2019 CMwBang! site

Lecture 4 Mon. 9.09.2019

Class YouTube Channel

Kinetic Derivation of 1D Potentials and Force Fields (Ch. 6, and Ch. 7 of Unit 1)

Review of $(V_1, V_2) \rightarrow (y_1, y_2)$ collision dynamics High mass ratio $M_1/m_2 = 49$ Force "field" or "pressure" due to many small bounces Force defined as momentum transfer rate The 1D-Isothermal force field F(y)=const./y and the 1D-Adiabatic force field $F(y)=const./y^3$

Potential field due to many small bounces Example of 1D-Adiabatic potential $U(y)=const./y^2$ Physicist's Definition $F=-\Delta U/\Delta y$ vs. Mathematician's Definition $F=+\Delta U/\Delta y$ Example of 1D-Isothermal potential U(y)=const. ln(y)

"Monster Mash" classical segue to Heisenberg action relations Example of very very large M₁ ball-wall(s) crushing a poor little m₂ How m₂ keeps its action An interesting wave analogy: The "Tiny-Big-Bang" [Harter, J. Mol. Spec. 210, 166-182 (2001)]; [Harter, Li IMSS (2013)] A lesson in geometry of fractions and fractals: Ford Circles and Farey Sums

[Lester: R. Ford, Am. Math. Monthly 45,586(1938)]; [John Farey, Phil. Mag.(1816) Wolfram]; [Li, Harter, Chem. Phys. Letters (2015) Elsevier]

[*Li, Harter, Chem.Phys.Letters (2015)* Local Copy]

Supplementary references and Interest items

(The answer to this month's "Figuring Physics" can be found at TPT Online, http://scitation.aip.org/upload/AAPT/TPT/Figuring/jan2017.pdf. The answer will also be printed in the February issue of The Physics Teacher. The answer to December's question appears on p. 54 of this issue.)

Running Reference Link Listing

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age Principles of Symmetry, Dynamics, and Spectroscopy <u>Classical Mechanics with a Bang!</u> Modern Physics and its Classical Foundations

2017 Group Theory for QM 2018 Adv CM 2018 AMOP 2019 Advanced Mechanics

AAPT Summer Reading List

Scitation.org

HarterSoft Youtube Channel

BounceItIt Web Animation - Scenarios:

<u>49:1 y vs t, 49:1 V2 vs V1, 1:500:1 - 1D Gas Model w/ faux restorative force (Cool),</u> <u>1:500:1 - 1D Gas (Warm), 1:500:1 - 1D Gas Model (Cool, Zoomed in),</u>

<u>Farey Sequence - Wolfram</u> Fractions - Ford-AMM-1938

Monstermash BounceItIt Animations:

<u>1000:1 - V2 vs V1, 1000:1 with t vs x - Minkowski Plot</u>

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-2013

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2015

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Harter-Li-CPL-2015 (Publ.)

<u>Velocity_Amplification_in_Collision_Experiments_Involving_Superballs-Harter-1971</u>

WaveIt Web Animation - Scenarios:

Quantum_Carpet, Quantum_Carpet_wMBars, Quantum_Carpet_BCar, Quantum_Carpet_BCar_wMBars Wave Node Dynamics and Revival Symmetry in Quantum Rotors - Harter-JMS-2001 Wave Node Dynamics and Revival Symmetry in Quantum Rotors - Harter-jms-2001 (Publ.)

Running Reference Link Listing

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age Principles of Symmetry, Dynamics, and Spectroscopy <u>Classical Mechanics with a Bang!</u> Modern Physics and its Classical Foundations 2017 Group Theory for QM 2018 Adv CM 2018 AMOP 2019 Advanced Mechanics

Prior to Lecture #4

BounceIt Superball Collision Web Simulations

With g=0 and 70:10 mass ratio

With non zero g, velocity dependent damping and mass ratio of 70:35

 $M_1=49, M_2=1$ with Newtonian time plot

 $M_1=49$, $M_2=1$ with V_2 vs V_1 plot

Example with friction

Low force constant with drag displaying a Pass-thru, Fall-Thru, Bounce-Off

m1:m2=3:1 and (v1, v2) = (1, 0) Comparison with Estrangian

$m_1:m_2 = 3:1$ Dual plots

	$v_2 vs v_1 and V_2 vs V_1$	$(v_1, v_2) = (1, 0.1)$	$(v_1, v_2) = (1, 0)$		
	$m_1:m_2=3:1$			(1,) = (1, 1)	
	y_2 vs y_1 plots	$(v_1, v_2) = (1, 0.1)$	$(v_1, v_2) = (1, 0)$	$(V_1, V_2) = (1, -1)$	
	$m_1:m_2=3:1$				
	Estrangian nlot $V_2 v_S V_I$	$(v_1, v_2) = (0, 1)$		$(v_1, v_2) = (1, -1)$	
	$m_1:m_2 = 4:1$	ve vs vi plot	vo vs vi plot		
	$(v_1, v_2) = (1, 0)$	<u>v2 v3 v1 pi0</u> i	<u>y2 v3 y1 p101</u>		
	$m_1:m_2 = 100:1 (v_1, v_2) = (1, 0)$				
<u>V₂ vs V₁ Estrangian plot</u>					
	v2 vs v1 plot				

X2 paper: <u>Velocity Amplification in Collision Experiments Involving Superballs - Harter, et. al. 1971 (pdf)</u> Car Collision Web Simulator: <u>https://modphys.hosted.uark.edu/markup/CMMotionWeb.html</u>; with Scenarios: <u>1007</u> Superball Collision Web Simulator: <u>https://modphys.hosted.uark.edu/markup/BounceItWeb.html</u>; with Scenarios: <u>1007</u> <u>BounceIt web simulation with g=0 and 70:10 mass ratio</u> <u>With non zero g, velocity dependent damping and mass ratio of 70:35</u> Elastic Collision Dual Panel Space vs Space: <u>Space vs Time (Newton)</u>, <u>Time vs. Space(Minkowski)</u> Inelastic Collision Dual Panel Space vs Space: <u>Space vs Time (Newton)</u>, <u>Time vs. Space(Minkowski)</u> Matrix Collision Simulator:<u>M₁=49, M₂=1 V₂ vs V₁ plot</u> <<Under Construction>>

More Advanced QM and classical references at the end of this Lecture

Review of $(V_1, V_2) \rightarrow (y_1, y_2)$ *relations High mass ratio* $M_1/m_2 = 49$

Geometric "Integration" (Converting Velocity data to Space-time trajectory)

 Force "field" or "pressure" due to many small bounces
 → Force defined as momentum transfer rate The 1D-Isothermal force field F(y)=const./y and the 1D-Adiabatic force field F(y)=const./y³

Unit 1 Fig. 6.1

...is more of a <u>definition</u> than another <u>axiom</u>

Quantum Planck-axiom $E=\hbar n\omega$ *begins with* **Energy** *not* momentum

$$F = \frac{\Delta P}{\Delta t} = \left(\Delta P \approx 2m_2 v_2\right) \cdot \left(\frac{1}{\Delta t} \approx \frac{v_2}{2Y}\right) \approx \frac{m_2 v_2^2}{Y}$$

1D-Isothermal Force Law (assume v_2 *is constant for all Y):*

 $F = \frac{m_2 v_2^2}{Y} = \frac{const}{Y}.$

Not a "Double-Whammy"... ...only a "Single-Whammy"

Force "field" or "pressure" due to many small bounces Force defined as momentum transfer rate The 1D-Isothermal force field F(y)=const./y and the 1D-Adiabatic force field F(y)=const./y³

$$F = \frac{\Delta P}{\Delta t} = \left(\Delta P \approx 2m_2 v_2\right) \cdot \left(\frac{1}{\Delta t} \approx \frac{v_2}{2Y}\right) \approx \frac{m_2 v_2^2}{Y}$$

Not a "Double-Whammy"... ...only a "Single-Whammy"

However, if ceiling is elastic, v_2 isn't constant if m_1 changes bounce range Y: $\frac{dy_1}{dt} \equiv v_1 = -\frac{dY}{dt}$ When m_1 collides with m_2 it adds twice its velocity $(2v_1)$ to v_2 . This occurs at "bang-rate" $B = v_2/2Y$.

$$\frac{dv_2}{dt} = 2v_1B = 2v_1\frac{v_2}{2Y} = -2\frac{dY}{dt}\frac{v_2}{2Y}$$

Here both v_2 *and* $Y=y_1$ *may vary*

const.

$$F = \frac{\Delta P}{\Delta t} = \left(\Delta P \approx 2m_2 v_2\right) \cdot \left(\frac{1}{\Delta t} \approx \frac{v_2}{2Y}\right) \approx \frac{m_2 v_2^2}{Y}$$

Not a "Double-Whammy"... ...only a "Single-Whammy"

However, if ceiling is elastic, v_2 isn't constant if m_1 changes bounce range Y: $\frac{dy_1}{dt} \equiv v_1 = -\frac{dY}{dt}$ When m_1 collides with m_2 it adds twice its velocity $(2v_1)$ to v_2 . This occurs at "bang-rate" $B = v_2/2Y$.

$$\frac{dv_2}{dt} = 2v_1B = 2v_1\frac{v_2}{2Y} = -2\frac{dY}{dt}\frac{v_2}{2Y} \qquad \text{simplifies to:} \quad \frac{dv_2}{v_2} = -\frac{dY}{Y}$$

Wall not given time to give or take KE

$$F = \frac{\Delta P}{\Delta t} = \left(\Delta P \approx 2m_2 v_2\right) \cdot \left(\frac{1}{\Delta t} \approx \frac{v_2}{2Y}\right) \approx \frac{m_2 v_2^2}{Y}$$

However, if ceiling is elastic, v_2 isn't constant if m_1 changes bounce range Y: $\frac{dy_1}{dt} \equiv v_1 = -\frac{dY}{dt}$ When m_1 collides with m_2 it adds twice its velocity $(2v_1)$ to v_2 . This occurs at "bang-rate" $B = v_2/2Y$.

$$\frac{dv_2}{dt} = 2v_1B = 2v_1\frac{v_2}{2Y} = -2\frac{dY}{dt}\frac{v_2}{2Y} \qquad \text{simplifies to:} \quad \frac{dv_2}{v_2} = -\frac{dY}{Y}$$

Not a

...only a

"Single-Whammy"

"Double-Whammy"...

Differential equation results and has logarithmic integral. $\int \frac{dx}{x} = \ln x + C = \log_e x + \log_e e^C = \log_e (e^C x)$

$$\frac{dv_2}{v_2} = -\frac{dY}{Y} \quad \text{integrates to:} \quad \ln v_2 = -\ln Y + C \quad \text{or:} \quad \ln v_2 = \ln \frac{const.}{Y} \quad \text{or:} \quad v_2 = \frac{const.}{Y}$$

$$F = \frac{\Delta P}{\Delta t} = \left(\Delta P \approx 2m_2 v_2\right) \cdot \left(\frac{1}{\Delta t} \approx \frac{v_2}{2Y}\right) \approx \frac{m_2 v_2^2}{Y}$$

However, if ceiling is elastic, v_2 isn't constant if m_1 changes bounce range Y: $\frac{dy_1}{dt} \equiv v_1 = -\frac{dY}{dt}$ When m_1 collides with m_2 it adds twice its velocity $(2v_1)$ to v_2 . This occurs at "bang-rate" $B = v_2/2Y$.

$$\frac{dv_2}{dt} = 2v_1B = 2v_1\frac{v_2}{2Y} = -2\frac{dY}{dt}\frac{v_2}{2Y} \qquad \text{simplifies to:} \quad \frac{dv_2}{v_2} = -\frac{dY}{Y}$$

Differential equation results and has logarithmic integral. $\int \frac{dx}{x} = \ln x + C = \log_e x + \log_e e^C = \log_e (e^C x)$

$$\frac{dv_2}{v_2} = -\frac{dY}{Y} \quad \text{integrates to: } \ln v_2 = -\ln Y + C \quad \text{or:} \quad \ln v_2 = \ln \frac{const.}{Y} \quad \text{or:} \quad v_2 = \frac{const.}{Y}$$

Force law with this variable v_2 is called *adiabatic* or not-*diabatic* or not-gradual.

1D-Adiabatic Force Law (assume v_2 varies: $v_2 = \frac{const.}{Y} = \frac{v_2^{IN}Y(t=0)}{Y}$: $F = \frac{m_2(v_2^{IN}Y(t=0))^2}{Y^3} = \frac{const.}{Y^3}$

Not a

...only a

"Single-Whammy"

"Double-Whammy"...

$$F = \frac{\Delta P}{\Delta t} = \left(\Delta P \approx 2m_2 v_2\right) \cdot \left(\frac{1}{\Delta t} \approx \frac{v_2}{2Y}\right) \approx \frac{m_2 v_2^2}{Y}$$

 $\frac{dy_1}{dt} \equiv v_1 = -\frac{dY}{dt}$ However, if ceiling is elastic, v_2 isn't constant if m_1 changes bounce range Y: When m_1 collides with m_2 it adds twice its velocity $(2v_1)$ to v_2 . This occurs at "bang-rate" $B = v_2/2Y$.

$$\frac{dv_2}{dt} = 2v_1B = 2v_1\frac{v_2}{2Y} = -2\frac{dY}{dt}\frac{v_2}{2Y} \qquad \text{simplifies to:} \quad \frac{dv_2}{v_2} = -\frac{dY}{Y}$$

Differential equation results and has logarithmic integral. $\int \frac{dx}{x} = \ln x + C = \log_e x + \log_e e^C = \log_e (e^C x)$

$$\frac{dv_2}{v_2} = -\frac{dY}{Y} \text{ integrates to: } \ln v_2 = -\ln Y + C \text{ or: } \ln v_2 = \ln \frac{const.}{Y} \text{ or: } v_2 = \frac{const.}{Y}$$

$$F = \frac{m_2 v_2^2}{bcomes}$$
Force law with this variable v_2 is called *adiabatic* or not-*diabatic* or not-gradual.
$$\frac{V_2}{m_2(const.)^2}$$

 $\frac{v_2^{IN}Y(t=0))^2}{2}$ const

1D-Adiabatic Force Law (assume v₂ varies: $v_2 = \frac{const.}{Y} = \frac{v_2^{IN}Y(t=0)}{Y}$):

Not a

...only a

"Single-Whammy"

"Double-Whammy" ...

See application on <u>p.32</u> ...*or* <u>p.34</u>

Potential field due to many small bounces Example of 1D-Adiabatic potential $U(y)=const./y^2$ Physicist's Definition $F=-\Delta U/\Delta y$ vs. Mathematician's Definition $F=+\Delta U/\Delta y$ Example of 1D-Isothermal potential $U(y)=const. \ln(y)$

In adiabatic case where $v_2 = \frac{const}{V}$ the total energy *E* is strictly conserved.

const. =
$$E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \left|\frac{1}{2}m_1v_1^2\right| + \left|\frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2\right|$$

Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y)=U(Y)

Potential energy $PE(Y) = U(Y) = \frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2$

In adiabatic case where $v_2 = \frac{const}{V}$ the total energy *E* is strictly conserved.

$$const. = E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \left|\frac{1}{2}m_1v_1^2\right| + \left|\frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2\right|$$

Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y)=U(Y)

Potential energy $PE(Y) = U(Y) = \frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2$ relates to Force F(Y) thru Work relations $F \cdot dY = \pm dU$

In adiabatic case where $v_2 = \frac{const}{V}$ the total energy *E* is strictly conserved.

$$const. = E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \left|\frac{1}{2}m_1v_1^2\right| + \left|\frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2\right|$$

Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y)=U(Y)

Potential energy $PE(Y) = U(Y) = \frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2$ relates to Force F(Y) thru Work relations $F \cdot dY = \pm dU$ Q?Another axiom?

In adiabatic case where $v_2 = \frac{const}{V}$ the total energy *E* is strictly conserved.

$$const. = E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \left|\frac{1}{2}m_1v_1^2\right| + \left|\frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2\right|$$

Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y)=U(Y)

Potential energy $PE(Y) = U(Y) = \frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2$ relates to Force F(Y) thru Work relations $F \cdot dY = \pm dU$ Q?Another axiom? A: No.

In adiabatic case where $v_2 = \frac{const}{V}$ the total energy *E* is strictly conserved.

$$const. = E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \left|\frac{1}{2}m_1v_1^2\right| + \left|\frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2\right|$$

Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y)=U(Y)

Potential energy $PE(Y) = U(Y) = \frac{1}{2}m_2 \left(\frac{const.}{Y}\right)^2$ relates to Force F(Y) thru Work relations $F \cdot dY = \pm dU$ Q?Another axiom? A: No. $\int F \cdot dY = \int \frac{dp}{dt} \cdot dY = \int \frac{dY}{dt} \cdot dp = \int V \cdot dp = \int V \cdot d(mV) = m \frac{V^2}{2} + const = U$

Here:
$$V = v_2$$

In adiabatic case where $v_2 = \frac{const}{V}$ the total energy *E* is strictly conserved.

$$const. = E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \left|\frac{1}{2}m_1v_1^2\right| + \left|\frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2\right|$$

Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y)=U(Y)

Potential energy $PE(Y) = U(Y) = \frac{1}{2}m_2 \left(\frac{const.}{Y}\right)^2$ relates to Force F(Y) thru Work relations $F \cdot dY = \pm dU$ Q?Another axiom? A: No. $\int F \cdot dY = \int \frac{dp}{dt} \cdot dY = \int \frac{dY}{dt} \cdot dp = \int V \cdot dp = \int V \cdot d(mV) = m\frac{V^2}{2} + const = U$ or else : $F \cdot \frac{dY}{dt} = \frac{dp}{dt} \cdot V = \frac{d(mV)}{dt} \cdot V = \frac{d(mV^2)/2}{dt} = \frac{dU}{dt}$ (Here: $V = v_2$)

Potential field due to many small bouncesExample of 1D-Adiabatic potential $U(y)=const./y^2$ Physicist's Definition $F=-\Delta U/\Delta y$ vs. Mathematician's Definition $F=+\Delta U/\Delta y$ Example of 1D-Isothermal potential U(y)=const. ln(y)

In adiabatic case where $v_2 = \frac{const}{V}$ the total energy *E* is strictly conserved.

$$const. = E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \left|\frac{1}{2}m_1v_1^2\right| + \left|\frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2\right|$$

Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y)=U(Y)

Potential energy $PE(Y) = U(Y) = \frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2$ relates to Force F(Y) thru Work relations $F \cdot dY = \pm dU$ The "Physicist" View of Force $U(Y) = -\frac{dU}{dY}$ $\int_{\Delta U} \int_{\Delta Y} \int_{\Delta$

In adiabatic case where $v_2 = \frac{const}{V}$ the total energy *E* is strictly conserved.

$$const. = E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \left|\frac{1}{2}m_1v_1^2\right| + \left|\frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2\right|$$

Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y)=U(Y)

Potential energy $PE(Y) = U(Y) = \frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2$ relates to Force F(Y) thru Work relations $F \cdot dY = \pm dU$ The "Physicist" View of Force $U(Y) = -\frac{dU}{dY}$ $\int_{\Delta U} \int_{\Delta Y} \frac{F^{phys}(Y)}{U} = -\int F^{phys} dY$ The "Mathematician" View of Force $U(Y) = -\int F^{phys} dY$ $\int_{\Delta U} \frac{F^{phys}(Y)}{V} = -\int F^{phys} dY$

(OK, But, is this consistent with the $F = (const.)^2/Y^3$ (on p.22)?)

In adiabatic case where $v_2 = \frac{const}{V}$ the total energy *E* is strictly conserved.

$$const. = E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \left|\frac{1}{2}m_1v_1^2\right| + \left|\frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2\right|$$

Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y)=U(Y)

Potential energy $PE(Y) = U(Y) = \frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2$ relates to Force F(Y) thru Work relations $F \cdot dY = \pm dU$ The "Physicist" View of Force The "Mathematician" View of Force U(Y) f(Y) ΔU ΔU ΔU ΔU ΔU ΔY $F^{phys}(Y) = -\int F^{phys} dY$ $F^{phys} dY$ $F^{phys} dY$ $F^{phys} dY$ $F^{phys} = m_2 \frac{(const.)^2}{Y^3}$ f(Y) $F^{phys} = m_2 \frac{(const.)^2}{Y^3}$ f(Y) $F^{phys} = -\frac{\Delta U}{\Delta Y}$

In adiabatic case where $v_2 = \frac{const}{V}$ the total energy *E* is strictly conserved.

$$const. = E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \left|\frac{1}{2}m_1v_1^2\right| + \left|\frac{1}{2}m_2\left(\frac{const.}{Y}\right)^2\right|$$

Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y)=U(Y)

Potential energy $PE(Y) = U(Y) = \frac{1}{2}m_2 \left(\frac{const.}{Y}\right)^2$ relates to Force F(Y) thru Work relations $F \cdot dY = \pm dU$ The "Physicist" View of Force The "Mathematician" View of Force $F^{phys}(Y) = -\frac{dU}{dY}$ "Let it Go!" $F^{math}(Y) = +\frac{a \upsilon}{dY}$ $m_2 m_2 m_1 m_1$ $U^{phys}(Y) = -\int F^{phys} \, dY$ $U(Y) = + \int F^{phys} dY$ (OK, But, is this consistent with the $F = (const.)^2/Y^3$ (on p.22)?)"Double-Whammy" system $\boldsymbol{F}^{phys} = m_2 \frac{\left(const.\right)^2}{Y^3} \qquad consistent \\ with: \qquad \boldsymbol{F}^{phys} = -\frac{\Delta U}{\Delta Y} = -\frac{d}{dY} \frac{1}{2} m_2 \left(\frac{const.}{Y}\right)^2 = m_2 \frac{\left(const.\right)^2}{Y^3}$ Yes (Hurrah!)

Potential field due to many small bounces Example of 1D-Adiabatic potential $U(y)=const./y^2$ Physicist's Definition $F=-\Delta U/\Delta y$ vs. Mathematician's Definition $F=+\Delta U/\Delta y$ Example of 1D-Isothermal potential $U(y)=const. \ln(y)$ $1D\text{-Isothermal Force Law (assume v_2 is constant for all Y):} \quad F = \frac{m_2 v_2^2}{Y} = \frac{const.}{Y}$ $\stackrel{\text{"Double-Whammy"...}}{\stackrel{\dots \text{only a}}{\text{"Single-Whammy"}}}$ $F^{phys} = \frac{m_2 v_2^2}{Y} = -\frac{\Delta U}{\Delta Y} \quad \text{implies :} \quad U(Y) = \int -F^{phys} dY = \int -\frac{m_2 v_2^2}{Y} dY = -m_2 v_2^2 \ln(Y)$

Not a

1D-Isothermal Force Law (assume
$$v_2$$
 is constant for all Y):
$$F = \frac{m_2 v_2^2}{Y} = \frac{const}{Y}$$

$$F^{phys} = \frac{m_2 v_2^2}{Y} = -\frac{\Delta U}{\Delta Y}$$
implies: $U(Y) = \int -F^{phys} dY = \int -\frac{m_2 v_2^2}{Y} dY = -m_2 v_2^2 \ln(Y)$

$$const. = E = \frac{1}{2}m_1 v_1^2 + U(Y)$$
where: $U(Y) = -m_2 v_2^2 \ln(Y)$
Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy $PE(Y) = U(Y)$

Not a 1D-Isothermal Force Law (assume v_2 is constant for all Y): $F = \frac{m_2 v_2^2}{V} = \frac{const}{V}$ "Double-Whammy"... ...only a "Single-Whammy" $F^{phys} = \frac{m_2 v_2^2}{Y} = -\frac{\Delta U}{\Lambda Y} \quad implies: \quad U(Y) = \int -F^{phys} dY = \int -\frac{m_2 v_2^2}{V} dY = -m_2 v_2^2 \ln(Y)$ const. = $E = \left| \frac{1}{2} m_1 v_1^2 \right| + U(Y)$ where : $U(Y) = -m_2 v_2^2 \ln(Y)$ Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y) = U(Y)*Potential energy PE(Y)=U(Y)=m* $_2v_2^2\ln(Y)$ relates to *Force F(Y)* thru *Work relations F*·*dY=±dU* The "Physicist" View of Force The "Mathematician" View of Force U(Y) $F^{phys}(Y) = -\frac{dU}{dY}$ Let it Go!" $\frac{F^{math}(Y) = +\frac{dU}{dY}}{\text{"Hold it back!"}}$ $m_2 m_m m$ $\boldsymbol{U}(Y) = + \int \boldsymbol{F}^{math} \, dY$ $\boldsymbol{U}^{phys}(\boldsymbol{Y}) = -\int \boldsymbol{F}^{phys} \, d\boldsymbol{Y}$ ΔL ΔY

Not a 1D-Isothermal Force Law (assume v_2 is constant for all Y): $F = \frac{m_2 v_2^2}{Y} = \frac{const}{Y}$ "Double-Whammy"... ...only a "Single-Whammy" $F^{phys} = \frac{m_2 v_2^2}{v} = -\frac{\Delta U}{\Lambda v} \quad implies: \quad U(Y) = \int -F^{phys} dY = \int -\frac{m_2 v_2^2}{v} dY = -m_2 v_2^2 \ln(Y)$ const. = $E = \left| \frac{1}{2} m_1 v_1^2 \right| + U(Y)$ where : $U(Y) = -m_2 v_2^2 \ln(Y)$ Define for big mass m_1 : Kinetic energy $KE(v_1)$ vs Potential energy PE(Y) = U(Y)*Potential energy PE(Y)=U(Y)=m_2 v_2^2 \ln(Y) relates to Force F(Y) thru Work relations F*· $dY=\pm dU$ The "Physicist" View of Force The "Mathematician" View of Force U(Y) $F^{phys}(Y) = -\frac{dU}{dY}$ "Let it Go!" *F^{math}*(Y) = $+\frac{dU}{dY}$ "Hold it back!" $m_2 m_2 m_1 m_1$ $U(Y) = + \int F^{math} dY$ $U^{phys}(Y) = -\int F^{phys} dY$ ΔL ΛY (Same integral/differential relations) $F^{phys} = \frac{m_2 v_2^2}{m_2 v_2} = \frac{const}{m_2 v_2}$ *consistent with* : $F^{phys} = -\frac{\Delta U}{\Delta Y} = -\frac{d}{dY} (-const.\ln(Y)) = \frac{const.}{Y}$ (Hurrah! again)

Potential field due to many small bounces Example of 1D-Adiabatic potential $U(y)=const./y^2$ Physicist's Definition $F=-\Delta U/\Delta y$ vs. Mathematician's Definition $F=+\Delta U/\Delta y$ Example of 1D-Isothermal potential $U(y)=const. \ln(y)$ Example of oscillator with opposing Isothermal potentials

Two opposing 1D-Isothermal Force fields

$$F^{total} = \frac{f}{Y_0 + x} - \frac{f}{Y_0 - x}$$

Two opposing 1D-Isothermal Force fields

$$F^{total} = \frac{f}{Y_0 + x} - \frac{f}{Y_0 - x}$$

$$(Y_0 + x)^{-1} = Y_0^{-1} - xY_0^{-2} + x^2Y_0^{-3} - x^3Y_0^{-4} \dots$$

$$(Y_0 + x)^n = Y_0^n + nY_0^{n-1}x + \frac{n(n-1)}{2}Y_0^{n-2}x^2 + \frac{n(n-1)(n-2)}{2 \cdot 3}Y_0^{n-3}x^3 + \frac{n(n-1)(n-2)(n-3)}{2 \cdot 3 \cdot 4}Y_0^{n-4}x^4 \dots$$
Binomial Theorem

What does *Harmonic* mean?

Given total energy $E = KE + PE = \frac{1}{2}mV^2 + \frac{1}{2}kY^2$ *E* is *same* function for *any* amplitude *A* of sine-oscillation where: $Y = A \sin \omega t$ with velocity $V = A \omega \cos \omega t$ Because then: $E = \frac{1}{2}m(A\omega\cos\omega t)^2 + \frac{1}{2}k(A\sin\omega t)^2$ $=\frac{1}{2}m\omega^2 A^2 \left(\cos \omega t\right)^2 + \frac{1}{2}kA^2 (\sin \omega t)^2$ $=\frac{1}{2}m\omega^2 A^2 \left(\cos^2 \omega t + \sin^2 \omega t\right)^2 \quad \text{if:} \quad m\omega^2 = k$ if: $\omega = \sqrt{\frac{k}{m}}$ $=\frac{1}{2}m\omega^2 A^2$

What does *Harmonic* mean?

Given total energy $E = KE + PE = \frac{1}{2}mV^2 + \frac{1}{2}kY^2$ *E* is *same* function for *any* amplitude *A* of sine-oscillation where: $Y = A \sin \omega t \quad \text{with velocity} \quad V = A \omega \cos \omega t$ Because then: $E = \frac{1}{2}m(A\omega\cos\omega t)^2 + \frac{1}{2}k(A\sin\omega t)^2$ $=\frac{1}{2}m\omega^2 A^2 \left(\cos \omega t\right)^2 + \frac{1}{2}kA^2 (\sin \omega t)^2$ $=\frac{1}{2}m\omega^2 A^2 \left(\cos^2 \omega t + \sin^2 \omega t\right)^2 \text{ if: } m\omega^2 = k$ if: $\omega = \sqrt{\frac{k}{m}}$ $=\frac{1}{2}m\omega^2 A^2$

But, how does this square with <u>*linear*</u>-in-frequency Planck energy $E=(const.)\omega$?!? (More about that later in course.)

Sample problem: Compute isothermal frequency and/or period

Frequency			
HO ∡frequency: ω=	$\frac{k}{m_1} = \sqrt{\frac{k}{m_1}}$	$\frac{2m_2}{m_1}$	$\frac{v_2}{V_2} = 2\pi v$

Unit 1

Fig. 6.3

* Link to BounceIt animation with 1:500:1 mass ratios (Small Amplitude)

See Homework problem 1.6.5: *Compute frequency and/or period for both isoT and adiabatic cases*

* Link to BounceIt animation with 1:500:1 mass ratios (Small Amplitude)

* Link to BounceIt animation with 1:500:1 mass ratios (Small Amplitude)

Monster Mash "classical segue to Heisenberg action relations Example of very very large M1 ball-walls crushing a poor little m2 How m2 keeps its action An interesting wave analogy: The "Tiny-Big-Bang" [Harter, J. Mol. Spec. 210, 166-182 (2001)],[Harter, Li IMSS (2012)]
 A lesson in geometry of fractions and fractals: Ford Circles and Farey Sums [Lester, R. Ford, Am. Math. Monthly 45, 586(1938) [John Farey, Phil. Mag.(1816)]

The Classical "Monster Mash"

Classical introduction to

Heisenberg "Uncertainty" Relations

$$v_2 = \frac{const.}{Y}$$
 or: $Y \cdot v_2 = const.$
is analogous to: $\Delta x \cdot \Delta p = N \cdot \hbar$

Unit 1 Fig. 6.4

* Link to BounceIt "Monster Mash" x₂(t) animation (Note: Time sense is inverted)

* Link to BounceIt "Monster Mash" Vx2 vs x2 animation

Unit 1 Fig. 6.5

See Homework problem 1.6.2: Construct related spacetime case

*Monster Mash "classical segue to Heisenberg action relations Example of very very large M*₁ ball-walls crushing a poor little m₂ How m₂ keeps its action

 An interesting wave analogy: The "Tiny-Big-Bang" [Harter, J. Mol. Spec. 210, 166-182 (2001)], [Harter, Li IMSS (2012)] A lesson in geometry of fractions and fractals: Ford Circles and Farey Sums [Lester, R. Ford, Am. Math. Monthly 45,586(1938) [John Farey, Phil. Mag.(1816)]

<u>Wave Node Dynamics and Revival Symmetry in Quantum Rotors - Harter-JMS-2001</u> <u>Wave Node Dynamics and Revival Symmetry in Quantum Rotors - Harter-jms-2001 (Publ.)</u>

Quantum_Carpet, Quantum_Carpet_wMBars, Quantum_Carpet_BCar, Quantum_Carpet_BCar_wMBars

WaveIt Web Animation - Scenarios:

Quantum Carpet, Quantum Carpet wMBars, Quantum Carpet BCar, Quantum Carpet BCar wMBars

[John Farey, Phil. Mag.(1816)]

Monster Mash "classical segue to Heisenberg action relations Example of very very large M1 ball-walls crushing a poor little m2 How m2 keeps its action An interesting wave analogy: The "Tiny-Big-Bang" [Harter, J. Mol. Spec. 210, 166-182 (2001)],[Harter, Li IMSS (2012)]
A lesson in geometry of fractions and fractals: Ford Circles and Farey Sums *[Lester, R. Ford, Am. Math. Monthly 45,586(1938)* [John Farey, Phil. Mag.(1816)]

[Li, Harter, Chem.Phys.Letters (2015)]

(Quantum computer simulation)/ That makes an ∞-ly deep "3D-Magic-Eye" picture

End of Lecture 4 Geometric "Integration" (Converting Velocity data to Spacetime)

Unit 1 Fig. 8.4a-d

This is a construction of the energy ellipse in a Largangian (v_1, v_2) plot given the initial (v_1, v_2) .

The Estrangian (V_1, V_2) plot makes the (v_1, v_2) plot and this construction obsolete.

(Easier to just draw circle through initial (V₁,V₂).)

Still, if you know a simpler construction, we'd like to hear about it!

AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973

Alternative Basis for the Theory of Complex Spectra

Alternative_Basis_for_the_Theory_of_Complex_Spectra_I - harter-pra-1973

Alternative Basis for the Theory of Complex Spectra II - harter-patterson-pra-1976

Alternative Basis for the Theory of Complex Spectra III - patterson-harter-pra-1977

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Rotational energy surfaces and high-J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

- I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states PRA-1979-Harter-Patterson (Alt scan)
- II) Elementary cases in octahedral hexafluoride molecules Harter-PRA-1981 (Alt scan)

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989 (Alt scan)
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989 (Alt scan)
- III) Half-integral angular momentum harter-reimer-jcp-1991

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum) Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996

Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006

Resonance and Revivals

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) OSU knowledge Bank
- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013

<u>QTCA Unit 10 Ch 30 - 2013</u>

AMOP Ch 0 Space-Time Symmetry - 2019

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching. AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26), (PSDS - Ch. 5, 7)

Int.J.Mol.Sci, 14, 714(2013), QTCA Unit 8 Ch. 23-25, QTCA Unit 9 Ch. 26, PSDS Ch. 5, PSDS Ch. 7

Intro spin ½ coupling <u>Unit 8 Ch. 24 p3</u> H atom hyperfine-B-level crossing <u>Unit 8 Ch. 24 p15</u>

Hyperf. theory <u>Ch. 24 p48.</u>

Hyperf. theory Ch. 24 p48. <u>Deeper theory ends p53</u>

Intro 2p3p coupling <u>Unit 8 Ch. 24 p17</u>. Intro LS-jj coupling <u>Unit 8 Ch. 24 p22</u>. CG coupling derived (start) <u>Unit 8 Ch. 24 p39</u>. CG coupling derived (formula) <u>Unit 8 Ch. 24 p44</u>. Lande' g-factor

<u>Unit 8 Ch. 24 p26</u>.

Irrep Tensor building <u>Unit 8 Ch. 25 p5</u>.

Irrep Tensor Tables Unit 8 Ch. 25 p12.

Wigner-Eckart tensor Theorem. <u>Unit 8 Ch. 25 p17</u>.

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

Tensors Applied to high J levels. <u>Unit 8 Ch. 25 p63</u>. Intro 3-particle coupling. <u>Unit 8 Ch. 25 p28</u>.

Intro 3,4-particle Young Tableaus <u>GrpThLect29 p42</u>.

Young Tableau Magic Formulae <u>GrpThLect29 p46-48</u>.

AMOP reference links (Updated list given on 2nd and 3rd and 4th pages of each class presentation)

Predrag Cvitanovic's: Birdtrack Notation, Calculations, and Simplification

Chaos_Classical_and_Quantum_- 2018-Cvitanovic-ChaosBook Group Theory - PUP_Lucy_Day_- Diagrammatic_notation_- Ch4 Simplification_Rules_for_Birdtrack_Operators_- Alcock-Zeilinger-Weigert-zeilinger-jmp-2017 Group Theory - Birdtracks_Lies_and_Exceptional_Groups_- Cvitanovic-2011 Simplification_rules_for_birdtrack_operators-_jmp-alcock-zeilinger-2017 Birdtracks for SU(N) - 2017-Keppeler

Frank Rioux's: UMA method of vibrational induction

Quantum_Mechanics_Group_Theory_and_C60 - Frank_Rioux - Department_of_Chemistry_Saint_Johns_U Symmetry_Analysis_for_H20-_H20GrpTheory-_Rioux Quantum_Mechanics-Group_Theory_and_C60 - JChemEd-Rioux-1994 Group_Theory_Problems-_Rioux-_SymmetryProblemsX Comment_on_the_Vibrational_Analysis_for_C60_and_Other_Fullerenes_Rioux-RSP

Supplemental AMOP Techniques & Experiment

Many Correlation Tables are Molien Sequences - Klee (Draft 2016)

High-resolution_spectroscopy_and_global_analysis_of_CF4_rovibrational_bands_to_model_its_atmospheric_absorption-_carlos-Boudon-jqsrt-2017 Symmetry and Chirality - Continuous_Measures_-_Avnir

Special Topics & Colloquial References

r-process_nucleosynthesis_from_matter_ejected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017