

Introduction to Spinor-Vector resonance dynamics (Ch. 2-4 of Unit 4 Ch. 6-7 of Unit 6)

Review: 2D harmonic oscillator equations with Lagrangian and matrix forms ANALOGY: 2-State Schrodinger: $i\hbar \partial_t |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ versus Classical 2D-HO: $\partial_t^2 \mathbf{X} = -\mathbf{K} \cdot \mathbf{X}$ *Hamilton-Pauli spinor symmetry* (σ *-expansion in ABCD-Types*) $\mathbf{H} = \omega_{\mu} \sigma_{\mu}$ Derive σ -exponential time evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\sigma}\mu^{\omega}\mu^{t}$ *complex arithmetic* Spinor arithmetic like *Spinor vector algebra like complex vector algebra Spinor exponentials* like complex exponentials ("Crazy-Thing"-Theorem) Geometry of evolution (or revolution) operator $\mathbf{U}=e^{-i\mathbf{H}t}=e^{-i\sigma\mu\omega\mu t}$ The "mysterious" factors of 2 (or 1/2): 2D Spinor vs 3D Spin Vector space 2D Spinor vs 3D vector rotation NMR Hamiltonian: 3D Spin Moment **m** in **B** field $\Theta = \Omega t$ Euler's state definition using rotations $\mathbf{R}(\alpha, 0, 0)$, $\mathbf{R}(0, \beta, 0)$, and $\mathbf{R}(0, 0, \gamma)$ Spin-1 (3D-real vector) case Spin-1/2 (2D-complex spinor) case 3D-real Stokes Vector defines 2D-HO polarization ellipses and spinor states Asymmetry $S_A = S_Z$, Balance $S_B = S_X$, and Chirality $S_C = S_Y$ *Polarization ellipse and spinor state dynamics* The "Great Spectral Avoided-Crossing" and A-to-B-to-A symmetry breaking

A running collection of links to course-relevant sites and articles

Physics Web Resources	"Texts"	Classes
Comprehensive Harter-Soft Resource Listing	Classical Mechanics with a Bang!	<u>2014 AMOP</u>
UAF Physics YouTube channel	Quantum Theory for the Computer Age	2017 Group Theory for QM
LearnIt Physics Web Applications	Principles of Symmetry, Dynamics, and Spectroscopy	2018 AMOP
	Modern Physics and its Classical Foundations	2018 Adv Mechanics
Neat external material to start the class: <u>AIP publications</u> <u>AJP article on superball dynamics</u> <u>AAPT summer reading</u> These <i>are</i> hot off the presses: <u>Sorting ultracold atoms in a 3D optical lattice in</u> <u>Synthetic three-dimensional atomic structures</u>	<u>AMOP Ch 0 Space-Time Symm</u> <u>Seminar at Rochester Institu</u> <u>Springer AMO Handbook - Ch</u> <u>a realization of Maxwell's demon - Kumar-Nature-Letters-2</u> assembled atom by atom - Berredo-Nature-Letters-2018	<u>metry - 2019</u> <u>te of Optics, Auxiliary slides, June 19, 2018</u> <u>32 - Harter-Reimer-2019</u> <u>018</u>
Slightly Older ones: <u>Wave-particle duality of C60 molecules</u> Optical vortex knots – One Photon at a Time	<i>"Relawavity"</i> and quantum bas <u>2-CW laser wave - Bohrlt W</u> Lagrangian vs Hamiltonian -	sis of <i>Lagrangian</i> & <i>Hamiltonian</i> mechanics: <u>eb App</u> RelaWavity Web App
Older Links from Lectures 14-20 http://thearmchaircritic.blogspot.com/2011/11/punkin-chunkin http://www.sussexcountyonline.com/news/photos/punkinchur Shooting-range-for-medieval-siege-weapons-Anybody-know https://modphys.hosted.uark.edu/markup/TrebuchetWeb.htm https://modphys.hosted.uark.edu/markup/TrebuchetWeb.htm https://modphys.hosted.uark.edu/markup/TrebuchetWeb.htm	Links to supplement Lee BoxIt Web App: Pure A-Type w/Cosine Pure B-Type w/Cosine Pure B-Type w/Freq ratios Mixed AB-Type 2:1 Freq ratio Wiki on Pafnuty Chebyshev	cture 21
The trebuchet, Chevedden, Sci Am 1995 'Simple' Pendulum Sim: https://modphys.hosted.uark.edu/marku 'Cycloid' Pendulum: https://modphys.hosted.uark.edu/marku Google search on: "Satelite view of Patricia" (Images) Physics Girl Channel - Fun with Vortex Rings in the Pool iBall demo - Quasi-periodicity: https://youtu.be/_jntDtULxDc https://modphys.hosted.uark.edu/markup/CoulltWeb.html?sc https://modphys.hosted.uark.edu/markup/CoulltWeb.html?sc Mechanical Analog to EM Motion (YouTube video) - https://y Coullt Web Simulation: Bound-state motion in parabolic cool Coullt Web Simulation: Bound-state motion in hyperbolic cool ScillIt Web App: Simulations of various types of resonances Smith Chart http://nobelprize.org/	Arkup/PendulumWeb.html p/CycloidulumWeb.html p/CycloidulumWeb.html cenario=SynchrotronMotion cenario=SynchrotronMotion2 outu.be/hTd5FTJ-vRk rdinates prdinates : 18, 27, 31, 35, 38, 39 <i>Links to supplement Led</i> Advanced Atomic and Molecula BoxIt Web Simulations Pure A-Type A=4.9, B=0, C=0 Pure B-Type: A=4.0, B=-0.2, O Pure C-Type A,D=4.055, B=0, Mixed AB-Type w/Cosine Mixed AB Type A=4.0, BU2=0 Classical Mechanics with a Ban Lectures 8, 9, 23 page 93 Text Unit 6, page=27 ColorU2 for the Web - in develo Group Theory for Quantum Med and the combined 9-10	cture 22 r Optical Physics 2018 Class #9, pages: <u>5</u> , <u>61</u> , & D=4.0 C=0, & D=4.0 C=0.1 .866, CU2=0, & D=1.0 w/Stokes & Freq rats g! 2018 pment chanics - 2017 Lectures: <u>6</u> , <u>7</u> , <u>8</u> ,
Analylt Web Application, posted 10/22/2018 in our testing https://modphys.hosted.uark.edu/testing/markup/Ana	area:Quantum Theory for the Computed 30 k XR (x∈{A,M,V})alyItBJS.htmlWeb based 3D & XR (x∈{A,M,V})Web based 3D graphics WebGI	iter Age <u>Unit 3 Ch.7-10, page=90</u> }, R=Reality) <u>https://www.babylonjs.com/</u> _API (Graphics Layer modeled after OpenGL)

2D HO kinetic energy $T(v_1, v_2)$ $T = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2$ $= \frac{1}{2}\langle \dot{\mathbf{x}} | \mathbf{M} | \dot{\mathbf{x}} \rangle$ $\frac{2D \text{ HO potential energy } V(x_1, x_2)}{V = \frac{1}{2} (k_1 + k_{12}) x_1^2 - k_{12} x_1 x_2 + \frac{1}{2} (k_2 + k_{12}) x_2^2}$ $= \frac{1}{2} \langle \mathbf{x} | \mathbf{K} | \mathbf{x} \rangle \text{ where: } \mathbf{K} = \begin{pmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_2 + k_{12} \end{pmatrix}$

2D HO Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_1}\right) = m_1 \ddot{x}_1 = F_1 = -\frac{\partial V}{\partial x_1} = -\left(k_1 + k_{12}\right)x_1 + k_{12}x_2$$
$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_2}\right) = m_2 \ddot{x}_2 = F_2 = -\frac{\partial V}{\partial x_2} = k_{12}x_1 - \left(k_2 + k_{12}\right)x_2$$

2D HO Matrix operator equations

$$\begin{array}{ccc} m_{1} & 0 \\ 0 & m_{2} \end{array} \right) \left(\begin{array}{c} \ddot{x}_{1} \\ \ddot{x}_{2} \end{array} \right) = - \left(\begin{array}{ccc} k_{1} + k_{12} & -k_{12} \\ -k_{12} & k_{2} + k_{12} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{2} \end{array} \right)$$

Matrix operator notation:

$$\mathbf{M} \cdot |\ddot{\mathbf{x}}\rangle = -\mathbf{K} \cdot |\mathbf{x}\rangle$$

2D harmonic oscillator equation solutions (Review of Lect. 21) 1. May rewrite equation $\mathbf{M} \cdot |\ddot{\mathbf{x}}\rangle = -\mathbf{K} \cdot |\mathbf{x}\rangle$ in acceleration matrix form: $|\ddot{\mathbf{x}}\rangle = -\mathbf{A}|\mathbf{x}\rangle$ where: $\mathbf{A} = \mathbf{M}^{-1} \cdot \mathbf{K}$ $\begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} = -\begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix}^{-1} \begin{pmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_2 + k_{12} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -\begin{pmatrix} \frac{k_1 + k_{12}}{m_1} & \frac{-k_{12}}{m_1} \\ \frac{-k_{12}}{m_2} & \frac{k_2 + k_{12}}{m_2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

2. Need to find *eigenvectors* $|\mathbf{e}_1\rangle$, $|\mathbf{e}_2\rangle$,... of acceleration matrix such that: $\mathbf{A}|\mathbf{e}_n\rangle = \varepsilon_n|\mathbf{e}_n\rangle = \omega_n^2|\mathbf{e}_n\rangle$

Then equations decouple to: $|\ddot{\mathbf{e}}_n\rangle = -\mathbf{A}|\mathbf{e}_n\rangle = -\varepsilon_n|\mathbf{e}_n\rangle = -\omega_n^2|\mathbf{e}_n\rangle$ where ε_n is an eigenvalue and ω_n is an eigenfrequency

Note eigenvalue is <u>square</u> of eigenfrequency

To introduce eigensolutions we take a simple case of unit masses $(m_1=1=m_2)$

So equation of motion is simply: $|\ddot{\mathbf{x}}\rangle = -\mathbf{K}|\mathbf{x}\rangle$

Eigenvectors $|\mathbf{x}\rangle = |\mathbf{e}_n\rangle$ are in special directions where $|\ddot{\mathbf{x}}\rangle = -\mathbf{K}|\mathbf{x}\rangle$ is in same direction as $|\mathbf{x}\rangle$

► ANALOGY: 2-State Schrodinger: $i\hbar\partial_t |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ versus Classical 2D-HO: $\partial_t^2 \mathbf{x} = -\mathbf{K} \cdot \mathbf{x}$ Hamilton-Pauli spinor symmetry (σ -expansion in ABCD-Types) $\mathbf{H} = \omega_\mu \sigma_\mu$ Derive σ -exponential time evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\sigma\mu\omega\mu t}$ Spinor arithmetic like complex arithmetic Spinor vector algebra like complex vector algebra Spinor exponentials like complex exponentials ("Crazy-Thing"-Theorem) Geometry of evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\sigma\mu\omega\mu t}$ The "mysterious" factors of 2 (or 1/2): 2D Spinor vs 3D Spin Vector space 2D Spinor vs 3D vector rotation NMR Hamiltonian: 3D Spin Moment \mathbf{m} in \mathbf{B} field

First start with 2-by-2 Hermitian (self-conjugate) matrix

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \mathbf{H}^{\dagger}$$

 H_{jk} matrix must obey: $(H_{jk})^* = H_{kj}$

First start with 2-by-2 Hermitian (self-conjugate) matrix H_{jk} matrix must $\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \mathbf{H}^{\dagger} \qquad \text{obey: } (H_{jk})^* = H_{kj}$ that operates on 2-D complex Dirac ket vector $|\Psi\rangle$. Both have 4 parameters $|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ (2² = 2+2)

First start with 2-by-2 Hermitian (self-conjugate) matrix H_{jk} matrix must $\mathbf{H} = \begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} = \mathbf{H}^{\dagger}$ obey: $(H_{jk})^* = H_{kj}$ that operates on 2-D complex Dirac ket vector $|\Psi\rangle$. Both have 4 parameters $|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ $(2^2 = 2+2)$ Separate real x_k and imaginary p_k parts of Ψ_k amplitudes

to convert the complex 1st-order equation $i\partial_t \Psi = \mathbf{H}\Psi$ into pairs of <u>real</u> 1st-order differential equations.

First start with 2-by-2 Hermitian (self-conjugate) matrix $\mathbf{H} = \begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} = \mathbf{H}^{\dagger} \qquad \text{obey: } (H_{jk})^* = H_{kj}$ that operates on 2-D complex Dirac ket vector $|\Psi\rangle$. Both have 4 parameters $|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \qquad (2^2 = 2+2)$ Separate real x_k and imaginary p_k parts of Ψ_k amplitudes to compute the complex list order constring i 2W. Here, 2 = 2 + 2

to convert the complex 1st-order equation $i\partial_t \Psi = \mathbf{H}\Psi$ into pairs of <u>real</u> 1st-order differential equations.

$$i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$$
$$i\frac{\partial}{\partial t} \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix}$$

ANALOGY: 2-State Schrodinger:
$$i\hbar\partial_t |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$$
 versus Classical 2D-HO: $\partial_t^2 \mathbf{x} = -\mathbf{K} \cdot \mathbf{x}$
 $i\hbar |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ $|\mathbf{\ddot{x}}\rangle = -\mathbf{K} \cdot |\mathbf{x}\rangle$

First start with 2-by-2 Hermitian (self-conjugate) matrix $\mathbf{H} = \begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} = \mathbf{H}^{\dagger}$ that operates on 2-D complex Dirac ket vector $|\Psi\rangle$. $|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ Separate real x_k and imaginary p_k parts of Ψ_k amplitudes to convert the complex 1st-order equation $i\partial_t\Psi = \mathbf{H}\Psi$ into pairs of <u>real</u> 1st-order differential equations. $\dot{x_1} = Ap_1 + Bp_2 - Cx_2$ $\dot{x_2} = Bp_1 + Dp_2 + Cx_1$ $\dot{p}_2 = -Bx_1 - Dx_2 + Cp_1$ H_{jk} matrix must $degree (H_{jk})^* = H_{kj}$ Both have 4 parameters $<math>(2^2 = 2+2)$ $i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ $i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ $i\frac{\partial}{\partial t} \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix}$ $(i\dot{x}_1 - \dot{p}_1) = \begin{pmatrix} Ax_1 + B\dot{x}_2 + Cp_2 + iAp_1 + iBp_2 - iCx_2 \\ Bx_1 + Dx_2 - Cp_1 + iBp_1 + iDp_2 + iCx_1 \end{pmatrix}$

First start with 2-by-2 Hermitian (self-conjugate) matrix

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \mathbf{H}^{\dagger}$$

that operates on 2-D complex Dirac ket vector $\left|\Psi\right\rangle$.

$$|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Separate real x_k and imaginary p_k parts of Ψ_k amplitudes to convert the complex 1st-order equation $i\partial_t \Psi = \mathbf{H}\Psi$ into pairs of <u>real</u> 1st-order differential equations.

$$\begin{split} \dot{x}_1 &= Ap_1 + Bp_2 - Cx_2 & \dot{p}_1 &= -Ax_1 - Bx_2 - Cp_2 \\ \dot{x}_2 &= Bp_1 + Dp_2 + Cx_1 & \dot{p}_2 &= -Bx_1 - Dx_2 + Cp_1 \end{split}$$

Then start with classical Hamiltonian. (Designed to give same result.)

$$H_{c} = \frac{A}{2} \left(p_{1}^{2} + x_{1}^{2} \right) + B \left(x_{1}x_{2} + p_{1}p_{2} \right) + C \left(x_{1}p_{2} - x_{2}p_{1} \right) + \frac{D}{2} \left(p_{2}^{2} + x_{2}^{2} \right)$$

First start with 2-by-2 Hermitian (self-conjugate) matrix

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \mathbf{H}^{\dagger}$$

that operates on 2-D complex Dirac ket vector $\left|\Psi\right\rangle$.

$$|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Separate real x_k and imaginary p_k parts of Ψ_k amplitudes to convert the complex 1st-order equation $i\partial_t \Psi = \mathbf{H}\Psi$ into pairs of <u>real</u> 1st-order differential equations.

$$\begin{split} \dot{x}_1 &= Ap_1 + Bp_2 - Cx_2 & \dot{p}_1 &= -Ax_1 - Bx_2 - Cp_2 \\ \dot{x}_2 &= Bp_1 + Dp_2 + Cx_1 & \dot{p}_2 &= -Bx_1 - Dx_2 + Cp_1 \end{split}$$

Then start with classical Hamiltonian. (Designed to give same result.)

$$H_{c} = \frac{A}{2} \left(p_{1}^{2} + x_{1}^{2} \right) + B \left(x_{1}x_{2} + p_{1}p_{2} \right) + C \left(x_{1}p_{2} - x_{2}p_{1} \right) + \frac{D}{2} \left(p_{2}^{2} + x_{2}^{2} \right)$$

Then Hamilton's equations of motion are the following.

$$\begin{aligned} For \ constant \\ A, B, C, \ and \ D \\ \dot{x}_1 &= \frac{\partial H_c}{\partial p_1} = Ap_1 + Bp_2 - Cx_2 \\ \dot{x}_2 &= \frac{\partial H_c}{\partial p_2} = Bp_1 + Dp_2 + Cx_1 \end{aligned} \qquad \dot{p}_1 &= -\frac{\partial H_c}{\partial x_1} = -(Ax_1 + Bx_2 + Cp_2) \\ \dot{p}_2 &= -\frac{\partial H_c}{\partial x_2} = -(Bx_1 + Dx_2 - Cp_1) \end{aligned}$$

First start with 2-by-2 Hermitian (self-conjugate) matrix

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \mathbf{H}^{\dagger}$$

that operates on 2-D complex Dirac ket vector $\left|\Psi\right\rangle$.

$$|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Separate real x_k and imaginary p_k parts of Ψ_k amplitudes to convert the complex 1st-order equation $i\partial_t \Psi = \mathbf{H}\Psi$ into pairs of <u>real</u> 1st-order differential equations.

$$\dot{x}_1 = Ap_1 + Bp_2 - Cx_2 \qquad \dot{p}_1 = -Ax_1 - Bx_2 - Cp_2 \\ \dot{x}_2 = Bp_1 + Dp_2 + Cx_1 \qquad \dot{p}_2 = -Bx_1 - Dx_2 + Cp_1 \\$$

<u>QM vs. Classical</u> Equations are identical

Then start with classical Hamiltonian. (Designed to give same result.)

$$H_{c} = \frac{A}{2} \left(p_{1}^{2} + x_{1}^{2} \right) + B \left(x_{1} x_{2} + p_{1} p_{2} \right) + C \left(x_{1} p_{2} - x_{2} p_{1} \right) + \frac{D}{2} \left(p_{2}^{2} + x_{2}^{2} \right)$$

For constant

Then Hamilton's equations of motion are the following.

$$\begin{aligned} A,B,C, \text{ and } D\\ \dot{x}_1 &= \frac{\partial H_c}{\partial p_1} = Ap_1 + Bp_2 - Cx_2 \\ \dot{x}_2 &= \frac{\partial H_c}{\partial p_2} = Bp_1 + Dp_2 + Cx_1 \end{aligned} \qquad \dot{p}_1 &= -\frac{\partial H_c}{\partial x_1} = -(Ax_1 + Bx_2 + Cp_2)\\ \dot{p}_2 &= -\frac{\partial H_c}{\partial x_2} = -(Bx_1 + Dx_2 - Cp_1) \end{aligned}$$

First start with 2-by-2 Hermitian (self-conjugate) matrix

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \mathbf{H}^{\dagger}$$

that operates on 2-D complex Dirac ket vector $\left|\Psi\right\rangle$.

$$|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Separate real x_k and imaginary p_k parts of Ψ_k amplitudes to convert the complex 1st-order equation $i\partial_t \Psi = \mathbf{H}\Psi$ into pairs of *real* 1st-order differential equations. Then start with classical Hamiltonian. (Designed to give same result.)

$$H_{c} = \frac{A}{2} \left(p_{1}^{2} + x_{1}^{2} \right) + B \left(x_{1} x_{2} + p_{1} p_{2} \right) + C \left(x_{1} p_{2} - x_{2} p_{1} \right) + \frac{D}{2} \left(p_{2}^{2} + x_{2}^{2} \right)$$

Then Hamilton's equations of motion are the following.

For constant *A*,*B*,*C*, and *D*

$$\begin{array}{c|c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \dot{x}_{1} = Ap_{1} + Bp_{2} - Cx_{2} \\ \dot{x}_{2} = Bp_{1} + Dp_{2} + Cx_{1} \end{array} & \begin{array}{c} \dot{p}_{1} = -Ax_{1} - Bx_{2} - Cp_{2} \\ \dot{p}_{2} = -Bx_{1} - Dx_{2} + Cp_{1} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} OM \ vs. \ Classical \\ Equations \ are \\ identical \end{array} \end{array} & \begin{array}{c} \dot{x}_{1} = \frac{\partial H_{c}}{\partial p_{1}} = Ap_{1} + Bp_{2} - Cx_{2} \end{array} & \begin{array}{c} \dot{p}_{1} = -\frac{\partial H_{c}}{\partial x_{1}} = -(Ax_{1} + Bx_{2} + Cp_{2}) \\ \dot{p}_{2} = -Bx_{1} - Dx_{2} + Cp_{1} \end{array} & \begin{array}{c} \begin{array}{c} OM \ vs. \ Classical \\ Equations \ are \\ identical \end{array} & \begin{array}{c} \dot{x}_{1} = \frac{\partial H_{c}}{\partial p_{1}} = Ap_{1} + Bp_{2} - Cx_{2} \end{array} & \begin{array}{c} \dot{p}_{1} = -\frac{\partial H_{c}}{\partial x_{1}} = -(Ax_{1} + Bx_{2} + Cp_{2}) \\ \dot{p}_{2} = -\frac{\partial H_{c}}{\partial x_{2}} = -(Bx_{1} + Dx_{2} - Cp_{1}) \end{array} \\ \end{array} \\ \begin{array}{c} \dot{x}_{1} = Ap_{1} + Bp_{2} - Cx_{2} \end{array} & \begin{array}{c} \dot{y}_{2} = -\frac{\partial H_{c}}{\partial p_{2}} = Bp_{1} + Dp_{2} + Cx_{1} \end{array} & \begin{array}{c} \dot{p}_{2} = -\frac{\partial H_{c}}{\partial x_{2}} = -(Bx_{1} + Dx_{2} - Cp_{1}) \\ \dot{p}_{2} = -\frac{\partial H_{c}}{\partial x_{2}} = -(Bx_{1} + Dx_{2} - Cp_{1}) \end{array} \\ \end{array} \\ \begin{array}{c} \dot{x}_{1} = Ap_{1} + Bp_{2} - Cx_{2} \end{array} & \begin{array}{c} \dot{x}_{2} = Bp_{1} + Dp_{2} + Cx_{1} \end{array} & \begin{array}{c} \dot{p}_{2} = -\frac{\partial H_{c}}{\partial x_{2}} = -(Bx_{1} + Dx_{2} - Cp_{1}) \\ \dot{p}_{2} = -K \cdot |\mathbf{x}\rangle \end{array} \\ \end{array}$$

$$= -A(Ax_{1} + Bx_{2} + Cp_{2}) - B(Bx_{1} + Dx_{2} - Cp_{1}) - C(Bp_{1} + Dp_{2} + Cx_{1}) = -B(Ax_{1} + Bx_{2} + Cp_{2}) - D(Bx_{1} + Dx_{2} - Cp_{1}) + C(Ap_{1} + Bp_{2} - Cx_{2}) = -B(Ax_{1} + Bx_{2} + Cp_{2}) - D(Bx_{1} + Dx_{2} - Cp_{1}) + C(Ap_{1} + Bp_{2} - Cx_{2}) = -B(Ax_{1} + Bx_{2} + Cp_{2}) - D(Bx_{1} + Dx_{2} - Cp_{1}) + C(Ap_{1} + Bp_{2} - Cx_{2}) = -(AB + BD)x_{1} - (B^{2} + B^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2})x_{2} + C(A + D)p_{1} = -(AB + BD)x_{1} - (B^{2} + D^{2})x_{2} + C(A + D)x_{1} + (B^{2} + D^{2})x_{2} + C(A + D)x_{1} + (B^{2} + D^{2})x_{2} + C(A + D)x_{2} +$$

First start with 2-by-2 Hermitian (self-conjugate) matrix

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \mathbf{H}^{\dagger}$$

that operates on 2-D complex Dirac ket vector $\left|\Psi\right\rangle$.

$$|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Separate real x_k and imaginary p_k parts of Ψ_k amplitudes to convert the complex 1st-order equation $i\partial_t \Psi = \mathbf{H}\Psi$ into pairs of *real* 1st-order differential equations. Then start with classical Hamiltonian. (Designed to give same result.)

$$H_{c} = \frac{A}{2} \left(p_{1}^{2} + x_{1}^{2} \right) + B \left(x_{1} x_{2} + p_{1} p_{2} \right) + C \left(x_{1} p_{2} - x_{2} p_{1} \right) + \frac{D}{2} \left(p_{2}^{2} + x_{2}^{2} \right)$$

Then Hamilton's equations of motion are the following.

For constant A,*B*,*C*, *and D*

into pairs of real is-order differential equations.

$$\dot{x}_{1} = Ap_{1} + Bp_{2} - Cx_{2}$$

$$\dot{p}_{1} = -Ax_{1} - Bx_{2} - Cp_{2}$$

$$\dot{p}_{2} = -Bx_{1} - Dx_{2} + Cp_{1}$$

$$\begin{pmatrix} QM vs. Classical Equations are identical & \dot{x}_{1} = \frac{\partial H_{c}}{\partial p_{1}} = Ap_{1} + Bp_{2} - Cx_{2} & \dot{p}_{1} = -\frac{\partial H_{c}}{\partial x_{1}} = -(Ax_{1} + Bx_{2} + Cp_{2}) \\ \dot{x}_{2} = \frac{\partial H_{c}}{\partial p_{2}} = Bp_{1} + Dp_{2} + Cx_{1} & \dot{p}_{2} = -\frac{\partial H_{c}}{\partial x_{2}} = -(Bx_{1} + Dx_{2} - Cp_{1}) \\ \text{Finally a 2nd time derivative (Assume constant A, B, D, and let C=0) gives 2nd-order classical Newton-Hooke-like equation: $|\ddot{x}\rangle = -\mathbf{K} \cdot |\mathbf{x}\rangle$

$$\ddot{x}_{1} = Ap_{1} + Bp_{2} - C\dot{x}_{2} & \ddot{x}_{2} = Bp_{1} + Dp_{2} + Cx_{1} \\ = -A(Ax_{1} + Bx_{2} + Cp_{2}) - B(Bx_{1} + Dx_{2} - Cp_{1}) - C(Bp_{1} + Dp_{2} + Cx_{1}) \\ = -(A^{2} + B^{2} + C^{2})x_{1} - (AB + BD)x_{2} - C(A + D)p_{2} \\ = -(A^{2} + B^{2} + C^{2})x_{1} - (AB + BD)x_{2} - C(A + D)p_{2} \\ = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1} \\ \hline$$$$

$$\begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} = - \begin{pmatrix} A^2 + B^2 & AB + BD \\ AB + BD & B^2 + D^2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} For \ C = 0 \\ Is \ form \ of \ 2D \ Hooke \\ harmonic \ oscillator \end{pmatrix} = - \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} = - \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ K_{21} & K_{22} \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ K_{22} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ K_{22} & K_{22} \end{pmatrix}$$

ANALOGY: 2-State Schrodinger: $i\hbar \partial_t |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ versus Classical 2D-HO: $\partial_t^2 \mathbf{X} = -\mathbf{K} \cdot \mathbf{X}$ $|\ddot{\mathbf{x}}\rangle = -\mathbf{K} \cdot |\mathbf{x}\rangle$ $i\hbar |\dot{\Psi}(t)\rangle = \mathbf{H} |\Psi(t)\rangle$

First start with 2-by-2 Hermitian (self-conjugate) matrix

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \mathbf{H}^{\dagger}$$

that operates on 2-D complex Dirac ket vector $\left|\Psi\right\rangle$.

$$|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Separate real x_k and imaginary p_k parts of Ψ_k amplitudes to convert the complex 1st-order equation $i\partial_t \Psi = \mathbf{H}\Psi$

Then start with classical Hamiltonian. (Designed to give same result.)

$$H_{c} = \frac{A}{2} \left(p_{1}^{2} + x_{1}^{2} \right) + B \left(x_{1} x_{2} + p_{1} p_{2} \right) + C \left(x_{1} p_{2} - x_{2} p_{1} \right) + \frac{D}{2} \left(p_{2}^{2} + x_{2}^{2} \right)$$

For constant

Then Hamilton's equations of motion are the following.

to convert the complex 1st-order equation $iO_{12} = 112$ into pairs of <u>real</u> 1st-order differential equations. $\dot{x}_1 = Ap_1 + Bp_2 - Cx_2$ $\dot{x}_2 = Bp_1 + Dp_2 + Cx_1$ Finally a 2nd time derivative (Assume <u>constant</u> A, B, D, and let C=0) gives 2nd-order classical Newton-Hooke-like equation: $|\ddot{x}\rangle = -K \cdot |x\rangle$ $\ddot{x}_1 = A\dot{p}_1 + B\dot{p}_2 - C\dot{x}_2$ $\ddot{x}_2 = A\dot{p}_1 + B\dot{p}_2 + Cx_1$ $\ddot{x}_1 = A\dot{p}_1 + B\dot{p}_2 - C\dot{x}_2$ $\ddot{x}_2 = B\dot{p}_1 + Dp_2 + Cx_1$ $\dot{x}_2 = B\dot{p}_1 + Dp_2 + Cx_1$ $\dot{x}_2 = B\dot{p}_1 + D\dot{p}_2 + Cx_1$ $\dot{x}_2 = B\dot{p}_1 + D\dot{p}_2 + C\dot{x}_1$ $= -A(Ax_1 + Bx_2 + Cp_2) - B(Bx_1 + Dx_2 - Cp_1) - C(Bp_1 + Dp_2 + Cx_1)$ $= -(A^2 + B^2 + C^2)x_1 - (AB + BD)x_2 - C(A + D)p_2$ $\dot{x}_2 = (AB + BD)x_1 - (B^2 + D^2 + C^2)x_2 + C(A + D)p_1$ $\dot{x}_3 = -(AB + BD)x_1 - (B^2 + D^2 + C^2)x_2 + C(A + D)p_1$ $\dot{x}_4 = B\dot{p}_4 + B\dot{p}_4 + B\dot{p}_4$ $\dot{x}_4 = A\dot{p}_1 + D\dot{p}_4$ $\dot{x}_4 = B\dot{p}_1 + D\dot{p}_4$ $\dot{x}_4 = A\dot{p}_1 + D\dot{p}_4$ $\dot{x}_4 = A\dot{p}$ A, B, C, and D $\begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} = - \begin{pmatrix} A^2 + B^2 & AB + BD \\ AB + BD & B^2 + D^2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} For \ C = 0 \\ Is \ form \ of \ 2D \ Hooke \\ harmonic \ oscillator \end{pmatrix} = \begin{pmatrix} \ddot{x}_1 \\ x_2 \end{pmatrix} = - \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} \\ K_{22} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 & K_{22} \\ K_{22} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 & K_{22} \\ K_{22} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 & K_{22} \\ K_{22} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 & K_{22} \\ K_{22} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 & K_{22} \\ K_{22} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 & K_{22} \\ K_{22} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 & K_{22} \\ K_{22} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 & K_{22} \\ K_{22} & K_{22} \end{pmatrix} \begin{pmatrix} x_1 & K_{22} \\ K_{22} & K_{22} \end{pmatrix}$

Here is an operator view of the QM-Classical connection: Take Schrodinger operator $i\partial_t = \mathbf{H}$ (with C = 0) and square it!

$$i\frac{\partial}{\partial t} = \begin{pmatrix} A & B \\ B & D \end{pmatrix} \Longrightarrow \left(i\frac{\partial}{\partial t}\right)^2 = \begin{pmatrix} A & B \\ B & D \end{pmatrix}^2 \Longrightarrow -\frac{\partial^2}{\partial t^2} = \begin{pmatrix} A^2 + B^2 & AB + BD \\ AB + BD & B^2 + D^2 \end{pmatrix}$$

First start with 2-by-2 Hermitian (self-conjugate) matrix

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \mathbf{H}^{\dagger}$$

that operates on 2-D complex Dirac ket vector $\left|\Psi\right\rangle$.

$$|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Separate real x_k and imaginary p_k parts of Ψ_k amplitudes to convert the complex 1st-order equation $i\partial_t \Psi = \mathbf{H}\Psi$ into pairs of *real* 1st-order differential equations. Then start with classical Hamiltonian. (Designed to give same result.)

$$H_{c} = \frac{A}{2} \left(p_{1}^{2} + x_{1}^{2} \right) + B \left(x_{1} x_{2} + p_{1} p_{2} \right) + C \left(x_{1} p_{2} - x_{2} p_{1} \right) + \frac{D}{2} \left(p_{2}^{2} + x_{2}^{2} \right)$$

Then Hamilton's equations of motion are the following.

For constant *A*,*B*,*C*, and *D*

$$\dot{x}_{1} = Ap_{1} + Bp_{2} - Cx_{2}$$

$$\dot{p}_{1} = -Ax_{1} - Bx_{2} - Cp_{2}$$

$$\dot{p}_{2} = -Bx_{1} - Dx_{2} + Cp_{1}$$

$$\begin{pmatrix} QM vs. Classical Equations are identical \\ \dot{p}_{2} = -Bx_{1} - Dx_{2} + Cp_{1} \\ \dot{p}_{2} = -Bx_{1} - Dx_{2} - Cp_{1} \\ \dot{p}_{2} =$$

Finally a 2nd time derivative (Assume <u>constant</u> A, B, D, and <u>let</u> C=0) gives 2nd-order classical Newton-Hooke-like equation: $|\ddot{\mathbf{x}}\rangle = -\mathbf{K} \cdot |\mathbf{x}\rangle$ $\ddot{x_1} = A\dot{p_1} + B\dot{p_2} - C\dot{x_2} \qquad \ddot{x_2} = B\dot{p_1} + D\dot{p_2} + C\dot{x_1}$

$$= -A(Ax_{1} + Bx_{2} + Cp_{2}) - B(Bx_{1} + Dx_{2} - Cp_{1}) - C(Bp_{1} + Dp_{2} + Cx_{1}) = -B(Ax_{1} + Bx_{2} + Cp_{2}) - D(Bx_{1} + Dx_{2} - Cp_{1}) + C(Ap_{1} + Bp_{2} - Cx_{2})$$

$$= -(A^{2} + B^{2} + C^{2})x_{1} - (AB + BD)x_{2} - C(A + D)p_{2} = -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + C^{2})x_{2} + C(A + D)p_{1}$$

$$= -(AB + BD)x_{1} - (B^{2} + D^{2} + D^{2})x_{2} + C(A + D)x_{1} + C(A + D)x_{2} + C(A + D)x_{2} + C(A + D)x_{2} + C(A +$$

Here is an operator view of the QM-Classical connection: Take Schrodinger operator $i\partial_t = \mathbf{H}$ (with C = 0) and square it!

$$i\frac{\partial}{\partial t} = \begin{pmatrix} A & B \\ B & D \end{pmatrix} \Longrightarrow \left(i\frac{\partial}{\partial t}\right)^2 = \begin{pmatrix} A & B \\ B & D \end{pmatrix}^2 \Longrightarrow -\frac{\partial^2}{\partial t^2} = \begin{pmatrix} A^2 + B^2 & AB + BD \\ AB + BD & B^2 + D^2 \end{pmatrix}$$

Conclusion: 2-state Schro-equation $i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ is like "square-root" of Newton-Hooke. $\sqrt{|\mathbf{x}\rangle} = -\mathbf{K} \cdot |\mathbf{x}\rangle$

First start with 2-by-2 Hermitian (self-conjugate) matrix

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \mathbf{H}^{\dagger}$$

that operates on 2-D complex Dirac ket vector $|\Psi\rangle$.

$$|\Psi\rangle = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Separate real x_k and imaginary p_k parts of Ψ_k amplitudes to convert the complex 1st-order equation $i\partial_t \Psi = \mathbf{H}\Psi$ into pairs of real real 1st-order differential equations. Then start with classical Hamiltonian.

$$H_{c} = \frac{A}{2} \left(p_{1}^{2} + x_{1}^{2} \right) + B \left(x_{1} x_{2} + p_{1} p_{2} \right) + C \left(x_{1} p_{2} - x_{2} p_{1} \right) + \frac{D}{2} \left(p_{2}^{2} + x_{2}^{2} \right)$$

Then Hamilton's equations of motion are the following.

For constant *A*,*B*,*C*, and *D*

$$\dot{x}_{1} = Ap_{1} + Bp_{2} - Cx_{2}$$

$$\dot{p}_{1} = -Ax_{1} - Bx_{2} - Cp_{2}$$

$$\dot{p}_{1} = -Ax_{1} - Bx_{2} - Cp_{2}$$

$$\dot{p}_{2} = -Bx_{1} - Dx_{2} + Cp_{1}$$

$$\dot{p}_{2} = -Bx_{1} - Dx_{2} - Cp_{1}$$

$$\dot{p}_{2} = -\frac{\partial H_{c}}{\partial x_{2}} = -(Bx_{1} + Dx_{2} - Cp_{1})$$
Finally a 2nd time derivative (Assume constant A, B, D, and let C=0) gives 2nd-order classical Newton-Hooke-like equation: $|\ddot{\mathbf{x}}\rangle = -\mathbf{K} \cdot |\mathbf{x}\rangle$

Here is an operator view of the QM-Classical connection: Take Schrodinger operator $i\partial_t = \mathbf{H}$ (with $C \neq 0$) and square it!

$$i\frac{\partial}{\partial t} = \begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} \Rightarrow \left(i\frac{\partial}{\partial t}\right)^2 = \begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix}^2 \Rightarrow -\frac{\partial^2}{\partial t^2} = \begin{pmatrix} A^2+B^2+C^2 & AB+BD-i(AC+CD) \\ AB+BD+i(AC+CD) & B^2+D^2+C^2 \end{pmatrix}$$

Conclusion: 2-state Schro-equation $i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ is like "square-root" of Newton-Hooke. $\sqrt{|\mathbf{x}\rangle} = -\mathbf{K} \cdot |\mathbf{x}\rangle$

ANALOGY: 2-State Schrodinger: $i\hbar\partial_t |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ versus Classical 2D-HO: $\partial_t^2 \mathbf{x} = -\mathbf{K} \cdot \mathbf{x}$ \checkmark Hamilton-Pauli spinor symmetry (σ -expansion in ABCD-Types) $\mathbf{H} = \omega_\mu \sigma_\mu$ Derive σ -exponential time evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\sigma_\mu\omega_\mu t}$ Spinor arithmetic like complex arithmetic Spinor vector algebra like complex vector algebra Spinor exponentials like complex exponentials ("Crazy-Thing"-Theorem) Geometry of evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\sigma_\mu\omega_\mu t}$ The "mysterious" factors of 2 (or 1/2): 2D Spinor vs 3D Spin Vector space 2D Spinor vs 3D vector rotation NMR Hamiltonian: 3D Spin Moment \mathbf{m} in \mathbf{B} field

Decompose the Hamiltonian operator **H** into four *ABCD symmetry operators* (Labeled to provide dynamic mnemonics as well as colorful analogies)

Symmetry archetypes: A (Asymmetric-diagonal) B (Bilateral-balanced) C (Chiral-circular-complex-Coriolis-cyclotron-curly...)

Fig. 3.4.1 Potentials for (a) C_2^{A} -asymmetric-diagonal, (ab) C_2^{AB} -mixed, (b) C_2^{B} -bilateral U(2)system.

Decompose the Hamiltonian operator **H** into four *ABCD symmetry operators* (Labeled to provide dynamic mnemonics as well as colorful analogies)

$$\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} = A \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + D \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = A\mathbf{e}_{11} + B\mathbf{\sigma}_B + C\mathbf{\sigma}_C + D\mathbf{e}_{22}$$

$$= \frac{A-D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \frac{A+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{H} = \frac{A-D}{2} \mathbf{\sigma}_A + B \mathbf{\sigma}_B + C \mathbf{\sigma}_C + \frac{A+D}{2} \mathbf{\sigma}_0 \qquad \dots current-carrier...$$

Symmetry archetypes: A (Asymmetric-diagonal) B (Bilateral-balanced) C (Chiral-circular-complex-Coriolis-cyclotron-curly...) The { σ_1 , σ_A , σ_B , σ_C } are best known as Pauli-spin operators { $\sigma_1 = \sigma_0$, $\sigma_B = \sigma_X$, $\sigma_C = \sigma_Y$, $\sigma_A = \sigma_Z$ } developed in 1927.

Wolfgang Pauli (1927) Zur Quantenmechanik des magnetischen Elektrons Zeitschrift für Physik (43) 601-623

Fig. 3.4.1 Potentials for (a) C_2^{A} -asymmetric-diagonal, (ab) C_2^{AB} -mixed, (b) C_2^{B} -bilateral U(2)system.

Decompose the Hamiltonian operator **H** into four *ABCD symmetry operators* (Labeled to provide dynamic mnemonics as well as colorful analogies)

$$\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} = A \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + D \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = A\mathbf{e}_{11} + B\mathbf{\sigma}_B + C\mathbf{\sigma}_C + D\mathbf{e}_{22}$$

$$= \frac{A-D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \frac{A+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{H} = \frac{A-D}{2} \mathbf{\sigma}_A + B \mathbf{\sigma}_B + C \mathbf{\sigma}_C + \frac{A+D}{2} \mathbf{\sigma}_0 \qquad \dots current-carrier...$$

Symmetry archetypes: *A* (*Asymmetric-diagonal*)| *B* (*Bilateral-balanced*)| *C* (*Chiral-circular-complex-Coriolis-cyclotron-curly...*) The { σ_I , σ_A , σ_B , σ_C } are best known as *Pauli-spin operators* { $\sigma_I = \sigma_0$, $\sigma_B = \sigma_X$, $\sigma_C = \sigma_Y$, $\sigma_A = \sigma_Z$ } developed in 1927.

In 1843 Hamilton invents *quaternions* {1, i, j, k}. σ_{μ} related by *i*-factor: { $\sigma_{I}=1=\sigma_{0}$, $i\sigma_{B}=i=i\sigma_{X}$, $i\sigma_{C}=j=i\sigma_{Y}$, $i\sigma_{A}=k=i\sigma_{Z}$ }.

Fig. 3.4.1 Potentials for (a) C_2^{A} -asymmetric-diagonal, (ab) C_2^{AB} -mixed, (b) C_2^{B} -bilateral U(2)system.

Wolfgang Pauli (1927) Zur Quantenmechanik des magnetischen Elektrons Zeitschrift für Physik (43) 601-623

Decompose the Hamiltonian operator **H** into four *ABCD symmetry operators* (Labeled to provide dynamic mnemonics as well as colorful analogies)

Symmetry archetypes: A (Asymmetric-diagonal) B (Bilateral-balanced) C (Chiral-circular-complex-Coriolis-cyclotron-curly...) The { σ_I , σ_A , σ_B , σ_C } are best known as Pauli-spin operators { $\sigma_I = \sigma_0$, $\sigma_B = \sigma_X$, $\sigma_C = \sigma_Y$, $\sigma_A = \sigma_Z$ } developed in 1927.

In 1843 Hamilton invents *quaternions* {1, i, j, k}. σ_{μ} related by *i*-factor: { $\sigma_I = \mathbf{1} = \sigma_0$, $i\sigma_B = \mathbf{i} = i\sigma_X$, $i\sigma_C = \mathbf{j} = i\sigma_Y$, $i\sigma_A = \mathbf{k} = i\sigma_Z$ }.

Each Hamilton quaternion squares to *negative*-1 ($i^2 = j^2 = k^2 = -1$) like imaginary number $i^2 = -1$. (They make up the Quaternion group.)

Fig. 3.4.1 Potentials for (a) C_2^{A} -asymmetric-diagonal, (ab) C_2^{AB} -mixed, (b) C_2^{B} -bilateral U(2)system.

Wolfgang Pauli (1927) Zur Quantenmechanik des magnetischen Elektrons Zeitschrift für Physik (43) 601-623

Decompose the Hamiltonian operator **H** into four *ABCD symmetry operators* (Labeled to provide dynamic mnemonics as well as colorful analogies)

Symmetry archetypes: *A* (*Asymmetric-diagonal*)| *B* (*Bilateral-balanced*)| *C* (*Chiral-circular-complex-Coriolis-cyclotron-curly...*) The { σ_I , σ_A , σ_B , σ_C } are best known as *Pauli-spin operators* { $\sigma_I = \sigma_0$, $\sigma_B = \sigma_X$, $\sigma_C = \sigma_Y$, $\sigma_A = \sigma_Z$ } developed in 1927.

In 1843 Hamilton invents *quaternions* {1, i, j, k}. σ_{μ} related by *i*-factor: { $\sigma_I = \mathbf{1} = \sigma_0$, $i\sigma_B = \mathbf{i} = i\sigma_X$, $i\sigma_C = \mathbf{j} = i\sigma_Y$, $i\sigma_A = \mathbf{k} = i\sigma_Z$ }.

Each Hamilton quaternion squares to *negative*-1 ($i^2 = j^2 = k^2 = -1$) like imaginary number $i^2 = -1$. (They make up the Quaternion group.) Each Pauli σ_{μ} squares to *positive*-1 ($\sigma_X^2 = \sigma_Y^2 = \sigma_Z^2 = +1$) (Each makes a cyclic C_2 group $C_2^A = \{1, \sigma_A\}, C_2^B = \{1, \sigma_B\}$, or $C_2^C = \{1, \sigma_C\}$.)

Fig. 3.4.1 Potentials for (a) C_2^{A} -asymmetric-diagonal, (ab) C_2^{AB} -mixed, (b) C_2^{B} -bilateral U(2)system.

Wolfgang Pauli (1927) Zur Quantenmechanik des magnetischen Elektrons Zeitschrift für Physik (43) 601-623

ANALOGY: 2-State Schrodinger: $i\hbar\partial_t |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ versus Classical 2D-HO: $\partial_t^2 \mathbf{X} = -\mathbf{K} \cdot \mathbf{X}$ Hamilton-Pauli spinor symmetry ($\boldsymbol{\sigma}$ -expansion in ABCD-Types) $\mathbf{H} = \omega_\mu \boldsymbol{\sigma}_\mu$

• Derive σ -exponential time evolution (or revolution) operator $\mathbf{U}=e^{-i\mathbf{H}t}=e^{-i\sigma\mu\omega\mu t}$

 Spinor arithmetic like complex arithmetic Spinor vector algebra like complex vector algebra Spinor exponentials like complex exponentials ("Crazy-Thing"-Theorem)
 Geometry of evolution (or revolution) operator U=e^{-iHt}=e^{-iσ}μ^ωμ^t The "mysterious" factors of 2 (or 1/2): 2D Spinor vs 3D Spin Vector space 2D Spinor vs 3D vector rotation NMR Hamiltonian: 3D Spin Moment **m** in **B** field $\begin{array}{c} \text{OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions.}\\ Need to convert this to a 2x2 matrix <math>|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t} |\Psi(0)\rangle$ Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos\omega t - i\sin\omega t$ so matrix exponential becomes powerful. $e^{-i\mathbf{H}\cdot t} = e^{-i\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix}} t = e^{-i\frac{A-D}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 2 \end{pmatrix}} t - iB\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & -1 \\ 2 \end{pmatrix} t - iC\begin{pmatrix} 0 & -i \\ i & 0 \\ 0 & 1 \end{pmatrix} t - iC\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 \end{pmatrix} t e^{-i\frac{A+D}{2}\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 \end{pmatrix}} t e^{-i\omega_0 t}$ $= e^{-i\sigma_{\varphi}\varphi} e^{-i\omega_0 t} = e^{-i\overline{\alpha}\cdot\omega_0 t} e^{-i\omega_0 t} \text{ where: } \vec{\varphi} = \begin{pmatrix} \varphi_A \\ \varphi_B \\ \varphi_C \end{pmatrix} = \vec{\omega} \cdot t = \begin{pmatrix} \omega_A \\ \omega_B \\ \omega_C \end{pmatrix} \cdot t = \begin{pmatrix} \frac{A-D}{2} \\ B \\ C \\ 0 \end{pmatrix} \cdot t \text{ and: } \omega_0 = \frac{A+D}{2}$ For constant A,B,C, and D

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

Each σ_x squares to one (unit matrix $\mathbf{1} = \sigma_x \cdot \sigma_x$) and each quaternion squares to minus-one ($-\mathbf{1} = \mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j}$, *etc.*) just like $i = \sqrt{-1}$.

OBJECTIVE: Evaluate and (*most* important!) visualize matrix-exponent solutions. Need to convert this to a 2x2 matrix $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t} |\Psi(0)\rangle$ Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i \sin \omega t$ so matrix exponential becomes powerful.

 $e^{-i\mathbf{H}\cdot t} = e^{-i\left(\begin{array}{c}A & B-iC\\B+iC & D\end{array}\right)\cdot t} = e^{-i\frac{A-D}{2}\left(\begin{array}{c}1 & 0\\0 & -1\end{array}\right)\cdot t-iB\left(\begin{array}{c}0 & 1\\1 & 0\end{array}\right)\cdot t-iC\left(\begin{array}{c}0 & -i\\i & 0\end{array}\right)\cdot t-i\frac{A+D}{2}\left(\begin{array}{c}1 & 0\\0 & 1\end{array}\right)\cdot t}$ $e^{-i\sigma\varphi\varphi}e^{-i\omega_{0}\cdot t} = e^{-i\overline{\sigma}\bullet\overline{\omega}\cdot t}e^{-i\omega_{0}\cdot t} \text{ where: } \vec{\varphi} = \begin{pmatrix}\varphi_{A}\\\varphi_{B}\\\varphi_{C}\end{pmatrix} = \vec{\omega}\cdot t = \begin{pmatrix}\omega_{A}\\\omega_{B}\\\omega_{C}\end{pmatrix}\cdot t = \begin{pmatrix}\frac{A-D}{2}\\B\\C\end{pmatrix}\cdot t \text{ and: } \omega_{0} = \frac{A+D}{2}$ For A, B

ABCD Time evolution operator

For constant *A*,*B*,*C*, and *D*

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

Each σ_x squares to one (unit matrix $\mathbf{1} = \sigma_x \cdot \sigma_x$) and each quaternion squares to minus-one ($-\mathbf{1} = \mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j}$, etc.) just like $i = \sqrt{-1}$.

This is true for spinor components based on *any* unit vector $\hat{\mathbf{a}} = (a_x, a_y, a_z)$ for which $\hat{\mathbf{a}} \cdot \hat{\mathbf{a}} = 1 = a_x^2 + a_y^2 + a_z^2$. To see this just try it out on any $\hat{\mathbf{a}}$ -component: $\sigma_a = \sigma \cdot \hat{\mathbf{a}} = a_x \sigma_x + a_y \sigma_y + a_z \sigma_z$.

$$\sigma_a^2 = (\sigma \bullet \hat{\mathbf{a}})(\sigma \bullet \hat{\mathbf{a}}) = (a_x \sigma_x + a_y \sigma_y + a_z \sigma_z)(a_x \sigma_x + a_y \sigma_y + a_z \sigma_z)$$

$$a_x \sigma_x a_x \sigma_x + a_x \sigma_x a_y \sigma_y + a_x \sigma_x a_z \sigma_z \quad a_x a_x \sigma_x \sigma_x + a_x a_y \sigma_x \sigma_y + a_x a_z \sigma_x \sigma_z$$

$$= +a_y \sigma_y a_x \sigma_x + a_y \sigma_y a_y \sigma_y + a_y \sigma_y a_z \sigma_z = +a_y a_x \sigma_y \sigma_x + a_y a_y \sigma_y \sigma_y + a_y a_z \sigma_z \sigma_z$$

$$+a_z \sigma_z a_x \sigma_x + a_z \sigma_z a_y \sigma_y + a_z \sigma_z a_z \sigma_z + a_z a_x \sigma_z \sigma_x + a_z a_y \sigma_z \sigma_y + a_z a_z \sigma_z \sigma_z$$

OBJECTIVE: Evaluate and (*most* important!) visualize matrix-exponent solutions. Need to convert this $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t} |\Psi(0)\rangle$ to a 2x2 matrix

Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i \sin \omega t$ so matrix exponential becomes powerful.

$$e^{-i\mathbf{H}\cdot t} = e^{-i\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} \cdot t} = e^{-i\frac{A-D}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot t-iB\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot t-iC\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot t-i\frac{A+D}{2}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot t}$$

$$= e^{-i\sigma\varphi\varphi}e^{-i\omega_0\cdot t} = e^{-i\overline{\sigma}\bullet\overline{\omega}\cdot t}e^{-i\omega_0\cdot t} \text{ where: } \vec{\varphi} = \begin{pmatrix} \varphi_A \\ \varphi_B \\ \varphi_C \end{pmatrix} = \vec{\omega}\cdot t = \begin{pmatrix} \omega_A \\ \omega_B \\ \omega_C \end{pmatrix} \cdot t = \begin{pmatrix} \frac{A-D}{2} \\ B \\ C \end{pmatrix} \cdot t \text{ and: } \omega_0 = \frac{A+D}{2}$$

ABCD Time evolution operator

> for constant I,B,C, and D

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

Each σ_x squares to one (unit matrix $\mathbf{1} = \sigma_x \cdot \sigma_x$) and each quaternion squares to minus-one ($-\mathbf{1} = \mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j}$, *etc.*) just like $i = \sqrt{-1}$.

This is true for spinor components based on *any* unit vector $\hat{\mathbf{a}} = (a_x, a_y, a_z)$ for which $\hat{\mathbf{a}} \cdot \hat{\mathbf{a}} = 1 = a_x^2 + a_y^2 + a_z^2$. To see this just try it out on any $\hat{\mathbf{a}}$ -component: $\sigma_a = \sigma \cdot \hat{\mathbf{a}} = a_x \sigma_x + a_y \sigma_y + a_z \sigma_z$.

$$\sigma_{a}^{2} = (\sigma \bullet \hat{\mathbf{a}})(\sigma \bullet \hat{\mathbf{a}}) = (a_{x}\sigma_{x} + a_{y}\sigma_{y} + a_{z}\sigma_{z})(a_{x}\sigma_{x} + a_{y}\sigma_{y} + a_{z}\sigma_{z}\sigma_{z})$$

$$a_{x}\sigma_{x}a_{x}\sigma_{x} + a_{x}\sigma_{x}a_{y}\sigma_{y} + a_{x}\sigma_{x}a_{z}\sigma_{z} = a_{x}a_{x}\sigma_{x}\sigma_{x} + a_{x}a_{y}\sigma_{x}\sigma_{y} + a_{x}a_{z}\sigma_{z}\sigma_{z}$$

$$= +a_{y}\sigma_{y}a_{x}\sigma_{x} + a_{y}\sigma_{y}a_{y}\sigma_{y} + a_{y}\sigma_{y}a_{z}\sigma_{z} = +a_{y}a_{x}\sigma_{y}\sigma_{x} + a_{y}a_{y}\sigma_{y}\sigma_{y} + a_{x}a_{z}\sigma_{z}\sigma_{z}$$

$$= +a_{z}\sigma_{z}a_{x}\sigma_{x} + a_{z}\sigma_{z}a_{y}\sigma_{y} + a_{z}\sigma_{z}a_{z}\sigma_{z} = +a_{z}a_{x}\sigma_{z}\sigma_{x} + a_{z}a_{y}\sigma_{z}\sigma_{y} + a_{z}a_{z}\sigma_{z}\sigma_{z}$$

$$= -i\sigma_{y}$$

$$\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_{z}\sigma_{z} + \sigma_{z}\sigma_$$

To finish we need another symmetry property called *anti-commutation*: $\sigma_x \sigma_y = -\sigma_y \sigma_x$, $\sigma_x \sigma_z = -\sigma_z \sigma_x$, *etc.*

$$\sigma_a^2 = (\sigma \bullet \hat{\mathbf{a}})(\sigma \bullet \hat{\mathbf{a}}) = (a_X \sigma_X + a_Y \sigma_Y + a_Z \sigma_Z)(a_X \sigma_X + a_Y \sigma_Y + a_Z \sigma_Z)$$
$$a_X^2 \mathbf{1} + a_X a_Y \sigma_X \sigma_Y + a_X a_Z \sigma_X \sigma_Z$$
$$= -a_X a_Y \sigma_X \sigma_Y + a_Y^2 \mathbf{1} + a_Y a_Z \sigma_Y \sigma_Z$$
$$-a_X a_Z \sigma_X \sigma_Z - a_Y a_Z \sigma_Y \sigma_Z + a_Z^2 \mathbf{1}$$

OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions. Need to convert this to a 2x2 matrix $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t} |\Psi(0)\rangle$

Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i \sin \omega t$ so matrix exponential becomes powerful.

$$e^{-i\mathbf{H}\cdot t} = e^{-i\left(\begin{array}{cc}A & B-iC\\B+iC & D\end{array}\right)\cdot t} = e^{-i\frac{A-D}{2}\left(\begin{array}{cc}1 & 0\\0 & -1\end{array}\right)\cdot t-iB\left(\begin{array}{cc}0 & 1\\1 & 0\end{array}\right)\cdot t-iC\left(\begin{array}{cc}0 & -i\\i & 0\end{array}\right)\cdot t-i\frac{A+D}{2}\left(\begin{array}{cc}1 & 0\\0 & 1\end{array}\right)\cdot t}$$

$$= e^{-i\sigma\varphi\varphi}e^{-i\omega_{0}\cdot t} = e^{-i\overline{\sigma}\cdot\overline{\omega}\cdot t}e^{-i\omega_{0}\cdot t} \text{ where: } \vec{\varphi} = \begin{pmatrix}\varphi_{A}\\\varphi_{B}\\\varphi_{C}\end{pmatrix} = \vec{\omega}\cdot t = \begin{pmatrix}\omega_{A}\\\omega_{B}\\\omega_{C}\end{pmatrix}\cdot t = \begin{pmatrix}\frac{A-D}{2}\\B\\C\end{pmatrix}\cdot t \text{ and: } \omega_{0} = \frac{A+D}{2}$$

ABCD Time evolution operator

> for constant ,B,C, and D

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

Each σ_x squares to one (unit matrix $\mathbf{1} = \sigma_x \cdot \sigma_x$) and each quaternion squares to minus-one ($-\mathbf{1} = \mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j}$, etc.) just like $i = \sqrt{-1}$.

This is true for spinor components based on *any* unit vector $\hat{\mathbf{a}} = (a_x, a_y, a_z)$ for which $\hat{\mathbf{a}} \cdot \hat{\mathbf{a}} = 1 = a_x^2 + a_y^2 + a_z^2$. To see this just try it out on any $\hat{\mathbf{a}}$ -component: $\sigma_a = \sigma \cdot \hat{\mathbf{a}} = a_x \sigma_x + a_y \sigma_y + a_z \sigma_z$.

 $\sigma_{a}^{2} = (\sigma \bullet \hat{\mathbf{a}})(\sigma \bullet \hat{\mathbf{a}}) = (a_{X}\sigma_{X} + a_{Y}\sigma_{Y} + a_{Z}\sigma_{Z})(a_{X}\sigma_{X} + a_{Y}\sigma_{Y} + a_{Z}\sigma_{Z}\sigma_{Z})$ $a_{X}\sigma_{X}a_{X}\sigma_{X} + a_{X}\sigma_{X}a_{Y}\sigma_{Y} + a_{X}\sigma_{X}a_{Z}\sigma_{Z} = a_{X}a_{X}\sigma_{X}\sigma_{X} + a_{X}a_{Y}\sigma_{X}\sigma_{Y} + a_{X}a_{Z}\sigma_{X}\sigma_{Z}$ $= +a_{Y}\sigma_{Y}a_{X}\sigma_{X} + a_{Y}\sigma_{Y}a_{Y}\sigma_{Y} + a_{Y}\sigma_{Y}a_{Z}\sigma_{Z} = +a_{Y}a_{X}\sigma_{Y}\sigma_{X} + a_{Y}a_{Y}\sigma_{Y}\sigma_{Y} + a_{Y}a_{Z}\sigma_{Y}\sigma_{Z}$ $+a_{Z}\sigma_{Z}a_{X}\sigma_{X} + a_{Z}\sigma_{Z}a_{Y}\sigma_{Y} + a_{Z}\sigma_{Z}a_{Z}\sigma_{Z} + a_{Z}a_{X}\sigma_{Z}\sigma_{X} + a_{Z}a_{Y}\sigma_{Z}\sigma_{Y} + a_{Z}a_{Z}\sigma_{Z}\sigma_{Z}$ $= +a_{Y}\sigma_{Y}a_{X}\sigma_{X} + a_{Z}\sigma_{Z}a_{Y}\sigma_{Y} + a_{Z}\sigma_{Z}a_{Z}\sigma_{Z} = +a_{Y}a_{X}\sigma_{Y}\sigma_{X} + a_{Y}a_{Y}\sigma_{Y}\sigma_{Y} + a_{Y}a_{Z}\sigma_{Y}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{Z} + a_{Z}a_{X}\sigma_{Z}\sigma_{X} + a_{Z}a_{Y}\sigma_{Z}\sigma_{Y} + a_{Z}a_{Z}\sigma_{Z}\sigma_{Z}$ $= +a_{X}\sigma_{X}\sigma_{X} + a_{Z}\sigma_{Z}a_{X}\sigma_{X} + a_{Z}\sigma_{Z}a_{X}\sigma_{X} + a_{Z}a_{X}\sigma_{Z}\sigma_{X} + a_{Z}a_{Y}\sigma_{Z}\sigma_{Y} + a_{Z}a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{X} + a_{Z}a_{X}\sigma_{Z}\sigma_{Y} + a_{Z}a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{X} - a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{X} - a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z}\sigma_{Z} - a_{Z}\sigma_{Z} - a_{Z}$

To finish we need another symmetry property called *anti-commutation*: $\sigma_x \sigma_y = -\sigma_y \sigma_x$, $\sigma_x \sigma_z = -\sigma_z \sigma_x$, *etc.*

$$\sigma_a^2 = (\sigma \bullet \hat{\mathbf{a}})(\sigma \bullet \hat{\mathbf{a}}) = (a_x \sigma_x + a_y \sigma_y + a_z \sigma_z)(a_x \sigma_x + a_y \sigma_y + a_z \sigma_z)$$

$$a_x^2 \mathbf{1} + a_x a_y \sigma_x \sigma_y + a_x a_z \sigma_x \sigma_z$$

$$= -a_x \alpha_y \sigma_x \sigma_y + a_y^2 \mathbf{1} + a_y a_z \sigma_y \sigma_z = (a_x^2 + a_y^2 + a_z^2)\mathbf{1} = \mathbf{1}$$

$$-a_x \alpha_z \sigma_x \sigma_z - a_y a_z \sigma_y \sigma_z + a_z^2 \mathbf{1}$$
So : $\sigma_a^2 = \mathbf{1}$

ANALOGY: 2-State Schrodinger: $i\hbar\partial_t |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ versus Classical 2D-HO: $\partial_t^2 \mathbf{X} = -\mathbf{K} \cdot \mathbf{X}$ Hamilton-Pauli spinor symmetry ($\boldsymbol{\sigma}$ -expansion in ABCD-Types) $\mathbf{H} = \omega_\mu \boldsymbol{\sigma}_\mu$

• Derive σ -exponential time evolution (or revolution) operator $\mathbf{U}=e^{-i\mathbf{H}t}=e^{-i\sigma\mu\omega\mu t}$

Spinor arithmetic like complex arithmetic
 Spinor vector algebra like complex vector algebra spinor exponentials like complex exponentials ("Crazy-Thing"-Theorem)
 Geometry of evolution (or revolution) operator U=e^{-iHt}=e^{-iσ}µωµt The "mysterious" factors of 2 (or 1/2): 2D Spinor vs 3D Spin Vector space 2D Spinor vs 3D vector rotation NMR Hamiltonian: 3D Spin Moment m in B field

 $\begin{aligned} & \text{OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions.} \\ & \text{Need to convert this} \\ & \text{to a } 2x2 \text{ matrix} \quad |\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t} |\Psi(0)\rangle \\ & \text{Hamilton generalized Euler's expansion } e^{-i\omega t} = \cos \omega t - i \sin \omega t \text{ so matrix exponential becomes powerful.} \\ & e^{-i\mathbf{H}\cdot t} = e^{-i\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix}} t = e^{-i\frac{A-D}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}} t - iB\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & -1 \\ 0 & -1 \end{pmatrix} t - iC\begin{pmatrix} 0 & -i \\ i & 0 \\ 0 & -1 \end{pmatrix} t - iC\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{pmatrix} t \\ & \sigma_{C} = \sigma_{Y} \\ & \sigma_{C} = \sigma_{Y} \end{aligned}$

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

 σ -products do dot • and cross × products by symmetries: $\sigma_x \sigma_y = i \sigma_z = -\sigma_y \sigma_x$, $\sigma_z \sigma_x = i \sigma_y = -\sigma_x \sigma_z$, $\sigma_y \sigma_z = i \sigma_x = -\sigma_z \sigma_y$

OBJECTIVE: Evaluate and (*most* important!) visualize matrix-exponent solutions. Need to convert this to a 2x2 matrix $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t} |\Psi(0)\rangle$

Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i \sin \omega t$ so matrix exponential becomes powerful.

$$e^{-i\mathbf{H}\cdot t} = e^{-i\left(\begin{array}{cc}A & B-iC\\B+iC & D\end{array}\right)\cdot t} = e^{-i\frac{A-D}{2}\left(\begin{array}{cc}1 & 0\\0 & -1\end{array}\right)\cdot t-iB\left(\begin{array}{cc}0 & 1\\1 & 0\end{array}\right)\cdot t-iC\left(\begin{array}{cc}0 & -i\\i & 0\end{array}\right)\cdot t-i\frac{A+D}{2}\left(\begin{array}{cc}1 & 0\\0 & 1\end{array}\right)\cdot t}$$

$$= e^{-i\sigma_{\varphi}\varphi}e^{-i\omega_{0}\cdot t} = e^{-i\overline{\sigma}\bullet\overline{\omega}\cdot t}e^{-i\omega_{0}\cdot t} \text{ where: } \vec{\varphi} = \begin{pmatrix}\varphi_{A}\\\varphi_{B}\\\varphi_{C}\end{pmatrix} = \vec{\omega}\cdot t = \begin{pmatrix}\omega_{A}\\\omega_{B}\\\omega_{C}\end{pmatrix}\cdot t = \begin{pmatrix}\frac{A-D}{2}\\B\\C\end{pmatrix}\cdot t \text{ and: } \omega_{0} = \frac{A+D}{2}$$
For A, B

ABCD Time evolution operator

For constant [,B,C, and D

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful. σ -products do dot • *and* cross × products by symmetries: $\sigma_X \sigma_Y = i\sigma_Z = -\sigma_Y \sigma_X$, $\sigma_Z \sigma_X = i\sigma_Y = -\sigma_X \sigma_Z$, $\sigma_Y \sigma_Z = i\sigma_X = -\sigma_Z \sigma_Y$

$$\begin{aligned} \sigma_a \sigma_b &= (\sigma \bullet \mathbf{a})(\sigma \bullet \mathbf{b}) = (a_x \sigma_x + a_y \sigma_y + a_z \sigma_z)(b_x \sigma_x + b_y \sigma_y + b_z \sigma_z) \\ & a_x b_x \mathbf{1} + a_x b_y \sigma_x \sigma_y - a_x b_z \sigma_z \sigma_x \\ &= -a_y b_x \sigma_x \sigma_y + a_y b_y \mathbf{1} + a_y b_z \sigma_y \sigma_z \\ &+ a_z b_x \sigma_z \sigma_x - a_z b_x \sigma_y \sigma_z + a_z b_z \mathbf{1} \end{aligned}$$

$$\begin{aligned} &+ i(a_x b_y - a_y b_x)\sigma_z \\ &+ i(a_x b_y - a_y b_x)\sigma_z \\ &+ i(a_x b_y - a_y b_x)\sigma_z \\ & (1 \ 0 \ 0 \ -1) \left(\begin{array}{c} 0 \ 1 \\ 1 \ 0 \end{array} \right) = \left(\begin{array}{c} 0 \ -1 \\ i \ 0 \end{array} \right) = i\sigma_y \\ & \sigma_x + \sigma_z \\ & \left(\begin{array}{c} 0 \ -1 \\ 1 \ 0 \end{array} \right) \left(\begin{array}{c} 0 \ -1 \\ 1 \ 0 \end{array} \right) = -i \left(\begin{array}{c} 0 \ -i \\ i \ 0 \end{array} \right) = -i\sigma \end{aligned}$$

OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions. Need to convert this $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t}|\Psi(0)\rangle$ to a 2x2 matrix

Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i \sin \omega t$ so matrix exponential becomes powerful.

$$e^{-i\mathbf{H}\cdot t} = e^{-i\sigma} \left(\begin{array}{c} A & B-iC \\ B+iC & D \end{array} \right) \cdot t = e^{-i\sigma} \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) \cdot t - iB \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \cdot t - iC \left(\begin{array}{c} 0 & -i \\ i & 0 \end{array} \right) \cdot t - i\frac{A+D}{2} \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \cdot t$$
$$= e^{-i\sigma} \left(\begin{array}{c} \varphi_A \\ \varphi_B \\ \varphi_C \end{array} \right) = \left(\begin{array}{c} \varphi_A \\ \varphi_B \\ \varphi_C \end{array} \right) = \left(\begin{array}{c} \varphi_A \\ \varphi_B \\ \varphi_C \end{array} \right) \cdot t = \left(\begin{array}{c} \frac{A-D}{2} \\ B \\ \varphi_C \end{array} \right) \cdot t \text{ and: } \omega_0 = \frac{A+D}{2}$$

ABCD Time evolution operator

> For constant *4,B,C, and D*

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $i = -i\sigma_X$, $j = -i\sigma_Y$, and $k = -i\sigma_Z$ powerful.

 σ -products do dot • *and* cross × products by symmetries: $\sigma_x \sigma_y = i \sigma_z = -\sigma_y \sigma_x, \qquad \sigma_z \sigma_x = i \sigma_y = -\sigma_x \sigma_z, \qquad \sigma_y \sigma_z = i \sigma_x = -\sigma_z \sigma_y$ $\sigma_a \sigma_b = (\sigma \bullet \mathbf{a})(\sigma \bullet \mathbf{b}) = (a_x \sigma_x + a_y \sigma_y + a_z \sigma_z)(b_x \sigma_x + b_y \sigma_y + b_z \sigma_z)$ $a_{X}b_{X}\mathbf{1}$ $+a_{X}b_{Y}\sigma_{X}\sigma_{Y}$ $-a_{X}b_{Z}\sigma_{Z}\sigma_{X}$ $+i(a_yb_z-a_zb_y)\sigma_x$ $= -a_Y b_X \sigma_X \sigma_Y + a_Y b_Y \mathbf{1} + a_Y b_Z \sigma_Y \sigma_Z = (a_X b_X + a_Y b_Y + a_Z b_Z) \mathbf{1} + i(a_Z b_X - a_X b_Z) \sigma_Y$ $+i(a_Xb_Y-a_Yb_X)\sigma_Z$ $\sigma_Z \cdot \sigma_X$ $+a_z b_x \sigma_z \sigma_x - a_z b_x \sigma_y \sigma_z + a_z b_z \mathbf{1}$ $\times \mathbf{b}) \bullet \boldsymbol{\sigma} \qquad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = i \boldsymbol{\sigma}_{Y}$ $\overset{\boldsymbol{\sigma}_{X}}{\boldsymbol{\sigma}_{X}} \cdot \boldsymbol{\sigma}_{Z}$ $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = -i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = -i \boldsymbol{\sigma}_{Y}$ Write the product in Gibbs notation. (This is where Gibbs *got* his {**i**,**j**,**k**} notation!)

$$\sigma_a \sigma_b = (\sigma \bullet \mathbf{a})(\sigma \bullet \mathbf{b}) = (\mathbf{a} \bullet \mathbf{b})\mathbf{1} + i(\mathbf{a} \times \mathbf{b})\mathbf{1}$$

OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions. Need to convert this to a 2x2 matrix $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t} |\Psi(0)\rangle$ Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i\sin \omega t$ so matrix exponential becomes powerful. $e^{-i\mathbf{H}\cdot t} = e^{-i\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix}} t = e^{-i\frac{A-D}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \\ -\sigma_A = \sigma_Z \end{pmatrix}} t - iB\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \sigma_B = \sigma_X \end{pmatrix} t - iC\begin{pmatrix} 0 & -i \\ i & 0 \\ \sigma_C = \sigma_Y \end{pmatrix}} t - i\frac{A+D}{2}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} t$

ABCD Time evolution operator

 $= e^{-i\sigma_{\varphi}\varphi}e^{-i\omega_{0}\cdot t} = e^{-i\overline{\sigma}\bullet\overline{\omega}\cdot t}e^{-i\omega_{0}\cdot t} \text{ where: } \vec{\varphi} = \begin{pmatrix} \varphi_{A} \\ \varphi_{B} \\ \varphi_{C} \end{pmatrix} = \vec{\omega}\cdot t = \begin{pmatrix} \omega_{A} \\ \omega_{B} \\ \omega_{C} \end{pmatrix} \cdot t = \begin{pmatrix} \frac{A-D}{2} \\ \frac{B}{2} \\ 0 \end{pmatrix} \cdot t \text{ and: } \omega_{0} = \frac{A+D}{2}$ For constant A, B, C, and D

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

 $\sigma \text{-products do dot} \bullet and \operatorname{cross} \times \operatorname{products by symmetries:} \qquad \sigma_x \sigma_y = i\sigma_z = -\sigma_y \sigma_x, \qquad \sigma_z \sigma_x = i\sigma_y = -\sigma_x \sigma_z, \qquad \sigma_y \sigma_z = i\sigma_x = -\sigma_z \sigma_y, \qquad \sigma_z \sigma_z = i\sigma_x = -\sigma_z \sigma_z, \qquad \sigma_z \sigma_z = i\sigma_z = -\sigma_z \sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z = i\sigma_z, \qquad \sigma_z = i\sigma_z, \qquad \sigma$

Write the product in Gibbs notation. (This is where Gibbs *got* his {i,j,k} notation!)

$$\sigma_a \sigma_b = (\sigma \bullet \mathbf{a})(\sigma \bullet \mathbf{b}) = (\mathbf{a} \bullet \mathbf{b})\mathbf{1} + i(\mathbf{a} \times \mathbf{b}) \bullet \mathbf{a}$$

$$C_{1}$$
 $(10 \cdot 10 \cdot 11)$

(Recall (1.10.29). in complex variable Chapter 10 in Unit 1.)

$$\begin{aligned} A^*B &= (A_X + iA_Y)^* (B_X + iB_Y) = (A_X - iA_Y)(B_X + iB_Y) \\ &= (A_X B_X + A_Y B_Y) + i(A_X B_Y - A_Y B_X) = (\mathbf{A} \bullet \mathbf{B}) + i(\mathbf{A} \times \mathbf{B})_Z \end{aligned}$$

ANALOGY: 2-State Schrodinger: $i\hbar\partial_t|\Psi(t)\rangle = \mathbf{H}|\Psi(t)\rangle$ versus Classical 2D-HO: $\partial^2_t \mathbf{x} = -\mathbf{K} \cdot \mathbf{x}$ Hamilton-Pauli spinor symmetry ($\boldsymbol{\sigma}$ -expansion in ABCD-Types) $\mathbf{H} = \omega_\mu \boldsymbol{\sigma}_\mu$ \blacktriangleright Derive $\boldsymbol{\sigma}$ -exponential time evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\boldsymbol{\sigma}_\mu\omega_\mu t}$ Spinor arithmetic like complex arithmetic Spinor vector algebra like complex vector algebra \mathbf{v} \blacktriangleright Spinor exponentials like complex exponentials ("Crazy-Thing"-Theorem) Geometry of evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\boldsymbol{\sigma}_\mu\omega_\mu t}$ The "mysterious" factors of 2 (or 1/2): 2D Spinor vs 3D Spin Vector space 2D Spinor vs 3D vector rotation NMR Hamiltonian: 3D Spin Moment \mathbf{m} in \mathbf{B} field OBJECTIVE: Evaluate and (*most* important!) visualize matrix-exponent solutions. Need to convert this to a 2x2 matrix $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t} |\Psi(0)\rangle$

Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i \sin \omega t$ so matrix exponential becomes powerful.

$$e^{-i\mathbf{H}\cdot t} = e^{-i\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix}} t = e^{-i\frac{A-D}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}} t - iB\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}} t - iC\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} t - i\frac{A+D}{2}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} t$$
$$= e^{-i\sigma\varphi\varphi} e^{-i\omega_0\cdot t} = e^{-i\overline{\sigma}\cdot\vec{\omega}\cdot t} e^{-i\omega_0\cdot t} \text{ where: } \vec{\varphi} = \begin{pmatrix} \varphi_A \\ \varphi_B \\ \varphi_C \end{pmatrix} = \vec{\omega}\cdot t = \begin{pmatrix} \omega_A \\ \omega_B \\ \omega_C \end{pmatrix} \cdot t = \begin{pmatrix} \frac{A-D}{2} \\ B \\ C \end{pmatrix} \cdot t \text{ and: } \omega_0 = \frac{A+D}{2}$$

ABCD Time evolution operator

For constant *A*,*B*,*C*, and *D*

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

Hamilton is able to generalize Euler's complex rotation operators $e^{+i\varphi}$ and $e^{-i\varphi}$. (Recall (1.10.17).)

$$e^{-i\varphi} = 1 + (-i\varphi) + \frac{1}{2!}(-i\varphi)^2 + \frac{1}{3!}(-i\varphi)^3 + \frac{1}{4!}(-i\varphi)^4 \dots = \begin{bmatrix} 1 & -\frac{1}{2!}\varphi^2 & +\frac{1}{4!}\varphi^4 \dots \end{bmatrix} = \begin{bmatrix} \cos\varphi \end{bmatrix} -i(\varphi & +\frac{1}{3!}\varphi^3 & \cdots) - i(\sin\varphi)$$
OBJECTIVE: Evaluate and (*most* important!) visualize matrix-exponent solutions. Need to convert this to a 2x2 matrix $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t} |\Psi(0)\rangle$

Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i \sin \omega t$ so matrix exponential becomes powerful.

ABCD Time evolution operator

For constant *A*,*B*,*C*, and *D*

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

$$e^{-i\varphi} = 1 + (-i\varphi) + \frac{1}{2!}(-i\varphi)^{2} + \frac{1}{3!}(-i\varphi)^{3} + \frac{1}{4!}(-i\varphi)^{4} \cdots = \begin{bmatrix} 1 & -\frac{1}{2!}\varphi^{2} & +\frac{1}{4!}\varphi^{4} \cdots \end{bmatrix} = \begin{bmatrix} \cos\varphi \end{bmatrix}$$

Note even powers of (-i) are $\pm l$
and odd powers of (-i) are $\pm i$.:

$$(-i)^{0} = +1, \ (-i)^{1} = -i, \ (-i)^{2} = -1, \ (-i)^{3} = +i, \ (-i)^{4} = +1, \ (-i)^{5} = -i, \ etc.$$

OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions. Need to convert this $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t}|\Psi(0)\rangle$

to a 2x2 matrix

Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i \sin \omega t$ so matrix exponential becomes powerful.

$$e^{-i\mathbf{H}\cdot t} = e^{-i\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix}\cdot t} = e^{-i\frac{A-D}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\cdot t-iB\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \sigma_A = \sigma_Z & \sigma_B = \sigma_X & \sigma_C = \sigma_Y \\ \sigma_B = \sigma_X & \sigma_C = \sigma_Y \\ \varphi_B & \varphi_C &$$

ABCD Time evolution operator

For constant A,*B*,*C*, *and D*

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

Hamilton is able to generalize Euler's complex rotation operators $e^{+i\varphi}$ and $e^{-i\varphi}$. (Recall (1.10.17).)

$$e^{-i\varphi} = 1 + (-i\varphi) + \frac{1}{2!}(-i\varphi)^2 + \frac{1}{3!}(-i\varphi)^3 + \frac{1}{4!}(-i\varphi)^4 \dots = \begin{bmatrix} 1 & -\frac{1}{2!}\varphi^2 & +\frac{1}{4!}\varphi^4 \dots \end{bmatrix} = \begin{bmatrix} \cos\varphi \end{bmatrix}$$

 $-i(\varphi + \frac{1}{3!}\varphi^3 \cdots) - i(\sin\varphi)$ (-i)⁰ = +1, (-i)¹ = -i, (-i)² = -1, (-i)³ = +i, (-i)⁴ = +1, (-i)⁵ = -i, etc. Note even powers of (-i) are $\pm l$ and odd powers of (-*i*) are $\pm i$.:

Hamilton replaces (-i) with $-i\sigma_{\varphi}$ in the $e^{-i\varphi}$ power series above to get a sequence of terms just like it.

$$(-i\sigma_{\varphi})^{0} = +\mathbf{1}, \ (-i\sigma_{\varphi})^{1} = -i\sigma_{\varphi}, \ (-i\sigma_{\varphi})^{2} = -\mathbf{1}, \ (-i\sigma_{\varphi})^{3} = +i\sigma_{\varphi}, \ (-i\sigma_{\varphi})^{4} = +\mathbf{1}, \ (-i\sigma_{\varphi})^{5} = -i\sigma_{\varphi}, \ etc.$$

OBJECTIVE: Evaluate and (*most* important!) visualize matrix-exponent solutions. Need to convert this $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t}|\Psi(0)\rangle$ DONE!

Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i \sin \omega t$ so matrix exponential becomes powerful.

$$e^{-i\mathbf{H}\cdot t} = e^{-i\begin{pmatrix}A & B-iC\\B+iC & D\end{pmatrix}\cdot t} = e^{-i\frac{A-D}{2}\begin{pmatrix}1 & 0\\0 & -1\end{pmatrix}\cdot t-iB\begin{pmatrix}0 & 1\\1 & 0\end{pmatrix}\cdot t-iC\begin{pmatrix}0 & -i\\i & 0\end{pmatrix}\cdot t-i\frac{A+D}{2}\begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}\cdot t}$$

$$= e^{-i\sigma_{\varphi}\varphi}e^{-i\omega_{0}\cdot t} = e^{-i\overline{\sigma}\cdot\overline{\omega}\cdot t}e^{-i\omega_{0}\cdot t} \text{ where: } \vec{\varphi} = \begin{pmatrix}\varphi_{A}\\\varphi_{B}\\\varphi_{C}\end{pmatrix} = \vec{\omega}\cdot t = \begin{pmatrix}\omega_{A}\\\omega_{B}\\\omega_{C}\end{pmatrix}\cdot t = \begin{pmatrix}\frac{A-D}{2}\\B\\C\end{pmatrix}\cdot t \text{ and: } \omega_{0} = \frac{A+D}{2}$$

ABCD Time evolution operator

For constant (,*B*,*C*, *and D*

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

$$e^{-i\varphi} = 1 + (-i\varphi) + \frac{1}{2!}(-i\varphi)^2 + \frac{1}{3!}(-i\varphi)^3 + \frac{1}{4!}(-i\varphi)^4 \dots = [1 - \frac{1}{2!}\varphi^2 + \frac{1}{4!}\varphi^4 \dots] = [\cos\varphi]$$

$$-i(\varphi + \frac{1}{3!}\varphi^3 - \dots) - i(\sin\varphi)$$
Note even powers of (-i) are ±1 and odd powers of (-i) are ±i.: $(-i)^0 = +1$, $(-i)^1 = -i$, $(-i)^2 = -1$, $(-i)^3 = +i$, $(-i)^4 = +1$, $(-i)^5 = -i$, etc.
Hamilton replaces (-i) with $-i\sigma_{\varphi}$ in the $e^{-i\varphi}$ power series above to get a sequence of terms just like it.
 $(-i\sigma_{\varphi})^0 = +1$, $(-i\sigma_{\varphi})^1 = -i\sigma_{\varphi}$, $(-i\sigma_{\varphi})^2 = -1$, $(-i\sigma_{\varphi})^3 = +i\sigma_{\varphi}$, $(-i\sigma_{\varphi})^4 = +1$, $(-i\sigma_{\varphi})^5 = -i\sigma_{\varphi}$, etc.
This allows Hamilton to generalize Euler's rotation $e^{-i\varphi}$ to $e^{-i\sigma_{\varphi}\varphi}$ for any $\sigma_{\varphi}\varphi = (\sigma \bullet \overline{\varphi}) = \varphi_A \sigma_A + \varphi_B \sigma_B + \varphi_Z \sigma_Z = (\sigma \bullet \widehat{\varphi})\varphi$

$$e^{-i\varphi} = 1\cos\varphi - i\sin\varphi$$
 generalizes to: $e^{-i\sigma_{\varphi}\varphi} = 1\cos\varphi - i\sigma_{\varphi}\sin\varphi$

OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions. Need to convert this to a 2x2 matrix $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t} |\Psi(0)\rangle$ DONE! Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i\sin \omega t$ so matrix exponential becomes powerful. $e^{-i\mathbf{H}\cdot t} = e^{-i\left(\begin{array}{c}A & B-iC\\B+iC & D\end{array}\right)!t} = e^{-i\frac{A-D}{2}\left(\begin{array}{c}1 & 0\\0 & -1\end{array}\right)!t-iB\left(\begin{array}{c}0 & 1\\1 & 0\\0 & -1\end{array}\right)!t-iC\left(\begin{array}{c}0 & -i\\i & 0\end{array}\right)!t-iC\left(\begin{array}{c}0 & -i\\0 & 0\end{array}\right)!t-i\frac{A+D}{2}\left(\begin{array}{c}1 & 0\\0 & 1\end{array}\right)!t$ $= e^{-i\sigma_{\varphi}\varphi}e^{-i\omega_{\theta}\cdot t} = e^{-i\overline{\omega}\cdot \overline{\omega}\cdot t}e^{-i\omega_{\theta}\cdot t}$ where: $\varphi = \begin{pmatrix}\varphi_{A}\\\varphi_{B}\\\varphi_{C}\end{pmatrix} = \overline{\omega}\cdot t = \begin{pmatrix}\omega_{A}\\\omega_{B}\\\omega_{C}\end{pmatrix}\cdot t = \begin{pmatrix}\frac{A-D}{2}\\B\\C\end{bmatrix}\cdot t$ and: $\omega_{\theta} = \frac{A+D}{2}$ For constant A,B,C, and D

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

$$e^{-i\varphi} = 1 + (-i\varphi) + \frac{1}{2!}(-i\varphi)^{2} + \frac{1}{3!}(-i\varphi)^{3} + \frac{1}{4!}(-i\varphi)^{4} \dots = [1 - \frac{1}{2!}\varphi^{2} + \frac{1}{4!}\varphi^{4} \dots] = [\cos\varphi]$$

$$-i(\varphi + \frac{1}{3!}\varphi^{3} \dots) -i(\sin\varphi)$$
Note even powers of (-i) are ±1 and odd powers of (-i) are ±i:(-i)^{0} = +1, (-i)^{1} = -i, (-i)^{2} = -1, (-i)^{3} = +i, (-i)^{4} = +1, (-i)^{5} = -i, etc.
Hamilton replaces (-i) with $-i\sigma_{\varphi}$ in the $e^{-i\varphi}$ power series above to get a sequence of terms just like it.
 $(-i\sigma_{\varphi})^{0} = +1, (-i\sigma_{\varphi})^{1} = -i\sigma_{\varphi}, (-i\sigma_{\varphi})^{2} = -1, (-i\sigma_{\varphi})^{3} = +i\sigma_{\varphi}, (-i\sigma_{\varphi})^{4} = +1, (-i\sigma_{\varphi})^{5} = -i\sigma_{\varphi}, etc.$
This allows Hamilton to generalize Euler's rotation $e^{-i\varphi}$ to $e^{-i\sigma_{\varphi}\varphi}$ for any $\sigma_{\varphi}\varphi = (\sigma \cdot \vec{\varphi}) = \varphi_{A}\sigma_{A} + \varphi_{B}\sigma_{B} + \varphi_{Z}\sigma_{Z} = (\sigma \cdot \hat{\varphi})\varphi$

$$e^{-i\varphi} = 1\cos\varphi - i\sin\varphi$$
generalizes to: $e^{-i\sigma_{\varphi}\varphi} = 1\cos\varphi - i\sigma_{\varphi}\sin\varphi$

OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions. Need to convert this to a 2x2 matrix $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t} |\Psi(0)\rangle$ DONE! Hamilton generalized Euler's expansion $e^{-i\omega t} = \cos \omega t - i\sin \omega t$ so matrix exponential becomes powerful. $e^{-i\mathbf{H}\cdot t} = e^{-i\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix}} t = e^{-i\frac{A-D}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}} t - iB\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & -1 \end{pmatrix}} t - iC\begin{pmatrix} 0 & -i \\ i & 0 \\ 0 & -1 \end{pmatrix} t - iC\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} t - iC\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}} t - i\frac{A+D}{2}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} t$ $= e^{-i\sigma_{\varphi}\varphi}e^{-i\omega_{\theta}\cdot t} = e^{-i\overline{\sigma}\cdot\overline{\omega}\cdot t}e^{-i\omega_{\theta}\cdot t}$ where: $\varphi = \begin{pmatrix} \varphi_{A} \\ \varphi_{B} \\ \varphi_{C} \end{pmatrix} = \overline{\omega}\cdot t = \begin{pmatrix} \omega_{A} \\ \omega_{B} \\ \omega_{C} \end{pmatrix} \cdot t = \begin{pmatrix} \frac{A-D}{2} \\ B \\ C \end{pmatrix} \cdot t$ and: $\omega_{0} = \frac{A+D}{2}$ For constant A, B, C, and D

Symmetry relations make spinors $\sigma_X = \sigma_B$, $\sigma_Y = \sigma_C$, and $\sigma_Z = \sigma_A$ or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

$$e^{-i\varphi} = 1 + (-i\varphi) + \frac{1}{2!}(-i\varphi)^{2} + \frac{1}{3!}(-i\varphi)^{3} + \frac{1}{4!}(-i\varphi)^{4} \dots = [1 - \frac{1}{2!}\varphi^{2} + \frac{1}{4!}\varphi^{4} \dots] = [\cos\varphi]$$

$$-i(\varphi + \frac{1}{3!}\varphi^{3} \dots) -i(\sin\varphi)$$
Note even powers of (-i) are ±1 and odd powers of (-i) are ±1: (-i)^{0} = +1, (-i)^{1} = -i, (-i)^{2} = -1, (-i)^{3} = +i, (-i)^{4} = +1, (-i)^{5} = -i, etc.
Hamilton replaces (-i) with $-i\sigma_{\varphi}$ in the $e^{-i\varphi}$ power series above to get a sequence of terms just like it.
 $(-i\sigma_{\varphi})^{0} = +1, (-i\sigma_{\varphi})^{1} = -i\sigma_{\varphi}, (-i\sigma_{\varphi})^{2} = -1, (-i\sigma_{\varphi})^{3} = +i\sigma_{\varphi}, (-i\sigma_{\varphi})^{4} = +1, (-i\sigma_{\varphi})^{5} = -i\sigma_{\varphi}, etc.$
This allows Hamilton to generalize Euler's rotation $e^{-i\varphi}$ to $e^{-i\sigma_{\varphi}\varphi}$ for any $\sigma_{\varphi}\varphi = (\sigma \cdot \bar{\varphi}) = \varphi_{A}\sigma_{A} + \varphi_{B}\sigma_{B} + \varphi_{Z}\sigma_{Z} = (\sigma \cdot \hat{\varphi})\varphi$

$$e^{-i\varphi} = 1\cos\varphi - i\sin\varphi$$
generalizes to: $e^{-i\sigma_{\varphi}\varphi} = 1\cos\varphi - i\sigma_{\varphi}\sin\varphi$
Here: $e^{-i\varphi} = -i$

$$Here: e^{-i\varphi} = -i$$

$$Fris -i\sigma_{\varphi} is a REALLY Crazy thing!$$

ANALOGY: 2-State Schrodinger: $i\hbar\partial_t |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ versus Classical 2D-HO: $\partial^2_t \mathbf{x} = -\mathbf{K} \cdot \mathbf{x}$ Hamilton-Pauli spinor symmetry ($\boldsymbol{\sigma}$ -expansion in ABCD-Types) $\mathbf{H} = \omega_\mu \boldsymbol{\sigma}_\mu$ Derive $\boldsymbol{\sigma}$ -exponential time evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\boldsymbol{\sigma}_\mu\omega_\mu t}$ Spinor arithmetic like complex arithmetic Spinor vector algebra like complex vector algebra Spinor exponentials like complex exponentials ("Crazy-Thing"-Theorem) $\boldsymbol{\bullet}$ Geometry of evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\boldsymbol{\sigma}_\mu\omega_\mu t}$ The "mysterious" factors of 2 (or 1/2): 2D Spinor vs 3D Spin Vector space 2D Spinor vs 3D vector rotation NMR Hamiltonian: 3D Spin Moment \mathbf{m} in \mathbf{B} field

OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions.
Need to convert this
to a 2x2 matrix
$$|\Psi(t)\rangle = e^{-i\Pi t} |\Psi(0)\rangle$$
 DONE!
Hamilton generalized Euler's expansion $e^{-i\Omega t} = \cos\Omega t - i\sin\Omega t$ so matrix exponential becomes powerful.
 $e^{-i\Pi t} = e^{-i\left(\begin{array}{c}A & B-iC\\B+iC & D\end{array}\right)t} = e^{-i\frac{A-D}{2}\left(\begin{array}{c}1 & 0\\0 & -1\end{array}\right)t - iB\left(\begin{array}{c}0 & 1\\1 & 0\end{array}\right)t - iC\left(\begin{array}{c}0 & -i\\i & 0\end{array}\right)t - i\frac{d+D}{2}\left(\begin{array}{c}1 & 0\\0 & 1\end{array}\right)t} = e^{-i(\omega_0\sigma_0 + \tilde{\omega}\cdot\tilde{\sigma})t} = e^{-i\omega_0\tau}(1\cos\omega t - i\sigma_{\varphi}\sin\omega t)$
 $e^{-i\Pi t} = e^{-i\left(\begin{array}{c}\varphi_A\\\varphi_B\\\varphi_C\end{array}\right)} = \tilde{\omega} \cdot t = \left(\begin{array}{c}\frac{A-D}{2}\\\omega_C\\\varphi_C\end{array}\right) \cdot t = \left(\begin{array}{c}\frac{A-D}{2}\\B\\C\end{array}\right) \cdot t \text{ and: } \omega_0 = \frac{A+D}{2}$
 $e^{-i\left(\frac{1}{0} & 0\\0 & 1\end{array}\right)c^{\sigma_4} = \left(\begin{array}{c}1 & 0\\0 & 1\end{array}\right)\cos\varphi_A - i\left(\begin{array}{c}1 & 0\\0 & -1\end{array}\right)\sin\varphi_A$
 $e^{-i\left(\frac{1}{0} & 0\\0 & \cos\varphi_A - i\sin\varphi_A\end{array}\right) = \left(\begin{array}{c}e^{-i\varphi_A} & 0\\0 & e^{i\varphi_A}\end{array}\right) = e^{-i(\omega_0\sigma_0 + \tilde{\omega}\cdot\tilde{\sigma}) \cdot t} = \sigma^{-i\sigma_0\varphi}\sin\varphi$
The crazy Thing Theorem:
If $f(\sqrt{2})^2 = -1$
Then:
 $e^{i\int\varphi_{-1}^{0} - i\sin\varphi_{-1}} = (\cos\varphi + i\cos\varphi) + (\cos\varphi) +$

OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions.
Need to convert this
to a 2x2 matrix
$$|\Psi(t)\rangle = e^{-iH \cdot t} |\Psi(0)\rangle$$
 DONE!
Hamilton generalized Euler's expansion $e^{-ikx} = \cos\Omega t - i\sin\Omega t$ so matrix exponential becomes powerful.
 $e^{-iH \cdot t} = e^{-i\left(\frac{A}{B+iC} - \frac{B-iC}{D}\right)t} = e^{-i\frac{A-D}{2}\left(\frac{1}{0} - \frac{1}{0}\right)t - i\beta\left(\frac{0}{1} - \frac{1}{0}\right)t - i\beta\left(\frac{0}{0} - \frac{1}{1}\right)t - i\beta\left(\frac{1}{0} - \frac{1}{0}\right)t - i\frac{A+D}{2}\left(\frac{1}{0} - \frac{1}{1}\right)t} = e^{-i(\omega_0\sigma_0 + \overline{\omega} \cdot \overline{\sigma})\cdot t} = e^{-i\omega_0 \cdot t}(1\cos\omega t - i\sigma_{\varphi}\sin\omega t))$
where: $\overline{\varphi} = \begin{bmatrix} \varphi A \\ \varphi B \\ \varphi C \end{bmatrix} = \overline{\omega} \cdot t = \begin{bmatrix} \frac{A-D}{2} \\ \omega B \\ \omega C \end{bmatrix} \cdot t = \left(\frac{A-D}{2} \\ B \\ C \end{bmatrix} \cdot t \text{ and: } \omega_0 = \frac{A+D}{2}$
 $e^{-i\left(\frac{1}{0} - \frac{1}{0}\right)}e^{-i\frac{1}{2}}e^{-i\frac{1}{0}}e^{-i\frac{1}{2}}e^{-i\frac{1}{0}}e^{-i\frac{1}{2}}e^{-$

$$\begin{array}{c} \text{OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions.} \\ \begin{array}{c} \text{Need to convert this} \\ \text{to a 2x2 matrix} \\ |\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle \\ \text{Really DONE!} \\ \text{Inamilton generalized Fuler's expansion } e^{-ikx} = \cos\Omega - i\sin\Omega t \text{ so matrix exponential becomes powerful.} \\ \begin{array}{c} \text{ABCD Time} \\ \text{avaluate and (most important!)} \\ \text{Vertual or expansion } e^{-ikx} = \cos\Omega - i\sin\Omega t \text{ so matrix exponential becomes powerful.} \\ \begin{array}{c} \text{ABCD Time} \\ \text{avaluate and (most important!)} \\ \text{Vertual or expansion } e^{-ikx} = \cos\Omega - i\sin\Omega t \text{ so matrix exponential becomes powerful.} \\ \begin{array}{c} \text{ABCD Time} \\ \text{avaluate and (most important!)} \\ \text{Vertual or expansion } e^{-ikx} = \cos\Omega t - i\sin\Omega t \text{ so matrix exponential becomes powerful.} \\ \begin{array}{c} \text{ABCD Time} \\ \text{avaluate and (most important!)} \\ \text{Vertual or expansion } e^{-ikx} = \cos\Omega t - i\sin\Omega t \text{ so matrix exponential becomes powerful.} \\ \begin{array}{c} \text{ABCD Time} \\ \text{avaluate and (most important!)} \\ \text{Vertual or expansion } e^{-ikx} = \cos\Omega t - i\sin\Omega t \text{ so matrix exponential becomes powerful.} \\ \begin{array}{c} \text{ABCD Time} \\ \text{ABCD Time} \\ \text{ABCD Time} \\ \text{Vertual or expansion } e^{-ikx} = \cos\Omega t - i\sin\Omega t \text{ so matrix exponential becomes powerful.} \\ \begin{array}{c} \text{ABCD Time} \\ \text{ABCD Time} \\ \text{ABCD Time} \\ \text{Vertual or expansion } e^{-ikx} = \cos\Omega t - i\sin\Omega t \text{ so matrix exponential becomes powerful.} \\ \begin{array}{c} \text{ABCD Time} \\ \text{ABCD Tim$$

$$\begin{array}{cccc} \text{OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions.} & ABCD Time \\ \hline Need to convert this to a 2x2 matrix & |\Psi(t)\rangle = e^{-i(\mathbf{H}t} |\Psi(0)\rangle & Really \text{ DONE!} & evolution \\ \hline to a 2x2 matrix & |\Psi(t)\rangle = e^{-i(\mathbf{H}t} |\Psi(0)\rangle & Really \text{ DONE!} & evolution \\ \hline to a 2x2 matrix & |\Psi(t)\rangle = e^{-i(\mathbf{H}t} |\Psi(0)\rangle & Really \text{ DONE!} & evolution \\ \hline tamilton generalized Euler's expansion & e^{-i\Delta u} = \cos\Omega t - i\sin\Omega t \text{ so matrix exponential becomes powerful.} & ABCD Time \\ \hline e^{-i(\mathbf{H}t)} = e^{-i\left(\frac{A}{B+iC} - \frac{B}{D}\right)^{t}} = e^{-i\frac{A-D}{2}\left(\frac{1}{0} - \frac{0}{0}\right)^{t} - iB\left(\frac{0}{1} - \frac{1}{0}\right)^{t} - iC\left(\frac{0}{i} - \frac{i}{0}\right)^{t} - i\frac{A+D}{2}\left(\frac{1}{0} - \frac{0}{0}\right)^{t}} = e^{-i(\omega_{0}\sigma_{0} + \omega \cdot \overline{\sigma})^{t}} = e^{-i\omega_{0}t} (1\cos\omega t - i\sigma_{\varphi}\sin\omega t) \\ \hline e^{-i(\mathbf{H}t)} = e^{-i\left(\frac{A}{B+iC} - \frac{B}{D}\right)^{t}} = e^{-i\frac{A-D}{2}\left(\frac{1}{0} - \frac{0}{0}\right)^{t} - iB\left(\frac{A-D}{2} - \frac{B}{B}\right)^{t} + iB\left(\frac{A-D}{2} - \frac{B}{B}\right)^{t}$$

We test these operators by making them rotate each other....

$$\begin{array}{c} \text{OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions.} \\ \begin{array}{c} \text{Need to convert this} \\ \text{to a } 2x2 \text{ matrix} \\ |\Psi(t)\rangle = e^{-iH_T} |\Psi(0)\rangle \\ \text{Really DONE!} \\ \end{array}$$

$$\begin{array}{c} \text{OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions.} \\ \begin{array}{c} \text{Need to convert this} \\ \text{to a } 2x2 \text{ matrix} \\ \end{array} | \Psi(t) \rangle = e^{-i\Pi t} | \Psi(0) \rangle \\ \text{Really DONE!} \\ \end{array}$$

$$\begin{aligned} \mathbf{R}(\varphi_{c}) & \cdot \mathbf{\sigma}_{A} \cdot \mathbf{R}^{-1}(\varphi_{c}) \\ &= \begin{pmatrix} \cos\varphi_{c} & -\sin\varphi_{c} \\ \sin\varphi_{c} & \cos\varphi_{c} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos\varphi_{c} & \sin\varphi_{c} \\ -\sin\varphi_{c} & \cos\varphi_{c} \end{pmatrix} \begin{pmatrix} \varphi_{c} & \varphi_{c} & \varphi_{c} \\ -\sin\varphi_{c} & \varphi_{c} & \varphi_{c} \end{pmatrix} \\ &= \begin{pmatrix} \cos^{2}\varphi_{c} - \sin^{2}\varphi_{c} & 2\sin\varphi_{c}\cos\varphi_{c} \\ 2\sin\varphi_{c}\cos\varphi_{c} & \sin^{2}\varphi_{c} - \cos^{2}\varphi_{c} \end{pmatrix} \\ &= \begin{pmatrix} \cos^{2}\varphi_{c} - \sin^{2}\varphi_{c} & 2\sin\varphi_{c}\cos\varphi_{c} \\ 2\sin\varphi_{c}\cos\varphi_{c} & \sin^{2}\varphi_{c} - \cos^{2}\varphi_{c} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cos 2\varphi_{c} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sin 2\varphi_{c} \\ &= & \mathbf{\sigma}_{A} & \cos 2\varphi_{c} + \mathbf{\sigma}_{B} & \sin 2\varphi_{c} \end{pmatrix} \\ &= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \sin 2\varphi_{c} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} + \mathbf{\sigma}_{B} & \cos 2\varphi_{c} \\ &= & -\mathbf{\sigma}_{A} & \sin 2\varphi_{c} & -\mathbf{\sigma}_{A} & -\mathbf$$

ANALOGY: 2-State Schrodinger: $i\hbar\partial_t |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ versus Classical 2D-HO: $\partial^2_t \mathbf{x} = -\mathbf{K} \cdot \mathbf{x}$ Hamilton-Pauli spinor symmetry ($\boldsymbol{\sigma}$ -expansion in ABCD-Types) $\mathbf{H} = \omega_\mu \boldsymbol{\sigma}_\mu$ Derive $\boldsymbol{\sigma}$ -exponential time evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\boldsymbol{\sigma}_\mu\omega_\mu t}$ Spinor arithmetic like complex arithmetic Spinor vector algebra like complex vector algebra Spinor exponentials like complex exponentials ("Crazy-Thing"-Theorem) Geometry of evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\boldsymbol{\sigma}_\mu\omega_\mu t}$ $\boldsymbol{\bullet}$ The "mysterious" factors of 2 (or 1/2): 2D Spinor vs 3D Spin Vector space 2D Spinor vs 3D vector rotation NMR Hamiltonian: 3D Spin Moment \mathbf{m} in \mathbf{B} field

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \frac{A+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{A-D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$= \omega_0 \quad \sigma_0 \quad + \quad \omega_A \quad \sigma_A \quad + \omega_B \quad \sigma_B \quad + \omega_C \quad \sigma_C = \omega_0 \sigma_0 + \vec{\omega} \cdot \vec{\sigma} = \omega_0 \mathbf{1} + \omega \sigma_\omega$$

Symmetry archetypes: *A (Asymmetric-diagonal)* | *B (Bilateral-balanced)* | *C (Chiral-circular-complex...)*

The { σ_1 , σ_A , σ_B , σ_C } are the well known *Pauli-spin operators* { $\sigma_1 = \sigma_0$, $\sigma_B = \sigma_X$, $\sigma_C = \sigma_Y$, $\sigma_A = \sigma_Z$ }

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \frac{A + D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{A - D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
Notation for

$$2D$$
 Spinor space

$$= \omega_0 \sigma_0 + \omega_A \sigma_A + \omega_B \sigma_B + \omega_C \sigma_C = \omega_0 \sigma_0 + \vec{\omega} \cdot \vec{\sigma} = \omega_0 \mathbf{1} + \omega \sigma_\omega$$

$$= \Omega_0 \mathbf{1} + \Omega_A \mathbf{S}_A + \Omega_B \mathbf{S}_B + \Omega_C \mathbf{S}_C = \Omega_0 \mathbf{1} + \vec{\Omega} \cdot \vec{S}$$

$$= \frac{A + D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + (A - D) \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} + 2B \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + 2C \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix}$$
Notation for

$$3D$$
 Vector space
unchanged components A, B, C switch 1/2-factor from ω -velocity to S-momentum
Symmetry archetypes: A (Asymmetric diagonal) B (Bilateral balanced) C (Chiral circular-complex...)

The { σ_l , σ_d , σ_b , σ_c } are the well known *Pauli-spin operators* { $\sigma_l = \sigma_0$, $\sigma_B = \sigma_X$, $\sigma_C = \sigma_Y$, $\sigma_A = \sigma_Z$ }

$$\mathbf{H} = \begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} = \frac{A+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{A-D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
Notation for

$$2D$$
 Spinor space

$$= \omega_0 \quad \sigma_0 \quad + \quad \omega_A \quad \sigma_A \quad + \omega_B \quad \sigma_B \quad + \omega_C \quad \sigma_C \quad = \omega_0 \sigma_0 + \bar{\omega} \cdot \bar{\sigma} = \omega_0 1 + \omega \sigma_\omega$$

$$= \Omega_0 \quad 1 \quad + \quad \Omega_A \quad \mathbf{S}_A \quad + \Omega_B \quad \mathbf{S}_B \quad + \Omega_C \quad \mathbf{S}_C \quad = \Omega_0 1 + \bar{\Omega} \cdot \bar{\mathbf{S}}$$

$$= \frac{A+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + (A-D) \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} + 2B \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + 2C \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix}$$
Notation for

$$3D$$
 Vector space
unchanged components A, B, C switch 1/2-factor from ω -velocity to S-momentum
Symmetry archetypes: A (Asymmetric diagonal) B (Bilateral balanced) C (Chiral circular-complex...)
The $\{\sigma_L, \sigma_A, \sigma_B, \sigma_C\}$ are the well known Pauli-spin operators $\{\sigma_L = \sigma_0, \sigma_B = \sigma_X, \sigma_C = \sigma_Y, \sigma_A = \sigma_Z\}$

The {1, S_A , S_B , S_C } are the *Jordan-Angular-Momentum operators* {1= σ_0 , $S_B=S_X$, $S_C=S_Y$, $S_A=S_Z$ } (Often labeled {J_X, J_Y, J_Z})

$$\mathbf{H} = \begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} = \frac{A+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{A-D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + B\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
Notation for

$$2D \ Spinor \ space$$

$$= \omega_{0} \quad \sigma_{0} \quad + \quad \omega_{A} \quad \sigma_{A} \quad + \omega_{B} \quad \sigma_{B} \quad + \omega_{C} \quad \sigma_{C} \quad = \omega_{0}\sigma_{0} + \tilde{\omega} \cdot \tilde{\sigma} = \omega_{0}1 + \omega \sigma_{\omega}$$

$$= \Omega_{0} \quad 1 \quad + \quad \Omega_{A} \quad \mathbf{S}_{A} \quad + \Omega_{B} \quad \mathbf{S}_{B} \quad + \Omega_{C} \quad \mathbf{S}_{C} \quad = \Omega_{0}\mathbf{1} + \tilde{\Omega} \cdot \tilde{\mathbf{S}}$$

$$= \frac{A+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} + (A-D) \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} + 2B \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \\ 0 \end{pmatrix} + 2C \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix} \quad Notation \ for$$

$$3D \ Vector \ space$$

$$= \omega_{0} \quad \sigma_{0} \quad + \quad \omega_{A} \quad \sigma_{A} \quad + \omega_{B} \quad \sigma_{B} \quad - velocity \ lo \ S-momentum$$
Symmetry archetypes: $A \ (Asymmetric \ diagonal) \mid B \ (Bilateral \ balanced) \mid C \ (Chiral \ circular-complex...)$

$$The \ \{\sigma_{i}, \sigma_{A}, \sigma_{B}, \sigma_{C} \ are \ the \ Ultimed momentum \ operators \ \{\sigma_{i} = \sigma_{0}, \sigma_{B} = \sigma_{X}, \sigma_{C} = \sigma_{Y}, \sigma_{A} = \sigma_{Z} \ (Often \ labeled \ \{J_{X}, J_{Y}, J_{Z} \) \end{pmatrix}$$

$$Notation \ for$$

$$2D \ Spinor \ space$$

$$e^{-i\mathbf{H}t} = e^{-i\left(\frac{A}{B+iC} \quad D\right)^{t}} = e^{-i\left(\omega_{0}\sigma_{0} + \overline{\omega} \cdot \overline{\sigma}\right)^{t}} = e^{-i\omega_{0}\tau}e^{-i\left(\overline{\omega} \cdot \overline{\sigma}\right)^{t}} = e^{-i\omega_{$$

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \frac{A + D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{A - D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\begin{array}{c} \text{Notation for} \\ \text{2D Spinor space} \\ = & & & \\ & &$$

$$\mathbf{H} = \begin{pmatrix} A & B - iC \\ B + iC & D \end{pmatrix} = \frac{A + D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{A - D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\begin{array}{c} Notation \ for \\ 2D \ Spinor \ space \\ = & \Omega_0 & \mathbf{0} & + & \omega_A & \sigma_A & + \omega_B & \sigma_B & + \omega_C & \sigma_C & = \omega_0 \sigma_0 + \tilde{\omega} \cdot \tilde{\sigma} = \omega_0 \mathbf{1} + \omega \sigma_\omega \\ = & \Omega_0 & \mathbf{1} & + & \Omega_A & \mathbf{S}_A & + \Omega_B & \mathbf{S}_B & + \Omega_C & \mathbf{S}_C & = \Omega_0 \mathbf{1} + \tilde{\Omega} \cdot \tilde{\mathbf{s}} \\ = & \frac{A + D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + (A - D) \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} + 2B \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + 2C \begin{pmatrix} 0 & -\frac{i}{2} \\ i & 0 \end{pmatrix}$$

$$\begin{array}{c} Notation \ for \\ 3D \ Vector \ space \\ We \ component \\ unchanged \ components \ A, B, C \ Switch \ 1/2 - factor \ from \ \omega-velocity \ to \ S-momentum \\ Symmetry \ archetypes: \ A \ (Asymmetric \ diagonal) \ B \ (Bilateral \ balanced) \ C \ (Chiral \ circular \ complex...) \\ \hline (Crank'' \ The \ \{\sigma_i, \sigma_a, \sigma_y, \sigma_c\} \ are \ the \ Ull \ nown \ Pauli-spin \ operators \ \{\sigma_i - \sigma_0, \sigma_y - \sigma_x, \sigma_c - \sigma_y, \sigma_a - \sigma_z\} \\ vector \ The \ \{\mathbf{1}, \mathbf{5}_i, \mathbf{5}_y, \mathbf{5}_c\} \ are \ the \ Jordan \ Angular \ A$$

Т

ANALOGY: 2-State Schrodinger: $i\hbar\partial_t |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ versus Classical 2D-HO: $\partial_t^2 \mathbf{x} = -\mathbf{K} \cdot \mathbf{x}$ Hamilton-Pauli spinor symmetry ($\mathbf{\sigma}$ -expansion in ABCD-Types) $\mathbf{H} = \omega_\mu \mathbf{\sigma}_\mu$ Derive $\mathbf{\sigma}$ -exponential time evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\sigma}\mu^{\omega\mu t}$ Spinor arithmetic like complex arithmetic Spinor vector algebra like complex vector algebra Spinor exponentials like complex exponentials ("Crazy-Thing"-Theorem) Geometry of evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\sigma}\mu^{\omega\mu t}$ The "mysterious" factors of 2 (or 1/2): 2D Spinor vs 3D Spin Vector space \mathbf{v} 2D Spinor vs 3D vector rotation NMR Hamiltonian: 3D Spin Moment \mathbf{m} in \mathbf{B} field

Life in 2D Spinor space is "Half-Fast"

ANALOGY: 2-State Schrodinger: $i\hbar\partial_t |\Psi(t)\rangle = \mathbf{H} |\Psi(t)\rangle$ versus Classical 2D-HO: $\partial_t \mathbf{X} = -\mathbf{K} \cdot \mathbf{X}$ Hamilton-Pauli spinor symmetry ($\mathbf{\sigma}$ -expansion in ABCD-Types) $\mathbf{H} = \omega_\mu \sigma_\mu$ Derive $\mathbf{\sigma}$ -exponential time evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\sigma}\mu\omega\mu t$ Spinor arithmetic like complex arithmetic Spinor vector algebra like complex vector algebra Spinor exponentials like complex exponentials Geometry of evolution (or revolution) operator $\mathbf{U} = e^{-i\mathbf{H}t} = e^{-i\sigma}\mu\omega\mu t$ The "mysterious" factors of 2 (or 1/2): 2D Spinor vs 3D Spin Vector space 2D Spinor vs 3D vector rotation \mathbf{v} NMR Hamiltonian: 3D Spin Moment \mathbf{m} in \mathbf{B} field

Hamiltonian for NMR: 3D Spin Moment Vector
$$\mathbf{m} = (m_x, m_y, m_z)$$
 in field $\mathbf{B} = (B_x, B_y, B_z)$
 $\mathbf{H} = \mathbf{m} \cdot \mathbf{B} = g \ \sigma \cdot \mathbf{B} = \begin{pmatrix} gB_Z & gB_X - igB_Y \\ gB_X + igB_Y & -gB_Z \end{pmatrix} = gB_Z \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + gB_X \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + gB_Y \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
 $= gB_Z \ \sigma_A + gB_X \ \sigma_X + gB_Y \ \sigma_Y = \vec{\omega} \cdot \vec{\sigma} = \omega \sigma_\omega$
Notation for
2D Spinor space

Symmetry archetypes: *A (Asymmetric-diagonal)* | *B (Bilateral-balanced)* | *C (Chiral-circular-complex...)*

The { σ_1 , σ_A , σ_B , σ_C } are the well known *Pauli-spin operators* { $\sigma_1 = \sigma_0$, $\sigma_B = \sigma_X$, $\sigma_C = \sigma_Y$, $\sigma_A = \sigma_Z$ }

Hamiltonian for NMR: 3D Spin Moment Vector
$$\mathbf{m} = (m_x, m_y, m_z)$$
 in field $\mathbf{B} = (B_x, B_y, B_z)$
 $\mathbf{H} = \mathbf{m} \cdot \mathbf{B} = g \ \sigma \cdot \mathbf{B} = \begin{pmatrix} gB_Z & gB_X - igB_Y \\ gB_X + igB_Y & -gB_Z \end{pmatrix} = gB_Z \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + gB_X \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + gB_Y \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
 $= gB_Z \ \sigma_A + gB_X \ \sigma_X + gB_Y \ \sigma_Y = \vec{\omega} \cdot \vec{\sigma} = \omega \sigma_\omega$
Notation for
2D Spinor space

Symmetry archetypes: *A (Asymmetric-diagonal) B (Bilateral-balanced) C (Chiral-circular-complex...)*

The { σ_1 , σ_A , σ_B , σ_C } are the well known *Pauli-spin operators* { $\sigma_1 = \sigma_0$, $\sigma_B = \sigma_X$, $\sigma_C = \sigma_Y$, $\sigma_A = \sigma_Z$ }

Notation for 3D Vector space

Spin-1 (3D-real vector) case
Spin-1/2 (2D-complex spinor) case

Euler's state definition using rotations $\mathbf{R}(\alpha, 0, 0)$, $\mathbf{R}(0, \beta, 0)$, and $\mathbf{R}(0, 0, \gamma)$ Spin-1 (3D-real vector) case

See also Alternate treatments & Supplemental references Euler Angle machine: <u>CMwB Unit 6, pg 23</u> Previously in our own Lectures. <u>8 & 9</u> <u>QTofCA Unit 3 Ch. 10A-B</u> Group Theory in QM 5093 Lectures <u>6</u>, <u>7</u>, <u>8</u>, and <u>9-10</u>

Development has begun on a web based version of this tool, but much of the App is at present (10/2/2018), in an indeterminate state. We plan to use <u>Babylon.JS</u>, as a shim to buttress the <u>WebGL</u> (web graphics layer)!

Web based U(2) Calculator - Euler State

Spin-1 (3D-real vector) case

Spin-1 (3D-real vector) case

Spin-1 (3D-real vector) case

Note lab-frame polar coordinates of Z-body vector $|\mathbf{e}_{\overline{Z}}\rangle$

Spin-1 (3D-real vector) case

Note lab-frame polar coordinates of Z-body vector $|\mathbf{e}_{\overline{Z}}\rangle$...and body-frame polar coordinates of Z-lab $|\mathbf{e}_{\overline{Z}}\rangle$

Euler's state definition using rotations $\mathbf{R}(\alpha, 0, 0)$, $\mathbf{R}(0, \beta, 0)$, and $\mathbf{R}(0, 0, \gamma)$ Spin-1 (3D-real vector) case \rightarrow Spin-1/2 (2D-complex spinor) case

3D-real Stokes Vector defines 2D-HO polarization ellipses and spinor states

• Asymmetry $S_A = S_Z$, Balance $S_B = S_X$, and Chirality $S_C = S_Y$

Polarization ellipse and spinor state dynamics The "Great Spectral Avoided-Crossing" and A-to-B-to-A symmetry breaking
3D-real Stokes Vector defines 2D-HO polarization ellipses and spinor states Asymmetry $S_A = S_Z$, Balance $S_B = S_X$, and Chirality $S_C = S_Y$

Each point $\{E_1, E_2\}$ defines 2D-HO phase space or analogous Ψ -space given by 2D amplitude array: This defines real 3D spin vector (S_A , S_B , S_C) "pointing" to a polarization ellipse or state.

$$\begin{array}{c} a_1 \\ a_2 \end{array} \right) = \left(\begin{array}{c} x_1 + ip_1 \\ x_2 + ip_2 \end{array} \right)$$

Asymmetry
$$S_{A} = \frac{1}{2}(a|\sigma_{A}|a) = \frac{1}{2}\begin{pmatrix} a_{1}^{*} & a_{2}^{*} \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = \frac{1}{2}\begin{bmatrix} a_{1}^{*}a_{1} - a_{2}^{*}a_{2} \end{bmatrix} = \frac{1}{2}\begin{bmatrix} x_{1}^{2} + p_{1}^{2} - x_{2}^{2} - p_{2}^{2} \end{bmatrix}$$

Balance $S_{B} = \frac{1}{2}(a|\sigma_{B}|a) = \frac{1}{2}\begin{pmatrix} a_{1}^{*} & a_{2}^{*} \end{pmatrix}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = \frac{1}{2}\begin{bmatrix} a_{1}^{*}a_{2} + a_{2}^{*}a_{1} \end{bmatrix} = \begin{bmatrix} p_{1}p_{2} + x_{1}x_{2} \end{bmatrix}$
Chirality $S_{C} = \frac{1}{2}(a|\sigma_{C}|a) = \frac{1}{2}\begin{pmatrix} a_{1}^{*} & a_{2}^{*} \end{pmatrix}\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = \frac{-i}{2}\begin{bmatrix} a_{1}^{*}a_{2} - a_{2}^{*}a_{1} \end{bmatrix} = \begin{bmatrix} x_{1}p_{2} - x_{2}p_{1} \end{bmatrix}$

3D-real Stokes Vector defines 2D-HO polarization ellipses and spinor states Asymmetry $S_A = S_Z$, Balance $S_B = S_X$, and Chirality $S_C = S_Y$

Each point $\{E_{1}, E_{2}\}$ defines 2D-HO phase space or analogous Ψ -space given by 2D amplitude array: This defines real 3D spin vector (S_{A}, S_{B}, S_{C}) "pointing" to a polarization ellipse or state. $\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = \begin{pmatrix} x_{1} + ip_{1} \\ x_{2} + ip_{2} \end{pmatrix} = A \begin{vmatrix} e^{-i\frac{\alpha}{2}}\cos\frac{\beta}{2} \\ e^{i\frac{\alpha}{2}}\sin\frac{\beta}{2} \\ e^{-i\frac{\gamma}{2}} \end{vmatrix}$

Asymmetry
$$S_A = \frac{1}{2} (a | \sigma_A | a) = \frac{1}{2} (a_1^* a_2^*) (\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} (a_1 \\ a_2 \end{pmatrix} = \frac{1}{2} [a_1^* a_1 - a_2^* a_2] = \frac{1}{2} [x_1^2 + p_1^2 - x_2^2 - p_2^2] = \frac{1}{2} [\cos^2 \frac{\beta}{2} - \sin^2 \frac{\beta}{2}] = \frac{1}{2} [\cos^2 \frac{\beta}{2} - \sin^2 \frac{\beta}{2}]$$

$$Balance \qquad S_B = \frac{1}{2} \left(a |\sigma_B| a \right) = \frac{1}{2} \left(\begin{array}{c} a_1^* & a_2^* \end{array} \right) \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) = \frac{1}{2} \left[a_1^* a_2 + a_2^* a_1 \right] = \left[p_1 p_2 + x_1 x_2 \right] = I \left[-\sin \frac{\alpha + \gamma}{2} \sin \frac{\alpha - \gamma}{2} + \cos \frac{\alpha - \gamma}{2} \right] \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{I}{2} \cos \alpha \sin \beta$$

$$Chirality \quad S_C = \frac{1}{2} \left(a | \sigma_C | a \right) = \frac{1}{2} \left(\begin{array}{c} a_1^* & a_2^* \end{array} \right) \left(\begin{array}{c} 0 & -i \\ i & 0 \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) = \frac{-i}{2} \left[a_1^* a_2 - a_2^* a_1 \right] = \left[x_1 p_2 - x_2 p_1 \right] \\ = I \left[\cos \frac{\alpha + \gamma}{2} \sin \frac{\alpha - \gamma}{2} - \cos \frac{\alpha - \gamma}{2} - \sin \frac{\alpha + \gamma}{2} \right] \cos \frac{\beta}{2} \sin \frac{\beta}{2} \\ = \frac{I}{2} \sin \frac{\alpha}{2} \sin \beta$$

3D-real Stokes Vector defines 2D-HO polarization ellipses and spinor states Asymmetry $S_A = S_Z$, Balance $S_B = S_X$, and Chirality $S_C = S_Y$ Each point $\{E_1, E_2\}$ defines 2D-HO phase space or analogous Ψ -space given by 2D amplitude array: $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = A \begin{vmatrix} e^{-i\frac{\alpha}{2}}\cos\frac{\beta}{2} \\ e^{i\frac{\alpha}{2}}\sin\frac{\beta}{2} \end{vmatrix} e^{-i\frac{\gamma}{2}}$ This defines real 3D spin vector (S_A, S_B, S_C) "pointing" to a polarization ellipse or state. Asymmetry $S_A = \frac{1}{2} (a |\sigma_A| a) = \frac{1}{2} (a_1^* a_2^*) (a_1^* a_2^*) (a_1^* a_2^*) (a_1^* a_2^*) = \frac{1}{2} [a_1^* a_1 - a_2^* a_2] = \frac{1}{2} [x_1^2 + p_1^2 - x_2^2 - p_2^2] = \frac{1}{2} [\cos^2 \frac{\beta}{2} - \sin^2 \frac{\beta}{2}]$ $=\frac{I}{2}\cos\beta$ $Balance \quad S_B = \frac{1}{2} \left(a |\sigma_B| a \right) = \frac{1}{2} \left(a_1^* a_2^* \right) \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) = \frac{1}{2} \left[a_1^* a_2 + a_2^* a_1 \right] = \left[p_1 p_2 + x_1 x_2 \right] = I \left[-\sin \frac{\alpha + \gamma}{2} \sin \frac{\alpha - \gamma}{2} + \cos \frac{\alpha - \gamma}{2} \right] \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{I}{2} \cos \alpha \sin \beta$ $Chirality \quad S_C = \frac{1}{2} \left(a | \sigma_C | a \right) = \frac{1}{2} \left(\begin{array}{c} a_1^* & a_2^* \end{array} \right) \left(\begin{array}{c} 0 & -i \\ i & 0 \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) = \frac{-i}{2} \left[a_1^* a_2 - a_2^* a_1 \right] = \left[x_1 p_2 - x_2 p_1 \right] \\ = I \left[\cos \frac{\alpha + \gamma}{2} \sin \frac{\alpha - \gamma}{2} - \cos \frac{\alpha - \gamma}{2} - \sin \frac{\alpha + \gamma}{2} \right] \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{I}{2} \sin \alpha \sin \beta$ azimuth polar angle α angle β $\sin\alpha \sin\beta$ **General Spin State** $|\Psi\rangle = \mathbf{R}(\alpha\beta\gamma)|\uparrow$ Note phase or "gauge" angle γ is killed in R(3) *a*a*-squares but

lives on in U(2).

3D-real Stokes Vector defines 2D-HO polarization ellipses and spinor states Asymmetry $S_A = S_Z$, Balance $S_B = S_X$, and Chirality $S_C = S_Y$ Each point $\{E_1, E_2\}$ defines 2D-HO phase space or analogous Ψ -space given by 2D amplitude array: $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = A \begin{vmatrix} e^{-i\frac{\alpha}{2}}\cos\frac{\beta}{2} \\ e^{i\frac{\alpha}{2}}\sin\frac{\beta}{2} \end{vmatrix} e^{-i\frac{\gamma}{2}}$ This defines real 3D spin vector (S_A, S_B, S_C) "pointing" to a polarization ellipse or state. Asymmetry $S_A = \frac{1}{2} \left(a |\sigma_A| a \right) = \frac{1}{2} \left(\begin{array}{c} a_1^* & a_2^* \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) = \frac{1}{2} \left[a_1^* a_1 - a_2^* a_2 \right] = \frac{1}{2} \left[x_1^2 + p_1^2 - x_2^2 - p_2^2 \right] = \frac{1}{2} \left[\cos^2 \frac{\beta}{2} - \sin^2 \frac{\beta}{2} \right]$ $=\frac{I}{2}\cos\beta$ $Balance \qquad S_B = \frac{1}{2} \left(a |\sigma_B| a \right) = \frac{1}{2} \left(\begin{array}{c} a_1^* & a_2^* \end{array} \right) \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) = \frac{1}{2} \left[a_1^* a_2 + a_2^* a_1 \right] = \left[p_1 p_2 + x_1 x_2 \right] = I \left[-\sin \frac{\alpha + \gamma}{2} \sin \frac{\alpha - \gamma}{2} + \cos \frac{\alpha - \gamma}{2} \right] \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{I}{2} \cos \alpha \sin \beta$ $Chirality \quad S_C = \frac{1}{2} \left(a | \sigma_C | a \right) = \frac{1}{2} \left(\begin{array}{c} a_1^* & a_2^* \end{array} \right) \left(\begin{array}{c} 0 & -i \\ i & 0 \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) = \frac{-i}{2} \left[a_1^* a_2 - a_2^* a_1 \right] = \left[x_1 p_2 - x_2 p_1 \right] \\ = I \left[\cos \frac{\alpha + \gamma}{2} \sin \frac{\alpha - \gamma}{2} - \cos \frac{\alpha - \gamma}{2} - \sin \frac{\alpha + \gamma}{2} \right] \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{I}{2} \sin \alpha \sin \beta$ azimuth /polar angle α angle β $\psi = 18.44^{\circ} = v$ $S_{Y} = S_{sin} \alpha sin \beta$ $A_1 = a = \sqrt{3}$ 2v) –90° $b=1/\sqrt{3}$ $h=1/\sqrt{3}$ x_1 $2v = 2\psi$ $\omega = 0^{\circ}$ $2\vartheta = 90^{\circ} phase lag \rho$ General Spin State =10/3 $\sqrt{I} = \sqrt{10}/\sqrt{3}$ $|\Psi\rangle = \mathbf{R}(\alpha\beta\gamma)|\uparrow\rangle$ Note phase or "gauge" angle γ is killed in R(3) *a*a*-squares but lives on in U(2).

3D-real Stokes Vector defines 2D-HO polarization ellipses and spinor states Asymmetry $S_A = S_Z$, Balance $S_B = S_X$, and Chirality $S_C = S_Y$ Each point $\{E_1, E_2\}$ defines 2D-HO phase space or analogous Ψ -space given by 2D amplitude array: $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = A \begin{vmatrix} e^{-i\frac{\alpha}{2}}\cos\frac{\beta}{2} \\ e^{i\frac{\alpha}{2}}\sin\frac{\beta}{2} \end{vmatrix} e^{-i\frac{\gamma}{2}}$ This defines real 3D spin vector (S_A, S_B, S_C) "pointing" to a polarization ellipse or state. Asymmetry $S_A = \frac{1}{2} \left(a |\sigma_A| a \right) = \frac{1}{2} \left(\begin{array}{c} a_1^* & a_2^* \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) = \frac{1}{2} \left[a_1^* a_1 - a_2^* a_2 \right] = \frac{1}{2} \left[x_1^2 + p_1^2 - x_2^2 - p_2^2 \right] = \frac{1}{2} \left[\cos^2 \frac{\beta}{2} - \sin^2 \frac{\beta}{2} \right]$ $=\frac{I}{2}\cos\beta$ $Balance \qquad S_B = \frac{1}{2} \left(a |\sigma_B| a \right) = \frac{1}{2} \left(\begin{array}{c} a_1^* & a_2^* \end{array} \right) \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) = \frac{1}{2} \left[a_1^* a_2 + a_2^* a_1 \right] = \left[p_1 p_2 + x_1 x_2 \right] = I \left[-\sin \frac{\alpha + \gamma}{2} \sin \frac{\alpha - \gamma}{2} + \cos \frac{\alpha - \gamma}{2} \right] \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{I}{2} \cos \alpha \sin \beta$ $Chirality \quad S_C = \frac{1}{2} \left(a | \sigma_C | a \right) = \frac{1}{2} \left(\begin{array}{c} a_1^* & a_2^* \end{array} \right) \left(\begin{array}{c} 0 & -i \\ i & 0 \end{array} \right) \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) = \frac{-i}{2} \left[a_1^* a_2 - a_2^* a_1 \right] = \left[x_1 p_2 - x_2 p_1 \right] \\ = I \left[\cos \frac{\alpha + \gamma}{2} \sin \frac{\alpha - \gamma}{2} - \cos \frac{\alpha - \gamma}{2} - \sin \frac{\alpha + \gamma}{2} \right] \cos \frac{\beta}{2} \sin \frac{\beta}{2} = \frac{I}{2} \sin \alpha \sin \beta$ azimuth /polar angle α $\psi = 18.44^{\circ} = v$ angle β $A_1 = a = \sqrt{3}$ $S_{Y} = S_{sin} \alpha_{sin} \beta$ $2\vartheta = 90^{\circ}$ $b=1/\sqrt{3}$ $= h = 1/\sqrt{3}$ $x_1 (2v = 2\psi)$ $\omega = 0^{\circ}$ $2\vartheta = 90^{\circ} phase lag \rho$ I = 10/3**General Spin State** $\sqrt{I} = \sqrt{10}/\sqrt{3}$ x_2 $|\Psi\rangle = \mathbf{R}(\alpha\beta\gamma)|\uparrow\rangle$ $\Psi = 18.44^{\circ}$ $A_{1} = \sqrt{7}/\sqrt{3}$ v = 33.219 $A_2 = 1$ $b=1/\sqrt{2}$ Note phase $\phi = 30$ $\bot x_1$ $2\vartheta = 40.89$ or "gauge" 2ψ angle γ is $S_C = I \cdot 3/10^{\prime}$ ×2φ-*Further explanation of polarization geometry* killed in R(3) $2\vartheta = 40.89^{\circ}$ phase lag ρ S *a*a*-squares but given in Lecture 23 p. 93 to 125 -I=10/3 $\sqrt{I} = \sqrt{10}/\sqrt{3}$ SA=1/5 lives on in U(2). $S_{\mathbf{B}} = \mathbf{I} \cdot \sqrt{3/5}$

Polarization ellipse and spinor state dynamics

Further explanation of polarization geometry given in Lecture 23 p. 93 to 125

Fig. 3.4.5 Polarization variables (a) Stokes real-vector space (ABC) (b) Complex xy-spinor-space (x_1, x_2).

Fig. 3.4.5 Polarization variables (a) Stokes real-vector space (ABC) (b) Complex xy-spinor-space (x_1,x_2) .

The ABC 's of $U(2)$ d	dynamics (A-Type motion)	$\rho = \frac{1}{2}N1 + \mathbf{\vec{S}} \cdot \boldsymbol{\sigma}$
$ \begin{pmatrix} \langle 1 \mathbf{H} 1\rangle & \langle 1 \mathbf{H} 2\rangle \\ \langle 2 \mathbf{H} 1\rangle & \langle 2 \mathbf{H} 2\rangle \end{pmatrix} = \begin{pmatrix} A & B - B - B - B - B - B - B - B - B - B$	$ \stackrel{iC}{=} \frac{A+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{B}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \frac{A-D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $	$\mathbf{H} = \Omega_0 1 + \frac{\mathbf{\Omega}}{2} \bullet \mathbf{\sigma}$
From: QTCA	$= \frac{A+D}{2} 1 + \mathbf{B} \boldsymbol{\sigma}_{\mathrm{B}} + C \boldsymbol{\sigma}_{\mathrm{C}} + \frac{A-D}{2} \boldsymbol{\sigma}_{\mathrm{A}}$	$\vec{\Omega} = \begin{pmatrix} \Omega_{A} \\ \Omega_{B} \end{pmatrix} = \begin{pmatrix} A - D \\ 2B \end{pmatrix}$
Lect. 9(2.12) p.49	$= \frac{A+D}{2} \boldsymbol{\sigma}_{0} + \frac{\boldsymbol{\Omega}_{B}}{2} \boldsymbol{\sigma}_{B} + \frac{\boldsymbol{\Omega}_{C}}{2} \boldsymbol{\sigma}_{C} + \frac{\boldsymbol{\Omega}_{A}}{2} \boldsymbol{\sigma}_{A}$	$\left(\begin{array}{c} \mathbf{\Omega}_{\mathrm{C}} \\ \mathbf{\Omega}_{\mathrm{C}} \end{array}\right) \left(\begin{array}{c} 2\mathbf{C} \\ 2\mathbf{C} \end{array}\right)$

Asymmetric Diagonal *A*-Type motion

Polarization ellipse and spinor state dynamics (*B*-Type motion)

Fig. 3.4.6 Time evolution of a B-type beat. S-vector rotates from A to C to -A to -C and back to A.

BoxIt (*B-Type*) <u>Simulation</u> <u>A=4.0, B=-0.2, C=0, D=4.0</u>

The ABC's of U	U(2) dynamics (B-Type motion)	$\rho = \frac{1}{2}N1 + \vec{\mathbf{S}} \cdot \boldsymbol{\sigma}$
$ \begin{pmatrix} \langle 1 \mathbf{H} 1\rangle & \langle 1 \mathbf{H} 2\rangle \\ \langle 2 \mathbf{H} 1\rangle & \langle 2 \mathbf{H} 2\rangle \end{pmatrix} = \begin{pmatrix} B \\ B \end{pmatrix} $	$ \begin{array}{c} A & B-iC \\ +iC & D \end{array} = \frac{A+D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \frac{A-D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $	$\mathbf{H} = \Omega_0 1 + \frac{\mathbf{\vec{\Omega}}}{2} \bullet \mathbf{\sigma}$
From: QTCA Lect 9(2 12)	$= \frac{A+D}{2} 1 + \mathbf{B} \boldsymbol{\sigma}_{\mathrm{B}} + C \boldsymbol{\sigma}_{\mathrm{C}} + \frac{A-D}{2} \boldsymbol{\sigma}_{\mathrm{A}}$	$\vec{\Omega} = \left(\begin{array}{c} \Omega_{A} \\ \Omega_{B} \end{array} \right) = \left(\begin{array}{c} A - D \\ 2B \end{array} \right)$
p. 54	$= \frac{A+D}{2} \boldsymbol{\sigma}_{0} + \frac{\boldsymbol{\Omega}_{B}}{2} \boldsymbol{\sigma}_{B} + \frac{\boldsymbol{\Omega}_{C}}{2} \boldsymbol{\sigma}_{C} + \frac{\boldsymbol{\Omega}_{A}}{2} \boldsymbol{\sigma}_{A}$	$\left(\begin{array}{c} \Omega_{\rm C} \end{array} \right) \left(\begin{array}{c} 2C \end{array} \right)$

Bilateral-Balanced B-Type motion

3D-real Stokes Vector defines 2D-HO polarization ellipses and spinor states
 Asymmetry S_A = S_Z, Balance S_B = S_X, and Chirality S_C = S_Y

 Polarization ellipse and spinor state dynamics
 The "Great Spectral Avoided-Crossing" and A-to-B-to-A symmetry breaking

Polarization ellipse and spinor state dynamics (C-Type motion)

C (Chiral-circular-complex-Coriolis-cyclotron-curly...current-carrier...)

Fig. 3.4.7 Time evolution of a C-type beat. S-vector rotates from A to B to -A to -B and back to A.

The ABC's of U((2) dynamics (C-Type motion)	$\rho = \frac{1}{2}N1 + \vec{\mathbf{S}} \cdot \boldsymbol{\sigma}$
$ \begin{pmatrix} \langle 1 \mathbf{H} 1\rangle & \langle 1 \mathbf{H} 2\rangle \\ \langle 2 \mathbf{H} 1\rangle & \langle 2 \mathbf{H} 2\rangle \end{pmatrix} = \begin{pmatrix} \mathbf{A} \\ \mathbf{B} + i\mathbf{C} \end{pmatrix} $	$ \begin{pmatrix} B - iC \\ D \end{pmatrix} = \frac{A + D}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \frac{A - D}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $	$\mathbf{H} = \Omega_0^2 1 + \frac{\vec{\Omega}}{2} \bullet \boldsymbol{\sigma}$
From: QTCA	$= \frac{A+D}{2} 1 + \mathbf{B} \boldsymbol{\sigma}_{\mathrm{B}} + C \boldsymbol{\sigma}_{\mathrm{C}} + \frac{A-D}{2} \boldsymbol{\sigma}_{\mathrm{A}}$	$\vec{\Omega} = \begin{pmatrix} \Omega_A \\ \Omega_B \end{pmatrix} = \begin{pmatrix} A - D \\ 2B \end{pmatrix}$
Lect. 9(2.12) p. 58	$= \frac{A+D}{2} \boldsymbol{\sigma}_{0} + \frac{\boldsymbol{\Omega}_{B}}{2} \boldsymbol{\sigma}_{B} + \frac{\boldsymbol{\Omega}_{C}}{2} \boldsymbol{\sigma}_{C} + \frac{\boldsymbol{\Omega}_{A}}{2} \boldsymbol{\sigma}_{A}$	$\left(\begin{array}{c} \Omega_{\rm C} \\ \Omega_{\rm C} \end{array}\right) \left(\begin{array}{c} 2C \\ 2C \end{array}\right)$

Circular-Coriolis... C-Type motion

Tilted-plane polarization AB-Type motion

The Great Spectral "Avoided-Crossing" A to B to A Symmetry breaking described by hyperbolic eigenvalues of $A\sigma_A + B\sigma_B = H = \begin{pmatrix} +A & B \\ B & -A \end{pmatrix}$ $H = \begin{pmatrix} +A & B \\ B & -A \end{pmatrix}$ Secular equation: $\varepsilon^2 - 0 \cdot \varepsilon - (A^2 + B^2)$ gives hyperbolic energy levels: $\varepsilon = \pm \sqrt{A^2 + B^2}$

OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions.

 $|\Psi(t)\rangle = e^{-i\mathbf{H}\cdot t}|\Psi(0)\rangle$ evolution operator

ABCD Time

Hamilton generalized Euler's expansion $e^{-i\Omega t} = \cos \Omega t - i \sin \Omega t$ so matrix exponential becomes powerful.

$$e^{-i\mathbf{H}\cdot t} = e^{-i\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} \cdot t} = e^{-i\frac{A-D}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot t-iB\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot t-iC\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot t-iC\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot t} = e^{-i(\omega_0\sigma_0 + \vec{\omega} \cdot \vec{\sigma}) \cdot t} = e^{-i\omega_0 \cdot t} (1\cos\omega \cdot t - i\sigma_\omega \sin\omega \cdot t)$$

where:
$$\vec{\mathbf{\phi}} = \vec{\mathbf{\omega}} \cdot t = \begin{pmatrix} \boldsymbol{\omega}_{A} \\ \boldsymbol{\omega}_{B} \\ \boldsymbol{\omega}_{C} \end{pmatrix} \cdot t = \begin{pmatrix} \underline{A-D} \\ 2 \\ B \\ C \end{pmatrix} \cdot t \text{ and: } \boldsymbol{\omega}_{0} = \frac{A+D}{2}$$
 and: $\vec{\mathbf{\Theta}} = \vec{\mathbf{\Omega}} \cdot t = \begin{pmatrix} \boldsymbol{\Omega}_{A} \\ \boldsymbol{\Omega}_{B} \\ \boldsymbol{\Omega}_{C} \end{pmatrix} \cdot t = \begin{pmatrix} A-D \\ 2B \\ 2C \end{pmatrix} \cdot t \text{ and: } \boldsymbol{\Omega}_{0} = \frac{A+D}{2}$

Symmetry relations make spinors σ_X , σ_Y , and σ_Z or quaternions $\mathbf{i} = -i\sigma_X$, $\mathbf{j} = -i\sigma_Y$, and $\mathbf{k} = -i\sigma_Z$ powerful.

 $\Theta = \Omega t A$

В

 $\vartheta = 60^{\circ}$

3D crank <u>vector</u> $\vec{\Theta} = \vec{\Omega} \cdot t$ and <u>spin operator</u> **S** defines 3D <u>ABC</u>-rotation with ratio $\frac{1}{2}$ or 2 between Θ_a and $\varphi_a = \frac{1}{2} \Theta_a$ or between **S** and $\sigma = 2$ **S**.

$$e^{-i\boldsymbol{\sigma}\cdot\boldsymbol{\bar{\Theta}}} = e^{-i\boldsymbol{\sigma}\cdot\boldsymbol{\bar{\Theta}}/2} = e^{-i\boldsymbol{S}\cdot\boldsymbol{\bar{\Theta}}} = \mathbf{1}\cos\frac{\Theta}{2} - i\ (\boldsymbol{\sigma}\cdot\boldsymbol{\hat{\Theta}})\sin\frac{\Theta}{2} = \begin{pmatrix} \cos\frac{\Theta}{2} - i\hat{\Theta}_{A}\sin\frac{\Theta}{2} & (-i\hat{\Theta}_{B} - \hat{\Theta}_{C})\sin\frac{\Theta}{2} \\ (-i\hat{\Theta}_{B} + \hat{\Theta}_{C})\sin\frac{\Theta}{2} & \cos\frac{\Theta}{2} + i\hat{\Theta}_{A}\sin\frac{\Theta}{2} \end{pmatrix}$$
Example 3:
Any $\boldsymbol{\Theta} = \boldsymbol{\Omega}t$ -axial rotation

2D angle: $\varphi = \frac{1}{2} \Theta$ 3D Crank vector: $\vec{\Theta} = \Theta \hat{\Theta} = 2\varphi_a \hat{a} = 2\vec{\varphi}$ 2D spin matrix: $\mathbf{S} = \frac{1}{2} \sigma$

The driving $\Theta = \Omega t$ vector is defined by the ABCD of Hamiltonian **H**.

The driven spin vector **S** *defines the state. But, how?*

Fig. 3.4.2 Two views of Hamilton crank vector $\Omega(\varphi, \vartheta)$ *whirling Stokes state vector* S *in* <u>*ABC-space.*</u>

Axis-Angle Dial

Ellipsometry using U(2) symmetry coordinates
Conventional amp-phase ellipse coordinates related to Euler Angles (
$$\alpha\beta\gamma$$
)
2D elliptic frequency ω orbit has amplitudes
 A_{1} and A_{2} , and phase shifts ρ_{1} and $\rho_{2}=-\rho_{1}$.
 $\begin{pmatrix} A_{1}e^{-i(\omega t+\rho_{1})} \\ A_{2}e^{-i(\omega t+\rho_{1})} \\ A_{2}e^{-i(\omega t+\rho_{1})} \end{pmatrix} = \begin{pmatrix} x_{1}+ip_{1} \\ x_{2}+ip_{2} \end{pmatrix} \begin{pmatrix} x_{1}=A_{1}cos(\omega t+\rho_{1}) \\ -p_{1}=A_{1}sin(\omega t+\rho_{1}) \\ x_{2}=A_{2}cos(\omega t-\rho_{1}) \\ -p_{2}=A_{2}sin(\omega t-\rho_{1}) \end{pmatrix} = \begin{pmatrix} x_{1}+ip_{1} \\ x_{2}=ip_{2} \\ x_{2}=A_{2}cos(\omega t-\rho_{1}) \\ -p_{2}=A_{2}sin(\omega t-\rho_{1}) \end{pmatrix} = Let: \underbrace{A_{1}=Acos\beta/2}_{A_{2}} \\ Let: \underbrace{A_{1}=Acos\beta/2}_{A_{2}} \\ Let: \underbrace{A_{1}=Acos\beta/2}_{A_{2}} \\ Ae^{i\frac{\alpha-\gamma}{2}}sin\frac{\beta}{2} \\ Belling \\ Ae^{i\frac{\alpha-\gamma}{2}}cos\frac{\beta}{2} \\ Ae^{i\frac{\alpha-\gamma}{2}}sin\frac{\beta}{2} \\ Ae^{i\frac{\alpha-\gamma}{2}sin\frac{\beta}{2}} \\ Ae^{i\frac{\alpha-$

Euler parameters (α, β, γ, A) in terms of *amp-phase parameters* ($A_1, A_2, \omega t, \rho_1$)

$$\begin{bmatrix} Ae^{-i\frac{\alpha+\gamma}{2}}\cos\frac{\beta}{2}\\ Ae^{i\frac{\alpha-\gamma}{2}}\sin\frac{\beta}{2} \end{bmatrix} = \begin{bmatrix} A_1e^{-i(\omega t+\rho_1)}\\ A_2e^{-i(\omega t-\rho_1)} \end{bmatrix} = \begin{bmatrix} x_1+ip_1\\ x_2+ip_2 \end{bmatrix}$$