Multi-particle and Rotational Dynamics
(Ch. 2-7 of Unit 6 12.07.17)

2-Particle orbits
Ptolemetric or LAB view and reduced mass
Copernican or COM view and reduced coupling

Separatrix circle pair
dihedral angle

0, ep=atan( ‘;%Bé )

2-Particle orbits and scattering: LAB-vs.-COM frame views
Ruler & compass construction (or not)

Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt
How to make my boomerang come back
The gyrocompass and mechanical spin analogy

. . . Asym. Rotor AJP
Rotational momentum and velocity tensor relations 44 11 1976

Quadratic form geometry and duality (again) A\ o N
angular velocity w-ellipsoid vs. angular momentum L-ellipsoid 1\

Lagrangian w-equations vs. Hamiltonian momentum L-equation

Rotational Energy Surfaces (RES) and Constant Energy Surfaces (CES)
Symmetric, asymmetric, and spherical-top dynamics (Constant L)
BOD-frame cone rolling on LAB frame cone
Deformable spherical rotor RES and semi-classical rotational states and spectra
Cycloidal geometry of flying levers and Practical poolhall application



https://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf
https://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf

2-Particle orbits and center-of-mass (CM) coordinate frame
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2-Particle orbits
3 Ptolemetric or LAB view and reduced mass
Copernican or COM view and reduced coupling



Reduced mass: Ptolemetric views
Radial inter-particle force Fi2 1s on m; due to m> and F21 = -F12 1s on m> due to m;
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Reduced mass: Ptolemetric views

Radial inter-particle force Fi2 1s on m; due to m> and F21 = -F12 1s on m> due to m;
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Reduced mass: Ptolemetric views
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Z2-Particle orbits
Prolemetric view and reduced mass
¥ Copernican view and reduced coupling



Reduced mass: Ptolemetric views
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2-Particle orbits and scattering: LAB-vs.-COM frame views
Ruler & compass construction (or not)



Examples of Coulomb and harmonic oscillator 2-particle “Copernican’ orbits in CM system.

Coullt Web Simulations
Coulombic Orbit (CM Frame)

Coulombic Orbit (Lab Frame)

Two particles are in synchronous motion around fixed CM origin.

(a) F(r) = -k/r?

/

Y

Orbit periods are i1dentical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation.

J/
/ Coullt Web Simulations
Hooke Orbit (CM Frame)

Hooke Orbit (Lab Frame)
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http://www.uark.edu/ua/modphys/markup/CoulItWeb.html?scenario=TwoParticleOrbit_Coulomb_CM
http://www.uark.edu/ua/modphys/markup/CoulItWeb.html?scenario=TwoParticleOrbit_Coulomb
http://www.uark.edu/ua/modphys/markup/CoulItWeb.html?scenario=TwoParticleOrbit_Hooke_CM
http://www.uark.edu/ua/modphys/markup/CoulItWeb.html?scenario=TwoParticleOrbit_Hooke_CM
http://www.uark.edu/ua/modphys/markup/CoulItWeb.html?scenario=TwoParticleOrbit_Hooke_CM
http://www.uark.edu/ua/modphys/markup/CoulItWeb.html?scenario=TwoParticleOrbit_Hooke

Examples of Coulomb and harmonic oscillator 2-particle “Copernican’ orbits in CM system.

Coullt Web Simulations
Coulombic Orbit (CM Frame)

Coulombic Orbit (Lab Frame)

(a) F(r) = -k/r?
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/ Coullt Web Simulations
Hooke Orbit (CM Frame)

Hooke Orbit (Lab Frame)

Two particles are 1n synchronous motion around fixed CM origin.
Orbit periods are 1dentical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation.
Orbits differ in size of axes (a;, b;) and (a2, b2)
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
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Examples of Coulomb and harmonic oscillator 2-particle “Copernican’ orbits in CM system.

(a) F(r) = -k/r? Q (b) F(r) = -kr
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Coullt Web Simulations ry Coullt Web Simulations
Coulombic Orbit (CM Frame) r Hooke Orbit (CM Frame)
Hooke Orbit (Lab Frame)

Coulombic Orbit (Lab Frame)

Two particles are 1n synchronous motion around fixed CM origin.
Orbit periods are 1dentical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation.
Orbits differ in size of axes (a;, b;) and (a2, b2)
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions (ax, bx) and Ai are in inverse proportion to mass values.

a,m, =a,m, =apl, bm, = b,m, = bl Am = A,m, = AU
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Examples of Coulomb and harmonic oscillator 2-particle “Copernican’ orbits in CM system.

(a) F(r) = -k/r? Q (b) F(r) = -kr
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Coullt Web Simulations ry Coullt Web Simulations
Coulombic Orbit (CM Frame) r Hooke Orbit (CM Frame)

Hooke Orbit (Lab Frame)

Coulombic Orbit (Lab Frame)

Two particles are in synchronous motion around fixed CM origin.

Orbit periods are i1dentical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation.

Orbits differ in size of axes (a;, b;) and (a2, b2)
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions (ax, bx) and Ai are in inverse proportion to mass values.

a,m, =a,m, =apl, bm, = b,m, = bl Am = A,m, = AU

Harmonic oscillator periods and Coulomb orbit periods and eccentricity must match

3 3
_ fﬂ_ /ﬂ_ /mz /Has_ ’mlal _ m,a, — —
Tpo =27 k—27t kl =27 a Ty =27 p =2 k—_zn - 81 —82 =&
1 2
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Examples of Coulomb and harmonic oscillator 2-particle “Copernican’ orbits in CM system.
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Coulombic Orbit (CM Frame) r Hooke Orbit (CM Frame)
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Coulombic Orbit (Lab Frame)

Two particles are in synchronous motion around fixed CM origin.

Orbit periods are i1dentical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation.

Orbits differ in size of axes (a;, b;) and (a2, b2)
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions (ax, bx) and Ai are in inverse proportion to mass values.

a,m, =a,m, =apl, bm, = b,m, = bl Am = A,m, = AU

Harmonic oscillator periods and Coulomb orbit periods and eccentricity must match

3 3
_ fﬂ_ /ﬂ_ /mz /Has_ /mlal _ m,a, — —
Tpo =27 k—27t kl =27 a Ty =27 p =2 k—_27z - 81 —82 =&
1 2

Three Coulomb orbit energy values satisfy the same proportion relation as their axes

Em =E m,=FEu, where: ‘E‘=M ‘E‘zM ‘E‘=M
11 2772 ’ ) 1 2a1 > 2 2612 > 2a ’
Energy values and axes satisty similar sum relations
" i) oM
E+E,=—FE+—=E=F, and: g +a,=—a+—=a=a
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A common type of scattering
(m1=mp:)
..that every pool shark should know

CM view LAB view //\ Bouncelt Web Simulations
vCM=() vCM= -VZCM(O) / Hard Collision (CM Frame)

Hard Collision (Lab Frame)

VILAB(OO) V] M(OO)
90° 1o

v,LAB0)=0 T


http://www.uark.edu/ua/modphys/markup/BounceItWeb.html?scenario=5003
http://www.uark.edu/ua/modphys/markup/BounceItWeb.html?scenario=5003
http://www.uark.edu/ua/modphys/markup/BounceItWeb.html?scenario=5003
http://www.uark.edu/ua/modphys/markup/BounceItWeb.html?scenario=5002

1o transform CM to LAB frame
Just subtract v,M(0) from all

(Assuming that initial v>L48(0) is zero so v2¢M(0) is CM velocity in LAB)
CM view

OCM

COG moves uniformly

CM CM
at v =-vy (0)

LAB
HEa @

Coullt Web Simulation - Coulombic Collision (LAB Frame)
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From: Geometric aspects of classical Coulomb scattering
American Journal of Physics 40,1852-1856 (1972)

Class project when I taught Jr. CM at Georgia Tech

(Just 5 students)

i Qém

LAB
"W final Vz,ﬂ'M'

\ é.zkﬁ

F1a. 4. Given the center of mass scattering angle CM (from
Fig. 3) and the mass ratio (2:1 in this case) a vector
addition construction produces angles 6,“AB and §,LAB
shown here.

22
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The trouble with the Coulomb field is...

jt‘ldt =Int+C

Fic. 5. The laboratory picture of Fig. 3. The scattering
begins with both particles infinitely far to the right. The
heavier particle is at rest and the lighter particle is moving
left about 0.3 mile per day in the scale of this drawing.
When the heavier particle first appears on this picture, one
or two years before the “collision,” it is creeping extremely
slowly leftward, while the lighter particle is still over a
hundred miles off to the right. The heavier particle con-
tinues creeping until finally the lighter particle arrives in
the picture and moves through in about 12 sec. Most of the
momentum is transferred in 3 or 4 sec. 1856 | December 1972

vaMAB () = [ ([ F |/m2)dt
= [kdt/ms[ v,°M (initial )¢ J?

[ —k/maw,CM (initial )2 i1

From: Geometric aspects of classical Coulomb scattering
American Journal of Physics 40,1852-1856 (1972)

Class project when I taught Jr. CM at Georgia Tech

(Just 5 students)
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Fic. 5. The laboratory picture of Fig. 3. The scattering
begins with both particles infinitely far to the right. The
heavier particle is at rest and the lighter particle is moving
left about 0.3 mile per day in the scale of this drawing.
When the heavier particle first appears on this picture, one
or two years before the “collision,” it is creeping extremely
slowly leftward, while the lighter particle is still over a
hundred miles off to the right. The heavier particle con-
tinues creeping until finally the lighter particle arrives in
the picture and moves through in about 12 sec. Most of the
momentum is transferred in 3 or 4 sec.

From: Geometric aspects of classical Coulomb scattering
American Journal of Physics 40,1852-1856 (1972)

Class project when I taught Jr. CM at Georgia Tech

(Just 5 students)

Adolph, Garcia, Harter, M cLaughlin, Shiffman, and Surkus

Fic. 6. Logarithmic recession of tangents demonstrates the
nonexistence of asymptotes, for pure Coulomb scattering in
laboratory system. At {=10° the slopes of the tangents are
shy of 6,AB and 6,“AB by only 0.02° and 0.04° respec-

tively.
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When the heavier particle first appears on this picture, one
or two years before the ““collision,” it is creeping extremely
slowly leftward, while the lighter particle is still over a
hundred miles off to the right. The heavier particle con-
tinues creeping until finally the lighter particle arrives in
the picture and moves through in about 12 sec. Most of the

Adolph, Garcia, Harter, M cLaughlin, Shiffman, and Surkus

Fic. 6. Logarithmic recession of tangents demonstrates the
nonexistence of asymptotes, for pure Coulomb scattering in
laboratory system. At {=10° the slopes of the tangents are
shy of 6,»4B and 6,“AB by only 0.02° and 0.04°, respec-

tively.

momentum is transferred in 3 or 4 sec.

Fic. 7. Attractive Coulomb scattering in laboratory systemn.
This has the same “anomalies” as the repulsive case.
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The Australian Boomerang (that comes back and hovers down!)
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of leading blade hitting trailing one
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3-blade boomers causes figure-8 paths.




The Australian Boomerang (that comes back and hovers down!)

Charlie Drake’s famous 1961 song:

My boomerang won 't come back!

My boomerang won't come back!

My boomerang won t come back!
1’'ve waved the thing all over the place
Practiced til’ [ was blue* in the face

I'm a big disgrace L.
-

to the Aborigine W o

My boomemng’m;on t come back!
4

*blue later replaced black N

Aluminum boomerang I made in 19635.
“~~..._ltonce flew over 18 seconds with hover-return!

-

Unbalanced
lift gives
torque N

~

Small lifting torque due to “bad-air”
of leading blade hitting trailing one
left-to-right may cause boomerang
to level and hover. Stronger effect in
3-blade boomers causes figure-8 paths.



https://www.youtube.com/watch?v=EXJR5NWM_xI&list=PLGwmGldCxzLxbPlFVG8Z89WZIBuT4m0Ii&index=7

Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt
How to make my boomerang come back
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The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand
rotation with angular momentum L N

this applies righthand “thumbs-up” torque N L

Euler Angle Dial
B

(Polar Coordinate)

Euler Angle Dial
v

(Twist' Coordinate)

o
(Azimuth’al Coordinate)

A very high speed ball in a gyro-compass will Then the ball tends to line-up with z-axis

similarly seek true North due to Earth rotation. (and may go past z, then come back, etc.

in a precessional or “hunting’” motion
General Rule: Gyros tend to P g )

“line-up” so they are rotating This is analogous to the tendency for spin magnetic moments
with whatever is most closely to allign (or precess about) the B-direction of a magnetic field
coupled to them. Recall S-precession discussion in CMwB Unit 4 Ch.4 and Lect.26



Rotational momentum and velocity tensor relations
Quadratic form geometry and duality (again)

angular velocity w-ellipsoid vs. angular momentum L-ellipsoid

Lagrangian w-equations vs. Hamiltonian momentum L-equation



Inertia tensors

Consider N-body angular velocity w and angular momentum L relations with Levi-Civita analysis
N N ,
l‘j = O)er and szz,l rJijrj:]E,lmj jx((:)er) with Ax(BxC):(AoC)B—(AoB)C

Consider mass m instantaneously at r,, =(x,.»,.2,)=7(5.5-0 on a bent axle rotating in a fixed bearing:

A2
I = /A2

0

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.
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Fig. 6.5.1 Angular momentum for mass rotating on bent axle. L 0 0 1 0 0



Inertia tensors

Consider N-body angular velocity w and angular momentum L relations with Levi-Civita analysis
N N

r.— WXr. and L= rxmr.=> m, .X(O)Xr.) with AX(BXC)=(A0C)B—(AOB)C
j j PR A A N N
This produces the rotational inertia tensor Iz I=3S1.=3m. [(r o r.)l —rr }
PR A A JJ
in the w-to-L relati 5 5 I
in the w-to-L relation: — Alr.or.|o—|(r. = A(r.or.|1—-rr. =
L jzlm] [(rjor])(o (rjou))r]} jzlm] [(r]or])l rjrj}ou) Tew
Matrix form of the w-to-L relation using the inertia matrix (I)
Lx y]2. + Z? —xj yj _ijj o, y? + Z? XY, —X,Z;
N - N . N
_ 2, .2 _ _ N 2,2
= ]El TR X TE YA P (1)= J§1<Ij> SR TV GRE TYE
L, —zx,  —zy; xi+y; |9 I Sz XY

Consider mass m instantaneously at r,, =(x,.»,.2,)=7(5.5-0 on a bent axle rotating in a fixed bearing:

—/2 Instantaneous matrix (I) of inertia is:

L=m? w/2 (1/x/5)2+0 ~(1V2)(1n2)  —(1n2]o
0 12 -12 0
0 (Dl —(182)(172) (1/\/5)2+o (2o -2 12 0
o) o) (wapaf |

/A2

Matrix (I) operates on angular velocity ® to give angular momentum L

Ir = P2
. . dL L 12 -12 0 12
0 Bearing torque 1s: N=—=wXxL ’ 2 0 >
dt L, |=mr°| —12 12 0 || @ |=mr’| 12 |0
Fig. 6.5.1 Angular momentum for mass rotating on bent axle. L 0 0 1 0 0



Kinetic energy in terms of velocity o and rotational Lagrangian
Kinetic energy T of a rotating rigid body can be expressed in terms of the inertia matrix I

T——Z mpr;er. = 5§ mj(mxrj)O(mxrj) Levi-Civita identity

e ) (AxB)x(CxD)=(AsC)(BsD)-(AeD)(BeC)

14 m [(weal o) -{oer) (0]

—% 3 fleen)-(o) (o]0

% ciew

Kinetic energy is a quadratic form ,
xx  Txy  Txz O
I'= %( o, @, wy) L Ay Ay [wy

sz Izy zz ,

®) (Dirac notation)

) =1y} (i) )| (z]e)
yi + ij Vi TXE) 0N
1 3 2
- 5( o, o, o, )]El il VX Xyt Yz y
—ZX; ~2;¥; x? + y? o,

| Iyy Iyy Ixz Oy
r= 5( Dy Gy O ) lyy Iyy Iy, %
Iy gy gy @,
1 S ° Ux I,,0°% [0 1,0
:E(wX Wy a)Z) 0 I, O Wy :XX2X+YY2Y+ZZZZ
0 0o 7, ,




Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [ leL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once
1 1 1. -

T=—@elom=—meL=—Len=—Lel oL
2 2 2 2
-1
Ly 1y Iy, Ly
1
T= 5( Ly Ly L )| Iy Iy Iy L,
IZX IZY IZZ L
1/1 0 0 L
1 . SO - SR FA 4
:5( L, L, LZ) 0 /I, 0 L, |=




Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [eL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

\

E =const

2 ﬂ}ellipsﬁ
-1 N
I I, 1 L E =const. !
1 oo * L-ellips6id |
T= 5( Ly Ly L) Iy Iy Iy L,
1 Il 1 L

Y 21 +21 +21 \
XX YY 77
0 0 1/17 L
77 YA
X

Hamiltonian form 1s the equation of the angular momentum or L-ellipsoid
Lagrangian form is the equation of the angular velocity or w-ellipsoid

T

Plane normal t 5 star-fixed

i \ and-tangent to w-ellisoid
A

®* L=const.




Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iewm,

generally implies:

m=f_10L

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

- 1 1 1 “_
T=—@elen=—mel=—Len=—Lel oL
2 2
-1

Ly Ly Iy Ly

1

5( Ly Ly LZ) Iyy Iy 1y Ly
Iyy gy 1y Ly
/i, O 0 Ly,

1

5( L, L, LZ) 0 1/I, O L,

Hamiltonian form 1s the equation of the angular momentum or L-ellipsoid

0 1/1, || L

E =const

ﬂ)—ﬂllipsﬁ

\

E =const. | ‘
L-ellipsoid

T

Plane normal t 5 star-fixed

i ent to @-ellisoid
JA

Lagrangian form is the equation of the angular velocity or w-ellipsoid

Recall quadratic forms for Lagrangian and Hamiltonian in Lecture 10 unit 1?

®* L=const.



Unit 1

Fig. 12.2
Lagrangian plot
(a) L(v)=const.=veMev/2 (b) PofFm,v, /
E T
ﬁ\ N
L=constF E |h\/T
/N \\ |
/ \\ (C) Overlapping plots Lagrangian tangent at velocity v
B B |]St equation OfLagmnge
[ ‘\ L=const = E )
[ AN \/
[ | \ |

s
F

)

B P
I
1/
\ / ’ (d) Less mass | Hamjiltoni Lm tangent/at momentum p

\ / | . / X/\ is normal to velocity v
| - {

N ]

(6) More mass



Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [eL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

T=—mpelom=—@el=—Lem=—Lel oL E =const
2 2 2 2

ﬂ}ellipsﬁ
-1 )
_ 1
1 Lo Lo ) L <llipscid |
T= 5( Ly Ly L) Iy Iy Iy L,
L, I L

lorque-free body
has conserved L.=const.

Plane normal t s star-fixed
1 Vi 0 0 Lx 12 I? 12 lt | &nd—tﬂm;z:h/m:l
:—(LX L, LZ) 0 1/1, 0 L, |==—X 4+ +Z2 \ \
2 20, 21, 21,
0 0 1/1, || L, _
X ®* L=const. =27 if energy

Hamiltonian form is the equation of the angular momentum or L-ellipsoid is not dissipated internally
Lagrangian form is the equation of the angular velocity or w-ellipsoid w is generally not conserved unless it

is aligned to L. or body has symmetry



Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [eL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

E =const
2 2 ﬂ}ellipsﬁ
-1 ;
1 1 1

lorque-free body
has conserved L.=const.

T
Plane normal t s star-fixed
i and-tangent to w-ellisoid
. + + \ \
21, 21, 21,
0 0 1/1,, L, _
X ®* L=const. =27 if energy

Hamiltonian form is the equation of the angular momentum or L-ellipsoid is not dissipated internally
Lagrangian form is the equation of the angular velocity or w-ellipsoid w is generally not conserved unless it

is aligned to L. or body has symmetry

@ oL A
Canonical momentum: ~ p, = —n (where: L=T)
dq
L=9_y -0 @0 _y ,
\___ 0O ow 2 )




Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [eL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

E =const

ﬂl-ﬂllipsﬁ\

lorque-free body
has conserved L.=const.

- 1 1 1 “_
T=—@elom=—meL=—Len=—Lel oL
2 2 2
-1
Ly Ly 1y L,
1
T= 5( Ly Ly L) Iy Iy Iy L,
IZX IZY IZZ LZ
1 1/1,, O 0 L,
= —| L, L, L ) 0 1/1 0 L, |=—X Y Z
2( X YY Yolo2n,, 20, 21,
0 0 1/1, L,

Hamiltonian form 1s the equation of the angular momentum or L-ellipsoid

T~
Wc normal t s star-fixed
i and-tangent to w-ellisoid
ya
‘@ L=const. =27 if energy
is not dissipated internally

Lagrangian form is the equation of the angular velocity or w-ellipsoid w is generally not conserved unless it

is aligned to L. or body has symmetry

@ oL A
Canonical momentum: ~ p, = —n (where: L=T)
g
L=9_y -0 @0 _y ,

\___ 0O ow 2 )
@ H N
Hamilton's 15t equations : G = 8_ (where: H =T)

P
oI le H
oy d et
\ oL oL 2 J,




Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [eL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

E =const
2 2 a}enipsﬁ
1 \
1 1 1

Torque-free body
has conserved L.=const.

T
Plane normal t 5 star-fixed
i ent to @-ellisoid
O YRR YRy | \
0 0 1/1, || L, o T _
X ®* L=const. =27 if energy

Hamiltonian form is the equation of the angular momentum or L-ellipsoid is not dissipated internally
Lagrangian form is the equation of the angular velocity or w-ellipsoid w is generally not conserved unless it

is aligned to L. or body has symmetry

(7 oL N
Canonical momentum: ~ p, = —n (where: L=T)
dq
oT 0 wele®
= —= V(DT = — I LA
. \___ 0O ow 2 )
f"s:blso}uicllyff n . H N
stable axis ([ ‘Hamilton's 15t equations : g = — (where: H =T)
/4
.1 Pu
OH 0 LelleL” _
w=op =Vl =g Tt
stable axis Separatrix \\ )J




Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [eL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once
T=—@eloew=—mel=—Lew=—Lel el E =const
2 2 2 2

Torque-free body
ﬂ)—ﬂllipsﬁ
-1 ;
1 1 1 L

has conserved L.=const.

y4
IZX ? ZZ . \ T
Plane normal t 5 star-fixed
1/1 0 0 L
1 M X 1> I? 12 ll ] ent to m-ellisoid
:—(LX L, LZ) 0 1/1,, 0 L, |=—X+L +~£ \ \
2 21, 21, 21,
0 0 1/1,, L, _
X ®* L=const. =27 if energy

Hamiltonian form is the equation of the angular momentum or L-ellipsoid is not dissipated internally
Lagrangian form is the equation of the angular velocity or w-ellipsoid w is generally not conserved unless it

is aligned to L. or body has symmetry

(7 oL N
Canonical momentum: ~ p, = —n (where: L=T)
dq
oT 0 wele®
= —= V(DT = — I LA
. \___ 0O ow 2 )
J*%blso}uiclljf(( n . . H A\
stable axis ([ ‘Hamilton's 15t equations : g = — (where: H =T)
/4
.1 Pu
OH 0 LelleL” _
w=op =Vl =g Tt
stable axis Separatrix \\ )J

In body frame momentum L. moves along intersection of Li-ellipsoid and 1.-sphere (Length |L| is constant in any classical frame.)



Asymmetric Top
Demo video

Rotational Energy Surfaces (RES)
= Symmetric, asymmetric, and spherical-top dynamics (Constant L)
BOD-frame cone rolling on LAB frame cone

Singular Motion of

Asymetlric Rotators
AJP (44) p1080



http://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf
http://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf
http://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf
https://youtu.be/HWjGvCaqx5g
https://youtu.be/HWjGvCaqx5g

Asymmetric-top dynamics (Constant L)

1. NASA Space station video 2. UAF lab air-supported asymmetric top video

https://youtu.be/1n-HMSCDYtM

For those physist who are brave of heart, make note the video’s comments hitps://youtu.be/HWjGvCaqx5g

3. NASA-Rotating Solid Bodies in Microgravity (2008) 4. Early NASA-JPL satellite blunder (1958)

To be Continued =several pages ahead

https://www.youtube.com/watch?v=BPMjcN-sBJ4 Asvm. Rotor AJP
44,11 1976



https://youtu.be/1n-HMSCDYtM
https://youtu.be/HWjGvCaqx5g
https://www.youtube.com/watch?v=BPMjcN-sBJ4
https://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf
https://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf

Comments following Space Lab video of asymmetric rotation

show that it is not a widely understood phenomenon

. Bagnon DuJour mont 1
As the handles spins out it dips down a bit before becoming detached and that linear momentum travels through
the angular momentum until the equilibrium requires the flip to maintain the path of least resistance. If they could
spin it perfectly without the dip, it would not turn like that.
Reply share

Bill Aldridge ~ Bagnon Dulour 3 months ago
a1 So you are saying, when they put their hands on the tip, i dip, you dip, we dip.
Reply Share

EVERYONE is born an atheist = Caonon Duldouwr 3 months ago
Exactly. Not sure why this was even posted. Maybe it was just going to b used as a basic physics example
for schools.

Reply Share

Tim Johnson ~* Hagnon Dudouwr } months ago
It sounds like you have a handle on what’s going on here.

Reply Share *




built at USC (donated to Cal. Museum of Science & Industry)

|3

Bocce-Ball Asymmetric Top we

Iy =Q2M/5+ my/3)R> + mr\2/2 + myri?/4, | Asym. Rotor AJP
I = (2M /5 + m\ J3)R? + mars2/2 + myr 2[4, (8) 44,11 1976
Iy =2M/5+ m;/3 + my/3)R> + mri?/4 + mary?/4,

. Fig. 3. Polhodes. A family of constraint curves for the vector w in the body
system, or “‘polhodes,” are separated into two distinct groups by a curve
called the singular polhode. :

Fig. 4. Model of rotational motion near the singular polhode.

1081  Am. J. Phys. Vol. 44, No. 11, November 1976 :
W. G. Harter and C. C. Kim 1081


https://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf
https://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf

Bocce-Ball Asymmetric Top Motion solved by Euler’s equation and elliptic integrals

L=wX L, (9)
which takes the following form for the 2 component:
Cbz+w|w3(]| "13)/12=0. (]0)

Solving Eq. (10) for w = w, using Egs. (5) and (6), we obtain
the following:

w=(a—bw?)"?(c = dw?)'?[I,(1,15)'72, (11)
where the constants a-d [Eq. (12)] depend on initial con-
ditions and the inertial moments as follows:

as 2E13 —‘Lz, b= 12(13 - 12).
c=L>=2ElL, d=1(,-1),
a= 12(13 - I;z)['V2 0082 €,
H [12(12 — 1|) (',OS2 e+ 13(13 - 11) sin? G)Wz, (12)
where we have assumed initial conditions

wi(0) =0, w(0)=Wcose, w3(0)=Wsine. (13)

Ws /2] 3 &4 & &
wr

Zn

S il ' isuinings et lzs2 Is=4
j/ ‘Jl =' | | | |

Ij =15 [2=2 I3=2.5

; '5 6 Wt
2m

Fig. 6. Exact solutions. The motion of the  vector for an asymmetric
and a not-so-asymmetric body are compared. Various polhodes are shown
on the left-hand side while the corresponding time behavior is plotted on
the right-hand side.

Asym. Rotor AJP

44,11 1976



https://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf
https://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf

Bocce-Ball Asymmetric Top Motion solved by Euler’s equation and elliptic integrals

| L=wXL, (9) o _sor
~__ 8* ] Iy=1 12:2 I3=4
which takes the following form for the 2 component: N_ so* _m
d:2+w|w3(]|—13)/12=0. (]0) wsg L'J; é. : s e
Solving Eq. (10) for w = w, using Egs. (5) and (6), we obtain =
the following:

@ = (a = bw?)*(c = dw?)'P/I,(1I13)'2,  (11)

where the constants a-d [Eq. (12)] depend on initial con-
ditions and the inertial moments as follows:
a=2El;—L2 b=1I(I1—1),
c=L2—- 2E[|. d= 12(12 - I|),
a= 12(13 - ]2)W2 cos? €,
¢ = [12(12 — I|) cos? e + 13(13 - 11) sin? G)Wz, (12)

Fig. 6. Exact solutions. The motion of the  vector for an asymmetric

where we have assumed initial conditions and a not-so-asymmetric body are compared. Various polhodes are shown
. on the left-hand side while the corresponding time behavior is plotted on
wi(0) =0, w(0)=Wcose, w3(0)=Wsine. (13) the right-hand side.

_ INVEYE 1/2
‘= ((13 — L) (L2 - 251,))

. d
X j(; (1 = Q2)1/2(1 — k2Q2)1/2° (14)

where the following substitutions were made:
k = (ad/be)'?, w= (a/b)'/2Q = QW cose. (15)

A further substitution Q = sin¢ reduces the integral

114 dQ
J; (1 — 92)1/2(] — kzgz)l/z

¢’ do s
= o TR @ ()

Asym. Rotor AJP
44,11 1976



https://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf
https://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Singular_Motion_of_Asymetric%20Rotators_-_AJP_44p1080.pdf

Bocce-Ball Asymmetric Top Motion solved by Euler’s equation and elliptic integrals

L=wX L, (9)
which takes the following form for the 2 component:
d:2+w|w3(1| "13)/12=0. (]0)

Solving Eq. (10) for w = w, using Egs. (5) and (6), we obtain
the following:

w=(a—bw?)"?(c = dw?)'?[I,(1,15)'72, (11)
where the constants a-d [Eq. (12)] depend on initial con-
ditions and the inertial moments as follows:

as 2E13 —‘Lz, b= 12(13 - 12).
c=L2—- 25[| d= 12(12 - I|),
a=1I,(Ix—I,)W?2cos? e,
H [12(12 — I|) cos? € + 13(13 - ]1) sin? G)Wz, (12)
where we have assumed initial conditions

wi(0) =0, w(0)=Wcose, w3(0)=Wsine. (13)

_ INVEYE 1/2
‘= ((13 — L) (L2 - 2E]|)>

. d
X j(: (1 = Q2)1/2(1 — k2Q2)1/2° (14)

where the following substitutions were made:
k = (ad/be)'?, w= (a/b)'/2Q = QW cose. (15)

A further substitution Q = sin¢ reduces the integral

114 dQ
J; (1 — 92)1/2(] — kzgz)l/z

¢’ do s
o ey CEO N

S il i =1 Iz=2 I3=4
N | + . 3 +
wsy T2 3 &« s &
_w_l
2n

Fig. 6. Exact solutions. The motion of the  vector for an asymmetric
and a not-so-asymmetric body are compared. Various polhodes are shown
on the left-hand side while the corresponding time behavior is plotted on
the right-hand side.

[:

N

X( 11,1, )1/2
(13—12)[12(12—1[)00826+I3(13—1|)Sin2 G]
X sn-! <§k> (17a)

2 I, )1/2 _]<1r)
— z 17b
(@) o (GE). o
where
_ I)(I, — I) \ 1/2
. (12(12—1,)cos2e+13(13—1,)sin2e/ cos &,
(18a)

k— 1 = (I/L)[(Us = 1)/(I> — 11)](€%/2). (18b)



Bocce-Ball Asymmetric Top Motion solved by Euler’s equation and elliptic integrals

L=wXL, (9)
which takes the following form for the 2 component:
d:2+w|w3(1| —13)/12=0. (]0)

Solving Eq. (10) for w = w; using Egs. (5) and (6), we obtain
the following:

w=(a—bw?)"?(c = dw?)'?[I,(1,15)'72, (11)

where the constants a-d [Eq. (12)] depend on initial con-
ditions and the inertial moments as follows:

as 2E13 —‘Lz, b= 12(13 - 12).
C=L2—2EI|. d=12(12—1|),
a=1I,(I,—I1,)W?2cos? e,

H [12(12 — I|) cos? € + [3(13 - ]1) sin? G)Wz, (12)
where we have assumed initial conditions

wi(0) =0, w(0)=Wcose, w3(0)=Wsine. (13)

_ INVEYE 1/2
‘= ((13 - L) (L? - 2511))

. dq
8 j; (1 = Q2)1/2(1 — k2Q2)1/2° (14)

where the following substitutions were made:
k = (ad/be)'?, w= (a/b)'/2Q = QW cose. (15)

A further substitution Q = sin¢ reduces the integral

14 dQ
J; (1 — 92)1/2(] — k292)l/2

¢’ do s
= o TR @ ()

Fig. 6. Exact solutions. The motion of the  vector for an asymmetric
and a not-so-asymmetric body are compared. Various polhodes are shown
on the left-hand side while the corresponding time behavior is plotted on
the right-hand side.

The limiting forms [Eqgs. (17) and (18b)] become good
approximations for € < 10°. The approximate number of
revolutions accomplished by a body before it overturns is

given by the product of W /2x, the number of revolutions
per second, and the right-hand side of Eq. (17b). Exact
solutions for various /; and e are displayed in Fig. 6.

If one desires to increase the reversal time, it should be
done through the first factor in Eq. (17b). The integral in
the second factor is usually only as large as 7 or 8 in our
experiments (e = 10° gives 3.1, e = 1° gives 5.4, and ¢ = 0°
1” gives 9.5). This is a good demonstration of the behavior
of an elliptic function near its singularity.



4. Early NASA-JPL satellite blunder (1958)

From text in preparation
by Rick Heller on semi-
classical dynamics of

polyatomic molecules

Figure 10.3: NASA-JPL early blunder. Rockets are not rigid bodies, especially with
floppy whip antennas attached. The Explorer 1 satellite was the first one launched
successfully by the United States. Seen in the left panel are James van Allen (cen-
ter), William Pickering (left), and Werner von Braun, with a full-size model of the
satellite, just after it was successfully orbited in 1958. As this press conference took
place, the satellite was busily tumbling out of control. Van Allen soon realized that
the intermittent signal from the satellite was due to tumbling. Fortunately, enough
antennas were bristling from the satellite that it still gave much useful data, result-
ing in discovery of the van Allen radiation belts. The tumbling took place because
friction due to slight wobbling is converted to heat, lowering the rotational energy,
but not changing the angular momentum. The only way for this to happen is for
the satellite to start rotating around a lower energy axis, until it bottoms out in end
and over and tumbling at the lowest possible rotational energy for the given angular
momentum. The author thanks Prof. William Harter for pointing out the existence
and the physics of this story.



Rotational Energy Surfaces (RES) and Constant Energy Surfaces (CES) replace Lagrange Poinsot 30+1+o

Rotational Energy Surface (RES) is
quadratic multipole function plotted radially
2 J2 2
_ 4 +—+ J; with J = const.
21, 21, 21
.2 2 - 2 - 2 2
_ j2| sin 6 cos (/)+ sin“0sin ¢+ cos“6
21 21 21

X y

(a) RE surface ]

rIZ\/]

%
r2 X

Constant Energy Surface (CES) is

asymmetric ellipsoid of constant E

ron o or. Here notation L or L
= + + = const.
21, 21, 21 for angular momentum
2 2 2 .
R NN IR is replaced by J or J

Z

(b) CE surface (c) RES intersecting CES

I]—=6 Ij =4 Ij =3

2EI,  2EI, 2EI

E = const.

Fig. 6.8.1 Rigid rotor surfaces (a) RES polynomial, (b) CES ellipsoid, and (c) RES and CES intersected.



RES and CES for nearly-symmetric prolate rotors and nearly-symmetric oblate rotors
(@) [s=5.6 (b) I3 =5.0

(c) [5=3.2 = [ =
) [1 6 13 3

RES RES

J_
3 J; 2

nearly-prolat nearly-oblate

symmetric roto
RES

asymmetric rotor symmetric rotor
RES RES

low-E CES), (b)15=50and y,=634°, (c)I5=32 and y,=20.7° (Nearly oblate high-E CES).



RES for symmetric prolate rotor locates J =10 quantum (-J<K<J) levels (at RES-quantum cone intersections)

J=10 Minimum uncertainty angle 1%:17.550 Polar.
AT 15 rolate ~  \— cone | ) o0 Uncertlalnly
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Link to pdf of: W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013) Fig. 1-5 p.730



http://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Int.J.MolSci1.4.13.pdf

RES for symmetric and asymmetric rotor approximates J =10 (-J<K<J) levels (near RES-quantum cone levels)
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http://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Int.J.MolSci1.4.13.pdf

RES for symmetric prolate rotor locates J =10 quantum (-J<K<J) levels (at RES-quantum cone intersections)
E=A) +BJ§ +CJ? with J = const.
Spectra varies as symmetric prolate RES changes through a range of asymmetric RES to oblate RES

Link to pdf of: W. G. Harter and J C. Mitchell International Journal of Molecular Science, 14, 714-806 (2013) Fig. 1-5 p.730



http://www.uark.edu/ua/modphys/pdfs/Journal_Pdfs/Int.J.MolSci1.4.13.pdf
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Rotational Energy Surfaces (RES)
= Symmetric, asymmetric, and|spherical-top dynamics (Constant J)

BOD-frame cone rolling on LAB frame cone



RES for spherical rotor approximates J =88 (-J<K<J) levels of SFs
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Link to pdf of: W. G. Harter and J C. Mitchell International Symposium on Molecular Spectroscopy, OSU Columbus (2009)



http://www.uark.edu/ua/modphys/pdfs/Talk_Pdfs/Columbus_2009.pdf
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http://www.uark.edu/ua/modphys/pdfs/Talk_Pdfs/Columbus_2009.pdf

Rotational Energy Surfaces (RES)
Symmetric, asymmetric, and spherical-top dynamics (Constant J)
=== BOD-frame cone rolling on LAB frame cone




(a) Constrained rotor  (b) Angular velocity w (c) Energy ellipsoids
and momentum J

5.
MLAB h
X axis

Fig. 6.7.1 Elementary w-constrained rotor and angular velocity-momentum geometry.

(a) Constrained rotor:LAB-fixed 0, moving J (b) Free rotor:LAB-fixed J, moving @

7 |

%@ LAB
i % LAB O X4 axis

X4 axis

Fig. 6.7.2 Free rotor cut loose from LAB-constraining w-axis changes dynamics accordingly.

..this was the kind of dynamics that started me dropping superballs...



Prolate tops: (a) I,,=41, (b) 1,=21, (c) 1,=(3/2) I,

v =3a.cosp V= d.cosP v=(1/2)0.cosf
LAB X,
axis (.1+ .=
LAB A
y, cone

(e) Oblate limit:
I,=(1/2) I,

y°=(—]/2)02 cos(> IV \

Y — _(DS- \ - //5

Blue BOD-frame cones roll (around w-sticking axis)without slipping on red LAB-frame cone

Fig. 6.7.3 Symmetric top ®-cones for 3=30°nd inertial ratios: (a) 1,,1:13 =3, (b) 1, (c)% ,(d) 0, (e) —%.
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(b) Oblate geometry
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Fig. 6.7.4 Detailed geometry of symmetric top kinetics. (a) Prolate case. (b) Most-oblate case

Blue BOD-frame cones
roll without slipping
on red LAB-frame cone



Oblate limit: 7= w5 doos f Very prolate top: 1,=91,
[H:(] /2) 1 3 = (0 cos B)(I,-I3)/1,

. . v =8acosf
v=(-1/2)c.cosf

= w3 (-,

Blue BOD-frame cones
roll without slipping
on red LAB-frame cone

Fig. 6.7.5 Extreme cases (Oblate vs. Prolate) of symmetric-top geometry.



=y Cycloidal geometry of flying levers
Practical poolhall application
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If you hammer a stick at a point /2 meters from its center

you give 1t some linear momentum I1
and some angular momentum A = /11

A
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T g —VT I1=linear momentum ———>

ang!
h ITh = angular momentum about @ )

P Imaginary wheel of radius P rolls on imaginary road

that intersects the Center of Percussion P

Fig. 2.4.1 Cycloidic paths due to hitting a stationary stick.



If you hammer a stick at a point /2 meters from its center

you give 1t some linear momentum I1
and some angular momentum A = /11

Resulting angular velocity ® about the center

1s angular momentum A divided by
moment of inertia 7 = M ¢2/3 of the stick.

A
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Fig. 2.4.1 Cycloidic paths due to hitting a stationary stick.



If you hammer a stick at a point /2 meters from its center

you give 1t some linear momentum I1
and some angular momentum A = /11

Resulting angular velocity ® about the center

1s angular momentum A divided by
moment of inertia 7 = M ¢2/3 of the stick.

w=A/I (E3A/M ) for stick)
= hll /1 (=3h11/(M ¢2)for stick)

A
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Fig. 2.4.1 Cycloidic paths due to hitting a stationary stick.



If you hammer a stick at a point /2 meters from its center

you give 1t some linear momentum I1
and some angular momentum A = /11

Resulting angular velocity ® about the center

1s angular momentum A divided by
moment of inertia 7 = M ¢2/3 of the stick.

w=A/I (E3A/M ) for stick)
= hll /1 (=3h11/(M ¢2)for stick)

One point P, or center of percussion (CoP), 1s

on the wheel where speed pw due to rotation

just cancels translational speed Vcenser 0f stick.
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Fig. 2.4.1 Cycloidic paths due to hitting a stationary stick.
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If you hammer a stick at a point /2 meters from its center

you give 1t some linear momentum I1
and some angular momentum A = /11
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moment of inertia 7 = M ¢2/3 of the stick.
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Fig. 2.4.1 Cycloidic paths due to hitting a stationary stick.
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If you hammer a stick at a point /2 meters from its center

you give 1t some linear momentum I1
and some angular momentum A = /11

Resulting angular velocity ® about the center

1s angular momentum A divided by
moment of inertia 7 = M ¢2/3 of the stick.

w=A/I (E3A/M ) for stick)
= hll /1 (=3h11/(M ¢2)for stick)
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Fig. 2.4.1 Cycloidic paths due to hitting a stationary stick.



If you hammer a stick at a point /2 meters from its center

you give 1t some linear momentum I1
and some angular momentum A = /11

Resulting angular velocity ® about the center

1s angular momentum A divided by
moment of inertia 7 = M ¢2/3 of the stick.

w=A/I (E3A/M ) for stick)
= hll /1 (=3h11/(M ¢2)for stick)
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just cancels translational speed Vcenser 0f stick.
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Fig. 2.4.1 Cycloidic paths due to hitting a stationary stick.



If you hammer a stick at a point /2 meters from its center

you give 1t some linear momentum I1
and some angular momentum A = /11

Resulting angular velocity ® about the center

1s angular momentum A divided by
moment of inertia 7 = M ¢2/3 of the stick.

w=A/I (E3A/M ) for stick)
= hll /1 (=3h11/(M ¢2)for stick)

One point P, or center of percussion (CoP), 1s

on the wheel where speed pw due to rotation

just cancels translational speed Vcenser 0f stick.

H /M:VCenter =|p(D|=th/]
1/M= - —p

or: p=I/(Mh)
P follows a normal cycloid made by a circle
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of radius p=I/(Mh) rolling on an imaginary road

thru point P in direction of I1.
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Fig. 2.4.1 Cycloidic paths due to hitting a stationary stick.



If you hammer a stick at a point /2 meters from its center

you give 1t some linear momentum I1
and some angular momentum A = /11

Resulting angular velocity ® about the center

1s angular momentum A divided by
moment of inertia 7 = M ¢2/3 of the stick.

w=A/I (E3A/M ) for stick)
= hll /1 (=3h11/(M ¢2)for stick)

One point P, or center of percussion (CoP), 1s

on the wheel where speed pw due to rotation

just cancels translational speed Vcenser 0f stick.

H /M:VCenter =|p(D|=th/]
1/M= - —p

or: p=I/(Mh)
P follows a normal cycloid made by a circle
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h ITh = angular momentum about @ )
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of radius p=I/(Mh) rolling on an imaginary road

thru point P in direction of I1.

The percussion radius p = £2/3h is of the CoP point
that has no velocity just after hammer hits at /.
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Fig. 2.4.1 Cycloidic paths due to hitting a stationary stick.



Cycloidal geometry of flying levers
= Practical poolhall application
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Practical poolhall application of center of percussion formula I/M = p-h

Problem: Set bumper height H so ball does not skid.
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Practical poolhall application of center of percussion formula I/M = p-h

Problem: Set bumper height H so ball does not skid.

Where should bumper
height H be set to make
ball contact point C at the
center of percussion P?

center of percussion P
above contact point C

C
A M/ .
<W‘ . ®) 1= linear momentum —— I/M=p-h

bang!
h I1h = angular momentum about @ )

P Imaginary wheel of radius P rolls on imaginary road

that intersects the Center of Percussion P
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Practical poolhall application of center of percussion formula I/M = p-h

center of percussion P
above contact point C

(Ball skids to right —)
b - /M =ph
<W ¢—® [I=linear momentum —> 4

bang!
h I1h = angular momentum about @ )

P Imaginary wheel of radius P rolls on imaginary road

that intersects the Center of Percussion P

98

Problem: Set bumper height H so ball does not skid.

Where should bumper
height H be set to make
ball contact point C at the
center of percussion P?



Practical poolhall applic

Where should bumper
height H be set to make
ball contact point C at the
center of percussion P?

center of percussion P
below contact point
(Ball skids to left<«—)

A \ P |
<W‘ -—®) [I=linear momentum ——> I/M=p-h

bang!
/ h I1h = angular momentum about @ )

P Imaginary wheel of radius P rolls on imaginary road

that intersects the Center of Percussion P
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Practical poolhall application of gcenter of percussion formula I/M = p-h

Problem: Set bumper height H so ball does not skid.

Where should bumper
height H be set to make
ball contact point C at the
center of percussion P?

center of percussion P
at contact point C

(Ball does not skid ¢ )
’ P=C
A , B
<W‘ me'A IT= linear momentum —— I/M = p-h
/ p [Th = angular momentum about @ ) h=I1I/Mp=1I/MR (ForR=p)

Y
X @ )
P Imaginary wheel of radius P rolls on imaginary road

that intersects the Center of Percussion P
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Practical poolhall application of gcenter of percussion formula I/M = p-h

Problem: Set bumper height H so ball does not skid.

Where should bumper
height H be set to make
ball contact point C at the
center of percussion P?

center of percussion P
at contact point C
(Ball does not skid ° )

; P=C
A , B
<W : WT'A I1= linear momentum ——> /M= p-h
/ p, ITh=angular momentum about @ ) h=1/Mp=1/MR (ForR=p)
= 2/SMR?/MR
<X @ 4 |’ = 2/5R
P Imaginary wheel of radius P rolls on imaginary road .
that intersects the Center of Percussion P For: H= R+h =7/1 O(ZR) ball does not skid.
1 P
vy d
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The Zamboni-Ice-Shot problem

(Assumes frictionless ice rink)
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Marbles: AB

Where on a meter-stick do you hit it
so as to not disturb marbles A or B
and...

e

...knock marble C down as shown.
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