\text {elec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb
Repulsive $(+)(+)$ or $(-)(-)$ Attractive $(+)(-)$ or $(-)(+)$

Discussion of repulsive force and PE in Ch. 9...
1(a). Electrostatic potential energy between q (Coulombs) and $Q(C$.

$$
U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Joule }}{\text { per square Coulomb }}
$$

Nuclear size $\sim 10^{-15} \mathrm{~m}=1$ femtometer $=1 \mathrm{fm}$
Atomic size ~ 1 Angstrom $=10^{-10} \mathrm{~m}$

Compare mks units for Coulomb fields

1. Electrostatic force between $q($ Coulombs) and $Q(C)$.
$F^{\text {elec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb
Repulsive $(+)(+)$ or $(-)(-)$ Attractive $(+)(-)$ or $(-)(+)$

Discussion of repulsive force and PE in Ch. 9...
1(a). Electrostatic potential energy between q (Coulombs) and $Q(C$.

$$
U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Joule }}{\text { per square Coulomb }}
$$

Nuclear size $\sim 10^{-15} \mathrm{~m}=1$ femtometer $=1 \mathrm{fm}$
Atomic size ~ 1 Angstrom $=10^{-10} \mathrm{~m}$
Big molecule ~ 10 Angstrom $=10^{-9} \mathrm{~m}=1$ nanometer $=1 \mathrm{~nm}$

Compare mks units for Coulomb fields

1. Electrostatic force between $q($ Coulombs) and $Q(C)$.
$F^{\text {eec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Repulsive $(+)(+)$ or $(-)(-)$ Attractive $(+)(-)$ or $(-)(+)$

Discussion of repulsive force and PE in Ch. 9...
1(a). Electrostatic potential energy between q (Coulombs) and $Q(C$.

$$
U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Joule }}{\text { per square Coulomb }}
$$

8

Compare mks units for Coulomb fields

1. Electrostatic force between q (Coulombs) and $Q(C$.
$F^{\text {elec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Repulsive $(+)(+)$ or $(-)(-)$ Attractive $(+)(-)$ or $(-)(+)$

Discussion of repulsive force and PE in Ch. 9...
1 (a). Electrostatic potential energy between q (Coulombs) and $Q(C$.

$$
U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Joule }}{\text { per square Coulomb }}
$$

nuclear radii are 100,000 to 1,000,000 times smaller than atomic/chemical radii
...so nuclear qQ/r energy 100,000 to 1,000,000 times bigger that of atomic/chemical...

Geometry of idealized "Sophomore-physics Earth"

 \rightarrow Coulomb field outsideIsotropic Harmonic Oscillator (IHO) field inside
Contact-geometry of potential curve(s)
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter:
Introducing the "neutron starlet" and "Black-Hole-Earth"

Coulomb force vanishes inside-spherical shell (Gauss-law)

Coulomb force inside-spherical body due to stuff below you, only.

Coulomb force vanishes inside-spherical shell (Gauss-law)

Coulomb force vanishes inside-spherical shell (Gauss-law)

Gravity at r
due to shell mass elements
$\frac{G M}{D^{2}}-\frac{G m}{d^{2}}=$
$\left(\frac{D^{2}}{D^{2}}-\frac{d^{2}}{d^{2}}\right) A=0$
Cancellation of
Shell mass element
$M=($ solid-angle factor $A) D^{2}$
Coulomb force inside-spherical body due to stuff below you, only.

Earth surface gravity acceleration: $g=G \frac{M_{\oplus}}{R_{\oplus}^{2}}=G \frac{M_{\oplus}}{R_{\oplus}^{3}} R_{\oplus}=G \frac{4 \pi}{3} \frac{4}{\frac{4 \pi}{3} R_{\oplus}^{3}} R_{\oplus}=G \frac{4 \pi}{3} \rho_{\oplus} R_{\oplus}=9.8 \mathrm{~m} / \mathrm{s}$

Coulomb force vanishes inside-spherical shell (Gauss-law)

Gravity at r due to shell mass elements $\frac{G M}{D^{2}}-\frac{G m}{d^{2}}=$ $\left(\frac{D^{2}}{D^{2}}-\frac{d^{2}}{d^{2}}\right) A=0$ Cancellation of Shell mass element
$M=($ solid-angle factor $A) D^{2}$
Coulomb force inside-spherical body due to stuff below you, only.
 $\begin{aligned} & \text { Earth surface grdvity acceleration: } g=G \frac{M_{\oplus}}{R_{\oplus}^{2}}=G \frac{M_{\oplus}}{R_{\oplus}^{3}} R_{\oplus}=G \frac{4 \pi}{3} \frac{M_{\oplus}}{\frac{4 \pi}{3}} R_{\oplus}^{3} \\ & R_{\oplus}\end{aligned}=G \frac{4 \pi}{3} \rho_{\oplus} R_{\oplus}=9.8 \mathrm{~m} / \mathrm{s}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$
Earth mass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$.

Solar radius : $R_{\odot}=6.955 \times 10^{8} \mathrm{~m} . \simeq 7.0 \cdot 10^{8} \mathrm{~m}$.
Solar mass : $M_{\odot}=1.9889 \times 10^{30} \mathrm{~kg} . \simeq 2.0 \cdot 10^{30} \mathrm{~kg}$.

Geometry of idealized "Sophomore-physics Earth"

Coulomb field outside Isotropic Harmonic Oscillator (IHO) field inside \longrightarrow Contact-geometry of potential curve(s)
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter:
Introducing the "neutron starlet" and "Black-Hole-Earth"

The ideal "Sophomore-Physics-Earth" model of geo-gravity

...conventional parabolic geometry...carried to extremes...
(From p.18)

Unit 1
Fig. 9.4

Geometry of idealized "Sophomore-physics Earth"

 Coulomb field outsideIsotropic Harmonic Oscillator (IHO) field inside Contact-geometry of potential curve(s)
\rightarrow "Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter:
Introducing the "neutron starlet" and "Black-Hole-Earth"

Geometry of idealized "Sophomore-physics Earth"

Coulomb field outside
Isotropic Harmonic Oscillator (IHO) field inside
Contact-geometry of potential curve(s)
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter:
Introducing the "neutron starlet" and "Black-Hole-Earth"

Examples of "crushed" matter

Earth matter Earthmass: $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus}=$?? Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$ Earth volume $:(4 \pi / 3) R_{\oplus}{ }^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$

$$
\text { (6.4) })^{\sim} 262 \text { and }(4 \pi / 3) 260=1098 \sim 10^{3}
$$

Examples of "crushed" matter

Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$

Examples of "crushed" matter

Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$

Density of solid $\mathrm{Fe}=7.9 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Density of liquid $\mathrm{Fe}=6.9 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

Examples of "crushed" matter
Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$
Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} \cdot \sim 2 \cdot 10^{-27} \mathrm{~kg}$.
Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.

Examples of "crushed" matter

Earth matter Earthmass: $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$

Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} \cdot \sim 2 \cdot 10^{-27} \mathrm{~kg}$.
Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.
That's $100 \cdot 10^{-27}=10^{-25} \mathrm{~kg}$ packed into a volume of $4 \pi / 3 r^{3}=4 \pi / 3\left(3 \cdot 10^{-15}\right)^{3} \mathrm{~m}^{3}$ or about $10^{-43} \mathrm{~m}^{3}$. $36 \pi=113 \sim 10^{2}$

Examples of "crushed" matter

Earth matter Earthmass: $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$

Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} \cdot \sim 2 \cdot 10^{-27} \mathrm{~kg}$.
Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.
That's $100 \cdot 10^{-27}=10^{-25} \mathrm{~kg}$ packed into a volume of $4 \pi / 3 r^{3}=4 \pi / 3\left(3 \cdot 10^{-15}\right)^{3} \mathrm{~m}^{3}$ or about $10^{-43} \mathrm{~m}^{3}$.
Nuclear density is $10^{-25+43}=10^{18} \mathrm{~kg} / \mathrm{m}^{3}$ or a trillion (10 ${ }^{12}$) kilograms in the size of a fingertip (1 cc).
Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{\text {cruss } \oplus} \simeq 300 \mathrm{~m}$ would approach neutron-star density.

Examples of "crushed" matter

Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} m \simeq 6.4 \cdot 10^{6} m$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$

Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} \cdot \sim 2 \cdot 10^{-27} \mathrm{~kg}$.
Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.
That's $100 \cdot 10^{-27}=10^{-25} \mathrm{~kg}$ packed into a volume of $4 \pi / 3 r^{3}=4 \pi / 3\left(3 \cdot 10^{-15}\right)^{3} \mathrm{~m}^{3}$ or about $10^{-43} \mathrm{~m}^{3}$.

Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{\text {crush }} \simeq 300 \mathrm{~m}$ would approach neutron-star density.

Introducing the "Neutron starlet" $1 \mathrm{~cm}^{3}$ of nuclear matter: mass $=10^{12} \mathrm{~kg}$.

Examples of "crushed" matter

Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} m \simeq 6.4 \cdot 10^{6} m$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$
Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} . \sim 2 \cdot 10^{-27} \mathrm{~kg}$.
Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.
That's $100 \cdot 10^{-27}=10^{-25} \mathrm{~kg}$ packed into a volume of $4 \pi / 3 r^{3}=4 \pi / 3\left(3 \cdot 10^{-15}\right)^{3} \mathrm{~m}^{3}$ or about $10^{-43} \mathrm{~m}^{3}$.

Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{\text {crush } \oplus} \simeq 300 \mathrm{~m}$ would approach neutron-star density.

Introducing the "Neutron starlet" $1 \mathrm{~cm}^{3}$ of nuclear matter: mass $=10^{12} \mathrm{~kg}$.

Introducing the "Black Hole Earth" Suppose Earth is crushed so that its
surface escape velocity is the speed of light $c \cong 3.0 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$.

$$
V_{\text {escape }}=\sqrt{\left(2 G M / R_{\otimes}\right)}
$$

(from p. 43)

```
G=6.67384(80)\cdot10-11 Nm}\mp@subsup{}{}{2}/\mp@subsup{C}{}{2}~(2/3)10-1
```


Examples of "crushed" matter

Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earth radius $: R_{\oplus}=6.371 \cdot 10^{6} m \simeq 6.4 \cdot 10^{6} m$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$

Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} . \sim 2 \cdot 10^{-27} \mathrm{~kg}$.
Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.
That's $100 \cdot 10^{-27}=10^{-25} \mathrm{~kg}$ packed into a volume of $4 \pi / 3 r^{3}=4 \pi / 3\left(3 \cdot 10^{-15}\right)^{3} \mathrm{~m}^{3}$ or about $10^{-43} \mathrm{~m}^{3}$.

Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{\text {crush } \oplus} \simeq 300 \mathrm{~m}$ would approach neutron-star density.

Introducing the "Neutron starlet" $1 \mathrm{~cm}^{3}$ of nuclear matter: mass $=10^{12} \mathrm{~kg}$.

Introducing the "Black Hole Earth" Suppose Earth is crushed so that its
surface escape velocity is the speed of light $c \cong 3.0 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$.

$$
V_{\text {escape }}=\sqrt{\left(2 G M / R_{\otimes}\right)} \quad c=\sqrt{\left(2 G M / R_{\odot}\right)}
$$

(from p.43)

$$
R_{\boldsymbol{\otimes}}=2 G M / c^{2}=8.9 \mathrm{~mm} \sim 1 \mathrm{~cm}
$$

(fingertip size!)
\rightarrow Introducing 2D IHO orbits and phasor geometry Phasor "clock" geometry

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law
 $F=-x \quad$ (1-Dimension)
 $\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

Each dimension x, y, or z obeys the following:
Total $E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ const.
(Paths are always
2-D ellipses if viewed right!)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:
Total $E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ const.
tions for x-motion

(Paths are always 2-D ellipses if viewed right!)

Equations for x-motion
$\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions
$\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and
[$z(t)$ and $\left.v_{z}=v(t)\right]$ in the
ideal isotropic case.

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

Each dimension x, y, or z obeys the following:
Total $E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ const.

Equations for x-motion

$\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are

 given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.$$
\begin{aligned}
& 1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2} \\
& 1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2} \quad \begin{array}{l}
\text { Another example of } \\
\text { the old "scale-a-circle" } \\
\text { trick.. }
\end{array}
\end{aligned}
$$

$$
\text { Let : (1) } v=\sqrt{2 E / m} \cos \theta, \text { and : (2) } x=\sqrt{2 E / k} \sin \theta
$$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

Each dimension x, y, or z obeys the following:

$$
\begin{aligned}
& \text { Total } E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\text { const } \\
& \text { Ttions for } x \text {-motion }
\end{aligned}
$$

(b)

Unit 1 Fig. 9.10

Equations for x-motion
$\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2}
$$

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2}
$$

Another example of the old "scale-a-circle" trick...
Let : (1) $v=\sqrt{2 E / m} \cos \theta$, and :
(2) $x=\sqrt{2 E / k} \sin \theta$
def. (3) $\omega=\frac{d \theta}{d t}$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

Each dimension x, y, or z obeys the following:

$$
\text { Total } E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\text { const }
$$

(b)

Unit 1 Fig. 9.10

Equations for x-motion
$\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2}
$$

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2}
$$

Another example of the old "scale-a-circle" trick...

Let : (1) $v=\sqrt{2 E / m} \cos \theta$, and :
(2) $x=\sqrt{2 E / k} \sin \theta$
def. (3) $\omega=\frac{d \theta}{d t}$

$$
\begin{array}{r}
\sqrt{\frac{2 E}{m}} \cos \theta=v=\frac{d x}{d t}=\frac{d \theta}{d t} \frac{d x}{d \theta}=\omega \frac{d x}{d \theta}=\omega \sqrt{\frac{2 E}{k}} \cos \theta \\
\text { by (1) def. (3) }
\end{array}
$$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

(b)

Each dimension x, y, or z obeys the following:

$$
\begin{aligned}
& \text { Total } E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\text { const }
\end{aligned}
$$

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2}
$$

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2}
$$

Another example of the old "scale-a-circle" trick...

$$
\text { Let : (1) } v=\sqrt{2 E / m} \cos \theta, \quad \text { and : (2) } x=\sqrt{2 E / k} \sin \theta \quad \text { def. (3) } \quad \omega=\frac{d \theta}{d t}
$$

$$
\begin{array}{|c}
\sqrt{\frac{2 E}{m}} \cos \theta=v=\frac{d x}{d t}=\frac{d \theta}{d t} \frac{d x}{d \theta}=\omega \frac{d x}{d \theta}=\omega \sqrt{\frac{2 E}{k}} \cos \theta \\
\text { by def. (3) }
\end{array} \begin{aligned}
& \text { by def. (3) } \\
& \omega=\frac{d \theta}{d t}=\sqrt{\frac{k}{m}} \\
& \text { by (2) }
\end{aligned}
$$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law
 $F=-x \quad$ (1-Dimension)
 $\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

Each dimension x, y, or z obeys the following:
Total $E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ const.

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2}
$$

Let : (1) $v=\sqrt{2 E / m} \cos \theta$, and :
Equations for x-motion $\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.
(a)

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2} \quad \begin{aligned}
& \text { Another example of } \\
& \text { the old "scale-a-circle" } \\
& \text { trick.. }
\end{aligned}
$$

\rightarrow Introducing 2D IHO orbits and phasor geometry
Phasor "clock" geometry

Isotropic Harmonic Oscillator phase dynamics in uniform-body
(a) 1-D Oscillator Phasor Plot

(b) 2-D Oscillator Phasor Plot
,

Unit 1
Fig. 9.10

BoxIt 2DHO Animation

BoxIt web animation

http://www.uark.edu/ua/modphys/markup/BoxItWeb.html

(a) Phasor Plots for
2-D Oscillator or
Two 1D Oscillators (x-Phase 90° behind the y-Phase)
y-velocit
ocit

(b)
x-Phase 0° behind the y-Phase
(In-phase case)
y-velocity ${ }^{-1}$
ν_{y} / ω

Unit 1

Fig. 9.12

These are more generic examples with radius of x-phasor differing from that of the y-phasor.

