Kinetic Derivation of $1 D$ Potentials and Force Fields

 (Ch. 6, and Ch. 7 of Unit 1)Review of $\left(V_{1}, V_{2}\right) \rightarrow\left(y_{1}, y_{2}\right)$ relations High mass ratio $M_{1} / m_{2}=49$
Force "field" or "pressure" due to many small bounces
Force defined as momentum transfer rate
The 1D-Isothermal force field $F(y)=$ const. $/ y$ and the $1 D$-Adiabatic force field $F(y)=$ const. $/ y^{3}$
Potential field due to many small bounces
Example of $1 D$-Adiabatic potential $U(y)=$ const. $/ y^{2}$
Physicist's Definition $F=-\Delta U / \Delta y \quad v s$. Mathematician's Definition $F=+\Delta U / \Delta y$
Example of $1 D$-Isothermal potential $U(y)=$ const. $\ln (y)$
"Monster Mash"classical segue to Heisenberg action relations
Example of very very large M_{1} ball-wall(s) crushing a poor little m_{2}
How m2 keeps its action
An interesting wave analogy: The "Tiny-Big-Bang" [Harter, J. Mol. Spec. 210, 166-182 (2001)],[Harter, Li IMSS (2012)]
A lesson in geometry of fractions and fractals: Ford Circles and Farey Sums
[Lester. R. Ford, Am. Math. Monthly 45,586(1938)] [John Farey, Phil. Mag.(1816)]

Review of $\left(V_{1}, V_{2}\right) \rightarrow\left(y_{1}, y_{2}\right)$ relations

\longrightarrow High mass ratio $M_{1} / m_{2}=49$

Geometric "Integration" (Converting Velocity data to Space-time trajectory)

Fig. 5.1
in Unit 1

Force "field" or "pressure" due to many small bounces
Force defined as momentum transfer rate
The 1D-Isothermal force field $F(y)=$ const./y and the $1 D$-Adiabatic force field $F(y)=$ const. $/ y^{3}$

Big mass-m mall feeling "force-field" or "pressure" of small $\left(m_{2} \ll m_{1}\right)$ rapidly $\left(v_{2} \gg v_{1}\right)$ bouncing ball

Unit 1
Fig. 6.1

Big mass-m, ball feeling "force-field" or "pressure" of small $\left(m_{2} \ll m_{1}\right)$ rapidly $\left(v_{2} \gg v_{1}\right)$ bouncing ball

Unit 1
Fig. 6.1

Big'momentum transfer

Big mass-m, ball feeling "force-field" or "pressure" of small $\left(m_{2} \ll m_{l}\right)$ rapidly $\left(v_{2} \gg v_{l}\right)$ bouncing ball

Unit 1
Fig. 6.1

Big momentum transfer

Force F on $m_{1}=($ Momentum per sec. $)=($ Momentum per Bang $) \cdot($ Bangs per second $)$

$$
\begin{aligned}
& V_{2} \quad \text { Double-Bang Sequences } \\
& \text { for } m_{1} \gg m_{2} \\
& \text { (a) After } 2 \text { Bangs } \\
& \text { (b) After } 4 \text { Bangs } \\
& \text { Very skinny } \\
& \text { Energy ellipse } \\
& \text { for } m_{1} \gg m_{2} \\
& \text { Fig. } 6.2 \\
& \left|v_{2}^{F I N}\right|=\left|v_{2}^{I N}\right|+\left|2 v_{1}\right| \quad \text { for: } m_{1} \gg m_{2} \\
& v_{2}^{F I N}=-v_{2}^{I N}-2 v_{1} \\
& F=\frac{\Delta P}{\Delta t \downarrow} \quad \Delta P=m_{2} v_{2}^{I N}-m_{2} v_{2}^{F I N} \quad \geq \frac{1}{\Delta t}=\frac{v_{2}}{2 Y} \\
& \text { Force } F \text { on } m_{l}=(\text { Momentum per sec. })=(\text { Momentüm per Bang }) \cdot(\text { Bangs'per second })
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } m_{1} \gg m_{2} \\
& \text { (a) After } 2 \text { Bangs } \\
& \text { (b) After } 4 \text { Bangs } \\
& \left|v_{2}^{F I N}\right|=\left|v_{2}^{I N}\right|+\left|2 v_{1}\right| \quad \text { for: } m_{1} \gg m_{2} \\
& v_{2}^{F I N}=-v_{2}^{I N}-2 v_{1} \\
& F=\frac{\Delta P}{\Delta t \|} \quad \Delta P=m_{2} v_{2}^{I N}-m_{2} v_{2}^{F I N} \quad \frac{1}{\Delta t}=\frac{v_{2}}{2 Y} \\
& \text { Force } F \text { on } m_{1}=(\text { Momentum per sec. })=(\text { Momentüm per Bang }) \cdot(\text { Bangs'per second })
\end{aligned}
$$

$$
\Delta P=m_{2} v_{2}^{I N}-m_{2}\left(-v_{2}^{I N}-2 v_{1}\right)=2 m_{2} v_{2}^{I N}+2 m_{2} v_{1}
$$

$\int^{V_{2}}$ (a) After 2 Bangs

Unit 1
Fig. 6.2

$$
\begin{aligned}
& \left|v_{2}^{F I N}\right|=\left|v_{2}^{I N}\right|+\left|2 v_{1}\right| \text { for: } m_{1} \gg m_{2} \\
& v_{2}^{F I N}=-v_{2}^{I N}-2 v_{1}
\end{aligned}
$$

$$
F=\frac{\Delta P}{\Delta t \downarrow} \quad \Delta P=m_{2} v_{2}^{I N}-m_{2} v_{2}^{F I N} \quad \frac{1}{\Delta t}=\frac{v_{2}}{2 Y}
$$

Force F on $m_{l}=($ Momentum per sec. $)=($ Momentüm per Bang $) \cdot($ Bangs per second $)$

$$
\Delta P=m_{2} v_{2}^{I N}-m_{2}\left(-v_{2}^{I N}-2 v_{1}\right)=2 m_{2} v_{2}^{I N}+2 m_{2} v_{1} \approx 2 m_{2} v_{2}^{I N}
$$

Assuming slow $m_{1}: v_{1} \ll v_{2}$

$$
F=\frac{\Delta P}{\Delta t}=\left(\Delta P \approx 2 m_{2} v_{2}\right) \cdot\left(\frac{1}{\Delta t} \approx \frac{v_{2}}{2 Y}\right) \approx \frac{m_{2} v_{2}^{2}}{Y}
$$

1D-Isothermal Force Law (assume v_{2} is constant for all Y): $F=\frac{m_{2} v_{2}^{2}}{Y}=\frac{\text { const. }}{Y}$.
Isothermal expansion or contraction: Wall serves as thermal bath to keep m_{2} cool
(a) Uncompressed
(Large Y-space)

Small 'momentum transfer

(b) Compressed
(Small Y-space) Low energy

Force "field" or "pressure" due to many small bounces Force defined as momentum transfer rate The 1D-Isothermal force field $F(y)=$ const. $/ y$ and the $1 D$-Adiabatic force field $F(y)=$ const. $1 y^{3}$

$$
F=\frac{\Delta P}{\Delta t}=\left(\Delta P \approx 2 m_{2} v_{2}\right) \cdot\left(\frac{1}{\Delta t} \approx \frac{v_{2}}{2 Y}\right) \approx \frac{m_{2} v_{2}^{2}}{Y}
$$

1D-Isothermal Force Law (assume v_{2} is constant for all Y): $F=\frac{m_{2} v_{2}^{2}}{Y}=\frac{\text { const }}{Y}$.
However, if ceiling is elastic, v_{2} isn't constant if m_{l} changes bounce range $Y: \frac{d y_{1}}{d t} \equiv v_{1}=-\frac{d Y}{d t}$
When m_{1} collides with m_{2} it adds twice its velocity $\left(2 v_{1}\right)$ to v_{2}. This occurs at "bang-rate" $B=v_{2} / 2 Y$.

$$
\frac{d v_{2}}{d t}=2 v_{1} B=2 v_{1} \frac{v_{2}}{2 Y}=-2 \frac{d Y}{d t} \frac{v_{2}}{2 Y}
$$

Wall not given time to give or take KE

$$
F=\frac{\Delta P}{\Delta t}=\left(\Delta P \approx 2 m_{2} v_{2}\right) \cdot\left(\frac{1}{\Delta t} \approx \frac{v_{2}}{2 Y}\right) \approx \frac{m_{2} v_{2}^{2}}{Y}
$$

ID-Isothermal Force Law (assume v_{2} is constant for all Y): $F=\frac{m_{2} v_{2}^{2}}{Y}=\frac{\text { const. }}{Y}$.
However, if ceiling is elastic, v_{2} isn't constant if m_{l} changes bounce range $Y: \frac{d y_{1}}{d t} \equiv v_{1}=-\frac{d Y}{d t}$ When m_{1} collides with m_{2} it adds twice its velocity $\left(2 v_{1}\right)$ to v_{2}. This occurs at "bang-rate" $B=v_{2} / 2 Y$.

$$
\frac{d v_{2}}{d t}=2 v_{1} B=2 v_{1} \frac{v_{2}}{2 Y}=-2 \frac{d Y}{d t} \frac{v_{2}}{2 Y}
$$

Differential equation results and has logarithmic integral. $\int \frac{d x}{x}=\ln x+C=\log _{e} x+\log _{e} e^{c}=\log _{e}\left(e^{c} x\right)$

$$
\frac{d v_{2}}{v_{2}}=-\frac{d Y}{Y} \quad \text { integrates to: } \ln v_{2}=-\ln Y+C \quad \text { or: } \quad \ln v_{2}=\ln \frac{\text { const. }}{Y} \quad \text { or: } \quad v_{2}=\frac{\text { const } .}{Y}
$$

Wall not given time to give or take KE

$$
F=\frac{\Delta P}{\Delta t}=\left(\Delta P \approx 2 m_{2} v_{2}\right) \cdot\left(\frac{1}{\Delta t} \approx \frac{v_{2}}{2 Y}\right) \approx \frac{m_{2} v_{2}^{2}}{Y}
$$

1D-Isothermal Force Law (assume v_{2} is constant for all Y): $F=\frac{m_{2} v_{2}^{2}}{Y}=\frac{\text { const }}{Y}$.
However, if ceiling is elastic, v_{2} isn't constant if m_{l} changes bounce range $Y: \frac{d y_{1}}{d t} \equiv v_{1}=-\frac{d Y}{d t}$ When m_{1} collides with m_{2} it adds twice its velocity $\left(2 v_{1}\right)$ to v_{2}. This occurs at "bang-rate" $B=v_{2} / 2 Y$.

$$
\frac{d v_{2}}{d t}=2 v_{1} B=2 v_{1} \frac{v_{2}}{2 Y}=-2 \frac{d Y}{d t} \frac{v_{2}}{2 Y}
$$

Differential equation results and has logarithmic integral. $\int \frac{d x}{x}=\ln x+C=\log _{e} x+\log _{e} e^{c}=\log _{e}\left(e^{c} x\right)$

$$
\frac{d v_{2}}{v_{2}}=-\frac{d Y}{Y} \quad \text { integrates to: } \ln v_{2}=-\ln Y+C \quad \text { or: } \quad \ln v_{2}=\ln \frac{\text { const } .}{Y} \quad \text { or: } \quad v_{2}=\frac{\text { const } .}{Y}
$$

Force law with this variable v_{2} is called adiabatic or not-diabatic or not-gradual.
1D-Adiabatic Force Law (assume v_{2} varies: $\left.v_{2}=\frac{\text { const. }}{Y}=\frac{v_{2}^{I N} Y(t=0)}{Y}\right): F=\frac{m_{2}\left(v_{2}^{I N} Y(t=0)\right)^{2}}{Y^{3}}=\frac{\text { const. }}{Y^{3}}$.

Potential field due to many small bounces

\longrightarrow Example of $1 D$-Adiabatic potential $U(y)=$ const. $/ y^{2}$ Physicist's Definition $F=-\Delta U / \Delta y \quad$ vs. Mathematician's Definition $F=+\Delta U / \Delta y$ Example of 1D-Isothermal potential $U(y)=$ const. $\ln (y)$

Big mass-mı ball feeling "potential-field" or "gradient" due to small $\left(m_{2} \ll m_{1}\right)$ rapidly $\left(v_{2} \gg v_{1}\right)$ bouncing ball
In adiabatic case where $v_{2}=\frac{\text { const. }}{Y}$ the total energy E is strictly conserved.
const. $=E=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\begin{aligned} & \frac{1}{2} m_{1} v_{1}^{2}+\left(\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2}\right. \\ & \text { Define for big mass } m_{1}: \text { Kinetic energy } \\ & \left.K E\left(v_{1}\right)\right)\end{aligned} \quad$ vs $\begin{aligned} & \text { Potential energy } P E(Y)=U(Y)\end{aligned}$
Potential energy $P E(Y)=U(Y)=\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2}$

Big mass-mı ball feeling "potential-field" or "gradient" due to small $\left(m_{2} \ll m_{1}\right)$ rapidly $\left(v_{2} \gg v_{1}\right)$ bouncing ball
In adiabatic case where $v_{2}=\frac{\text { const. }}{Y}$ the total energy E is strictly conserved.
const. $=E=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\begin{aligned} & \frac{1}{2} m_{1} v_{1}^{2}+\left(\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2}\right. \\ & \text { Define for big mass } m_{1}: \text { Kinetic energy } \\ & \left.K E\left(v_{1}\right)\right)\end{aligned} \quad$ vs $\begin{aligned} & \text { Potential energy } P E(Y)=U(Y)\end{aligned}$
Potential energy $P E(Y)=U(Y)=\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2}$ relates to Force $F(Y)$ thru Work relations $F \cdot d Y= \pm d U$ Q? Another axiom? A: No.

Big mass-mı ball feeling "potential-field" or "gradient" due to small $\left(m_{2} \ll m_{1}\right)$ rapidly $\left(v_{2} \gg v_{1}\right)$ bouncing ball
In adiabatic case where $v_{2}=\frac{\text { const. }}{Y}$ the total energy E is strictly conserved.
const. $=E=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\begin{aligned} & \frac{1}{2} m_{1} v_{1}^{2}+\left(\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2}\right. \\ & \text { Define for big mass } m_{1}: \text { Kinetic energy } \\ & \left.K E\left(v_{1}\right)\right)\end{aligned} \quad$ vs $\begin{aligned} & \text { Potential energy } P E(Y)=U(Y)\end{aligned}$
Potential energy $P E(Y)=U(Y)=\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2}$ relates to Force $F(Y)$ thru Work relations $F \cdot d Y= \pm d U$
Q? Another axiom? A: No. $\quad \int F \cdot d Y=\int \frac{d p}{d t} \cdot d Y=\int \frac{d Y}{d t} \cdot d p=\int V \cdot d p=\int V \cdot d(m V)=m \frac{V^{2}}{2}+$ const $=U$

Big mass-mı ball feeling "potential-field" or "gradient" due to small $\left(m_{2} \ll m_{1}\right)$ rapidly $\left(v_{2} \gg v_{1}\right)$ bouncing ball
In adiabatic case where $v_{2}=\frac{\text { const. }}{Y}$ the total energy E is strictly conserved.
const. $=E=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\left[\begin{array}{l}\frac{1}{2} m_{1} v_{1}^{2} \\ \text { Define for big mass } m_{1}: ~ K i n e t i c ~ e n e r g y ~\end{array}+\begin{array}{l}\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2} \\ \left.K E\left(v_{l}\right)\right)\end{array} \begin{array}{l}\text { vs } \\ \text { Potential energy } P E(Y)=U(Y)\end{array}\right.$
Potential energy $P E(Y)=U(Y)=\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2}$ relates to Force $F(Y)$ thru Work relations $F \cdot d Y= \pm d U$
Q? Another axiom? A: No. $\quad \int F \cdot d Y=\int \frac{d p}{d t} \cdot d Y=\int \frac{d Y}{d t} \cdot d p=\int V \cdot d p=\int V \cdot d(m V)=m \frac{V^{2}}{2}+$ const $=U$

$$
\text { or else : } \quad F \cdot \frac{d Y}{d t}=\frac{d p}{d t} \cdot V=\frac{d(m V)}{d t} \cdot V=\frac{d\left(m V^{2}\right) / 2}{d t}=\frac{d U}{d t}
$$

Potential field due to many small bounces
Example of $1 D$-Adiabatic potential $U(y)=$ const. $/ y^{2}$
\longrightarrow Physicist's Definition $F=-\Delta U / \Delta y \quad$ vs. Mathematician's Definition $F=+\Delta U / \Delta y$ Example of $1 D$-Isothermal potential $U(y)=$ const. $\ln (y)$

Big mass-mı ball feeling "potential-field" or "gradient" due to small $\left(m_{2} \ll m_{1}\right)$ rapidly $\left(v_{2} \gg v_{1}\right)$ bouncing ball

In adiabatic case where $v_{2}=\frac{\text { const. }}{Y}$ the total energy E is strictly conserved.

$$
\begin{aligned}
& \text { const. }=E=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\left[\begin{array}{l}
\frac{1}{2} m_{1} v_{1}^{2} \\
\text { r big mass } m_{1}: \text { Kinetic energy }
\end{array}+\begin{array}{l}
\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2} \\
K E\left(v_{l}\right)
\end{array}\right] v s \text { Potential energy } P E(Y)=U(Y)
\end{aligned}
$$

Potential energy $P E(Y)=U(Y)=\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2}$ relates to Force $F(Y)$ thru Work relations $F \cdot d Y= \pm d U$

The "Physicist" View of Force

The "Mathematician" View of Force

Big mass-mı ball feeling "potential-field" or "gradient" due to small $\left(m_{2} \ll m_{1}\right)$ rapidly $\left(v_{2} \gg v_{1}\right)$ bouncing ball

In adiabatic case where $v_{2}=\frac{\text { const. }}{Y}$ the total energy E is strictly conserved.

$$
\begin{aligned}
& \text { const. }=E=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\left[\begin{array}{l}
\frac{1}{2} m_{1} v_{1}^{2} \\
\text { r big mass } m_{1}: \text { Kinetic energy }
\end{array}+\begin{array}{l}
\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2} \\
K E\left(v_{l}\right)
\end{array}\right] v s \text { Potential energy } P E(Y)=U(Y)
\end{aligned}
$$

Potential energy $P E(Y)=U(Y)=\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2}$ relates to Force $F(Y)$ thru Work relations $F \cdot d Y= \pm d U$
The "Physicist" View of Force

(OK, But, does it work?)

Big mass-mı ball feeling "potential-field" or "gradient" due to small $\left(m_{2} \ll m_{1}\right)$ rapidly $\left(v_{2} \gg v_{1}\right)$ bouncing ball

In adiabatic case where $v_{2}=\frac{\text { const. }}{Y}$ the total energy E is strictly conserved.

$$
\begin{aligned}
& \text { const. }=E=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\begin{array}{|l|}
\frac{1}{2} m_{1} v_{1}^{2} \\
K E\left(v_{l}\right)
\end{array}+\begin{array}{l}
\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2} \\
\text { Potential energy } P E(Y)=U(Y)
\end{array}
\end{aligned}
$$

Potential energy $P E(Y)=U(Y)=\frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2}$ relates to Force $F(Y)$ thru Work relations $F \cdot d Y= \pm d U$
The "Physicist" View of Force

(OK, But, does it work?)

$$
F^{\text {phys }}=m_{2} \frac{(\text { const. })^{2}}{Y^{3}} \quad \begin{gathered}
\text { consistent } \\
\text { with }:
\end{gathered} \quad F^{\text {phys }}=-\frac{\Delta U}{\Delta Y}=-\frac{d}{d Y} \frac{1}{2} m_{2}\left(\frac{\text { const. }}{Y}\right)^{2}=m_{2} \frac{(\text { const. })^{2}}{Y^{3}}
$$

(Hurrah!)

Potential field due to many small bounces
Example of $1 D$-Adiabatic potential $U(y)=$ const. $/ y^{2}$
Physicist's Definition $F=-\Delta U / \Delta y \quad$ vs. Mathematician's Definition $F=+\Delta U / \Delta y$
\longrightarrow Example of $1 D$-Isothermal potential $U(y)=$ const. $\ln (y)$

1D-Isothermal Force Law (assume v_{2} is constant for all Y): $F=\frac{m_{2} v_{2}^{2}}{Y}=\frac{\text { const. }}{Y}$.

Unit 1
Fig. 6.2

Anharmonic oscillator terms...

Two opposing 1D-Isothermal Force fields

Harmonic oscillator term

$$
\begin{aligned}
& F^{\text {total }}=\frac{f}{1+x}-\frac{f}{1-x}=f\left[1-x+x^{2}-x^{3} \ldots\right]-f\left[1+x+x^{2}+x^{3} \ldots\right]=-2 f \cdot x-2 f \cdot x^{3}-\ldots \\
& F^{\text {HO }}=-k \cdot x=-\frac{\partial U^{H O}}{\partial x} \quad U^{H O}=\frac{1}{2} k \cdot x^{2}=-\int F^{H O} d x \quad \text { HO } \measuredangle \text { frequency: } \omega=\sqrt{\frac{k}{m_{1}}}=2 \pi v
\end{aligned}
$$

Unit 1
Fig. 6.3

Simulation of the adiabatic case

See Homework problem 1.6.1: Compute frequency and/or period for both isoT and adiabatic cases

"Monster Mash"classical segue to Heisenberg action relations

Example of very very large M_{1} ball-walls crushing a poor little m_{2}
How m2 keeps its action
An interesting wave analogy: The "Tiny-Big-Bang"" [Harter, J. Mol. Spec. 210, 166-182 (2001)],[Harter, Li IMSS (2012)] A lesson in geometry of fractions and fractals: Ford Circles and Farey Sums
[Lester. R. Ford, Am. Math. Monthly 45,586(1938)] [John Farey, Phil. Mag.(1816)]
(a) Big ball moves in and traps small ball between it and The Wall

(b) Trajectory geometry exposed

The Classical
 "Monster Mash"

Classical introduction to
Heisenberg "Uncertainty" Relations
$v_{2}=\frac{\text { const } .}{Y} \quad$ or: $\quad Y \cdot v_{2}=$ const.
is analogous to: $\Delta x \cdot \Delta p=N \cdot \hbar$

Unit 1
Fig. 6.4

Unit 1
Fig. 6.5
See Homework problem 1.6.2: Construct related spacetime case
(a)

Unit 1
Fig. 6.6 and
Fig. 6.7

(b)

(c)

(a) Galilean shift by $V=1$

(b)

"Monster Mash"classical segue to Heisenberg action relations
Example of very very large M_{1} ball-walls crushing a poor little m_{2}
How ma keeps its action
An interesting wave analogy: The "Tiny-Big-Bang"" [Harter; J. Mol. Spec. 210, 166-182 (2001)],[Harter; Li IMSS (2012)] A lesson in geometry of fractions and fractals: Ford Circles and Farey Sums
[Lester. R. Ford, Am. Math. Monthly 45,586(1938)] [John Farey, Phil. Mag.(1816)]

Time t (units of fundamental period τ_{1})

(Imagine "wrap-around" ϕ-coordinate)

Web simulation

Click here....
$=$

$$
\text { time }=0.29 \mathrm{~T}
$$

(18)

Web simulation
http://www.uark.edu/ua/modphys/markup/WaveltWeb.html
Try testing or else markup

Set $\mathrm{T}=0$
Set this and then click here.... Type Quantum Carpet :
Time Behavior Pause at End \Rightarrow
Time Start (\% Period) $=0$ (

Time End (\% Period) $=$
Del-x Width $(\% \mathrm{~L})=4$
4
\square
Excitation $(\operatorname{Max~n})=2$ \square (C) 0
(C) 0

Left (\% L) $=0$
Right (\% L) $=100$
n-Mean (\% Max n) $=$
Peak1 Mean (\% L) $=50$
OverAll Scale $=1$
Peak2 Mean (\% L) $=0$
Peak2 Amp (\% Peak1) $=0$

Red Level	$=128$
Green Level	$=0$
Blue Level	$=128$
Alpha Level	$=1$
Definition Level	$=0.5$

Draw Ring m/n Labels \downarrow

N-level-system and revival-beat wave dynamics

Zeros (clearly) and "particle-packets" (faintly) have paths labeled by fraction sequences like: $\frac{0}{7}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \frac{1}{1}$
(9 or10-levels $(0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots, \pm 9, \pm 10, \pm 11 \ldots)$ excited) $=1 / 2$

Coordinate ϕ
(units of 2π)

Farey Sum algebra of revival-beat wave dynamics

Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics

 Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics

 Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics

 Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics

 Label by numerators N and denominators D of rational fractions N / D
[John Farey, Phil. Mag.(1816)]

Farey Sum algebra of revival-beat wave dynamics

 Label by numerators N and denominators D of rational fractions N / D

$$
\begin{gathered}
n_{1} / d_{1} \text { and } n_{2} / d_{2} \text { path } \\
\text { intersection point } \\
\phi_{\otimes}=\frac{d_{1} n_{2}-n_{1} d_{2}}{d_{1}+d_{2}} \\
\text { (Ford-Cross) }
\end{gathered}
$$

$$
\begin{array}{|c|}
\hline n_{1} / d_{1} \text { and } n_{2} / d_{2} \text { path } \\
\text { intersection time }
\end{array}
$$

$$
t_{\otimes}=\frac{n_{1}+n_{2}}{d_{1}+d_{2}}
$$

(Farey-Sum)

Coordinate ϕ (units of 2π)

"Monster Mash"classical segue to Heisenberg action relations

Example of very very large M_{1} ball-walls crushing a poor little m2
How ma keeps its action
An interesting wave analogy: The "Tiny-Big-Bang"" [Harter; J. Mol. Spec. 210, 166-182 (2001)],[Harter; Li IMSS (2012)]
$\longrightarrow A$ lesson in geometry of fractions and fractals: Ford Circles and Farey Sums
[Lester. R. Ford, Am. Math. Monthly 45,586(1938)] [John Farey, Phil. Mag.(1816)]


```
*(a)
```

Unit Real Interval
$\frac{1}{1}$
Farcy Sum related to vector sum and Ford Circles 1/1-circle has diameter 1

```
Farey-Sum of fractions \(0 / 1\) and \(1 / 1\) is \(1 / 2\)
That is vector sum \(\mathbf{v}_{0}+\mathbf{v}_{1}=(1,2)=\mathbf{v}_{2}\)
\(\mathbf{v}_{0}=(0,1)^{-2} \boldsymbol{v}_{2} \neq(1,2)=\mathbf{v}_{0}+\mathbf{v}_{1}\)
Numerator Axis \(N\)
```


Thales Rectangles provide
analytic geometry of
fractal structure

Geometric "Integration" (Converting Velocity data to Spacetime)

Unit 1

Fig. 8.4a-d
This is a construction of the energy ellipse in a Largangian (v_{1}, v_{2}) plot given the initial (v_{1}, v_{2}).

The Estrangian (V_{1}, V_{2}) plot makes the (v_{1}, v_{2}) plot and this construction obsolete.
(Easier to just draw circle through initial ($\left.V_{1}, V_{2}\right)$.)

