Geometry and Symmetry of Coulomb Orbital Dynamics

(Ch. 2-4 of Unit 5 11.22.16)
Rutherford scattering and hyperbolic orbit geometry
Backward vs forward scattering angles and orbit construction example
Parabolic "kite" and orbital envelope geometry
Differential and total scattering cross-sections
Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
Projection $\varepsilon \bullet \mathbf{r}$ geometry of ε-vector and orbital radius \mathbb{r}
Review and connection to usual orbital algebra (previous lecture)
Projection $\varepsilon \cdot p$ geometry of $\boldsymbol{\varepsilon}$-vector and momentum $\mathbf{p}=m \mathbf{v}$
General geometric orbit construction using ε-vector and (γ, R)-parameters
Derivation of ε-construction by analytic geometry
Coulomb orbit algebra of $\boldsymbol{\varepsilon}$-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$
Example of complete (\mathbf{r}, \mathbf{p})-geometry of elliptical orbit
Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)
\rightarrow Rutherford scattering and hyperbolic orbit geometry
Backward vs forward scattering angles and orbit construction example
Parabolic "kite" and orbital envelope geometry
Differential and total scattering cross-sections

```
Eccentricity vector }\varepsilon\mathrm{ and ( }\varepsilon,\lambda)\mathrm{ -geometry of orbital mechanics
Projection \varepsilon`r geometry of \varepsilon}\boldsymbol{\varepsilon}\mathrm{ -vector and orbital radius r
    Review and connection to usual orbital algebra (previous lecture)
Projection \varepsilon`p geometry of \varepsilon-vector and momentum p=mv
General geometric orbit construction using \varepsilon-vector and (\gamma,R)-parameters
    Derivation of \varepsilon-construction by analytic geometry
Coulomb orbit algebra of \varepsilon-vector and Kepler dynamics of momentum p=mv
    Example of complete (r,p)-geometry of elliptical orbit
```

Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

Rutherford scattering geometry...

Alpha-particle beam direction \rightarrow

Gold nuclear target $\rightarrow \quad$ (Dead-on-path)

Rutherford scattering and hyperbolic orbit geometry
\Rightarrow Backward vs forward scattering angles and orbit construction example Parabolic "kite" and orbital envelope geometry Differential and total scattering cross-sections

```
Eccentricity vector }\varepsilon\mathrm{ and ( }\varepsilon,\lambda)\mathrm{ -geometry of orbital mechanics
Projection \varepsilon\bulletr geometry of \varepsilon-vector and orbital radius rr
    Review and connection to usual orbital algebra (previous lecture)
Projection \varepsilon`p geometry of \varepsilon-vector and momentum p=mv
```

General geometric orbit construction using ε-vector and (γ, R)-parameters
Derivation of ε-construction by analytic geometry
Coulomb orbit algebra of ε-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$
Example of complete (\mathbf{r}, \mathbf{p})-geometry of elliptical orbit
Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

Smaller impact b-parameter

Smaller Rutherford back-scattering angle Θ

Rutherford scattering and hyperbolic orbit geometry
Backward vs forward scattering angles and orbit construction example
\rightarrow Parabolic "kite" and orbital envelope geometry
Differential and total scattering cross-sections
Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics Projection $\varepsilon \bullet \mathbf{r}$ geometry of ε-vector and orbital radius \mathbf{r} Review and connection to usual orbital algebra (previous lecture)
Projection $\varepsilon \cdot \mathbf{p}$ geometry of ε-vector and momentum $\mathbf{p}=m \mathbf{v}$
General geometric orbit construction using ε-vector and (γ, R)-parameters Derivation of ε-construction by analytic geometry
Coulomb orbit algebra of $\boldsymbol{\varepsilon}$-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$ Example of complete (\mathbf{r}, \mathbf{p})-geometry of elliptical orbit

Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

Rutherford scattering geometry

http://www.uark.edu/ua/modphys/markup/CoulItWeb.html?scenario=Rutherford

Chapter 1 Orbit Families and Action

Families of particle orbits are drawn in a varying color which represents the classical action or Hamiltoon's characteristic function $\mathrm{SH}=\int \mathrm{p}$ dq.(Sometimes SH is called 'reduced action'.) The color is chosen by first calculating c $=$ SH modulo h-bar (You can change Planck's constant from its default value $\mathrm{h} / 2 \pi=1.0$) The chromatic value c assigns the hue by its position on the color wheel (e.g.; $\mathrm{c}=0$ is red, $\mathrm{c}=0.2$ is a yellow, $\mathrm{c}=0.5$ is a green, etc.).

Chapter 2 Rutherford Scattering

A parallel beam of iso-energetic alpha particles undergo Rutherford scattering from a coulomb field of a nucleus as calculated in these demos. It is also the ideal pattern of paths followed by intergalactic hydrogen in perturbed by the solar wind.

Chapter 3 Coulomb Field (H atom)

Orbits in an attractive Coulomb field are calculated here. You may select the initial position $(x(0), y(0))$ by moving the mouse to a desired launch point, and then select the initial momentum ($\mathrm{p} x(0), \mathrm{py}(0)$) by pressing the mouse button and dragging.

Chapter 4 Molecular Ion Orbit

Orbits around two fixed nuclei are calculated here. A set of elliptic coordinates are drawn in the background. After running a few trajectories you may notice that their caustics conform to one or two of the elliptic coordinate lines.

Volcanoes of lo (Paths=180, No color quant.) Parabolic Fountain (Uniform)

 Space Bomb (Coulomb) Exploding Starlet (IHO)Synchrotron Motion (Crossed E \& B fields)
Rutherford scattering
Rutherford scattering
2-Electron Orbits

Atomic Orbits

Molecular Ion Orbits

"Kite" geometry of envelope parabola

Rutherford scattering geometry

"Kite" geometry of envelope parabola

Rutherford scattering geometry

Rutherford scattering geometry

Rutherford scattering geometry

Special case: $b=2 a$

"Kite" geometry of envelope parabola

Rutherford scattering and hyperbolic orbit geometry
Backward vs forward scattering angles and orbit construction example
Parabolic "kite" and orbital envelope geometry
\rightarrow Differential and total scattering cross-sections

```
Eccentricity vector }\varepsilon\mathrm{ and ( }\varepsilon,\lambda)\mathrm{ -geometry of orbital mechanics
Projection \varepsilon\bulletr geometry of \varepsilon-vector and orbital radius rr
    Review and connection to usual orbital algebra (previous lecture)
Projection \varepsilon}\cdot\mathbf{p}\mathrm{ geometry of }\varepsilon\mathrm{ -vector and momentum p=mv
General geometric orbit construction using }\varepsilon\mathrm{ -vector and (}\gamma,R)\mathrm{ -parameters
    Derivation of }\varepsilon\mathrm{ -construction by analytic geometry
Coulomb orbit algebra of \varepsilon-vector and Kepler dynamics of momentum p=m\mathbf{v}
    Example of complete (r,p)-geometry of elliptical orbit
```

Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

Also: Approximate model of deep-space H-atom scattering from solar wind as our Sun travels around galaxy. Lyman- α shock wave found just inside Mars orbital radius 2a~1.2Au.

Fig. 5.3.2 Family of iso-energetic Rutherford scattering orbits with varying impact parameter.
Incremental window $\mathrm{d} \sigma=b \cdot d b$ normal to beam axis at $x=-\infty$ scatters to area $d A=R^{2} \sin \Theta d \Theta d \varphi=R^{2} d \Omega$ onto a sphere at $R=+\infty$ where is called the incremental solid angled $\Omega=\sin \Theta d \Theta d \varphi$

Also: Approximate model of deep-space H-atom scattering from solar wind as our Sun travels around galaxy. Lyman- α shock wave found just inside Mars orbital radius 2a~1.2Au.

Fig. 5.3.2 Family of iso-energetic Rutherford scattering orbits with varying impact parameter.
Incremental window $\mathrm{d} \sigma=b \cdot d b$ normal to beam axis at $x=-\infty$ scatters to area $d A=R^{2} \sin \Theta d \Theta d \varphi=R^{2} d \Omega$ onto a sphere at $R=+\infty$ where is called the incremental solid angled $\Omega=\sin \Theta d \Theta d \varphi$ Ratio $\frac{d \sigma}{d \Omega}=\frac{b d b d \varphi}{\sin \Theta d \Theta d \varphi}=\frac{b}{\sin \Theta} \frac{d b}{d \Theta}$ is called the differential scattering cross-section (DSC)

Also: Approximate model of deep-space H-atom scattering from solar wind as our Sun travels around galaxy. Lyman- α shock wave found just inside Mars orbital radius 2a~1.2Au.

Fig. 5.3.2 Family of iso-energetic Rutherford scattering orbits with varying impact parameter.
Incremental window $\mathrm{d} \sigma=b \cdot d b$ normal to beam axis at $x=-\infty$ scatters to area $d A=R^{2} \sin \Theta d \Theta d \varphi=R^{2} d \Omega$ onto a sphere at $R=+\infty$ where is called the incremental solid angled $\Omega=\sin \Theta d \Theta d \varphi$
Ratio $\frac{d \sigma}{d \Omega}=\frac{b d b d \varphi}{\sin \Theta d \Theta d \varphi}=\frac{b}{\sin \Theta} \frac{d b}{d \Theta}$ is called the differential scattering cross-section (DSC)
Geometry: $b=a \cot \frac{\Theta}{2}$
with: $\frac{d b}{d \Theta}=\frac{-a}{2} \csc ^{2} \frac{\Theta}{2}$

Also: Approximate model of deep-space H-atom scattering from solar wind as our Sun travels around galaxy. Lyman- α shock wave found just inside Mars orbital radius 2a~1.2Au.

Fig. 5.3.2 Family of iso-energetic Rutherford scattering orbits with varying impact parameter.
Incremental window $\mathrm{d} \sigma=b \cdot d b$ normal to beam axis at $x=-\infty$ scatters to area $d A=R^{2} \sin \Theta d \Theta d \varphi=R^{2} d \Omega$ onto a sphere at $R=+\infty$ where is called the incremental solid angled $\Omega=\sin \Theta d \Theta d \varphi$
Ratio $\frac{d \sigma}{d \Omega}=\frac{b d b d \varphi}{\sin \Theta d \Theta d \varphi}=\frac{b}{\sin \Theta} \frac{d b}{d \Theta}$ is called the differential scattering cross-section (DSC)
Geometry: $b=a \cot \frac{\Theta}{2}=\frac{k}{2 E} \cot \frac{\Theta}{2}$
with: $\frac{d b}{d \Theta}=\frac{-a}{2} \csc ^{2} \frac{\Theta}{2}=\frac{-a}{2 \sin ^{2} \frac{\Theta}{2}}$
(Never forget!: $a=\frac{-k}{2 E}$)

Also: Approximate model of deep-space H-atom scattering from solar wind as our Sun travels around galaxy. Lyman- α shock wave found just inside Mars orbital radius 2a~1.2Au.

Incremental window $\mathrm{d} \sigma=b \cdot d b$ normal to beam axis at $x=-\infty$ scatters to area $d A=R^{2} \sin \Theta d \Theta d \varphi=R^{2} d \Omega$ onto a sphere at $R=+\infty$ where is called the incremental solid angled $\Omega=\sin \Theta d \Theta d \varphi$
Ratio $\frac{d \sigma}{d \Omega}=\frac{b d b d \varphi}{\sin \Theta d \Theta d \varphi}=\frac{b}{\sin \Theta} \frac{d b}{d \Theta}$ is called the differential scattering cross-section (DSC)
Geometry: $b=a \cot \frac{\Theta}{2}=\frac{k}{2 E} \cot \frac{\Theta}{2}$ gives the Rutherford $D S C . \frac{d \sigma}{d \Omega}=\frac{-a^{2} \cos \frac{\Theta}{2}}{2 \sin \Theta \sin ^{3} \frac{\Theta}{2}}$
with: $\frac{d b}{d \Theta}=\frac{-a}{2} \csc ^{2} \frac{\Theta}{2}=\frac{-a}{2 \sin ^{2} \frac{\Theta}{2}}$ and: $\sin \Theta=2 \sin \frac{\Theta}{2} \cos \frac{\Theta}{2}$
(Never forget $!: a=\frac{-k}{2 E}$)

Also: Approximate model of deep-space H-atom scattering from solar wind as our Sun travels around galaxy.
Lyman- α shock wave found just inside Mars orbital radius 2a~1.2Au.

Incremental window $\mathrm{d} \sigma=b \cdot d b$ normal to beam axis at $x=-\infty$ scatters to area $d A=R^{2} \sin \Theta d \Theta d \varphi=R^{2} d \Omega$ onto a sphere at $R=+\infty$ where is called the incremental solid angled $\Omega=\sin \Theta d \Theta d \varphi$ Ratio $\frac{d \sigma}{d \Omega}=\frac{b d b d \varphi}{\sin \Theta d \Theta d \varphi}=\frac{b}{\sin \Theta} \frac{d b}{d \Theta}$ is called the differential scattering cross-section (DSC) Geometry: $b=a \cot \frac{\Theta}{2}=\frac{k}{2 E} \cot \frac{\Theta}{2}$ gives the Rutherford DSC. $\frac{d \sigma}{d \Omega}=\frac{-a^{2} \cos \frac{\Theta}{2}}{2 \sin \Theta \sin ^{3} \frac{\Theta}{2}}=\frac{-k^{4}}{16 E^{2}} \sin ^{-4} \frac{\Theta}{2}$ with: $\frac{d b}{d \Theta}=\frac{-a}{2} \csc ^{2} \frac{\Theta}{2}=\frac{-a}{2 \sin ^{2} \frac{\Theta}{2}}$ and: $\sin \Theta=2 \sin \frac{\Theta}{2} \cos \frac{\Theta}{2}$ (Never forget!: $a=\frac{-k}{2 E}$)

This classical result agrees exactly with $1^{\text {st }}$ Born approximation to quantum Coulomb DSC!


```
Rutherford scattering and hyperbolic orbit geometry
    Backward vs forward scattering angles and orbit construction example
    Parabolic "kite" and orbital envelope geometry
    Differential and total scattering cross-sections
```

\rightarrow Eccentricity vector $\boldsymbol{\varepsilon}$ and (ε, λ)-geometry of orbital mechanics Projection ε •r geometry of ε-vector and orbital radius \mathbf{r}

Review and connection to usual orbital algebra (previous lecture) Projection $\boldsymbol{\varepsilon} \cdot \mathbf{p}$ geometry of $\boldsymbol{\varepsilon}$-vector and momentum $\mathbf{p}=m \mathbf{v}$

```
General geometric orbit construction using \varepsilon-vector and ( }\gamma,R)\mathrm{ -parameters
    Derivation of \varepsilon-construction by analytic geometry
Coulomb orbit algebra of }\varepsilon\mathrm{ -vector and Kepler dynamics of momentum p=mv
    Example of complete (r,p)-geometry of elliptical orbit
```

Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Eccentricity vector ε and (ε, λ) geometry of orbital mechanics

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\boldsymbol{\varepsilon}=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\boldsymbol{\varepsilon}=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\xrightarrow{\mathbf{A}=k m \cdot \varepsilon \text { is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. }}$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

Generates symmetry groups: $R(3) \subset R(3) \times R(3) \subset O(4)$

Rutherford scattering and hyperbolic orbit geometry

Backward vs forward scattering angles and orbit construction example
Parabolic "kite" and orbital envelope geometry
Differential and total scattering cross-sections
Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
\rightarrow Projection $\varepsilon \circ \mathrm{r}$ geometry of ε-vector and orbital radius \mathbf{r}
Review and connection to usual orbital algebra (previous lecture) Projection $\varepsilon \triangleright \mathbf{p}$ geometry of $\boldsymbol{\varepsilon}$-vector and momentum $\mathbf{p}=m \mathbf{v}$

```
General geometric orbit construction using \varepsilon-vector and (\gamma,R)-parameters
    Derivation of \varepsilon-construction by analytic geometry
Coulomb orbit algebra of \varepsilon-vector and Kepler dynamics of momentum p=mv
    Example of complete (r,p)-geometry of elliptical orbit
```

Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

Generates symmetry groups: $R(3) \subset R(3) \times R(3) \subset O(4)$
$\xrightarrow{\mathbf{A}=k m \cdot \varepsilon \text { is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector }}$.
Consider dot product of ε with a radial vector \mathbf{r} :
$\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{k m}$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\boldsymbol{\varepsilon}=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\xrightarrow{\mathbf{A}=k m \cdot \varepsilon \text { is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector }}$

Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{k m}
$$

...or of ε with momentum vector \mathbf{p} :
$\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}{ }^{2}+p_{1}{ }^{2}-x_{2}{ }^{2}-p_{2}{ }^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\xrightarrow{\mathbf{A}=k m \cdot \varepsilon \text { is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector }}$
Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{k m}
$$

...or of ε with momentum vector \mathbf{p} :
$\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$
Let angle ϕ be angle between ε and radial vector \mathbf{r}

$$
\varepsilon r \cos \phi=r-\frac{L^{2}}{k m}
$$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\xrightarrow{\mathbf{A}=k m \cdot \varepsilon \text { is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector }}$

Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{k m}
$$

...or of ε with momentum vector \mathbf{p} :
$\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$
Let angle ϕ be angle between ε and radial vector \mathbf{r}

$$
\varepsilon r \cos \phi=r-\frac{\tilde{L}^{2}}{k m} \quad \text { or: } \quad r=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\boldsymbol{\varepsilon}=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\xrightarrow{\mathbf{A}=k m \cdot \varepsilon \text { is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. }}$
Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m \ldots}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{}
$$

$$
\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}
$$

Let angle ϕ be angle between . ε and radial vector \mathbf{r}

$$
\varepsilon r \cos \phi=r-\frac{L^{2}}{k m} \quad \text { or: } \quad r=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

$$
\frac{\lambda}{1-\varepsilon} \text { if: } \phi=0 \text { apogee }
$$

$$
\text { For } \lambda=L^{2} / k m \text { that matches: } r=\frac{\lambda}{1-\varepsilon \cos \phi}=\{
$$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\xrightarrow{\mathbf{A}=k m \cdot \varepsilon \text { is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. }}$
Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m \ldots}=r-\mathbf{L} \bullet \mathbf{L}
$$

Let angle ϕ be angle between ε and radial vector \mathbf{r}

$$
\varepsilon r \cos \phi=r-\frac{L^{2}}{k m} \quad \text { or: } \quad r=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

(a) Attractive $(k>0)$

Elliptic $(E<0)$
(Rotational momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ is normal to the orbit plane.)

For $\lambda=L^{2} / k m$ that matches: $r=\frac{\lambda}{1-\varepsilon \cos \phi}=$

..or of ε with momentum vector \mathbf{p} :
$\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$

$\frac{\lambda}{1-\varepsilon}$ if: $\phi=0$ apogee

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

(...for sake of comparison...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}{ }^{2}+p_{1}{ }^{2}-x_{2}{ }^{2}-p_{2}{ }^{2}\right) \\
& S_{B}=x_{I} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\xrightarrow{\mathbf{A}=k m \cdot \varepsilon \text { is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. }}$
Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{}
$$

$$
\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}
$$

Let angle ϕ be angle between ε and radial vector \mathbf{r}

$$
\frac{\lambda}{1-\varepsilon} \text { if: } \phi=0 \text { apogee }
$$

$$
\varepsilon r \cos \phi=r-\frac{\tilde{L}^{2}}{k m} \quad \text { or: } \quad r=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

For $\lambda=L^{2} / k m$ that matches: $r=\frac{\lambda}{1-\varepsilon \cos \phi}=$
...or of ε with momentum vector \mathbf{p} :
$\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$
Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(a) Attractive $(k>0)$
(Rotational momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ is normal to the orbit plane.)

λ if: $\phi=\frac{\pi}{2}$ zenith $\frac{\lambda}{1+\varepsilon}$ if: $\phi=\pi$ perigee

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Let angle ϕ be angle between ε and radial vector \mathbf{r}
(...for sake of comparison...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\xrightarrow{\mathbf{A}=k m \cdot \varepsilon \text { is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector }}$
Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\boldsymbol{\varepsilon}=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

...or of ε with momentum vector \mathbf{p} : $\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$

For $\lambda=L^{2} / k m$ that matches: $r=\frac{\lambda}{1-\varepsilon \cos \phi}=$
$\frac{\lambda}{1-\varepsilon}$ if: $\phi=0$ apogee

$$
\varepsilon r \cos \phi=r-\frac{L^{2}}{k m} \quad \text { or: } \quad r=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

(a) Attractive $(k>0)$ Elliptic $(E<0)$
(Rotational momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ is normal to the orbit plane.)

(b) Attractive $(k>0)$

λ if: $\phi=\frac{\pi}{2}$ zenith $\frac{\lambda}{1+\varepsilon}$ if: $\phi=\pi$ perigee

Rutherford scattering and hyperbolic orbit geometry

Backward vs forward scattering angles and orbit construction example
Parabolic "kite" and orbital envelope geometry
Differential and total scattering cross-sections
Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics Projection $\varepsilon \bullet \mathbf{r}$ geometry of ε-vector and orbital radius \mathbf{r}
\rightarrow Review and connection to usual orbital algebra (previous lecture)
Projection $\varepsilon \cdot \mathbf{p}$ geometry of $\boldsymbol{\varepsilon}$-vector and momentum $\mathbf{p}=m \mathbf{v}$
General geometric orbit construction using ε-vector and (γ, R)-parameters Derivation of ε-construction by analytic geometry
Coulomb orbit algebra of ε-vector and Kepler dynamics of momentum $\mathrm{p}=m \mathrm{v}$ Example of complete (\mathbf{r}, \mathbf{p})-geometry of elliptical orbit

Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)
(From Lecture 25 p. 64-74) Geometry of Coulomb orbits (Let: $r=\rho$ here)

All conics defined by:

Defining eccentricity ε
Distance to Focal-point $=\boldsymbol{\varepsilon} \cdot$ Distance to $D_{\text {irectrix }}$-line

Major axis: $\rho_{+}+\rho_{-}=2 a$

$$
\rho_{+}+\rho_{-}=[\lambda(1+\varepsilon)+\lambda(1-\varepsilon)] /\left(1-\varepsilon^{2}\right)=2 \lambda /\left|1-\varepsilon^{2}\right|
$$

$$
\text { Focal axis: } \rho_{+}-\rho_{-}=2 a \varepsilon
$$

$$
\rho_{+-} \rho_{-}=[\lambda(1+\varepsilon)-\lambda(1-\varepsilon)] /\left(1-\varepsilon^{2}\right)=2 \lambda \varepsilon /\left|1-\varepsilon^{2}\right|
$$

$$
\text { Minor radius: } b=\sqrt{ }\left(a^{2}-a^{2} \varepsilon^{2}\right)=\sqrt{ }(a \lambda)(\text { ellipse }: \varepsilon<1)
$$

$$
\text { Minor radius: } \left.b=\sqrt{ }\left(a^{2} \varepsilon^{2}-a^{2}\right)=\sqrt{ }(\lambda a) \text { (hyperb }: \varepsilon>1\right)
$$

$$
\begin{aligned}
& \varepsilon^{2}=1-\frac{b^{2}}{a^{2}}(\text { ellipse: } \varepsilon<1) \\
& \varepsilon^{2}=1+\frac{b}{a}=\sqrt{1-\varepsilon^{2}} \\
& a^{2}\text { (hyperbola: } \varepsilon>1) \quad \frac{b}{a}=\sqrt{\varepsilon^{2}-1} \\
& \lambda=a\left(1-\varepsilon^{2}\right) \quad(\text { ellipse }: \varepsilon<1) \\
& \lambda=a\left(\varepsilon^{2}-1\right) \quad(\text { hyperb }: \varepsilon>1)
\end{aligned}
$$

Rutherford scattering and hyperbolic orbit geometry

Backward vs forward scattering angles and orbit construction example
Parabolic "kite" and orbital envelope geometry
Differential and total scattering cross-sections
Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
Projection $\varepsilon \bullet \mathbf{r}$ geometry of ε-vector and orbital radius \mathbf{r}
Review and connection to usual orbital algebra (previous lecture)
\Rightarrow Projection $\varepsilon^{\bullet} \mathbf{p}$ geometry of ε-vector and momentum $\mathbf{p}=m \mathbf{v}$
General geometric orbit construction using ε-vector and (γ, R)-parameters Derivation of ε-construction by analytic geometry

Coulomb orbit algebra of ε-vector and Kepler dynamics of momentum $\mathrm{p}=m \mathrm{v}$ Example of complete (\mathbf{r}, \mathbf{p})-geometry of elliptical orbit

Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

NOTE: Lengths of vectors p and $-p$ are not drawn to correctly show that momentum $\mathrm{p}=m \mathrm{v}$ grows as radial distance $r=|\mathrm{r}|$ falls. (To be shown on p . 85-90)

NOTE: Lengths of vectors p and $-p$ are not drawn to correctly show that momentum $\mathrm{p}=m \mathrm{v}$ grows as radial distance $r=|\mathrm{r}|$ falls. (To be shown on p . 85-90)

NOTE: Lengths of vectors p and -p are not drawn to correctly show that momentum $\mathrm{p}=m \mathrm{v}$ grows as radial distance $r=|\mathrm{r}|$ falls. (To be shown on p . 85-90)

NOTE: Lengths of vectors p and -p are not drawn to correctly show that momentum $\mathrm{p}=m \mathrm{v}$ grows as radial distance $r=|\mathrm{r}|$ falls. (To be shown on p . 85-90)

NOTE: Lengths of vectors p and -p are not drawn to correctly show that momentum $\mathrm{p}=m \mathrm{v}$ grows as radial distance $r=|\mathrm{r}|$ falls. (To be shown on p . 85-90)

NOTE: Lengths of vectors p and -p are not drawn to correctly show that momentum $\mathrm{p}=m \mathrm{v}$ grows as radial distance $r=|\mathrm{r}|$ falls. (To be shown on p . 85-90)

Dot product of ε with momentum vector p :

$$
\begin{aligned}
\varepsilon \bullet \mathbf{p} & =\frac{\mathrm{p} \bullet \mathbf{r}}{r}-\frac{\mathrm{p} \bullet \mathbf{p} \times \mathbf{L}}{k m} \\
& =\mathrm{p} \bullet \hat{\mathbf{r}}=p_{r}=\varepsilon p_{x}
\end{aligned}
$$

This says:
"Projection p_{r} of \mathbf{p} onto radial \mathbf{r} or \mathbf{r}^{\prime} lines equals eccentricity ε times projection p_{x} of \mathbf{p} onto orbit major axis: $(\hat{\mathbf{x}}=\hat{\boldsymbol{\varepsilon}})$ "
Focal geometry demands: "Momentum p must bisect angle $\measuredangle_{\mathbf{r}^{\prime}}^{\mathbf{r}}$ between radial \mathbf{r} or \mathbf{r}^{\prime} lines."

Hyperbola has eccentricity $\varepsilon>1$
(Here : $\varepsilon=5 / 4=1.25$)

```
Rutherford scattering and hyperbolic orbit geometry
    Backward vs forward scattering angles and orbit construction example
    Parabolic "kite" and orbital envelope geometry
    Differential and total scattering cross-sections
Eccentricity vector }\varepsilon\mathrm{ and ( }\varepsilon,\lambda\mathrm{ )-geometry of orbital mechanics
Projection \varepsilon`r geometry of \varepsilon-vector and orbital radius rr
    Review and connection to usual orbital algebra (previous lecture)
Projection \varepsilon`p geometry of \varepsilon-vector and momentum p=mv
```

\rightarrow General geometric orbit construction using ε-vector and (γ, R)-parameters Derivation of ε-construction by analytic geometry Coulomb orbit algebra of ε-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$ Example of complete (\mathbf{r}, \mathbf{p})-geometry of elliptical orbit

Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

General geometric orbit construction using ε-vector and (γ, R)-parameters
Pick launch point P
(radius vector \mathbf{r})
and elevation angle γ from radius
(momentum initial \mathbf{p} direction)

General geometric orbit construction using ε-vector and (γ, R)-parameters

Pick launch point P
(radius vector \mathbf{r})
and elevation angle γ from radius
(momentum initial \mathbf{p} direction)

Copy F-center circle around launch point P
Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$
Extend resulting line QPQ^{\prime} to make focus locus

General geometric orbit construction using ε-vector and (γ, R)-parameters

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$

Pick launch point P
(radius vector \mathbf{r})
and elevation angle γ from radius
(momentum initial \mathbf{p} direction)

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$

Extend resulting line QPQ^{\prime} to make focus locus

Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .

Mark R-line fractions $R=0,+1 / 4,+1 / 2 \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T . $\mathrm{R}=$ KE/PE

General geometric orbit construction using ε-vector and (γ, R)-parameters
Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$

Pick launch point P
(radius vector \mathbf{r})
and elevation angle γ from radius

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$

Extend resulting line QPQ^{\prime} to make focus locus

Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .

Mark R-line fractions $R=0,+1 / 4,+1 / 2 \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T .

line \mathbf{p} (or $\mathbf{P}^{\prime} \mathbf{P}$) towgrd $2^{\text {nd }}$ focus \mathbf{F} sonewhere

General geometric orbit construction using ε-vector and (γ, R)-parameters

Pick launch point P
(radius vector \mathbf{r})
and elevation angle γ from radius

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$ Extend resulting line QPQ^{\prime} to make focus locus

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$ Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .
Mark R-line fractions $R=0,+1 / 4,+1 / 2, \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T .

Pick initial $R=$ KETPE value (here $R=-3 / 8$) Draw ε-vector
from focus F to R-point

Coullt Web Simulation

 Elliptical $R=-3 / 8$
focus F and $2^{\text {nd }}$ focus F^{\prime} allow final construction of orbital trajectory. Here it is an $R=-3 / 8$ ellipse.
(Detailed Analytic geometry of ε-vector follows.)

General geometric orbit construction using ε-vector and (γ, R)-parameters
Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$ Extend resulting line QPQ^{\prime} to make focus locus Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .
Mark R-line fractions $R=0,+1 / 4,+1 / 2, \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$. below T .


```
Rutherford scattering and hyperbolic orbit geometry
    Backward vs forward scattering angles and orbit construction example
    Parabolic "kite" and orbital envelope geometry
    Differential and total scattering cross-sections
Eccentricity vector }\varepsilon\mathrm{ and ( }\varepsilon,\lambda)\mathrm{ -geometry of orbital mechanics
Projection \varepsilon•r geometry of \varepsilon-vector and orbital radius rr
    Review and connection to usual orbital algebra (previous lecture)
Projection \varepsilon`p geometry of \varepsilon-vector and momentum p=mv
```

General geometric orbit construction using ε-vector and (γ, R)-parameters
\rightarrow Derivation of ε-construction by analytic geometry
Coulomb orbit algebra of ε-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$ Example of complete (\mathbf{r}, \mathbf{p})-geometry of elliptical orbit

Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

Initial position $x(0)=0.465648$
Initial position $y(0)=1.156488$ G Initial momentum $\mathrm{px}(0)=0.591603$ (Initial momentum py $(0)=0.435114$
$\begin{aligned} \text { Terminal time } \mathrm{t}(\mathrm{off}) & =20 \\ \text { Maximum step size } \mathrm{dt} & =0.01\end{aligned}$
Maximum step size $d t=0.01$
Charge of Nucleus $1=-1$
x-Position of Nucleus $1=0$ (B)
y -Position of Nucleus $1=0$

Charge of Nucleus $2=0$ (8)
Coulomb (k12) $=-1 \quad$ (6)
Core thickness $r=0.000001$ (ت)
x-Stark field $E x=0$ (©
y-Stark field Ey $=0$ (2)
Zeeman field $\mathrm{Bz}=0$
Diamagnetic strength $\mathrm{k}=0$ ()
Plank constant h-bar $=2$ ©
Color quantization hues $=64$ Color quantization bands $=2$

Fractional Error $\left(e^{-x}\right), x=8$ ($)$
Particle Size $=9$
Fix $r(0) \square \operatorname{Fixp}(0) \square$ Do swarm \square Beam \square Plot $\mathrm{r}(\mathrm{t}) \boxtimes \operatorname{Plot} \mathrm{p}(\mathrm{t}) \square$
Color action \downarrow No stops \square Field vectors ∇ Info \downarrow Draw masses \downarrow Axes ∇ Coordinates \square Lenz ∇ Set p by $\phi \quad$ Elastic $\square \quad 2$ Free

Save to GIF

1 Orbit Families and Action

Families of particle orbits are drawn in a varying color which represents the classical action or Hamiltoon's characteristic function $\mathrm{SH}=\int \mathrm{p}$ dq.(Sometimes SH is called 'reduced action'.) The color is chosen by first calculating c = SH modulo h-bar (You can change Planck's constant from its default value $h / 2 \pi=1.0$) The chromatic value c assigns the hue by its position on the color wheel (e.g.; $\mathrm{c}=0$ is red, $\mathrm{c}=0.2$ is a yellow, $\mathrm{c}=0.5$ is a green, etc.).

Chapter 2 Rutherford Scatterin

A parallel beam of iso-energetic alpha particles undergo Rutherford scattering from a coulomb field of a nucleus as calculated in these demos. It is also the ideal pattern of paths followed by intergalactic hydrogen in perturbed by the solar wind

Chapter 3 Coulomb Field (H atom)

Orbits in an attractive Coulomb field are calculated here. You may select the initial position $(x(0), y(0))$ by moving the mouse to a desired launch point, and then select the initial momentum $(\mathrm{px}(0), \mathrm{py}(0))$ by pressing the mouse button and dragging.

Chapter 4 Molecular Ion Orbits

Orbits around two fixed nuclei are calculated here. A set of elliptic coordinates are drawn in the background. After running a few trajectories you may notice that their caustics conform to one or two of the elliptic coordinate lines.

```
Volcanoes of lo (Paths=180, No color quant.) Parabolic Fountain (Uniform)
Space Bomb (Coulomb) Exploding Starlet (IHO)
Synchrotron Motion (Crossed E \& B fields) Space Bomb (Coulomb) Exploding Starlet ( 1 HO )
```


Molecular Ion Orbits

Rutherford scattering 2-Electron Orbits

Atomic Orbits
 Atomic Orbits

CoulIt Web Simulation
Ellipse w/Lenz Vector

$\mathrm{KE} / \mathrm{PE}=-0.3362$
$\mathrm{L}=-0.4816$

Play this movie of $\boldsymbol{\varepsilon}$-construction by CoulltWeb

```
Rutherford scattering and hyperbolic orbit geometry
    Backward vs forward scattering angles and orbit construction example
    Parabolic "kite" and orbital envelope geometry
    Differential and total scattering cross-sections
Eccentricity vector }\varepsilon\mathrm{ and ( }\varepsilon,\lambda\mathrm{ )-geometry of orbital mechanics
Projection \varepsilon`r geometry of \varepsilon-vector and orbital radius ir
    Review and connection to usual orbital algebra (previous lecture)
Projection \varepsilon`p geometry of \varepsilon
General geometric orbit construction using \varepsilon-vector and ( }\gamma,R)\mathrm{ -parameters
    Derivation of }\varepsilon\mathrm{ -construction by analytic geometry
```

$\boldsymbol{\rightarrow}$ Coulomb orbit algebra of $\boldsymbol{\varepsilon}$-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$ Example of complete (\mathbf{r}, \mathbf{p})-geometry of elliptical orbit
Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

Coulomb orbit algebra of $\boldsymbol{\varepsilon}$-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$
Radius r:

$$
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$

Coulomb orbit algebra of $\boldsymbol{\varepsilon}$-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r:

$$
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$
$\dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}$

Coulomb orbit algebra of $\boldsymbol{\varepsilon}$-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r :

$$
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$

$$
\dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

$$
\text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

Coulomb orbit algebra of $\boldsymbol{\varepsilon}$-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r:

$$
\begin{aligned}
& r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
& \dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}}
\end{aligned}
$$

$$
\dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

$$
\text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

Coulomb orbit algebra of $\boldsymbol{\varepsilon}$-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r :

$$
\begin{aligned}
& r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
& \dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}}
\end{aligned}
$$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$

$$
\begin{aligned}
& \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
& r \dot{\phi}=\frac{L}{m r}
\end{aligned}
$$

$$
\text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r :

$$
\begin{aligned}
& r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
& \dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}}
\end{aligned}
$$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$

$$
\begin{aligned}
& \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
& r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi)
\end{aligned}
$$

$$
\text { using: } \frac{1}{r}=\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)
$$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r :

$$
\begin{gathered}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
& r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi)
\end{aligned}
$$

$$
\text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$ Radius r:

$$
\begin{gathered}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi
\end{gathered}
$$

$$
\text { Polar angle } \phi \text { using: } L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}
$$

$$
\dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

$$
r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi)
$$

$$
\text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

$$
\text { using: } \frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{k m}{L^{2}}\right)^{2} r^{2}
$$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$ Radius r:

$$
\text { Polar angle } \phi \text { using: } L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}
$$

$$
\begin{aligned}
r= & \frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} & \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=\frac{d r}{d t} & =\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} & r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi) \\
\dot{r} & =\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} & \text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r} & =-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi & \text { using: } \frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \\
\dot{r} & =-\frac{k}{L^{2}} m r^{2} \dot{\phi} \varepsilon \sin \phi=-\frac{k}{L} \varepsilon \sin \phi & \text { again using: } L=m r^{2} \dot{\phi}
\end{aligned}
$$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$ Radius r:

$$
\text { Polar angle } \phi \text { using: } L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}
$$

$$
\begin{array}{cc}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} & \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} & r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi) \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} & \text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi & \text { using: } \frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \\
\dot{r}=-\frac{k}{L^{2}} m r^{2} \dot{\phi} \varepsilon \sin \phi=-\frac{k}{L} \varepsilon \sin \phi \quad \text { again using: } L=m r^{2} \dot{\phi}
\end{array}
$$

Cartesian $x=r \cos \phi$:

$$
\dot{x}=\frac{d x}{d t}=\quad \dot{r} \cos \phi-\sin \phi r \dot{\phi}
$$

Cartesian $y=r \sin \phi$:

$$
\dot{y}=\frac{d y}{d t}=\quad \dot{r} \sin \phi+\cos \phi r \dot{\phi}
$$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$
Radius r:

$$
\text { Polar angle } \phi \text { using: } L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}
$$

$$
\begin{array}{cc}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} & \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} & r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi) \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} & \text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi \quad \text { using: } \frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \\
\dot{r}=-\frac{k}{L^{2}} m r^{2} \dot{\phi} \varepsilon \sin \phi=-\frac{k}{L} \varepsilon \sin \phi \quad \text { again using: } L=m r^{2} \dot{\phi}
\end{array}
$$

Cartesian $x=r \cos \phi$:
Cartesian $y=r \sin \phi$:

$$
\begin{aligned}
\dot{x} & =\frac{d x}{d t}=\dot{r} \cos \phi-\sin \phi r \dot{\phi} & \dot{y}=\frac{d y}{d t}=\quad \dot{r} \sin \phi+\cos \phi r \dot{\phi} \\
& =-\frac{k}{L} \varepsilon \sin \phi \cos \phi-\sin \phi \frac{k}{L}(1-\varepsilon \cos \phi) & =-\frac{k}{L} \varepsilon \sin \phi \sin \phi+\cos \phi \frac{k}{L}(1-\varepsilon \cos \phi)
\end{aligned}
$$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$ Radius r:

$$
\text { Polar angle } \phi \text { using: } L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}
$$

$$
\begin{array}{cc}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} & \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} & r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi) \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} & \text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi \quad \text { using: } \frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \\
\dot{r}=-\frac{k}{L^{2}} m r^{2} \dot{\phi} \varepsilon \sin \phi=-\frac{k}{L} \varepsilon \sin \phi \quad \text { again using: } L=m r^{2} \dot{\phi}
\end{array}
$$

Cartesian $x=r \cos \phi$:
Cartesian $y=r \sin \phi$:

$$
\begin{aligned}
\dot{x} & =\frac{d x}{d t}=\dot{r} \cos \phi-\sin \phi r \dot{\phi} & \dot{y} & =\frac{d y}{d t}=\quad \dot{r} \sin \phi+\cos \phi r \dot{\phi} \\
& =-\frac{k}{L} \varepsilon \sin \phi \cos \phi-\sin \phi \frac{k}{L}(1-\varepsilon \cos \phi) & & =-\frac{k}{L} \varepsilon \sin \phi \sin \phi+\cos \phi \frac{k}{L}(1-\varepsilon \cos \phi) \\
& =-\frac{k}{L} \sin \phi & & =\frac{k}{L}(\cos \phi-\varepsilon)
\end{aligned}
$$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$ Radius r:

$$
\begin{gathered}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi
\end{gathered}
$$

$$
\text { Polar angle } \phi \text { using: } L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}
$$

$$
\dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

$$
r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi)
$$

$$
\text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

$$
\text { using: } \frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{k m}{L^{2}}\right)^{2} r^{2}
$$

$$
\dot{r}=-\frac{k}{L^{2}} m r^{2} \dot{\phi} \varepsilon \sin \phi=-\frac{k}{L} \varepsilon \sin \phi
$$

$$
\text { again using: } L=m r^{2} \dot{\phi}
$$

Cartesian $x=r \cos \phi$:

$$
\begin{array}{llc}
\dot{x}=\frac{d x}{d t}=\begin{array}{lll}
\dot{r} \cos \phi-\sin \phi r \dot{\phi} & \dot{y}=\frac{d y}{d t}= & \dot{r} \sin \phi+\cos \phi r \dot{\phi} \\
=-\frac{k}{L} \sin \phi & & =\frac{k}{L}(\cos \phi-\varepsilon) \\
p_{x}=m \dot{x}=-\frac{m k}{L} \sin \phi & \text { Momentocity: } & p_{y}=m \dot{y}=\frac{m k}{L}(\cos \phi-\varepsilon)
\end{array} \begin{array}{l}
\text { p traces an } \\
\text { off-center } \\
\text { circle! }
\end{array}
\end{array}
$$

Cartesian $y=r \sin \phi$:

```
Rutherford scattering and hyperbolic orbit geometry
    Backward vs forward scattering angles and orbit construction example
    Parabolic "kite" and orbital envelope geometry
    Differential and total scattering cross-sections
Eccentricity vector }\varepsilon\mathrm{ and ( }\varepsilon,\lambda\mathrm{ )-geometry of orbital mechanics
Projection \varepsilon`r geometry of \varepsilon-vector and orbital radius ir
        Review and connection to usual orbital algebra (previous lecture)
Projection \varepsilon`p geometry of \varepsilon}\boldsymbol{\varepsilon}\mathrm{ -vector and momentum p=mv
    General geometric orbit construction using }\varepsilon\mathrm{ -vector and (}\gamma,R)\mathrm{ -parameters
        Derivation of }\varepsilon\mathrm{ -construction by analytic geometry
```

Coulomb orbit algebra of $\boldsymbol{\varepsilon}$-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$
\rightarrow Example of complete (\mathbf{r}, \mathbf{p})-geometry of elliptical orbit
Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

Note similarity of (\mathbf{R}, \mathbf{r})-triangle in \mathbf{r}-circle of radius r to that in \mathbf{p}-circle of diameter p above.

Note similarity of (\mathbf{R}, \mathbf{r})-triangle in \mathbf{r}-circle of radius r to that in \mathbf{p}-circle of diameter p above.

Note similarity of (\mathbf{R}, \mathbf{r})-triangle in \mathbf{r}-circle of radius r to that in \mathbf{p}-circle of diameter p above.
 for momentum functions:

$$
P_{x}=m \dot{x}=-\frac{m k}{L} \sin \phi
$$

and

$$
P_{y}=m \dot{y}=\frac{m k}{L}(\cos \phi-\varepsilon)
$$

Note similariy of R) for momentum functions:

$$
P_{x}=m \dot{x}=-\frac{m k}{L} \sin \phi
$$

and

$$
P_{y}=m \dot{y}=\frac{m k}{L}(\cos \phi-\varepsilon)
$$

$$
P_{x}=m \dot{x}=-\frac{m k}{L} \sin \phi
$$

and

$$
P_{y}=m \dot{y}=\frac{m k}{L}(\cos \phi-\varepsilon)
$$

Note similarity of (\mathbf{R}, \mathbf{r})-triangle in \mathbf{r}-circle of radius r to that in \mathbf{p}-circle of diameter p above.


```
Rutherford scattering and hyperbolic orbit geometry
    Backward vs forward scattering angles and orbit construction example
    Parabolic "kite" and orbital envelope geometry
    Differential and total scattering cross-sections
Eccentricity vector }\varepsilon\mathrm{ and ( }\varepsilon,\lambda)\mathrm{ -geometry of orbital mechanics
Projection \varepsilon•r geometry of \varepsilon-vector and orbital radius ir
    Review and connection to usual orbital algebra (previous lecture)
Projection \varepsilon॰p geometry of \varepsilon-vector and momentum p=mv
General geometric orbit construction using \(\varepsilon\)-vector and \((\gamma, R)\)-parameters Derivation of \(\varepsilon\)-construction by analytic geometry
```

Coulomb orbit algebra of $\boldsymbol{\varepsilon}$-vector and Kepler dynamics of momentum $\mathbf{p}=m \mathbf{v}$
Example of complete (\mathbf{r}, \mathbf{p})-geometry of elliptical orbit
\rightarrow Connection formulas for (γ, R)-parameters with (a, b) and (ε, λ)

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\begin{aligned}
\varepsilon^{2} & =1+4 R(R+1) \sin ^{2} \gamma \\
& =1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \\
& =1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1
\end{aligned}
$$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$
$\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma$
$=1-\frac{b^{2}}{a^{2}}$ for ellipse $\quad(\varepsilon<1)$ where: $\quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)<0$
$=1+\frac{b^{2}}{a^{2}}$ for hyperbola $(\varepsilon>1)$ where: $4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)>0$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$
Three pairs of parameters for Coulomb orbits:
1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial (γ, R)

$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$=1-\frac{b^{2}}{a^{2}}$ for ellipse $\quad(\varepsilon<1)$ where: $\quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)<0$
(or: $-R^{2}>R$)
(or: $0>R>-1$)
$=1+\frac{b^{2}}{a^{2}}$ for hyperbola $(\varepsilon>1)$ where: $\quad 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)>0$
(or: $-R^{2}<R$)
(or:- $-1>R>0$)

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

Three pairs of parameters for Coulomb orbits:

 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial $(\gamma, R)$$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$$
=1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}>R \text {) } \\
& \text { (or: } 0>R>-1 \text {) }
\end{aligned}
$$

$$
=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}<R \text {) } \\
& \text { (or: }-1>R>0 \text {) }
\end{aligned}
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.

$$
\frac{-k}{2 a}=E=K E+P E=R P E+P E=(R+1) P E=(R+1) \frac{-k}{r} \text { or: } \frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)
$$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

Three pairs of parameters for Coulomb orbits:

 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial $(\gamma, R)$$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$$
=1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}>R \text {) } \\
& \text { (or: } 0>R>-1 \text {) }
\end{aligned}
$$

$$
=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}<R \text {) } \\
& \text { (or: }-1>R>0 \text {) }
\end{aligned}
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.
$\frac{-k}{2 a}=E=K E+P E=R P E+P E=(R+1) P E=(R+1) \frac{-k}{r}$ or: $\frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)$ $a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)}\right.$ assuming unit initial radius $(r \equiv 1)$.)

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

Three pairs of parameters for Coulomb orbits:

 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial $(\gamma, R)$$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$$
=1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}>R \text {) } \\
& \text { (or: } 0>R>-1 \text {) }
\end{aligned}
$$

$$
=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}<R \text {) } \\
& \text { (or: }-1>R>0 \text {) }
\end{aligned}
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.
$\frac{-k}{2 a}=E=K E+P E=R P E+P E=(R+1) P E=(R+1) \frac{-k}{r}$ or: $\frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)$
$a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)}\right.$ assuming unit initial radius $(r \equiv 1)$.
$4 R(R+1) \sin ^{2} \gamma=\mp \frac{b^{2}}{a^{2}}$ implies: $\quad 2 \sqrt{\mp R(R+1)} \sin \gamma=\frac{b}{a}$ or: $\quad b=2 a \sqrt{\mp R(R+1)} \sin \gamma$ $b=r \sqrt{\frac{\mp R}{R+1}} \sin \gamma\left(=\sqrt{\frac{\mp R}{R+1}} \sin \gamma\right.$ assuming unit initial radius $\left.(r \equiv 1)\right)$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

Three pairs of parameters for Coulomb orbits:

 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial $(\gamma, R)$$$
\left.\begin{array}{rlrlrl}
\varepsilon^{2} & =1+4 R(R+1) \sin ^{2} \gamma & & & \\
& =1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0 & & \left(\text { or: }-R^{2}>R\right) \\
& \left.=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 0>R>-1\right) \\
& & 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0 & \left(\text { or: }-R^{2}<R\right) \\
(\text { or: }:-1>R>0)
\end{array}\right)
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.
$\frac{-k}{2 a}=E=K E+P E=R P E+P E=(R+1) P E=(R+1) \frac{-k}{r}$ or: $\frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)$
$a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)}\right.$ assuming unit initial radius $(r \equiv 1)$.
$4 R(R+1) \sin ^{2} \gamma=\mp \frac{b^{2}}{a^{2}}$ implies: $\quad 2 \sqrt{\mp R(R+1)} \sin \gamma=\frac{b}{a}$ or: $\quad b=2 a \sqrt{\mp R(R+1)} \sin \gamma$
$b=r \sqrt{\frac{\mp R}{R+1}} \sin \gamma\left(=\sqrt{\frac{\mp R}{R+1}} \sin \gamma\right.$ assuming unit initial radius $(r \equiv 1)$
Latus radius is similarly related:

$$
\lambda=\frac{b^{2}}{a}=\mp 2 r R \sin ^{2} \gamma
$$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\left\{\begin{array}{l}
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma \\
=1-\frac{b^{2}}{a^{2}} \text { ellipse }(\varepsilon<1) \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}} \\
=1+\frac{b^{2}}{a^{2}} \text { hyperbola }(\varepsilon>1) 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}
\end{array}\right.
$$

$$
a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)} \text { assuming unit initial radius }(r \equiv 1) .\right)
$$

$$
b=r \sqrt{\frac{\mp R}{R+1}} \sin \gamma\left(=\sqrt{\frac{\mp R}{R+1}} \sin \gamma \text { assuming unit initial radius }(r \equiv 1)\right)
$$

Latus radius is similarly related:

$$
\lambda=\frac{b^{2}}{a}=\mp 2 r R \sin ^{2} \gamma
$$

From ε^{2} result (at top):
$\frac{b}{a}=2 \sqrt{\mp R(R+1)} \sin \gamma=\sqrt{ \pm\left(1-\varepsilon^{2}\right)}$

