Lecture 6 Thur. 9.10.2015

Geometry of common power-law potentials

Geometric (Power) series

"Zig-Zag" exponential geometry

Projective or perspective geometry

Parabolic geometry of harmonic oscillator kr²/2 potential and -kr¹ force fields

Coulomb geometry of -1/r-potential and -1/r²-force fields

Compare mks units of Coulomb Electrostatic vs. Gravity

Geometry of idealized "Sophomore-physics Earth"

Coulomb field <u>outside</u> Isotropic Harmonic Oscillator (IHO) field <u>inside</u>

Contact-geometry of potential curve(s)

"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"

Earth matter vs nuclear matter:

Introducing the "neutron starlet" and "Black-Hole-Earth"

Introducing 2D IHO orbits and phasor geometry

Phasor "clock" geometry

Geometry of common power-law potentials

Geometric (Power) series

"Zig-Zag" exponential geometry

Projective or perspective geometry

Parabolic geometry of harmonic oscillator kr²/2 potential and -kr¹ force fields

Coulomb geometry of -1/r-potential and $-1/r^2$ -force fields

Compare mks units of Coulomb Electrostatic vs. Gravity

Geometry of common power-law potentials

Geometric (Power) series

"Zig-Zag" exponential geometry

Projective or perspective geometry

Parabolic geometry of harmonic oscillator kr²/2 potential and -kr¹ force fields Coulomb geometry of -1/r-potential and -1/r²-force fields Compare mks units of Coulomb Electrostatic vs. Gravity

"Zig-Zags" give

perspective geometry

(1D-vanishing point)

Unit 1 Fig. 9.2

Geometry of common power-law potentials

Geometric (Power) series

"Zig-Zag" exponential geometry

Projective or perspective geometry

Parabolic geometry of harmonic oscillator kr²/2 potential and -kr¹ force fields Coulomb geometry of -1/r-potential and -1/r²-force fields

Compare mks units of Coulomb Electrostatic vs. Gravity

- 1. Pick an (x=?)-line
- 2. "Zig" from its y=x intersection to x=1 line
- 3. "Zag" from origin back to (x=?)-line

"Zag" line is $y=(?)\cdot x$ and hits (x=?)-line at $y=(?)\cdot (?)=(?)^2$

- 1. Pick an (x=?)-line
- 2. "Zig" from its y=x intersection to x=1 line
 - 3. "Zag" from origin back to (x=?)-line

"Zag" line is $y=(?)\cdot x$ and hits (x=?)-line at $y=(?)\cdot(?)=(?)^2$

Unit 1 Fig. 9.1

- 1. Pick an (x=?)-line
- 2. "Zig" from its y=x intersection to x=1 line
 - 3. "Zag" from origin back to (x=?)-line

"Zag" line is $y=(?)\cdot x$ and hits (x=?)-line at $y=(?)\cdot (?)=(?)^2$

Unit 1 Fig. 9.1

- 1. Pick an (x=?)-line
- intersection to x=1 line
- 2. "Zig" from its y=x 3. "Zag" from origin back to (x=?)-line

"Zag" line is $y=(?)\cdot x$ and hits (x=?)-line at $y=(?)\cdot(?)=(?)^2$

Unit 1 Fig. 9.1

- 1. Pick an (x=?)-line
- intersection to x=1 line
- 2. "Zig" from its y=x 3. "Zag" from origin back to (x=?)-line

"Zag" line is $y=(?)\cdot x$ and hits (x=?)-line at $y=(?)\cdot(?)=(?)^2$

Unit 1 Fig. 9.1

- 1. Pick an (x=?)-line
- intersection to x=1 line
- 2. "Zig" from its y=x 3. "Zag" from origin back to (x=?)-line

"Zag" line is $y=(?)\cdot x$ and hits (x=?)-line at $y=(?)\cdot(?)=(?)^2$

- 1. Pick an (x=?)-line
- intersection to x=1 line
- 2. "Zig" from its y=x 3. "Zag" from origin back to (x=?)-line

"Zag" line is $y=(?)\cdot x$ and hits (x=?)-line at $y=(?)\cdot(?)=(?)^2$

- 1. Pick an (x=?)-line
- 2. "Zig" from its y=x intersection to x=1 line
 - 3. "Zag" from origin back to (x=?)-line

"Zag" line is $y=(?)\cdot x$ and hits (x=?)-line at $y=(?)\cdot (?)=(?)^2$

Unit 1 Fig. 9.1

- intersection to x=1 line
- 1. Pick an (x=?)-line 2. "Zig" from its y=x 3. "Zag" from origin back to (x=?)-line

"Zag" line is $y=(?)\cdot x$ and hits (x=?)-line at $y=(?)\cdot(?)=(?)^2$

A more conventional parabolic geometry...(uses focal point)

Unit 1 Fig. 9.3

A more conventional parabolic geometry...

Unit 1 Fig. 9.3

Old term *latus rectum* is exclusive copyright of *X-Treme Roidrage Gyms*Venice Beach, CA 90017

...conventional parabolic geometry...carried to extremes...

Unit 1 Fig. 9.4

Geometry of common power-law potentials

Geometric (Power) series

"Zig-Zag" exponential geometry

Projective or perspective geometry

Parabolic geometry of harmonic oscillator kr²/2 potential and -kr¹ force fields

 \longrightarrow Coulomb geometry of -1/r-potential and -1/r²-force fields

Compare mks units of Coulomb Electrostatic vs. Gravity

Step2: Follow line from origin (0,0)through (x,-1/x) point \oplus to $(+1,-1/x^2)$ intercept. Transfer laterally to draw $(x,-1/x^2)$ point.

Unit 1 Fig. 9.4

Coulomb geometry
Force and Potential $F(x)=-1/r^2$ U(x)=-1/r

Geometry of common power-law potentials

Geometric (Power) series

"Zig-Zag" exponential geometry

Projective or perspective geometry

Parabolic geometry of harmonic oscillator kr²/2 potential and -kr¹ force fields

Coulomb geometry of -1/r-potential and -1/r²-force fields

Compare mks units of Coulomb Electrostatic vs. Gravity

1. Electrostatic force between q(Coulombs) and Q(C.)

$$F^{elec.}(r) = \pm \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

1. Electrostatic force between q(Coulombs) and Q(C.)

$$F^{elec.}(r) = \pm \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

More precise value for electrostatic constant : $1/4\pi\epsilon_0 = 8.987,551 \cdot 10^9 \text{Nm}^2/\text{C}^2 \sim 9 \cdot 10^9 \sim 10^{10}$

quantum of charge: $|e|=1.6022\cdot 10^{-19}$ Coulomb

T
Repulsive (+)(+) or (-)(-)

Attractive (+)(-) or (-)(+)

 $...but\ 1\ Ampere = 1\ Coulomb/sec.$

1. Electrostatic force between q(Coulombs) and Q(C.)

$$F^{elec.}(r) = \pm \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

More precise value for electrostatic constant: $1/4\pi\epsilon_0 = 8.987,551 \cdot 10^9 \text{Nm}^2/\text{C}^2 \sim 9 \cdot 10^9 \sim 10^{10}$

quantum of charge: $|e|=1.6022\cdot 10^{-19}$ Coulomb

Repulsive (+)(+) or (-)(-) Attractive (+)(-) or (-)(+)

...but 1 Ampere = 1 Coulomb/sec.

"Fingertip Physics" of Ch. 9 notes that $1 \text{ (cm)}^3 = 1\text{gm of water (1/18 Mole) has (1/18) } 6.10^{23} \text{ molecules}$ $\sim 0.3 \cdot 10^{23}$

*H*₂*O* Molecular weight~18

1. Electrostatic force between q(Coulombs) and Q(C.)

$$F^{elec.}(r) = \pm \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

More precise value for electrostatic constant: $1/4\pi\epsilon_0 = 8.987,551 \cdot 10^9 \text{Nm}^2/\text{C}^2 \sim 9 \cdot 10^9 \sim 10^{10}$

quantum of charge: $|e|=1.6022\cdot 10^{-19}$ Coulomb

Repulsive (+)(+) or (-)(-) Attractive (+)(-) or (-)(+)

 $...but\ 1\ Ampere=1\ Coulomb/sec.$

"Fingertip Physics" of Ch. 9 notes that $1 \text{ (cm)}^3 = 1\text{gm of water (1/18 Mole) has (1/18) } 6.10^{23} \text{ molecules or } \sim 3.10^{23} \text{ electrons}$ $\sim 0.3.10^{23} \text{ and } \sim 3.10^{23} \text{ protrons.}$

 H_2O Molecular weight~18 Atomic number = 10

1. Electrostatic force between q(Coulombs) and Q(C.)

$$F^{elec.}(r) = \pm \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

More precise value for electrostatic constant: $1/4\pi\epsilon_0 = 8.987,551 \cdot 10^9 \text{Nm}^2/\text{C}^2 \sim 9 \cdot 10^9 \sim 10^{10}$

quantum of charge: $|e|=1.6022\cdot 10^{-19}$ Coulomb

Repulsive (+)(+) or (-)(-) Attractive (+)(-) or (-)(+)

 $...but\ 1\ Ampere = 1\ Coulomb/sec.$

"Fingertip Physics" of Ch. 9 notes that $1 \text{ (cm)}^3 = 1\text{gm of water (1/18 Mole) has (1/18) } 6.10^{23} \text{ molecules or } \sim 3.10^{23} \text{ electrons}$ $\sim 0.3.10^{23} \text{ and } \sim 3.10^{23} \text{ protrons}.$

 H_2O Molecular weight~18 Atomic number = 10

 $\begin{array}{ll} 10 \; electrons & \textit{That is} \sim -\; 3\cdot 10^{23} 1.6022\cdot 10^{-19} \; \textit{Coulomb or about } -0.5\cdot 10^{+5} \; \textit{C or } -\; 50,000 \; \textit{Coulomb } \\ 10 \; \textit{protons} & \textit{plus} \sim +3\cdot 10^{23} 1.6022\cdot 10^{-19} \; \textit{Coulomb or about } +0.5\cdot 10^{+5} \; \textit{C or } +50,000 \; \textit{Coulomb } \\ \end{array}$

Equals zero total charge

1. Electrostatic force between q(Coulombs) and Q(C.)

$$F^{elec.}(r) = \pm \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

More precise value for electrostatic constant: $1/4\pi\epsilon_0 = 8.987,551 \cdot 10^9 \text{Nm}^2/\text{C}^2 \sim 9 \cdot 10^9 \sim 10^{10}$

quantum of charge: $|e|=1.6022\cdot 10^{-19}$ Coulomb

Repulsive (+)(+) or (-)(-) Attractive (+)(-) or (-)(+) vs Always Attractive (so far)

BIG vs small

2. Gravitational force between m(kilograms) and M(kg.)

$$F^{grav.}(r) = -G\frac{mM}{r^2} \quad where: G = 0.000,000,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

More precise value for gravitational constant : $G=6.67384(80)\cdot 10^{-11} \text{Nm}^2/\text{C}^2 \sim (2/3)10^{-10}$

1. Electrostatic force between q(Coulombs) and Q(C.)

$$F^{elec.}(r) = \pm \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

Repulsive (+)(+) or (-)(-)

Attractive (+)(-) or (-)(+)

Discussion of repulsive force and PE in Ch. 9...

quantum of charge: $|e|=1.6022\cdot 10^{-19}$ Coulomb

I(a). Electrostatic potential energy between q(Coulombs) and Q(C.)

$$U(r) = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r}$$
 where: $\frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Joule}{per square Coulomb}$

1. Electrostatic force between q(Coulombs) and Q(C.)

$$F^{elec.}(r) = \pm \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

Repulsive (+)(+) or (-)(-)Attractive (+)(-) or (-)(+) Discussion of repulsive force and PE in Ch. 9...

I(a). Electrostatic potential energy between q(Coulombs) and Q(C.)

$$U(r) = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Joule}{per \ square \ Coulomb}$$

Nuclear size
$$\sim 10^{-15}$$
 m = 1 femtometer = 1 fm

Atomic size ~ 1 Angstrom = 10^{-10} m

quantum of charge: $|e|=1.6022\cdot 10^{-19}$ Coulomb

1. Electrostatic force between q(Coulombs) and Q(C.)

$$F^{elec.}(r) = \pm \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

Repulsive (+)(+) or (-)(-)Attractive (+)(-) or (-)(+)

Discussion of repulsive force and PE in Ch. 9...

I(a). Electrostatic potential energy between q(Coulombs) and Q(C.)

$$U(r) = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Joule}{per \ square \ Coulomb}$$

Nuclear size $\sim 10^{-15}$ m = 1 femtometer = 1 fm

Atomic size ~ 1 Angstrom = 10^{-10} m $Big\ molecule \sim 10\ Angstrom = 10^{-9}\ m = 1nanometer=1nm$

quantum of charge: $|e|=1.6022\cdot 10^{-19}$ Coulomb

1. Electrostatic force between q(Coulombs) and Q(C.)

$$F^{elec.}(r) = \pm \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

Repulsive (+)(+) or (-)(-)Attractive (+)(-) or (-)(+)

Discussion of repulsive force and PE in Ch. 9...

1(a). Electrostatic potential energy between q(Coulombs) and Q(C.)

$$U(r) = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Joule}{per \ square \ Coulomb}$$

Nuclear size $\sim 10^{-15}$ m = 1 femtometer = 1 fm

Atomic size ~ 1 Angstrom = 10^{-10} m

 $Big\ molecule \sim 10\ Angstrom = 10^{-9}\ m = 1nanometer=1nm$

quantum of charge: $|e|=1.6022\cdot 10^{-19}$ Coulomb

$$also:1fm = 10^{-13} cm = 1Fermi$$

$$= 1Fm$$

$$| 1 Fermi$$

1. Electrostatic force between q(Coulombs) and Q(C.)

$$F^{elec.}(r) = \pm \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \quad where: \frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Newtons \cdot meter \cdot square}{per \ square \ Coulomb}$$

Repulsive (+)(+) or (-)(-) Attractive (+)(-) or (-)(+)

Discussion of repulsive force and PE in Ch. 9...

I(a). Electrostatic potential energy between q(Coulombs) and Q(C.)

$$U(r) = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r}$$
 where: $\frac{1}{4\pi\varepsilon_0} \cong 9,000,000,000 \frac{Joule}{per square Coulomb}$

Nuclear size $\sim 10^{-15}$ m = 1 femtometer = 1 fm

Atomic size ~ 1 Angstrom = 10^{-10} m

 $Big\ molecule \sim 10\ Angstrom = 10^{-9}\ m = 1nanometer=1nm$

quantum of charge: $|e|=1.6022\cdot 10^{-19}$ Coulomb

$$also:1fm = 10^{-13} cm = 1Fermi$$

$$=1Fm$$

$$= 1Fermi$$

nuclear radii are 100,000 to 1,000,000 times smaller than atomic/chemical radii

...so nuclear qQ/r energy 100,000 to 1,000,000 times bigger that of atomic/chemical...

Geometry of idealized "Sophomore-physics Earth"

Coulomb field <u>outside</u> Isotropic Harmonic Oscillator (IHO) field <u>inside</u>
Contact-geometry of potential curve(s)

"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels" Earth matter vs nuclear matter:

Introducing the "neutron starlet" and "Black-Hole-Earth"

Coulomb force inside-spherical body due to stuff below you, only.

Coulomb force inside-spherical body due to stuff below you, only.

Coulomb force inside-spherical body due to stuff below you, only.

Coulomb force vanishes inside-spherical shell (Gauss-law)

Unit 1 Fig. 9.6

Coulomb force inside-spherical body due to stuff below you, only.

Note:

Hooke's (linear) force law for r< inside uniform body

$$F^{inside}(r_{<}) = G \frac{mM_{<}}{r_{<}^{2}} = Gm \frac{4\pi}{3} \frac{M_{<}}{\frac{4\pi}{3} r_{<}^{3}} r_{<} = Gm \frac{4\pi}{3} \rho_{\oplus} r_{<} = mg \frac{r_{<}}{R_{\oplus}} \equiv mg \cdot x$$

Earth surface gravity acceleration:
$$g = G \frac{M_{\oplus}}{R_{\oplus}^2} = G \frac{M_{\oplus}}{R_{\oplus}^3} R_{\oplus} = G \frac{4\pi}{3} \frac{M_{\oplus}}{4\pi} R_{\oplus} = G \frac{4\pi}{3} \rho_{\oplus} R_{\oplus} = 9.8 \, \text{m/s}$$

$$G = 6.67384(80) \cdot 10^{-11} \, \text{Nm}^2/\text{C}^2 \sim (2/3)10^{-10}$$

Earth radius: $R_{\oplus} = 6.371 \cdot 10^6 \, m \approx 6.4 \cdot 10^6 \, m$

Earth mass: $M_{\oplus} = 5.9722 \times 10^{24} \, kg. \approx 6.0 \cdot 10^{24} \, kg.$

Solar radius: $R_{\odot} = 6.955 \times 10^8 m. \approx 7.0 \cdot 10^8 m.$ Solar mass: $M_{\odot} = 1.9889 \times 10^{30} kg. \approx 2.0 \cdot 10^{30} kg.$

Geometry of idealized "Sophomore-physics Earth"

Coulomb field <u>outside</u> Isotropic Harmonic Oscillator (IHO) field <u>inside</u>

Contact-geometry of potential curve(s)

"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels" Earth matter vs nuclear matter:

Introducing the "neutron starlet" and "Black-Hole-Earth"

The ideal "Sophomore-Physics-Earth" model of geo-gravity

...conventional parabolic geometry...carried to extremes...

(From p.18)

Unit 1 Fig. 9.4

Geometry of idealized "Sophomore-physics Earth"

Coulomb field <u>outside</u> Isotropic Harmonic Oscillator (IHO) field <u>inside</u> Contact-geometry of potential curve(s)

"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels" Earth matter vs nuclear matter:

Introducing the "neutron starlet" and "Black-Hole-Earth"

Geometry of idealized "Sophomore-physics Earth"

Coulomb field <u>outside</u> Isotropic Harmonic Oscillator (IHO) field <u>inside</u>

Contact-geometry of potential curve(s)

"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"

Earth matter vs nuclear matter:

Introducing the "neutron starlet" and "Black-Hole-Earth"

Earth matter Earth mass: $M_{\oplus} = 5.9722 \times 10^{24} kg. \approx 6.0 \cdot 10^{24} kg$. Density $\rho_{\oplus} = ??$

Earth radius: $R_{\oplus} = 6.371 \cdot 10^6 \, m \simeq 6.4 \cdot 10^6 \, m$ Earth volume: $(4\pi/3) R_{\oplus}^3 \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \, m^3$

 $(6.4)^3 \sim 262$ and $(4\pi/3)260 = 1098 \sim 10^3$

Earth matter Earth mass: $M_{\oplus} = 5.9722 \times 10^{24} \, kg. \simeq 6.0 \cdot 10^{24} \, kg.$ Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \, kg/m^{3}$

Earth radius: $R_{\oplus} = 6.371 \cdot 10^6 \, m \simeq 6.4 \cdot 10^6 \, m$ Earth volume: $(4\pi/3) R_{\oplus}^3 \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \, m^3$

Earth matter Earth mass: $M_{\oplus} = 5.9722 \times 10^{24} \, kg. \simeq 6.0 \cdot 10^{24} \, kg.$ Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24 - 21} \sim 6 \cdot 10^{3} \, kg/m^{3}$

Earth radius: $R_{\oplus} = 6.371 \cdot 10^6 \, m \simeq 6.4 \cdot 10^6 \, m$ Earth volume: $(4\pi/3) R_{\oplus}^3 \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \, m^3$

Density of solid Fe=7.9·10³kg/m³ Density of liquid Fe=6.9·10³kg/m³

Earth matter Earth mass: $M_{\oplus} = 5.9722 \times 10^{24} kg. \simeq 6.0 \cdot 10^{24} kg.$ Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} kg/m^{3}$

Earth radius: $R_{\oplus} = 6.371 \cdot 10^6 \, m \simeq 6.4 \cdot 10^6 \, m$ Earth volume: $(4\pi/3) R_{\oplus}^3 \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \, m^3$

Nuclear matter Nucleon mass = $1.67 \cdot 10^{-27} kg$. $\sim 2 \cdot 10^{-27} kg$.

Say a nucleus of atomic weight 50 has a radius of 3 fm, or 50 nucleons each with a mass $2 \cdot 10^{-27} kg$.

Earth matter Earth mass: $M_{\oplus} = 5.9722 \times 10^{24} \, kg$. $\cong 6.0 \cdot 10^{24} \, kg$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24 - 21} \sim 6 \cdot 10^{3} \, kg/m^{3}$ Earth radius: $R_{\oplus} = 6.371 \cdot 10^{6} \, m \approx 6.4 \cdot 10^{6} \, m$ Earth volume: $(4\pi/3) R_{\oplus}^{3} \approx 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \, m^{3}$

Nuclear matter Nucleon mass = $1.67 \cdot 10^{-27} kg$. $\sim 2 \cdot 10^{-27} kg$.

Say a nucleus of atomic weight 50 has a radius of 3 fm, or 50 nucleons each with a mass $2 \cdot 10^{-27} kg$.

That's $100 \cdot 10^{-27} = 10^{-25} \text{ kg}$ packed into a volume of $\frac{4\pi}{3}r^3 = \frac{4\pi}{3} (3 \cdot 10^{-15})^3 \text{ m}^3$ or about 10^{-43} m^3 . $36\pi = 113 \sim 10^2$

Earth matter Earth mass: $M_{\oplus} = 5.9722 \times 10^{24} \, kg$. $\simeq 6.0 \cdot 10^{24} \, kg$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24 - 21} \sim 6 \cdot 10^{3} \, kg/m^{3}$ Earth radius: $R_{\oplus} = 6.371 \cdot 10^{6} \, m \simeq 6.4 \cdot 10^{6} \, m$ Earth volume: $(4\pi/3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \, m^{3}$

Nuclear matter Nucleon mass = $1.67 \cdot 10^{-27} kg$. $\sim 2 \cdot 10^{-27} kg$.

Say a nucleus of atomic weight 50 has a radius of 3 fm, or 50 nucleons each with a mass $2 \cdot 10^{-27} kg$.

That's $100 \cdot 10^{-27} = 10^{-25} \text{ kg}$ packed into a volume of $\frac{4\pi}{3}r^3 = \frac{4\pi}{3} (3 \cdot 10^{-15})^3 \text{ m}^3$ or about 10^{-43} m^3 .

Nuclear density is $10^{-25+43} = 10^{18} kg / m^3$ or a trillion (10¹²) kilograms in the size of a fingertip (1cc).

Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{crush \oplus} \approx 300 m$ would approach neutron-star density.

Earth matter Earth mass: $M_{\oplus} = 5.9722 \times 10^{24} \, kg. \simeq 6.0 \cdot 10^{24} \, kg$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24 - 21} \sim 6 \cdot 10^{3} \, kg/m^{3}$ Earth radius: $R_{\oplus} = 6.371 \cdot 10^{6} \, m \simeq 6.4 \cdot 10^{6} \, m$ Earth volume: $(4\pi/3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \, m^{3}$

Nuclear matter Nucleon mass = $1.67 \cdot 10^{-27} kg$. $\sim 2 \cdot 10^{-27} kg$.

Say a nucleus of atomic weight 50 has a radius of 3 fm, or 50 nucleons each with a mass $2 \cdot 10^{-27} kg$.

That's $100 \cdot 10^{-27} = 10^{-25} \text{ kg}$ packed into a volume of $\frac{4\pi}{3}r^3 = \frac{4\pi}{3} (3 \cdot 10^{-15})^3 \text{ m}^3$ or about 10^{-43} m^3 .

Nuclear density is $10^{-25+43} = 10^{18} kg / m^3$ or a trillion (10¹²) kilograms in the size of a fingertip.

Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{crush \oplus} \approx 300 m$ would approach neutron-star density.

Introducing the "Neutron starlet" 1 cm³ of nuclear matter; mass= 1012 kg.

Earth matter Earth mass: $M_{\oplus} = 5.9722 \times 10^{24} \, kg. \approx 6.0 \cdot 10^{24} \, kg.$ Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \, kg/m^{3}$ Earth radius: $R_{\oplus} = 6.371 \cdot 10^6 \, m \simeq 6.4 \cdot 10^6 \, m$ Earth volume: $(4\pi/3) R_{\oplus}^3 \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \, m^3$

Nuclear matter Nucleon mass = $1.67 \cdot 10^{-27} kg$. $\sim 2 \cdot 10^{-27} kg$.

Say a nucleus of atomic weight 50 has a radius of 3 fm, or 50 nucleons each with a mass $2 \cdot 10^{-27} kg$.

That's $100 \cdot 10^{-27} = 10^{-25} \text{ kg}$ packed into a volume of $\frac{4\pi}{3}r^3 = \frac{4\pi}{3} (3 \cdot 10^{-15})^3 \text{ m}^3$ or about 10^{-43} m^3 .

Nuclear density is $10^{-25+43} = 10^{18} kg / m^3$ or a trillion (10¹²) kilograms in the size of a fingertip.

Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{crush} \approx 300m$ would approach neutron-star density.

Introducing the "Neutron starlet" 1 cm³ of nuclear matter; mass= 1012 kg.

surface escape velocity is the speed of light $c \cong 3.0 \cdot 10^8 \text{m/s}$. $c \equiv 299,792,458 \text{m/s}$ (EXACTLY)

$$V_{escape} = \sqrt{(2GM/R_{\odot})}$$
(from p. 43)

 $G=6.67384(80)\cdot 10^{-11}Nm^2/C^2\sim (2/3)10^{-10}$

Earth matter Earth mass: $M_{\oplus} = 5.9722 \times 10^{24} \, kg. \approx 6.0 \cdot 10^{24} \, kg.$ Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \, kg/m^{3}$ Earth radius: $R_{\oplus} = 6.371 \cdot 10^6 \, m \simeq 6.4 \cdot 10^6 \, m$ Earth volume: $(4\pi/3) R_{\oplus}^3 \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \, m^3$

Nuclear matter Nucleon mass = $1.67 \cdot 10^{-27} kg$. $\sim 2 \cdot 10^{-27} kg$.

Say a nucleus of atomic weight 50 has a radius of 3 fm, or 50 nucleons each with a mass $2 \cdot 10^{-27} kg$.

That's $100 \cdot 10^{-27} = 10^{-25} \text{ kg}$ packed into a volume of $\frac{4\pi}{3}r^3 = \frac{4\pi}{3} (3 \cdot 10^{-15})^3 \text{ m}^3$ or about 10^{-43} m^3 .

Nuclear density is $10^{-25+43} = 10^{18} kg / m^3$ or a trillion (10¹²) kilograms in the size of a fingertip.

Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{crush} \approx 300m$ would approach neutron-star density.

Introducing the "Neutron starlet" 1 cm³ of nuclear matter; mass= 1012 kg.

Introducing the "Black Hole Earth" Suppose Earth is crushed so that its

surface escape velocity is the speed of light $c \cong 3.0 \cdot 10^8 \text{m/s}$. $c \equiv 299,792,458 \text{m/s}$ (EXACTLY)

$$V_{escape} = \sqrt{(2GM/R_{\odot})} \qquad c = \sqrt{(2GM/R_{\odot})}$$

(from p. 43)

$$R_{\odot} = 2GM/c^2 = 8.9mm \sim 1cm$$

(fingertip size!)

 $G=6.67384(80)\cdot 10^{-11} \text{Nm}^2/\text{C}^2 \sim (2/3)10^{-10}$

→ Introducing 2D IHO orbits and phasor geometry

Phasor "clock" geometry

I.H.O. Force law

$$F = -x$$
 (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)

Each dimension x, y, or z obeys the following:
$$Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$$

(Paths are always 2-D ellipses if viewed right!)

I.H.O. Force law

$$F = -x$$
 (1-Dimension)

$$\mathbf{F} = -\mathbf{r}$$
 (2 or 3-Dimensions)

Each dimension x, y, or z obeys the following:
$$Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$$
Equations for x motion

(a)

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y=v(t)$] and $[z(t) \text{ and } v_z=v(t)] \text{ in the }$ ideal isotropic case.

(Paths are always 2-D ellipses if viewed right!)

I.H.O. Force law

F = -x (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)

(Paths are always 2-D ellipses if viewed

right!)

Each dimension x, y, or z obeys the following: $Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y = v(t)$] and $[z(t) \text{ and } v_z=v(t)] \text{ in the }$ ideal isotropic case.

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = \left(\frac{v}{\sqrt{2E/m}}\right)^2 + \left(\frac{x}{\sqrt{2E/k}}\right)^2$$

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = (\cos\theta)^2 + (\sin\theta)^2$$
Another example of the old "scale-a-circle"

trick...

Let: (1)
$$v = \sqrt{2E/m} \cos \theta$$
, and: (2) $x = \sqrt{2E/k} \sin \theta$

I.H.O. Force law

$$F = -x$$
 (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)

(Paths are always 2-D ellipses if viewed right!)

Each dimension x, y, or z obeys the following:
$$Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$$

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y = v(t)$] and $[z(t) \text{ and } v_z=v(t)] \text{ in the }$ ideal isotropic case.

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = \left(\frac{v}{\sqrt{2E/m}}\right)^2 + \left(\frac{x}{\sqrt{2E/k}}\right)^2$$

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = (\cos\theta)^2 + (\sin\theta)^2$$
Another example of the old "scale-a-circle" trick

trick...

Let: (1)
$$v = \sqrt{2E/m}\cos\theta$$
, and: (2) $x = \sqrt{2E/k}\sin\theta$ def. (3) $\omega = \frac{d\theta}{dt}$

$$\sqrt{\frac{2E}{m}}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\frac{dx}{d\theta} = \omega \frac{dx}{d\theta}$$
by (1)
by (2)
by (3)

I.H.O. Force law

$$F = -x$$
 (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)

(Paths are always 2-D ellipses if viewed right!)

Each dimension x, y, or z obeys the following:
$$Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$$

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y = v(t)$] and $[z(t) \text{ and } v_z=v(t)] \text{ in the }$ ideal isotropic case.

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = \left(\frac{v}{\sqrt{2E/m}}\right)^2 + \left(\frac{x}{\sqrt{2E/k}}\right)^2$$

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = (\cos\theta)^2 + (\sin\theta)^2$$
Another example of the old "scale-a-circle" trick

trick...

Let: (1)
$$v = \sqrt{2E/m}\cos\theta$$
, and: (2) $x = \sqrt{2E/k}\sin\theta$ def. (3) $\omega = \frac{d\theta}{dt}$

$$\sqrt{\frac{2E}{m}}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\frac{dx}{d\theta} = \omega \frac{dx}{d\theta} = \omega \sqrt{\frac{2E}{k}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\frac{dx}{d\theta} = \omega \sqrt{\frac{2E}{k}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\frac{dx}{d\theta} = \omega \sqrt{\frac{2E}{k}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt}\cos\theta = \frac{d\theta}{dt}\cos\theta = \frac{dx}{d\theta}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt}\cos\theta = \frac{dx}{d\theta}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = \frac{dx}{d\theta}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = \frac{dx}{d\theta}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = \frac{dx}{d\theta}\cos\theta$$

$$\frac{dy}{d\theta}\cos\theta = \frac{dx}{d\theta}\cos\theta$$

$$\frac{dy}{d\theta}\cos\theta$$

$$\frac{dy}{d$$

I.H.O. Force law

F = -x (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)

(Paths are always 2-D ellipses if viewed right!)

Each dimension x, y, or z obeys the following: $Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y = v(t)$] and [z(t)] and $v_z=v(t)$ in the ideal isotropic case.

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = \left(\frac{v}{\sqrt{2E/m}}\right)^2 + \left(\frac{x}{\sqrt{2E/k}}\right)^2$$

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = (\cos\theta)^2 + (\sin\theta)^2$$
Another example of the old "scale-a-circle" trick

trick...

Let: (1)
$$v = \sqrt{2E/m}\cos\theta$$
, and: (2) $x = \sqrt{2E/k}\sin\theta$ def. (3) $\omega = \frac{d\theta}{dt}$

$$\sqrt{\frac{2E}{m}}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\frac{dx}{d\theta} = \omega \frac{dx}{d\theta} = \omega \sqrt{\frac{2E}{k}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\frac{dx}{d\theta} = \omega \sqrt{\frac{2E}{k}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{d\theta}{dt} = \sqrt{\frac{k}{m}}$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\cos\theta = \omega \sqrt{\frac{2E}{k}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{d\theta}{dt} = \sqrt{\frac{k}{m}}$$

$$\frac{dy}{dt}\cos\theta = v = \frac{d\theta}{dt}\cos\theta = \omega \sqrt{\frac{2E}{k}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{d\theta}{dt}\cos\theta = \omega \sqrt{\frac{2E}{k}}\cos\theta$$

$$\frac{d\theta}{dt}\cos\theta = \frac{d\theta}{dt}\cos\theta = \frac{d\theta}{dt}\cos\theta$$

$$\frac{d\theta}{dt}\cos\theta = \frac{d\theta}{dt}\cos\theta$$

$$\frac{d\theta}{dt}\cos\theta$$

$$\frac{$$

$$\omega = \frac{d\theta}{dt} = \sqrt{\frac{k}{m}}$$
divide this by (1)

I.H.O. Force law

F = -x (1-Dimension)

 $\mathbf{F} = -\mathbf{r}$ (2 or 3-Dimensions)

(Paths are always 2-D ellipses if viewed right!)

Each dimension x, y, or z obeys the following:
$$Total \ E = KE + PE = \frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const.$$

Equations for x-motion [x(t) and $v_x = v(t)$] are given first. They apply as well to dimensions [y(t) and $v_y = v(t)$] and [z(t)] and $v_z=v(t)$ in the ideal isotropic case.

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = \left(\frac{v}{\sqrt{2E/m}}\right)^2 + \left(\frac{x}{\sqrt{2E/k}}\right)^2$$

$$1 = \frac{mv^2}{2E} + \frac{kx^2}{2E} = (\cos\theta)^2 + (\sin\theta)^2$$
Another example of the old "scale-a-circle" trick

trick...

Let: (1)
$$v = \sqrt{2E/m}\cos\theta$$
, and: (2) $x = \sqrt{2E/k}\sin\theta$ def. (3) $\omega = \frac{d\theta}{dt}$

$$\sqrt{\frac{2E}{m}}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\frac{dx}{d\theta} = \omega \frac{dx}{d\theta} = \omega \sqrt{\frac{2E}{k}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\frac{dx}{d\theta} = \omega \sqrt{\frac{2E}{k}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\cos\theta = \omega \sqrt{\frac{k}{m}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\cos\theta = \omega \sqrt{\frac{k}{m}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt} = \frac{d\theta}{dt}\cos\theta = \omega \sqrt{\frac{k}{m}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt}\cos\theta = \omega \sqrt{\frac{k}{m}}\cos\theta$$

$$\frac{dy}{dt}\cos\theta = v = \frac{dx}{dt}\cos\theta$$

$$\frac{dy}$$

by def. (3)
$$\omega = \frac{d\theta}{dt} = \sqrt{\frac{k}{m}}$$
divide this by (1)

by integration given constant ω ?

These are more generic examples with radius of x-phasor differing from that of the y-phasor.