Classical Constraints: Comparing various methods (Ch. 9 of Unit 3)

Some Ways to do constraint analysis
Way 1. Simple constraint insertion
Way 2. GCC constraint webs
Find covariant force equations
Compare covariant vs. contravariant forces
Other Ways to do constraint analysis
Way 3. OCC constraint webs
Preview of atomic-Stark orbits
Classical Hamiltonian separability
Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues Multiple multipliers
"Non-Holonomic" multipliers

Simple constrained problem...

...and a variety of solutions

Simple constrained problem...

...and a variety of solutions

Some Ways to do constraint analysis
\rightarrow Way 1. Simple constraint insertion
Way 2. GCC constraint webs
Find covariant force equations
Compare covariant vs. contravariant forces

Ways to analyze a particle m constrained to parabola $y=1 / 2 k x^{2}$ on (x, y)-plane with gravitational potential $V(r)=m g y$.

(a) Constrained motion

Way 1. Lagrangian has the constraint(s) simply inserted.

$$
L=\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y \quad \text { Let: } y=\frac{1}{2} k x^{2} \quad \text { and: } \dot{y}=k x \dot{x}
$$

Ways to analyze a particle m constrained to parabola $y=1 / 2 k x^{2}$ on (x, y)-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.

$$
L=\overbrace{\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y} \quad \text { Let: } y=\frac{1}{2} k x^{2} \quad \text { and: } \dot{y}=k x \dot{x}
$$

$$
L=\frac{1}{2}\left(m \dot{x}^{2}+m(k x \dot{x})^{2}\right)-m \frac{1}{2} g k x^{2} \quad p_{x}=\frac{\partial L}{\partial \dot{x}} \quad f_{x}=\frac{\partial L}{\partial x}
$$

Ways to analyze a particle m constrained to parabola $y=1 / 2 k x^{2}$ on (x, y)-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.

$$
L=\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y
$$

Let: $y=\frac{1}{2} k x^{2}$ and: $\dot{y}=k x \dot{x}$
$L=\frac{1}{2}\left(m \dot{x}^{2}+m(k x \dot{x})^{2}\right)-m \frac{1}{2} g k x^{2}$

$$
p_{x}=\frac{\partial L}{\partial \dot{x}}
$$

$$
f_{x}=\frac{\partial L}{\partial x}
$$

$$
=\frac{m}{2}\left(\dot{x}^{2}+k^{2} x^{2} \dot{x}^{2}-g k x^{2}\right)
$$

Ways to analyze a particle m constrained to parabola $y=1 / 2 k x^{2}$ on (x, y)-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.

$L=\overbrace{\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y}$
Let: $y=\frac{1}{2} k x^{2}$ and: $\dot{y}=k x \dot{x}$
grangian then has one dimensione one momentum p_{x}, and one force f_{x}.

$$
\begin{aligned}
L & =\frac{1}{2}\left(m \dot{x}^{2}+m(k x \dot{x})^{2}\right)-m \frac{1}{2} g k \dot{x} \\
& =\frac{m}{2}\left(\dot{x}^{2}+k^{2} x^{2} \dot{x}^{2}-g k x^{2}\right)
\end{aligned}
$$

$$
\begin{array}{rlr}
p_{x} & =\frac{\partial L}{\partial \dot{x}} & f_{x}=\frac{\partial L}{\partial x} \\
& =m\left(\dot{x}+k^{2} x^{2} \dot{x}\right)
\end{array}
$$

Ways to analyze a particle m constrained to parabola $y=1 / 2 k x^{2}$ on (x, y)-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way_1. Lagrangian has the constraint(s) simply inserted.

$$
L=\overbrace{\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y}
$$

Let: $y=\frac{1}{2} k x^{2}$ and: $\dot{y}=k x \dot{x}$
grangian then has one dimension
$L=\frac{1}{2}\left(m \dot{x}^{2}+m(k x \dot{x})^{2}\right)-m \frac{1}{2} g k \dot{x}^{2}$

$$
p_{x}=\frac{\partial L}{\partial \dot{x}}
$$

$$
f_{x}=\frac{\partial L}{\partial x}
$$

$$
=\frac{m}{2}\left(\dot{x}^{2}+k^{2} x^{2} \dot{x}^{2}-g k x^{2}\right)
$$

$$
=m\left(\dot{x}+k^{2} x^{2} \dot{x}\right)
$$

$$
=m\left(k^{2} x \dot{x}^{2}-g k x\right)
$$

Ways to analyze a particle m constrained to parabola $y=1 / 2 k x^{2}$ on (x, y)-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.
$L=\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y \quad$ Let: $y=\frac{1}{2} k x^{2} \quad$ and $: \dot{y}=k x \dot{x}$

$$
L=\frac{1}{2}\left(m \dot{x}^{2}+m(k x \dot{x})^{2}\right)-m \frac{1}{2} g k \dot{x}^{2} \quad p_{x}=\frac{\partial L}{\partial \dot{x}} \quad f_{x}=\frac{\partial L}{\partial x}
$$

$$
=\frac{m}{2}\left(\dot{x}^{2}+k^{2} x^{2} \dot{x}^{2}-g k x^{2}\right)
$$

$$
=m\left(\dot{x}+k^{2} x^{2} \dot{x}\right)
$$

$$
=m\left(k^{2} x \dot{x}^{2}-g k x\right)
$$

Lagrange equation $\dot{p}_{x}=f_{x}=\frac{\partial}{\partial} \frac{L}{x}$

$$
\dot{p}_{x}=m\left(\ddot{x}+k^{2} x^{2} \ddot{x}+2 k^{2} x \dot{x}^{2}\right)=\frac{\partial}{\partial} \underline{x}
$$

Ways to analyze a particle m constrained to parabola $y=1 / 2 k x^{2}$ on (x, y)-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.

Lagrange equation $\dot{p}_{x}=f_{x}=\frac{\partial}{\partial} \frac{L}{x}$
$\dot{p}_{x}=m\left(\ddot{x}+k^{2} x^{2} \ddot{x}+2 k^{2} x \dot{x}^{2}\right)=\frac{\partial}{\partial} \underline{x}=m\left(k^{2} x \dot{x}^{2}-g k x\right)$

Ways to analyze a particle m constrained to parabola $y=1 / 2 k x^{2}$ on (x, y)-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.

Lagrange equation $\dot{p}_{x}=f_{x}=\frac{\partial}{\partial} \frac{L}{x}$

$$
\begin{aligned}
\dot{p}_{x}=m\left(\ddot{x}+k^{2} x^{2} \ddot{x}+2 k^{2} x \dot{x}^{2}\right)=\frac{\partial}{\partial} \underline{L} & =m\left(k^{2} x \dot{x}^{2}-g k x\right) \\
\dot{p}_{x}=m\left(1+k^{2} x^{2}\right) \ddot{x} & =-m k^{2} x \dot{x}^{2}-m g k x
\end{aligned}
$$

Ways to analyze a particle m constrained to parabola $y=1 / 2 k x^{2}$ on (x, y)-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.

$$
L=\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y \quad \text { Let: } y=\frac{1}{2} k x^{2} \quad \text { and: } \dot{y}=k x \dot{x}
$$

Lagrange equation $\dot{p}_{x}=f_{x}=\frac{\partial}{\partial} \underline{x}$ gives oscillator $\dot{x}=-K(x, \dot{x}) x$

$$
\begin{aligned}
\dot{p}_{x}=m\left(\ddot{x}+k^{2} x^{2} \ddot{x}+2 k^{2} x \dot{x}^{2}\right)=\frac{\partial}{\partial} \frac{L}{x} & =m\left(k^{2} x \dot{x}^{2}-g k x\right) \\
m\left(1+k^{2} x^{2}\right) \ddot{x} & =-m k^{2} x \dot{x}^{2}-m g k x=-m\left(k \dot{x}^{2}-g\right) k x
\end{aligned}
$$

Ways to analyze a particle m constrained to parabola $y=1 / 2 k x^{2}$ on (x, y)-plane with gravitational potential $V(r)=m g y$.
(a) Constrained motion Way 1. Lagrangian has the constraint(s) simply inserted.
$y=\left|\frac{1}{2} k x^{2}\right|_{x=2}^{\mid} x=2 k$

$$
L=\frac{1}{2}\left(m \dot{x}^{2}+m \dot{y}^{2}\right)-m g y \quad \text { Let: } y=\frac{1}{2} k x^{2} \quad \text { and }: \dot{y}=k x \dot{x}
$$

Lagrange equation $\dot{p}_{x}=f_{x}=\frac{\partial L}{\partial x}$ gives oscillator $\dot{x}=-K(x, \dot{x}) x$ with "spring factor" K :

$$
\left.\begin{array}{rl}
\dot{p}_{x}= & m\left(\ddot{x}+k^{2} x^{2} \ddot{x}+2 k^{2} x \dot{x}^{2}\right)=\frac{\partial}{\partial} \frac{L}{x}
\end{array}=m\left(k^{2} x \dot{x}^{2}-g k x\right) \quad \ddot{x}=\frac{-k \dot{x}^{2}-g}{1+k^{2} x^{2}} k x x\right) ~=-m k^{2} x \dot{x}^{2}-m g k x=-m\left(k \dot{x}^{2}-g\right) k x
$$

Simple constrained problem...

...and a variety of solutions

Some Ways to do constraint analysis

Way 1. Simple constraint insertion
\longrightarrow Way 2. GCC constraint webs
Find covariant force equations
Compare covariant vs. contravariant forces
(a) Constrained motion

Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.
(a) Constrained motion

Cartesian
(x, y)
$x=X$
$y=\frac{1}{2} \dot{k} x x^{2}+Y \quad \begin{gathered}\text { transform to }\end{gathered}$

Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

$$
x=q^{i}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

we define shorthand:

$$
X \equiv q^{1} \text { and } Y \equiv q^{2} \text { to }
$$

avoid writing $q_{u e e r}{ }^{\text {Indices }}$
(a) Constrained motion
(b) GCC constraint web

$$
X \equiv q^{1} \text { and } Y \equiv q^{2} \text { to }
$$

avoid writing $q_{\text {ueer }}{ }^{\text {Indices }}$

Find: Covariant \mathbf{E}_{k} in column σ Jacobian J matrix

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x-\frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{X}=\binom{1}{k x}, \mathbf{E}_{Y}=\binom{0}{1}
$$

(a) Constrained motion
(b) GCC constraint web

we define shorthand:

$$
X \equiv q^{1} \text { and } Y \equiv q^{2} \text { to }
$$

avoid writing $q_{\text {ueer }}{ }^{\text {Indices }}$

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Contravariant \mathbf{E}^{k} in rows of Kajobian K

$$
\left(\begin{array}{cl}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K \quad \begin{aligned}
& \mathbf{E}^{X}=\left(\begin{array}{cc}
1 & 0
\end{array}\right) \\
&
\end{aligned} \quad \mathbf{E}^{Y}=\left(\begin{array}{cc}
-k x & 1
\end{array}\right)
$$

(a) Constrained motion
(b) GCC constraint web
(c) GCC E-vectors

we define shorthand:

$$
X \equiv q^{1} \text { and } Y \equiv q^{2} \text { to }
$$

avoid writing $q_{u e e}{ }^{\text {IIndices }}$

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Contravariant \mathbf{E}^{k} in rows of Kajobian K

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{X}=\binom{1}{k x}, \mathbf{E}_{Y}=\binom{0}{1}
$$

$$
\left(\begin{array}{cc}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K
$$

Find: $1^{\text {st }}$ coordinate differentials and velocity relations:

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
1 & 0 \\
+k x & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}
$$

$$
\begin{gathered}
\mathbf{E}^{X}=\left(\begin{array}{cc}
1 & 0
\end{array}\right) \\
\mathbf{E}^{Y}=\left(\begin{array}{cc}
-k x & 1
\end{array}\right) \\
\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}
1 & 0 \\
-k x & 1
\end{array}\right)\binom{\dot{x}}{\dot{y}}
\end{gathered}
$$

(a) Constrained motion
(b) GCC constraint web
(c) GCC E-vectors

$$
X \equiv q^{1} \text { and } Y \equiv q^{2} \text { to }
$$

avoid writing $q_{\text {ueer }}{ }^{\text {Indices }}$

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Contravariant \mathbf{E}^{k} in rows of Kajobian K

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{x}=\binom{1}{k x}, \mathbf{E}_{r}=\binom{0}{1}
$$

$$
\left(\begin{array}{cc}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K
$$

$$
\begin{aligned}
& \mathbf{E}^{X}=\left(\begin{array}{cc}
1 & 0
\end{array}\right) \\
& \mathbf{E}^{Y}=\left(\begin{array}{cc}
-k x & 1
\end{array}\right)
\end{aligned}
$$

$$
\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}
1 & 0 \\
-k x & 1
\end{array}\right)\binom{\dot{x}}{\dot{y}}
$$

Find: $1^{\text {st }}$ coordinate differentials and velocity relations: $\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}1 & 0 \\ +k x & 1\end{array}\right)\binom{\dot{X}}{\dot{Y}} \quad\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}1 & 0 \\ -k x & 1\end{array}\right)\binom{\dot{x}}{\dot{y}}$ Find: Kinetic coefficients $\gamma_{A B}=m g_{A B}$ from $m\left(\begin{array}{ll}\mathbf{E}_{X} \cdot \mathbf{E}_{X} & \mathbf{E}_{X} \cdot \mathbf{E}_{Y} \\ \mathbf{E}_{Y} \cdot \mathbf{E}_{X} & \mathbf{E}_{Y} \cdot \mathbf{E}_{Y}\end{array}\right)=\left(\begin{array}{cc}\gamma_{X X} & \gamma_{X Y} \\ \gamma_{Y X} & \gamma_{Y Y}\end{array}\right)=m\left(\begin{array}{cc}1+k^{2} x^{2} & k x \\ k x & 1\end{array}\right)$

(a) Constrained motion

(b) GCC constraint web
(c) GCC E-vectors

we define shorthand:

$$
X \equiv q^{1} \text { and } Y \equiv q^{2} \text { to }
$$

avoid writing $q_{\text {ueer }}{ }^{\text {Indices }}$

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

Contravariant \mathbf{E}^{k} in rows of Kajobian K

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{x}=\binom{1}{k x}, \mathbf{E}_{r}=\binom{0}{1}
$$

$$
\left(\begin{array}{cc}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K \quad \begin{aligned}
& \mathbf{E}^{X}=\left(\begin{array}{cc}
1 & 0
\end{array}\right) \\
&
\end{aligned} \quad \mathbf{E}^{Y}=\left(\begin{array}{cc}
-k x & 1
\end{array}\right)
$$

Find: $1^{\text {st }}$ coordinate differentials and velocity relations:

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
1 & 0 \\
+k x & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}} \quad\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}
1 & 0 \\
-k x & 1
\end{array}\right)\binom{\dot{x}}{\dot{y}}
$$ Find: Kinetic coefficients $\gamma_{A B}=m g_{A B}$ fron metric tensor $g_{A B}$ or Jacobian square $g_{A B}=J_{A C} J_{B C}=\left(J J^{\dagger}\right)_{A B}$ $m\left(\begin{array}{ll}\mathbf{E}_{X} \cdot \mathbf{E}_{X} & \mathbf{E}_{X} \cdot \mathbf{E}_{Y} \\ \mathbf{E}_{Y} \cdot \mathbf{E}_{X} & \mathbf{E}_{Y} \cdot \mathbf{E}_{Y}\end{array}\right)=\left(\begin{array}{cc}\gamma_{X X} & \gamma_{X Y} \\ \gamma_{Y X} & \gamma_{Y Y}\end{array}\right)=m\left(\begin{array}{cc}\vdots+k^{2} x^{2} & k x \\ k x & 1\end{array}\right)$

$$
\frac{1}{m}\left(\begin{array}{cc}
\mathbf{E}^{X} \cdot \mathbf{E}^{X} & \mathbf{E}^{X} \cdot \mathbf{E}^{Y} \\
\mathbf{E}^{Y} \cdot \mathbf{E}^{Y} & \mathbf{E}^{Y} \cdot \mathbf{E}^{Y} \\
\text { (Need contra- }
\end{array}\right)=\left(\begin{array}{cc}
\gamma^{X X} & \gamma^{X Y} \\
\gamma^{Y X} & \gamma^{Y Y} \\
\text { Hamilton or }
\end{array}\right)=\frac{1}{m}\left(\begin{array}{cc}
1 & -k x \\
-k x & 1+k^{2} x^{2}
\end{array}\right)
$$

(a) Constrained motion
(b) GCC constraint web
(c) GCC E-vectors

shorthand:

$$
X \equiv q^{1} \text { and } Y \equiv q^{2} \text { to }
$$

avoid writing $q_{\text {ueer }}{ }^{\text {Indices }}$

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

$x=X \quad \begin{gathered}\text { Cartesian } \\ (x, y)\end{gathered} \quad X=x$
$y=\frac{1}{2} k x^{2}+Y \quad$ transform to $\quad G C C(X, Y) \quad Y=y-\frac{1}{2} k X^{2}$
Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

Find: Covariant \mathbf{E}_{k} in column ${ }^{\circ}$ Jacobian J matrix \quad Contravariant \mathbf{E}^{k} in rows of Kajobian K

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{X}=\binom{1}{k x}, \mathbf{E}_{Y}=\binom{0}{1}
$$

$$
\left(\begin{array}{cc}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K
$$

$$
\begin{aligned}
& \mathbf{E}^{X}=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
& \mathbf{E}^{Y}=\left(\begin{array}{ll}
-k x & 1
\end{array}\right)
\end{aligned}
$$

Find: $1^{\text {st }}$ coordinate differentials and evelocity relations:

$$
\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}
1 & 0 \\
-k x & 1
\end{array}\right)\binom{\dot{x}}{\dot{y}}
$$

$$
\text { Find: Kinetic coefficients } \gamma_{A B}=m g_{A B} \text { froǹ hatric tensor } g_{A B} \text { or Jacobian square } g_{A B}=J_{A C} J_{B C}=(J J \dagger)_{A B}
$$

$$
m\left(\begin{array}{ll}
\mathbf{E}_{X} \cdot \mathbf{E}_{X} & \mathbf{E}_{X} \cdot \mathbf{E}_{Y} \\
\mathbf{E}_{Y} \cdot \mathbf{E}_{X} & \mathbf{E}_{Y} \cdot \mathbf{E}_{Y}
\end{array}\right)=\left(\begin{array}{cc}
\gamma_{X X} & \gamma_{X Y} \\
\gamma_{Y X} & \gamma_{Y Y}
\end{array}\right)=m\left(\begin{array}{cc}
1+k^{2} x^{2} & k x \\
k x \times 1
\end{array}\right) \quad \frac{1}{m}\left(\begin{array}{ll}
\mathbf{E}^{X} \cdot \mathbf{E}^{X} & \mathbf{E}^{X} \cdot \mathbf{E}^{Y} \\
\mathbf{E}^{Y} & \mathbf{E}^{Y} \\
\mathbf{E}^{Y} \cdot \mathbf{E}^{Y} \\
\text { (Need contra- }
\end{array}\right)=\left(\begin{array}{cc}
\gamma^{X X} & \gamma^{X Y} \\
\gamma^{Y X} & \gamma^{Y Y} \\
\text { Hamilton or }
\end{array}\right)=\frac{1}{m}\left(\begin{array}{cc}
1 & -k x \\
-k x & 1+k^{2} x^{2}
\end{array}\right)
$$

$$
\text { Find: Kinetic energy: } \quad T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2}\left(\dot{\gamma} X X \dot{X}^{2}+2 \dot{\gamma}_{X Y} X Y+\gamma_{Y Y} \dot{Y}^{2}\right)=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}\right]
$$

(a) Constrained motion

(b) GCC constraint web $\frac{1}{2} k x^{2}+0$

Incorporate the constraint curve $y=1 / 2 k x^{2}$ into any matching GCC web.

$$
x=q^{1}=X \quad y=1 / 2 k x^{2}+q^{2}=k X^{2} / 2+Y
$$

(c) GCC E-vectors

we define shorthand:
$X \equiv q^{l}$ and $Y \equiv q^{2}$ to
avoid writing $q_{\text {ueer }}{ }^{\text {Indices }}$

Find: Covariant \mathbf{E}_{k} in column of Jacobian J matrix \quad Contravariant \mathbf{E}^{k} in rows of Kajobian K

$$
J=\left(\begin{array}{cc}
\frac{\partial x}{\partial X}=1 & \frac{\partial x}{\partial Y}=0 \\
\frac{\partial y}{\partial X}=+k x & \frac{\partial y}{\partial Y}=1
\end{array}\right) \quad \mathbf{E}_{x}=\binom{1}{k x}, \mathbf{E}_{r}=\binom{0}{1}
$$

$$
\left(\begin{array}{cc}
\frac{\partial X}{\partial x}=1 & \frac{\partial X}{\partial y}=0 \\
\frac{\partial Y}{\partial x}=-k x & \frac{\partial Y}{\partial y}=1
\end{array}\right)=K
$$

$$
\begin{aligned}
\mathbf{E}^{x} & =\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
\mathbf{E}^{y} & =\left(\begin{array}{ll}
-k x & 1
\end{array}\right)
\end{aligned}
$$

Find: $1^{\text {st }}$ coordinate differentials and velocity relations:

$$
\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{cc}
1 & 0 \\
-k x & 1
\end{array}\right)\binom{\dot{x}}{\dot{y}}
$$

$$
\text { Find: Kinetic coefficients } \gamma_{A B}=m g_{A B} \text { from thenc tensor } g_{A B} \text { or Jacobian square } g_{A B}=J_{A C} J_{B C}=(J J \dagger)_{A B}
$$

$$
m\left(\begin{array}{cc}
\mathbf{E}_{X} \cdot \mathbf{E}_{X} & \mathbf{E}_{X} \cdot \mathbf{E}_{Y} \\
\mathbf{E}_{Y} \cdot \mathbf{E}_{X} & \mathbf{E}_{Y} \cdot \mathbf{E}_{Y}
\end{array}\right)=\left(\begin{array}{ll}
\gamma_{X X} & \gamma_{X Y} \\
\gamma_{Y X} & \gamma_{Y Y}
\end{array}\right)=m\left(\begin{array}{cc}
1+k^{2} x^{2} & k x_{1} \\
k x & 1
\end{array}\right) \quad \frac{1}{m}\left(\begin{array}{cc}
\mathbf{E}^{X} \cdot \mathbf{E}^{X} & \mathbf{E}^{X} \cdot \mathbf{E}^{Y} \\
\mathbf{E}^{Y} \cdot \mathbf{E}^{Y} & \mathbf{E}^{Y} \cdot \mathbf{E}^{Y} \\
\text { (Need contra- } \gamma
\end{array}\right)=\left(\begin{array}{cc}
\gamma^{X X} & \gamma^{X Y} \\
\gamma^{Y X} & \gamma^{Y Y} \\
\text { Hamilton or Riemann equations) }
\end{array}\right)=\frac{1}{m}\left(\begin{array}{cc}
-k x \\
-k x & 1+k^{2} x^{2}
\end{array}\right)
$$

$$
\text { Find: Kinetic energy: } \quad T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2}\left(\hat{\gamma}_{X X} \dot{X}^{2}+2 \gamma_{X Y} X Y Y+\gamma_{Y Y} \dot{Y}^{2}\right)=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}\right]
$$

$$
\text { ...and Lagrangian: } \quad L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right] \quad V=m g y=m g\left(Y+k X^{2} / 2\right)
$$

Simple constrained problem...

...and a variety of solutions

Some Ways to do constraint analysis

Way 1. Simple constraint insertion
Way 2. GCC constraint webs
Find covariant force equations
Compare covariant vs. contravariant forces

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$ $\binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}\text { (metric } \gamma_{A B} \\ 1+k^{2} X^{2} & k X \\ k X & 1\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{c}\frac{\partial L}{\partial} \dot{X} \\ \frac{\partial L}{\partial} \\ \partial \bar{Y}\end{array}\right)$ (1st Lagrange equations) $\quad p_{m}=\frac{\partial \underline{L}}{\partial \dot{q}^{m}}$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial \dot{X}}}{\frac{\partial L}{\partial} \dot{Y}} \quad \text { (1st Lagrange equations) } \quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
\text { metric }^{2}+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial}} \quad\left(2^{\text {nd }} \text { Lagrange equations) } \quad \dot{p}_{m}=\frac{\partial \underline{L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}}\right.
\end{aligned}
$$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
{ }^{(\text {metric }} \gamma^{2}(B) \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial \dot{X}}}{\frac{\partial L}{\partial \dot{Y}}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
\left(\text { metric } \gamma_{1 B}\right. \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}
\end{aligned}
$$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X_{1}^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
\text { (metric } & \gamma_{A B} \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{c}
\frac{\partial L}{\partial} \\
\frac{\partial L}{\partial} \\
\frac{\partial}{\dot{Y}}
\end{array}\right) \\
& \text { (1st Lagrange equationis) } \quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}
\end{aligned}
$$

No constraints added yet to these equations (only gravity in L) so covariant force $F_{m}^{\text {cov }}$ is zero. $\left(F_{X}^{c o v}=0=F_{Y}^{c o v}\right)$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X_{1}^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
\text { (metric } & \gamma_{A B} \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\left(\begin{array}{c}
\frac{\partial L}{\partial} \\
\frac{\partial L}{\partial} \\
\frac{\partial}{\dot{Y}}
\end{array}\right) \\
& \text { (1st Lagrange equationis) } \quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
\text { (metric } \left.\gamma_{A B}\right) \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial V}} \\
& \text { (2nd Lagrange equations) } \quad \dot{p} \frac{\partial}{n^{n}} \frac{\partial \underline{L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial J}}{\frac{\partial L}{\partial} \bar{Y}}=m\binom{k^{2} \dot{X} \dot{X}^{2}+k \dot{X} \dot{Y}}{-g k X}
\end{aligned}
$$

No constraints added yet to these equations (only gravaty in L) so covariant force $F_{m}^{c o v}$ is zeror ($F_{X}^{c o v}=0=F_{Y}^{c o v}$)

$$
\binom{\dot{p}_{X}-\frac{\partial L}{\partial} \tilde{X}}{\dot{p}_{Y}-\frac{\partial L}{\partial}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+m\left(\begin{array}{cc}
2 k^{2} X \dot{X} & k \dot{X} \\
k \dot{X} & 0
\end{array}\right)\binom{\dot{X}}{\dot{Y}}-m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
$$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \binom{p_{X}}{p_{Y}}=m\left(\begin{array}{cc}
{ }^{(\text {metric }} \gamma^{2}(B) \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial \dot{X}}}{\frac{\partial L}{\partial \dot{Y}}} \\
& \text { (1 }{ }^{\text {st }} \text { Lagrange equation } \stackrel{p_{m}}{ }=\frac{\partial \underline{L}}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
\text { (metric } \gamma_{A B)} \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}} \\
& \text { (2 } 2^{\text {nd }} \text { Lagrange equations) } \dot{p}_{m}=\frac{\partial \underline{L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}}{-g k X}
\end{aligned}
$$

No constraints added yet to these equation's (only gravity in L) so covariaint force $F_{m}^{\text {cov }}$ is zero. $\left(F_{X}^{c o v}=0=F_{Y}^{c o v}\right.$)

$$
\begin{aligned}
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+ \\
& m\binom{k^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+g} \\
& =\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
\end{aligned}
$$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{X} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \text { (1 }{ }^{\text {st }} \text { Lagrange equations) } \quad p_{m}=\frac{\partial \underline{L}}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
\left(\text { metric } \gamma_{1 B}\right. \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}} \\
& \text { (2 }{ }^{\text {na }} \text { Lagrange equations) } \dot{p}_{m}=\frac{\partial L}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} \dot{X} \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}
\end{aligned}
$$

No constraints added yet to these equations (only gravity in L) so covariant force $F_{m}^{\text {cove }}$ is zero. ($F_{X}^{c o v}=0=F_{Y}^{c o v}$)

$$
\begin{aligned}
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+m\left(\begin{array}{c}
2 k^{2} X \dot{X} \\
k \dot{X} \\
\cdots \dot{X} \\
\cdots
\end{array}\binom{\dot{X}}{\dot{Y}}-m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{(\text { cancel) }}=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}\right. \\
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+\quad m\binom{k^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+g} \\
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=\quad m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+k X \ddot{Y}+k^{2} X \dot{X}^{2}}{\cdots k X Z X X X X X X} \\
& \begin{array}{l}
=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}} \\
=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
\end{array}
\end{aligned}
$$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X_{1}^{2}\right]$

$$
\begin{aligned}
& \text { (1 }{ }^{\text {st }} \text { Lagrange equations) } \quad p_{m}=\frac{\partial \underline{L}}{\partial q^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
{ }^{\text {(metric }} \gamma_{\text {dB }} \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \bar{Y}}} \\
& \text { (2 } 2^{\text {nd }} \text { Lagrange equations) } \quad \dot{p} m_{m}: \frac{\partial \underline{L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}}{-g k X}
\end{aligned}
$$

No constraints added yet to these equations (only gravity in L) so covariant force $F_{m}^{\text {cove }}$ is zero. $\left(F_{X}^{c o v}=0=F_{Y}^{c o v}\right.$)

$$
\begin{aligned}
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & \cdots
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+\quad\binom{2^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+g} \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}} \\
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=\quad m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+k X \ddot{Y}+k^{2} X \dot{X}^{2}-q k X}{\cdots k X X X+\ddot{Y}+k \dot{X}^{2}+g^{\prime}} \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
\end{aligned}
$$

Use $\gamma^{A B}$ to get contra-(Riemann) equations. (Contra-force $F_{\text {con }}^{m}$ is zero until we turn on constraint $Y=$ coast.)

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \text { (}{ }^{\text {st }} \text { Lagrange equations) } \quad p_{m}=\frac{\partial \underline{L}}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
\left(\text { metric } \gamma_{n(1)}\right. \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}} \\
& \text { (2 }{ }^{\text {nd }} \text { Lagrange equations) } \quad \dot{p} m_{m}=\frac{\partial \underline{\partial L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \bar{Y}}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}}{-g}
\end{aligned}
$$

No constraints added yet to these equation's (only gravity in L) so covariant force $F_{m}^{\text {cov }}$ is-zero. ($F_{X}^{c o v}=0=F_{Y}^{c o v}$)

$$
\begin{aligned}
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & \cdots
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+\quad m\binom{k^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+g} \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}} \\
& \left.\binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=\quad \because{ }^{\prime}\left(1+k^{2} X^{2}\right) \ddot{X}+k X \ddot{Y}+k^{2} X \dot{X}^{2}+g k X\right)=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
\end{aligned}
$$

Use $\gamma^{A B}$ to get contra-(Rienanin) equations. (Contra-force $F_{\text {con }}$ is zer until we turn on constraint $Y=$ const.) $\frac{1}{m}\left(\begin{array}{cc}1 & -k X \\ -k X & 1+k^{2} X^{2}\end{array}\right)\binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial \bar{Y}}}=\binom{\ddot{X}}{\ddot{Y}}+\left(\begin{array}{cc}\text { (inverse of } \gamma_{1(k)} \\ 1 & -k X \\ -k X & 1+k^{2} X^{2}\end{array}\right)\binom{k X\left(k \dot{X}^{2}+g\right)}{k \dot{X}^{2}+g} \quad=\binom{0}{0}=\binom{F_{\text {con }}^{X}}{F_{\text {con }}^{Y}}$

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \text { (}{ }^{\text {st }} \text { Lagrange equations) } \quad p_{m}=\frac{\partial \underline{L}}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
\left(\text { metric } \gamma_{n(1)}\right. \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}} \\
& \text { (2 }{ }^{\text {nd }} \text { Lagrange equations) } \dot{p}_{m}: \frac{\partial \underline{L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial \bar{Y}}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}}{-g}
\end{aligned}
$$

No constraints added yet to these equation's (only gravity in L) so covariant force $F_{n}^{\text {cov }}$ is zero. ($F_{X}^{\text {cov }}=0=F_{Y}^{\text {cov }}$)

$$
\begin{aligned}
& \binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & \cdots
\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+\quad m\binom{k^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+g} \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
\end{aligned}
$$

Use $\gamma^{A B}$ to get contra-(Rierianin) equations. (Contra-force $F_{c o n}^{m}$ is zer δ until we turn on constraint $Y=$ const.)

Find: Lagrange equations from Lagrangian $L=T-V=m\left[\frac{1}{2}\left(1+k^{2} X^{2}\right) \dot{X}^{2}+k X \dot{X} \dot{Y} \dot{Y}+\frac{1}{2} \dot{Y}^{2}-g Y-\frac{g k}{2} X^{2}\right]$

$$
\begin{aligned}
& \text { (1 }{ }^{\text {st }} \text { Lagrange equations } \leqslant p_{m}=\frac{\partial \underline{L}}{\partial \dot{q}^{m}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=\frac{d}{d t}\left[m\left(\begin{array}{cc}
\text { (metric } \gamma_{A B E} \\
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}\right]=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}} \\
& \text { (2 }{ }^{\text {nd }} \text { Lagrange equations) } \dot{p}_{m}: \frac{\partial \underline{L}}{\partial q^{m}}+F_{m}^{\mathrm{cov}} \\
& \binom{\dot{p}_{X}}{\dot{p}_{Y}}=m\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right) \frac{d}{d t}\binom{\dot{X}}{\dot{Y}}+m \frac{d}{d t}\left(\begin{array}{cc}
1+k^{2} X^{2} & k X \\
k X & 1
\end{array}\right)\binom{\dot{X}}{\dot{Y}}=\binom{\frac{\partial L}{\partial X}}{\frac{\partial L}{\partial Y}}=m\binom{k^{2} X \dot{X}^{2}+k \dot{X} \dot{Y}-g k X}{-g}
\end{aligned}
$$

No constraints added yet to these equation's (only gravity in L) so covariant force $F_{\text {cov }}^{\text {cov }}$ is-zero. ($F_{X}^{c o v}=0=F_{Y}^{c o v}$)

$\binom{\dot{p}_{X}-\frac{\partial L}{\partial X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\left(\begin{array}{cc}1+k^{2} X^{2} & k X \\ k X \quad \cdots & 1\end{array}\right)\binom{\ddot{X}}{\ddot{Y}}+\quad m\binom{k^{2} X \dot{X}^{2}+g k X}{k \dot{X}^{2}+g} \quad=\binom{0}{0}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}$

Use $\gamma^{A B}$ to get contra-(Rierianin) equations. (Contra-force $F_{c o n}^{m}$ is zer δ until we turn on constraint $Y=$ const.)
 $\frac{1}{m}\left(\begin{array}{cc}1 & -k X \\ -k X & 1+k^{2} x^{2}\end{array}\right)\binom{\dot{p}_{X}-\frac{\partial L}{\partial L}}{\dot{P}_{Y}-\frac{\partial L}{\partial \underline{Y}}}=\binom{\ddot{X}}{\ddot{Y}}+\quad\binom{0}{\ddot{k} \dot{X}^{2}+g}=\binom{\ddot{X}}{\ddot{Y}+k \dot{X}^{2}+g} \quad=\binom{0}{0}=\binom{F_{\text {con }}^{X}}{F_{\text {con }}^{Y}} \quad \ddot{x}=0=\ddot{X}$

Simple constrained problem...

...and a variety of solutions

Some Ways to do constraint analysis

Way 1. Simple constraint insertion
Way 2. GCC constraint webs
Find covariant force equations
\longrightarrow Compare covariant vs. contravariant forces

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {cov }}$
$\mathbf{F}=F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}=F_{X}^{c o v} \nabla X+F_{Y}^{c o v} \nabla Y$ (F_{A} are coefficients of normal vectors E^{A})

Frictional force components are contravariant Frictional or driving forces have contravariant components $\quad F_{\text {con }}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial X}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

(c) GCC E-vectors

General case repeated from p. 34

$$
\binom{\dot{p}_{X}-\frac{\partial L}{\partial} \underline{X}}{\dot{p}_{Y}-\frac{\partial L}{\partial} \bar{Y}}=m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+k X \ddot{Y}+k^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+\ddot{Y}+k \dot{X}^{2}+g}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
$$

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {cov }}$
$\mathbf{F}=\underset{\left(F_{A} \text { are coefficients of normal vectors } \mathbf{E}^{A} \text {) }\right.}{F_{X}^{c o v} \mathbf{E}^{X}}+F_{Y}^{c o v} \mathbf{E}^{Y}=F_{Y}^{c o v} \nabla X+F_{Y}^{\operatorname{cov}} \nabla Y$

Frictional force components are contravariant
Frictional or driving forces have contravariant components $\quad F_{c o n}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial X}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

Frictionless constraint of mass m by parabola $Y=$ const. is normal to parabola (along its gradient ∇Y.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

General case repeated from p. 34

$$
\binom{\dot{p}_{X}-\frac{\partial L}{\partial} \bar{X}}{\dot{p}_{Y}-\frac{\partial L}{\partial Y}}=m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+k X \ddot{Y}+k^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+\ddot{Y}+k \dot{X}^{2}+g}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
$$

(c) GCC E-vectors

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {cov }}$
$\left.\mathbf{F}=F_{\left(F_{A} \text { are coefficients of orrmal vectors }\right.}^{c o v} \mathbf{E}^{X}\right)$
Frictionless constraint of mass m by parabola $Y=$ const. is normal to parabola (along its gradient ∇Y.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y}$).

Frictional force components are contravariant
Frictional or driving forces have contravariant components $\quad F_{\text {con }}^{A}$

$$
\underset{\text { (FA are coefficients of tangent vectors }}{\mathbf{F}=F_{c o n}^{X}(c)} \frac{\partial}{\partial X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{\text {-vectors }}^{X} \frac{\partial \mathbf{r}}{Y}
$$

$\dot{Y}=0=\ddot{Y}$

General case repeated from p. 34

$$
\binom{\dot{p}_{X}-\frac{\partial L}{\partial} \underline{X}}{\dot{p}_{Y}-\frac{\partial L}{\partial} \bar{Y}}=m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+k X \ddot{Y}+k^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+\ddot{Y}+k \dot{X}^{2}+g}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
$$

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {cov }}$
$\mathbf{F}=\underset{\left(F_{A} \text { are coefficients of normal vectors } \mathbf{E}^{A}\right)}{F_{X}^{c o v}} \mathbf{E}^{X} F_{Y}^{\operatorname{cov}} \mathbf{E}^{Y}=F_{Y}^{\operatorname{cov}} \nabla X+F_{Y}^{\operatorname{cov}} \nabla Y$
Frictionless constraint of mass m by parabola $Y=$ const. is normal to parabola (along its gradient ∇Y.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y} \quad$).

Frictional force components are contravariant
Frictional or driving forces have contravariant components $\quad F_{\text {con }}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial \bar{X}}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

(Fl are coefficients of tangent vectors E. (c) GCC E-vectors

$$
\dot{Y}=0=\ddot{Y}
$$

$$
m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+0+k^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+0+k \dot{X}^{2}+g}=\binom{0 \cdots}{F_{Y}^{c o v}} \quad \rightarrow \ddot{X}=-\frac{k^{2} X \dot{X}^{2}+g k X}{1+k^{2} X^{2}}=-\frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}} k X
$$

FINALLY! We get the Way 1. solution of p. 12

$$
\ddot{X} \equiv \begin{array}{r}
\text { Recall: } \quad x \equiv X \\
\ddot{x}=\frac{-k \dot{x}^{2}-g}{1+k^{2} x^{2}} k x
\end{array}
$$

General case repeated from p. 34

$$
\left.\begin{array}{c}
\dot{p}_{X}-\frac{\partial L}{\partial} \bar{X} \\
\dot{p}_{Y}-\frac{\partial L}{\partial Y}
\end{array}\right)=m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+k X \ddot{Y}+k^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+\dot{Y}+\dot{Y} \dot{X}^{2}+g}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
$$

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {cov }}$
$\mathbf{F}=\underset{\left(F_{A} \text { are coefficients of normal vectors } \mathbf{E}^{A}\right)}{F_{X}^{c o v}} \mathbf{E}^{X} F_{Y}^{\operatorname{cov}} \mathbf{E}^{Y}=F_{Y}^{\operatorname{cov}} \nabla X+F_{Y}^{\operatorname{cov}} \nabla Y$
Frictionless constraint of mass m by parabola $Y=$ const. is normal to parabola (along its gradient ∇Y.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y} \quad$).

Frictional force components are contravariant
Frictional or driving forces have contravariant components $\quad F_{c o n}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial X}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

(FA are coefficients of tangent vectors Eud (c) GCC E-vectors

$$
\dot{Y}=0=\ddot{Y}
$$

$m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+0}{k X \ddot{X}+0, k \dot{X}^{2}+g}=\binom{0 \cdots \dot{X}^{2}+g k X}{F_{Y}^{c o v}} \rightarrow \cdots \rightarrow \ddot{X}=-\frac{k^{2} X \dot{X}^{2}+g k X}{1+k^{2} X^{2}}=-\frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}} k X$

$$
\begin{aligned}
& \left.\mathbf{F}=\begin{array}{cc}
F_{Y}^{c o v} & \mathbf{E}^{Y} \\
=m\left(k X \ddot{X}+0+k \dot{X}^{2}+g\right) & \binom{-k X}{1}
\end{array} . \begin{array}{l}
\\
=m
\end{array}\right)
\end{aligned}
$$

General case repeated from p. 34

$$
\left.\begin{array}{c}
\dot{p}_{X}-\frac{\partial L}{\partial} \bar{X} \\
\dot{p}_{Y}-\frac{\partial L}{\partial Y}
\end{array}\right)=m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+k X \ddot{Y}+k^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+\ddot{Y}+k \dot{X}^{2}+g}=\binom{F_{X}^{c o v}}{F_{Y}^{c o v}}
$$

$$
\ddot{X} \equiv \begin{gathered}
\text { Recall: } x \equiv X \\
\ddot{x}=\frac{-k \dot{x}^{2}-g}{1+k^{2} x^{2}} k x
\end{gathered}
$$

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {col }}$
$\mathbf{F}=\underset{\left(F_{A} \text { are coefficients of normal vectors } \mathbf{E}^{A}\right)}{F_{X}^{c o v}} \mathbf{E}^{X} F_{Y}^{\operatorname{cov}} \mathbf{E}^{Y}=F_{Y}^{\operatorname{cov}} \nabla X+F_{Y}^{\operatorname{cov}} \nabla Y$
Frictionless constraint of mass m by parabola $Y=$ const . is normal to parabola (along its gradient ∇Y.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y} \quad$).

Frictional force components are contravariant
Frictional or driving forces have ${ }_{A}$ contravariant components $\quad F_{\text {con }}^{A}$

$$
\mathbf{F}=F_{c o n}^{X} \mathbf{E}_{X}+F_{c o n}^{Y} \mathbf{E}_{Y}=F_{c o n}^{X} \frac{\partial \mathbf{r}}{\partial X}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

$$
\begin{aligned}
& \text { (FA are coefficients of tangent vectors } \mathrm{E}_{1} \text { (c) } G C C \text { E-vectors }
\end{aligned}
$$

$$
\dot{Y}=0=\ddot{Y}
$$

$m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+0 \mp k^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+0+k \dot{X}^{2}+g}=\binom{0 \cdots}{F_{Y}^{c o v}} \quad \rightarrow \cdots \ddot{X}=-\frac{k^{2} X \dot{X}^{2}+g k X}{1+k^{2} X^{2}}=-\frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}} k X$

Constraint force components are covariant
Frictionless constraint forces have covariant components $\quad F_{B}^{\text {cov }}$
$\mathbf{F}=\underset{\text { (FA Are coefficients of normal vectors }}{F_{\left.\mathbf{E}^{A}\right)}^{c o v}}{ }_{X}^{X}{ }^{\operatorname{cov}}{ }^{c o v} \mathbf{E}^{Y}=F^{c o v} \nabla X+F_{Y}^{c o v} \nabla Y$
Frictionless constraint of mass m by parabola $Y=$ const . is normal to parabola (along its gradient ∇Y.)

$$
\begin{aligned}
\mathbf{F}(Y=\text { const. }) & =F_{X}^{c o v} \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y} \\
& =0 \cdot \nabla X+F_{Y}^{c o v} \nabla Y \\
& =0 \cdot \mathbf{E}^{X}+F_{Y}^{c o v} \mathbf{E}^{Y}
\end{aligned}
$$

So constraint requirements in covariant equations are $F_{X}^{c o v}=0$ and $F_{Y}^{c o v} \neq 0$. (with: $\dot{Y}=0=\ddot{Y} \quad$).

Frictional force components are contravariant
Frictional or driving forces have contravariant components $\quad F_{c o n}^{A}$

$$
\underset{\text { (FA are coefficients of tangent vectors E, }}{\mathbf{F}}=F_{\text {con }}^{X} \mathbf{E}_{X}+F_{\text {co }}^{Y} \mathbf{E}_{Y}=F^{X} \frac{\partial \mathbf{r}}{\partial X}+F_{c o n}^{Y} \frac{\partial \mathbf{r}}{\partial Y}
$$

$$
\dot{Y}=0=\ddot{Y}
$$

$$
m\binom{\left(1+k^{2} X^{2}\right) \ddot{X}+0+\bar{k}^{2} X \dot{X}^{2}+g k X}{k X \ddot{X}+0+k \dot{X}^{2}+g}=\binom{0 \cdots}{F_{Y}^{c o v}} \cdots \cdots \quad \ddot{X}=-\frac{k^{2} X \dot{X}^{2}+g k X}{1+k^{2} X^{2}}=-\frac{k \dot{X}^{2}+g}{1+k^{2} X^{2}} k X
$$

$$
\begin{aligned}
& \left.\mathbf{F}=\begin{array}{cc}
F_{Y}^{c o v} & \mathbf{E}^{Y} \\
=m\left(k X X X+0+k \dot{X}^{2}+g\right) \\
\ddots & -k X \\
1
\end{array}\right) \\
& =m\left(\frac{-k X\left(k \dot{X}^{2}+g\right)}{1+k^{2} X^{2}}+\frac{\left(k \dot{X}^{2}+g\right)\left(1+k^{2} X^{2}\right)}{1+k^{2} X^{2}}\right)\binom{-k X}{1}
\end{aligned}
$$

$$
\binom{F_{x}}{F_{y}}=\left(=\binom{0}{m k \dot{X}^{2}+m g}\right)_{a t: X=0}
$$

Centripetal
force $m k v^{2}+m g$
(what roller-coaster rider feels at bottom)

Recall: $x \equiv X$
$\ddot{X} \equiv \ddot{x}=\frac{-k \dot{x}^{2}-g}{1+k^{2} x^{2}} k x$
$-g=\ddot{y}=\frac{d^{2}}{d t^{2}}\left(\frac{1}{2} k X^{2}+Y\right)$
$=k \dot{X}^{2}+k X \ddot{X}+\ddot{Y}\left(=k \dot{X}^{2}+\ddot{Y}\right.$ for $\left.\ddot{X}=0\right)$

Simple constrained problem...

...and a variety of solutions

Other Ways to do constraint analysis
 \longrightarrow Way 3. OCC constraint webs
 Preview of atomic-Stark orbits
 Classical Hamiltonian separability

Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues Multiple multipliers
"Non-Holonomic" multipliers

Way 3. Parabolic OCC approach
Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of z and then absolute square $|z|^{2}$ give relations between Cartesian (x, y) and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of z and then absolute square $|z|^{2}$ give relations between Cartesian (x, y) and $\operatorname{OCC}(u, v)$

$$
\begin{aligned}
& z=x+i y=(u+i v)^{2}=u^{2} \ldots v^{2}+i 2 u v \quad \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2} \\
& x=u^{2} \ldots v^{2} \\
& y=u^{2}+v^{2}
\end{aligned}
$$

Way 3. Parabolic OCC approach
Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of z and then absolute square $|z|^{2}$ give relations between Cartesian (x, y) and $\operatorname{OCC}(u, v)$

$$
\begin{aligned}
& z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \\
& x=u^{2}-v^{2} \\
& y=2 u v \\
& r=u^{2}<v^{2} \quad 2 u^{2}=r+x=\sqrt{x^{2}+y^{2}}+x \\
& v^{2}=r=\sqrt{x^{2}+y^{2}}-x
\end{aligned}
$$

$$
r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

Way 3. Parabolic OCC approach
Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of z and then absolute square $|z|^{2}$ give relations between Cartesian (x, y) and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$$
x=u^{2}-v^{2}
$$

$$
\begin{aligned}
x & =u v \\
y & =2 u v \\
r & u^{2}+v^{2}
\end{aligned} \quad 2 v^{2}=r+x=\sqrt{x^{2}+y^{2}}+x=\sqrt{x^{2}+y^{2}}-x .
$$

$$
y y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)
$$

$$
y^{2}=4 v^{2} u^{2}=4 v^{2}\left(v^{2}+x\right)
$$

Gives confocal parabolics

Way 3. Parabolic OCC approach

Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of z and then absolute square $|z|^{2}$ give relations between Cartesian (x, y) and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$$
x=u^{2}-v^{2}
$$

$$
\begin{aligned}
& x=2 u v \\
& r=u^{2}<v^{2} \quad 2 v^{2}=r-x=\sqrt{x^{2}+y^{2}}-x
\end{aligned}
$$

$$
y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)
$$

$$
y^{2}=4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
$$

Gives confocal parabolics

$$
\left(\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{E}_{u} & \mathbf{E}_{v}
\end{array}\right)=\left(\begin{array}{cc}
2 u & -2 v \\
+2 v & 2 u
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)=\binom{\mathbf{E}^{u}}{\mathbf{E}^{v}}=\frac{\left(\begin{array}{cc}
2 u & +2 v \\
-2 v & 2 u
\end{array}\right)}{4\left(u^{2}+v^{2}\right)}=\frac{1}{2 r}\binom{u}{\hline}
$$

Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of z and then absolute square $|z|^{2}$ give relations between Cartesian (x, y) and OCC (u, v)

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$x=u^{2}-v^{2}$

$$
\begin{aligned}
x & =2 u v \\
r & =u^{2}+v^{2} \quad 2 u^{2}
\end{aligned} \quad 2 v^{2}=r-x=\sqrt{x^{2}+y^{2}}+x=\sqrt{x^{2}+y^{2}}-x .
$$

$$
y y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)
$$

Gives confocal parabolics

$$
\ddots y^{2}=4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
$$

$$
\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{E}_{u} & \mathbf{E}_{v}
\end{array}\right)=\left(\begin{array}{cc}
2 u & -2 v \\
+2 v & 2 u
\end{array}\right)
$$

Metric $g_{u v}=\mathbb{E}_{u} \cdot \mathbb{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian L uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian H uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& g_{u u}=\mathbf{E}_{u} \cdot \mathbf{E}_{u}=\mathbf{E}_{v} \cdot \mathbf{E}_{v}=g_{v v}=4 u^{2}+4 v^{2}=4 r \\
& g_{u v}=\mathbf{E}_{u} \cdot \mathbf{E}_{v}=\mathbf{E}_{v} \cdot \mathbf{E}_{u}=g_{v u}=0
\end{aligned}
$$

$$
\begin{aligned}
& g^{u u}=\mathbf{E}^{u} \cdot \mathbf{E}^{u}=\mathbf{E}^{v} \cdot \mathbf{E}^{v}=g^{\nu v}=\frac{1}{4 u^{2}+4 v^{2}}=\frac{1}{4 r} \\
& g^{u v}=\mathbf{E}^{u} \cdot \mathbf{E}^{v}=\mathbf{E}^{v} \cdot \mathbf{E}^{u}=g^{v u}=0
\end{aligned}
$$

Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of z and then absolute square $|z|^{2}$ give relations between Cartesian (x, y) and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$$
x=u^{2}-v^{2}
$$

$$
\begin{aligned}
& x=2 u v \\
& r=u^{2}<v^{2} \quad 2 v^{2}=r-x=\sqrt{x^{2}+y^{2}}-x
\end{aligned}
$$

$$
y y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)
$$

$$
\ddots y^{2}=4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
$$

Gives confocal parabolics

$$
\left(\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{E}_{u} & \mathbf{E}_{v}
\end{array}\right)=\left(\begin{array}{cc}
2 u & -2 v \\
+2 v & 2 u
\end{array}\right)
$$

Metric $g_{u v}=\mathbb{E}_{u} \cdot \mathbb{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian L uses $g_{u v}=\delta_{u v} 4 r$. .

$$
L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V
$$

$$
g_{u u}=\mathbf{E}_{u} \cdot \mathbf{E}_{u}=\mathbf{E}_{v} \cdot \mathbf{E}_{v}=g_{v v}=4 u^{2}+4 v^{2}=4 r
$$

$$
g_{u v}=\mathbf{E}_{u} \cdot \mathbf{E}_{v}=\mathbf{E}_{v} \cdot \mathbf{E}_{u}=g_{v u}=0
$$

Way 3. Parabolic OCC approach

Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of z and then absolute square $|z|^{2}$ give relations between Cartesian (x, y) and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$x=u^{2}-v^{2}$

$$
\begin{aligned}
x & =2 u v \\
r & =u^{2}+v^{2} \quad 2 u^{2}
\end{aligned} \quad 2 v^{2}=r-x=\sqrt{x^{2}+y^{2}}+x=\sqrt{x^{2}+y^{2}}-x .
$$

$$
y y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)
$$

$$
\ddots y^{2}=4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
$$

Gives confocal parabolics

$$
\left(\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{E}_{u} & \mathbf{E}_{v}
\end{array}\right)=\left(\begin{array}{cc}
2 u & -2 v \\
+2 v & 2 u
\end{array}\right)
$$

Metric $g_{u v}=\mathbb{E}_{u} \bullet \mathbb{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian L uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian H uses $g^{u v v}=\delta^{u v /} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
\begin{aligned}
& g^{u u}=\mathbf{E}^{u} \cdot \mathbf{E}^{u}=\mathbf{E}^{v} \cdot \mathbf{E}^{\nu}=g^{v \nu}=\frac{\ldots}{4 u^{2}+4 v^{2}}=\frac{1}{4 r} \\
& g^{u v}=\mathbf{E}^{u} \cdot \mathbf{E}^{\nu}=\mathbf{E}^{\nu} \cdot \mathbf{E}^{u}=g^{v u}=0
\end{aligned}
$$

Simple constrained problem...

...and a variety of solutions

Other Ways to do constraint analysis

Way 3. OCC constraint webs
\rightarrow Preview of atomic-Stark orbits
Classical Hamiltonian separability
Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues Multiple multipliers
"Non-Holonomic" multipliers

Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of z and then absolute square $|z|^{2}$ give relations between Cartesian (x, y) and OCC (u, v)

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$x=u^{2}-v^{2}$

$$
\begin{aligned}
y & =2 u v \\
r & =u^{2}+v^{2} \quad 2 v^{2}
\end{aligned}=r+x=\sqrt{x^{2}+y^{2}}+x=\sqrt{x^{2}+y^{2}}-x .
$$

$$
\begin{aligned}
& y y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right. \\
& y^{2}=4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
\end{aligned} \quad \text { Gives confocal parabolics }
$$

$$
\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{E}_{u} & \mathbf{E}_{v}
\end{array}\right)=\left(\begin{array}{cc}
2 u & -2 v \\
+2 v & 2 u
\end{array}\right)
$$

Metric $g_{u v}=\mathbb{E}_{u} \cdot \mathbf{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian L uses $g_{u v}=\delta_{u v} 4 r$. Häminiltonian H uses $g^{u v}=\delta^{u v} / 4 r$.
$L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right) \quad-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V$
$H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V$

$$
V=\boldsymbol{\varepsilon} x+k \nmid r
$$

Stark-Coulomb potential

Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of z and then absolute square $|z|^{2}$ give relations between Cartesian (x, y) and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v \quad r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$x=u^{2}-v^{2}$

$$
\begin{aligned}
& y=2 u v \\
& r=u^{2}+v^{2} \quad 2 u^{2}=r+x=\sqrt{x^{2}+y^{2}}+x \\
&=r-x=\sqrt{x^{2}+y^{2}}-x
\end{aligned}
$$

$$
\begin{aligned}
y y^{2} & =4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right. \\
y^{2} & =4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
\end{aligned} \quad \text { Gives confocal parabolics }
$$

$$
\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial v}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{E}_{u} & \mathbf{E}_{v}
\end{array}\right)=\left(\begin{array}{cc}
2 u & -2 v \\
+2 v & 2 u
\end{array}\right)
$$

$$
\left.\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)=\binom{\mathbf{E}^{u}}{\mathbf{E}^{v}}=\frac{(-2 u+2 v}{4\left(u^{2}+v^{2}\right)}=\frac{1}{2 r}-\cdots, v\right)
$$

Metric $g_{u v}=\mathbb{E}_{u} \bullet \mathbb{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian L uses $g_{u v}=\delta_{u v} 4 r$. Hämimiltonian H uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
V=\boldsymbol{\varepsilon} x+k \gamma r
$$

Stark-Coutomb pótential

For a Stark-Coulomb potential Hamiltonian $(H=E)$ is constant and separable into u and v parts.

$$
4\left(u^{2}+v^{2}\right) E=\frac{1}{2 m}\left(p_{u}^{2}+p_{v}^{2}\right)+4\left(u^{4}-v^{4}\right) \varepsilon+4 k \text { for: } H=E \text { and: } V=\varepsilon x+\frac{k}{r}=\varepsilon\left(u^{2}-v^{2}\right)+\frac{k}{u^{2}+v^{2}}
$$

Way 3. Parabolic OCC approach
Complex function $z=w^{2}$ or its inverse $w=z^{1 / 2}$ of complex variables $z=x+i y$ and $w=u+i v$.
Expansion of z and then absolute square $|z|^{2}$ give relations between Cartesian (x, y) and $\operatorname{OCC}(u, v)$

$$
z=x+i y=(u+i v)^{2}=u^{2}-v^{2}+i 2 u v
$$

$$
r^{2}=z * z=x^{2}+y^{2}=\left(u^{2}+v^{2}\right)^{2}=u^{4}+v^{4}+2 u^{2} v^{2}
$$

$x=u^{2}-v$

$$
\begin{aligned}
y & =2 u v \\
r & =u^{2}+v^{2} \quad 2 v^{2}
\end{aligned}=r+x=\sqrt{x^{2}+y^{2}}+x=\sqrt{x^{2}+y^{2}}-x .
$$

$$
y y^{2}=4 u^{2} v^{2}=4 u^{2}\left(u^{2}-x\right)
$$

$$
y^{2}=4 u^{2} v^{2}=4 v^{2}\left(v^{2}+x\right)
$$

Gives confocal parabolics

$$
\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial v}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{E}_{u} & \mathbf{E}_{v}
\end{array}\right)=\left(\begin{array}{cc}
2 u & -2 v \\
+2 v & 2 u
\end{array}\right)
$$

Metric $g_{u v}=\mathbb{E}_{u} \bullet \mathbb{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian L uses $g_{u v}=\delta_{u v} 4 r$. Hatimiltonian H uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
\begin{gathered}
V=\varepsilon x+k \backslash r \\
\text { Stark-Coutomb pótential }
\end{gathered}
$$

For a Stark-Coulomb potential Hamiltonian $(H=E)$ is constant and separable into u and i parts.

$$
4\left(u^{2}+v^{2}\right) E=\frac{1}{m}\left(p_{u}^{2}+p_{v}^{2}\right)+4\left(u^{4}-v^{4}\right) \varepsilon+4 k \text { for: } H=E \text { and: } V=\varepsilon x+\frac{k}{r}=\varepsilon\left(u^{2}-v^{2}\right)+\frac{k}{u^{2}+v^{2}}
$$

Each sub-Hamiltonian pait h_{i} aid h_{v} is a constant Together they sum to zero total energy $0=h_{u}+h_{v}$.

$$
0=\frac{1}{2 m} p_{u}^{2}-4 E u^{2}+4 \varepsilon u^{4}+\frac{1}{2 m} p_{v}^{2}-4 E v^{2}-4 \varepsilon v^{4}+4 k=h_{u}+h_{v}
$$

Other Ways to do constraint analysis

Way 3. OCC constraint webs
Preview of atomic-Stark orbits
\longrightarrow Classical Hamiltonian separability
Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues Multiple multipliers
"Non-Holonomic" multipliers

Metric $g_{u v}=\mathbf{E}_{u} \bullet \mathbf{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian L uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian H uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
V=\varepsilon x+k / r
$$

Stark-Coulomb potential

Metric $g_{u v}=\mathbf{E}_{u} \cdot \mathbf{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian L uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian H uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{\dot{q}} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
V=\varepsilon x+k / r
$$

Stark-Coutomb potential
For a Stark-Coulomb potential Hamiltonian $(H=E)$ is constant and separable into u and v parts.

$$
4\left(u^{2}+v^{2}\right) E=\frac{1}{2 m}\left(p_{u}^{2}+p_{v}^{2}\right)+4\left(u^{4}-v^{4}\right) \varepsilon+4 k \text { for: } H=E \text { and: } V=\varepsilon x+\frac{k}{r}=\varepsilon\left(u^{2}-v^{2}\right)+\frac{k}{u^{2}+v^{2}}
$$

Metric $g_{u v}=\mathbf{E}_{u} \cdot \mathbf{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian L uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian H uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
V=\varepsilon x+k / r
$$

Stark-Coutomb potential
For a Stark-Coulomb potential Hamiltonian $(H=E)$ is constant and separable into u and v parts.

$$
4\left(u^{2}+v_{-}^{2}\right) E=\frac{1}{2 m}\left(p_{u}^{2}+p_{v}^{2}\right)+4\left(u^{4}-v^{4}\right) \varepsilon+4 k \text { for: } H=E \text { and: } V=\varepsilon x+\frac{k}{r}=\varepsilon\left(u^{2}-v^{2}\right)+\frac{k}{u^{2}+v^{2}}
$$

Each sub-Hamiltǿnian pait h_{v} and h_{v} is a constant. Together they sum to zero total energy $0=h_{u}+h_{v}$.

$$
0=\frac{1}{2 m} p_{u}^{2}-4 E u^{2}+4 \varepsilon u^{4}+\frac{1}{2 m} p_{v}^{2}-4 E v^{2}-4 \varepsilon v^{4}+4 k=h_{u}+h_{v}
$$

Metric $g_{u v}=\mathbf{E}_{u} \cdot \mathbf{E}_{v}$ and $g^{u v}$ are diagonal. Lagrangian L uses $g_{u v}=\delta_{u v} 4 r$. Hamiltonian H uses $g^{u v}=\delta^{u v} / 4 r$.

$$
\begin{aligned}
& L=\frac{m}{2}\left(g_{a b} \dot{q}^{a} \dot{q}^{b}\right)-V=\frac{m}{2}\left(g_{u u} \dot{u}^{2}+g_{v v} \dot{v}^{2}\right)-V=2 m\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(u^{2}+v^{2}\right)-V \\
& H=\frac{1}{2 m}\left(g^{a b} p_{a} p_{b}\right)+V=\frac{1}{2 m}\left(g^{u u} p_{u}^{2}+g^{v v} p_{v}^{2}\right)+V=\frac{p_{u}^{2}+p_{v}^{2}}{8 m\left(u^{2}+v^{2}\right)}+V
\end{aligned}
$$

$$
V=\varepsilon x+k / r
$$

For a Stark-Coulomb potential Hamiltonian $(H=E)$ is constant and separable into u and v parts.

$$
4\left(u^{2}+v^{2}\right) E=\frac{1}{2 m}\left(p_{u}^{2}+p_{v}^{2}\right)+4\left(u^{4}-v^{4}\right) \varepsilon+4 k \text { for: } H=E \text { and: } V=\varepsilon x+\frac{k}{r}=\varepsilon\left(u^{2}-v^{2}\right)+\frac{k}{u^{2}+v^{2}}
$$

Each sub-Hamiltónian pait h_{u} und h_{v} is a constant. Together they sum to zero total energy $0=h_{u}+h_{v}$.

$$
0=\frac{1}{2 m} p_{u}^{2}-4 E u^{2}+4 \varepsilon u^{4}+\frac{1}{2 m} p_{v}^{2}-4 E v^{2}-4 \varepsilon v^{4}+4 k=h_{u}+h_{v}
$$

Zero Stark-field ($\varepsilon=0$) gives h_{u} or h_{v} harmonic oscillation if $E<0$. It's unstable or anharmonic otherwise.

$$
\dot{p}_{u}=-\frac{\partial h_{u}}{\partial u}=-8 E u+16 \varepsilon u^{3} \quad \dot{u}=\frac{\partial h_{u}}{\partial p_{u}}=p_{u} / m \quad \dot{p}_{v}=-\frac{\partial h_{v}}{\partial v}=-8 E v-16 \varepsilon v^{3} \quad \dot{v}=\frac{\partial h_{v}}{\partial p_{v}}=p_{v} / m
$$

Fig: 5.5.3 Examples of bound-state motion restricted by parabolic coordinates

Fig. 5.5.2 Effective potentials for parabolic coordinates

Examples of bound-state motion restricted by parabolic coordinates (H classical electronic Stark-field orbits with color-quantization)

Bound-state motion in parabolic coordinates

Examples of bound-state motion restricted by hyperbolic-elliptic coordinates (H2+-ion classical electronic orbits with color-quantization)

Simple constrained problem...

...and a variety of solutions

Other Ways to do constraint analysis

Way 3. OCC constraint webs
Preview of atomic-Stark orbits
Classical Hamiltonian separability
\longrightarrow Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues Multiple multipliers
"Non-Holonomic" multipliers

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y_{1}=0 \quad \text { (Back to "Stupid-Parabolic" } G C C \text {) }
$$

Lagrange multiplier approaches
Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0 \quad \text { (Back to "Stupid-Parabolic" } G C C \text {) }
$$

Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$ (c) GCC E-vectors

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0 \quad \text { (Back to "Stupid-Parabolic" } G C C \text {) }
$$

Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0 \quad \text { (Back to "Stupid-Parabolic" } G C C \text {) }
$$

Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0 \quad \text { (Back to "Stupid-Parabolic" } G C C \text {) }
$$

Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component F_{1}^{c} of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0 \quad \text { (Back to "Stupid-Parabolic" GCC) }
$$

Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component F_{1}^{c} of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force \mathbf{F}
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0 \quad \text { (Back to "Stupid-Parabolic" GCC) }
$$

Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component F_{1}^{c} of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force \mathbf{F}
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g}
$$

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0 \quad \text { (Back to "Stupid-Parabolic" } G C C \text {) }
$$

Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component F_{1}^{c} of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$
 that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force \mathbb{F}
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g}
$$

Constraint function $y=1 / 2 k x^{2}$ has derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k\left(\dot{x}^{2}+x \ddot{x}\right)$.

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

\qquad Back to "Stupid-Parabolic" GCC)

Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component F_{1}^{c} of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$
 that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force \mathbb{F}
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g} \quad\binom{m \ddot{x}}{m \ddot{\ddot{y}}}=\binom{m \ddot{x}}{m k\left(\dot{x}^{2}+x \ddot{x}\right)}=\binom{\lambda k x}{-\lambda}-\binom{0}{m g}
$$

Constraint function $y=1 / 2 k x^{2}$ has derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k\left(\dot{x}^{\dot{x}}+x \ddot{x}\right)$. Now solve for multiplier λ.

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

\qquad (Back to "Stupid-Parabolic" GCC)
Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component F_{1}^{c} of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$
 that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force \mathbb{F}
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g} \quad\binom{m \ddot{x}}{m \ddot{\ddot{y}}}=\binom{m \ddot{x}}{m k\left(\dot{x}^{2}+x \ddot{x}\right)}=\binom{\lambda k x}{-\lambda}-\left(\begin{array}{c}
0 \\
m g \\
m k\left(\dot{x}^{2}+x \ddot{x}\right)=-
\end{array} .\right.
$$

Constraint function $y=1 / 2 k x^{2}$ has derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k\left(\dot{x^{2}}+x \ddot{x}\right)$. Now solve for multiplier λ.

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

\qquad (Back to "Stupid-Parabolic" GCC)
Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component F_{1}^{c} of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$
 that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force \mathbf{F}
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g}
$$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\binom{m \ddot{x}}{m k\left(\dot{x}^{2}+x \ddot{x}\right)}=\binom{\lambda k x}{-\lambda}-\binom{0}{m g} .
$$

$$
m k\left(\dot{x}^{2}+x \ddot{x}\right)=-\lambda-m g
$$

Constraint function $y=1 / 2 k x^{2}$ has derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k\left(\dot{x^{2}}+x \ddot{x}\right)$. Now solve for multiplier λ.

$$
\lambda=m\left(-k \dot{x}^{2}-k x \ddot{x}-g\right)
$$

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

\qquad (Back to "Stupid-Parabolic" GCC)

Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component F_{1}^{c} of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force \mathbf{F}
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g}
$$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\binom{m \ddot{x}}{m k\left(\dot{x}^{2}+x \ddot{x}\right)}=\binom{\lambda k x}{-\lambda}-\binom{0}{m g} .
$$

$$
m k\left(\dot{x}^{2}+x \ddot{x}\right)=-\lambda-m g
$$

Constraint function $y=1 / 2 k x^{2}$ has derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k\left(\dot{x^{2}}+x \ddot{x}\right)$. Now solve for multiplier λ.

$$
\lambda=-m\left(k \dot{x}^{2}+k x \ddot{x}+g\right)
$$

Then the λ function gives the new constrained x-equation of motion.

$$
m \ddot{x}=\lambda k x=-m\left(k \dot{x}^{2}+k x \ddot{x}+g\right) k x
$$

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

(Back to "Stupid-Parabolic" GCC)
Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component F_{1}^{c} of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force \mathbb{F}
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g}
$$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\binom{m \ddot{x}}{m k\left(\dot{x}^{2}+x \ddot{x}\right)}=\binom{\lambda k x}{-\lambda}-\binom{0}{m g} .
$$

$$
m k\left(\dot{x}^{2}+x \ddot{x}\right)=-\lambda-m g
$$

Constraint function $y=1 / 2 k x^{2}$ has derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k\left(\dot{x^{2}}+x \ddot{x}\right)$. Now solve for multiplier λ.

$$
\lambda=-m\left(k \dot{x}^{2}+k x \ddot{x}+g\right)
$$

Then the λ function gives the new constrained x-equation of motion.

$$
m \ddot{x}=\lambda k x=-m\left(k \dot{x}^{2}+k x \ddot{x}+g\right) k x=-m\left(k^{2} x \dot{x}^{2}+k^{2} x^{2} \ddot{x}+k g x\right)
$$

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

(Back to "Stupid-Parabolic" GCC)
Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component F_{1}^{c} of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$ that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force \mathbf{F}
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g}
$$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\binom{m \ddot{x}}{m k\left(\dot{x}^{2}+x \ddot{x}\right)}=\binom{\lambda k x}{-\lambda}-\binom{0}{m g} .
$$

$$
m k\left(\dot{x}^{2}+x \ddot{x}\right)=-\lambda-m g
$$

Constraint function $y=1 / 2 k x^{2}$ has derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k(\dot{x} \dot{x}+x \ddot{x})$. Now solve for multiplier λ.

$$
\lambda=-m\left(k \dot{x}^{2}+k x \ddot{x}+g\right)
$$

Then the λ function gives the new constrained x-equation of motion.

$$
\begin{aligned}
& m \ddot{x}=\lambda k x=-m\left(k \dot{x}^{2}+k x \ddot{x}+g\right) k x=-m\left(k^{2} x \dot{x}^{2}+k^{2} x^{2} \ddot{x}+k g x\right) \\
& \left(1+k^{2} x^{2}\right) \ddot{x}=\left(-k \dot{x}^{2}-g\right) k x
\end{aligned}
$$

Lagrange multiplier approaches

Lagrange multiplier or λ-method. The constraining parabola $y=1 / 2 k x^{2}$ is defined as follows.

$$
c^{1}=\frac{1}{2} k x^{2}-y=0
$$

(Back to "Stupid-Parabolic" GCC)
Imagine this is a coordinate line. Its normal constraining force \mathbf{F} is along its c^{1}-gradient $\quad\left(\mathbf{F} \propto \nabla c^{1}\right)$

$$
\mathbf{F}=\lambda \nabla c^{1}=\lambda \nabla\left(\frac{1}{2} k x^{2}-y\right)=\lambda\binom{\frac{\partial c^{1}}{\partial x}}{\frac{\partial c^{1}}{\partial y}}=\lambda\binom{k x}{-1}
$$

Proportionality factor $\lambda=F_{1}^{c}$ is a Lagrange multiplier.
It is like a covariant constraint component F_{1}^{c} of a contravariant vector $\mathbf{E}^{1}=\nabla c^{1}$
 that arises if $c^{1}(x, y)=$ const. was a coordinate line causing a constraint force $\mathbf{F}=F_{1}^{c} \nabla c^{1}$.

The Newtonian-Cartesian equations $m \ddot{\mathbf{r}}=-m \mathbf{g}$ add constraint force \mathbf{F}
to become $m \ddot{\mathbf{r}}=\mathbf{F}-m \mathbf{g}=\mathbf{F}-m \mathbf{g} \quad$ with constraint : $\mathbf{F}=F_{1}^{c} \nabla c^{1}$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\lambda\binom{k x}{-1}-\binom{0}{m g}
$$

$$
\binom{m \ddot{x}}{m \ddot{y}}=\binom{m \ddot{x}}{m k\left(\dot{x}^{2}+x \ddot{x}\right)}=\binom{\lambda k x}{-\lambda}-\binom{0}{m g} .
$$

$$
m k\left(\dot{x}^{2}+x \ddot{x}\right)=-\lambda-m g
$$

Constraint function $y=1 / 2 k x^{2}$ has derivatives $\dot{y}=k x \dot{x}$ and $\ddot{y}=k\left(\dot{x}^{2}+x \ddot{x}\right)$. Now solve for multiplier λ.

$$
\lambda=-m\left(k \dot{x}^{2}+k x \ddot{x}+g\right)
$$

Then the λ function gives the new constrained x-equation of motion.

$$
\begin{aligned}
& m \ddot{x}=\lambda k x=-m\left(k \dot{x}^{2}+k x \ddot{x}+g\right) k x=-m\left(k^{2} x \dot{x}^{2}+k^{2} x^{2} \ddot{x}+k g x\right) \\
& \left(1+k^{2} x^{2}\right) \ddot{x}=\left(-k \dot{x}^{2}-g\right) k x
\end{aligned}
$$

(Same equation as on p.12)

$$
\ddot{x}=\frac{-k \dot{x}^{2}-g}{1+k^{2} x^{2}} k x
$$

Other Ways to do constraint analysis

Way 3. OCC constraint webs
Preview of atomic-Stark orbits
Classical Hamiltonian separability
Way 4. Lagrange multipliers
\longrightarrow Lagrange multiplier as eigenvalues Multiple multipliers
"Non-Holonomic" multipliers

Suppose you need to find maximum of $H=\left(A x^{2}+B x y+A y^{2}\right) / 2$ subject to constraint: $C=\left(x^{2}+y^{2}\right) / 2=$ const. By geometry you are finding the largest ellipse (if $A>B>0$) to contact the circle C or the smallest.

The contact points satisfy gradient proportionality equations:

$$
\nabla H=\lambda \cdot \nabla C
$$

$$
\begin{aligned}
& \binom{\partial_{x} H}{\partial_{y} H}=\lambda \cdot\binom{\partial_{x} C}{\partial_{y} C} \\
& \binom{A x+B y}{B x+D y}=\lambda \cdot\binom{x}{y}
\end{aligned}
$$

Extreme cases occur only at contact points

Lagrange multiplier basics

Suppose you need to find maximum of $H=\left(A x^{2}+B x y+A y^{2}\right) / 2$ subject to constraint: $C=\left(x^{2}+y^{2}\right) / 2=$ const. By geometry you are finding the largest ellipse (if $A>B>0$) to contact the circle C or the smallest.

The contact points satisfy gradient proportionality equations:
$\nabla H=\lambda \cdot \nabla C$

$$
\begin{aligned}
& \binom{\partial_{x} H}{\partial_{y} H}=\lambda \cdot\binom{\partial_{x} C}{\partial_{y} C} \\
& \binom{A x+B y}{B x+D y}=\lambda \cdot\binom{x}{y}
\end{aligned}
$$

Extreme cases occur only at contact points
This amounts to a λ-eigenvalue-eigenvector equation

$$
\left(\begin{array}{ll}
A & B \\
B & D
\end{array}\right)\binom{x}{y}=\lambda \cdot\binom{x}{y} \quad \text { (More about this in Units 4-6) }
$$

(Perhaps, this is why we often label eigenvalues λ with a Greek "L")

Lagrange multiplier basics

Suppose you need to find maximum of $H=\left(A x^{2}+B x y+A y^{2}\right) / 2$ subject to constraint: $C=\left(x^{2}+y^{2}\right) / 2=$ const. By geometry you are finding the largest ellipse (if $A>B>0$) to contact the circle C or the smallest.

The contact points satisfy gradient proportionality equations:
$\nabla H=\lambda \cdot \nabla C$

$$
\begin{aligned}
& \binom{\partial_{x} H}{\partial_{y} H}=\lambda \cdot\binom{\partial_{x} C}{\partial_{y} C} \\
& \binom{A x+B y}{B x+D y}=\lambda \cdot\binom{x}{y}
\end{aligned}
$$

This amounts to a λ-eigenvalue-eigenvector equation

$$
\left(\begin{array}{cc}
A & B \\
B & D
\end{array}\right)\binom{x}{y}=\lambda \cdot\binom{x}{y} \quad \text { (More about this in Units 4-6) }
$$

(Perhaps, this is why we often label eigenvalues λ with a Greek "L")

Eigenvalues λ are extreme matrix "own"-values $\langle\psi| \mathrm{M}|\psi\rangle$ subject Norm-constraint $\langle\psi \mid \psi\rangle=1$

Other Ways to do constraint analysis

Way 3. OCC constraint webs
Preview of atomic-Stark orbits
Classical Hamiltonian separability
Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues
\longrightarrow Multiple multipliers
"Non-Holonomic" multipliers

Lagrange multipliers also work for constraints $c\left(q^{k}\right)=$ const. that cut across GCC lines.
It is only necessary to express the gradient of $c\left(q^{k}\right)$ in terms of the GCC using chainsaw sum rule.

$$
\nabla c=\frac{\partial c}{\partial x^{j}} \hat{\mathbf{e}}^{j}=\frac{\partial c}{\partial q^{k}} \mathbf{E}^{k} \quad \frac{\partial c}{\partial q^{k}}=\frac{}{\partial q^{k}} \frac{\partial c}{}=\frac{\partial x^{j}}{\partial q^{k}} \frac{\partial c}{\partial x^{j}}=\frac{\partial \mathbf{r}}{\partial q^{k}} \cdot \frac{\partial c}{\partial \mathbf{r}}=\mathbf{E}_{k} \cdot \nabla c
$$

Then the Lagrange equations for each GCC q^{k} will share a λ-multiplier on its c-gradient component.

$$
\binom{\dot{p}_{1}-\frac{\partial L}{\partial q^{1}}}{\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}}=\left(\begin{array}{c}
\lambda \frac{\partial}{\partial q^{1}} \\
\lambda \frac{\partial c}{\partial q^{2}} \\
\cdot
\end{array}\right) \quad \dot{p}_{k}-\frac{\partial L}{\partial q^{k}}=\lambda \frac{\partial c}{\partial q^{k}}
$$

Lagrange multipliers also work for constraints $c\left(q^{k}\right)=$ const. that cut across GCC lines. It is only necessary to express the gradient of $c\left(q^{k}\right)$ in terms of the GCC using chainsaw sum rule.

$$
\nabla c=\frac{\partial c}{\partial x^{j}} \hat{\mathbf{e}}^{j}=\frac{\partial c}{\partial q^{k}} \mathbf{E}^{k} \quad \frac{\partial c}{\partial q^{k}}=\frac{}{\partial q^{k}} \frac{\partial c}{}=\frac{\partial x^{j}}{\partial q^{k}} \frac{\partial c}{\partial x^{j}}=\frac{\partial \mathbf{r}}{\partial q^{k}} \cdot \frac{\partial c}{\partial \mathbf{r}}=\mathbf{E}_{k} \cdot \nabla c
$$

Then the Lagrange equations for each GCC q^{k} will share a λ-multiplier on its c-gradient component.

$$
\left(\begin{array}{c}
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}} \\
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\lambda \frac{\partial c}{\partial q^{1}} \\
\lambda \frac{\partial c}{\partial q^{2}} \\
\vdots
\end{array}\right) \quad \dot{p}_{k}-\frac{\partial L}{\partial q^{k}}=\lambda \frac{\partial c}{\partial q^{k}}
$$

Two or more constraints $\quad c^{1}\left(q^{k}\right)=$ const., $c^{2}\left(q^{k}\right)=$ const., $\cdots \quad$ add two or more λ_{γ} terms to the equations.

$$
\left(\begin{array}{c}
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}} \\
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\lambda_{1} \frac{\partial c^{1}}{\partial q^{1}} \\
\lambda_{1} \frac{\partial c^{1}}{\partial q^{2}} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\lambda_{2} \frac{\partial c^{2}}{\partial q^{1}} \\
\lambda_{2} \frac{\partial c^{2}}{\partial q^{2}} \\
\vdots
\end{array}\right)+\ldots \quad \dot{p}_{k}-\frac{\partial L}{\partial q^{k}}=\lambda \gamma \frac{\partial c^{\gamma}}{\partial q^{k}}
$$

Other Ways to do constraint analysis

Way 3. OCC constraint webs
Preview of atomic-Stark orbits
Classical Hamiltonian separability
Way 4. Lagrange multipliers
Lagrange multiplier as eigenvalues
Multiple multipliers
"Non-Holonomic" multipliers

Constraints may be determined by differential relations that are not integrable. Lagrange methods use differentials and do not need integral c^{γ} surface functions.

Integral constraint differentials

$$
\begin{aligned}
& 0=d c^{1}=\frac{\partial c^{1}}{\partial q^{1}} d q^{1}+\frac{\partial c^{1}}{\partial q^{2}} d q^{2}+\ldots \\
& 0=d c^{2}=\frac{\partial c^{2}}{\partial q^{1}} d q^{1}+\frac{\partial c^{2}}{\partial q^{2}} d q^{2}+\ldots
\end{aligned}
$$

$$
\text { Constrained equations of mọtion } \quad \vdots
$$

$$
\begin{array}{ll}
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{1}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{1}}+\ldots & \dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} C_{1}^{1}+\lambda_{2} C_{1}^{2}+\ldots \\
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{2}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{2}}+\ldots & \dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} C_{2}^{1}+\lambda_{2} C_{2}^{2}+\ldots \\
\vdots & \vdots
\end{array}
$$

Constraints may be determined by differential relations that are not integrable. Lagrange methods use differentials and do not need integral c^{γ} surface functions.

Integral constraint differentials

$$
\begin{aligned}
& 0=d c^{1}=\frac{\partial c^{1}}{\partial q^{1}} d q^{1}+\frac{\partial c^{1}}{\partial q^{2}} d q^{2}+\ldots \\
& 0=d c^{2}=\frac{\partial c^{2}}{\partial q^{1}} d q^{1}+\frac{\partial c^{2}}{\partial q^{2}} d q^{2}+\ldots
\end{aligned}
$$

$$
\text { Constrained equations of motion } \quad \vdots
$$

$$
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{1}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{1}}+\ldots \quad \quad \dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} C_{1}^{1}+\lambda_{2} C_{1}^{2}+\ldots
$$

$$
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{2}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{2}}+\ldots
$$

$$
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} C_{2}^{1}+\lambda_{2} C_{2}^{2}+\ldots
$$

If a differential can't be integrated to give a constraint function it's called a non-holonomic constraint.

Constraints may be determined by differential relations that are not integrable. Lagrange methods use differentials and do not need integral c^{γ} surface functions.

Integral constraint differentials

$$
\begin{aligned}
& 0=d c^{1}=\frac{\partial c^{1}}{\partial q^{1}} d q^{1}+\frac{\partial c^{1}}{\partial q^{2}} d q^{2}+\ldots \\
& 0=d c^{2}=\frac{\partial c^{2}}{\partial q^{1}} d q^{1}+\frac{\partial c^{2}}{\partial q^{2}} d q^{2}+\ldots
\end{aligned}
$$

Constrained equations of motion

$$
\begin{array}{ll}
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{1}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{1}}+\ldots & \dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} C_{1}^{1}+\lambda_{2} C_{1}^{2}+\ldots \\
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{2}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{2}}+\ldots & \dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} C_{2}^{1}+\lambda_{2} C_{2}^{2}+\ldots
\end{array}
$$

If a differential can't be integrated to give a constraint function it's called a non-holonomic constraint. I guess that means that integrable ones are holonomic. (But why do we need the bigger words?) A requirement for integrability (or "holonomicty") is that double differentials are symmetric.

$$
\frac{\partial^{2} c^{\gamma}}{\partial q^{j} \partial q^{k}}=\frac{\partial^{2} c^{\gamma}}{\partial q^{k} \partial q^{j}}
$$

Constraints may be determined by differential relations that are not integrable. Lagrange methods use differentials and do not need integral c^{γ} surface functions.

Integral constraint differentials

$$
\begin{aligned}
& 0=d c^{1}=\frac{\partial c^{1}}{\partial q^{1}} d q^{1}+\frac{\partial c^{1}}{\partial q^{2}} d q^{2}+\ldots \\
& 0=d c^{2}=\frac{\partial c^{2}}{\partial q^{1}} d q^{1}+\frac{\partial c^{2}}{\partial q^{2}} d q^{2}+\ldots
\end{aligned}
$$

Constrained equations of motion

$$
\begin{array}{ll}
\dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{1}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{1}}+\ldots & \dot{p}_{1}-\frac{\partial L}{\partial q^{1}}=\lambda_{1} C_{1}^{1}+\lambda_{2} C_{1}^{2}+\ldots \\
\dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} \frac{\partial c^{1}}{\partial q^{2}}+\lambda_{2} \frac{\partial c^{2}}{\partial q^{2}}+\ldots & \dot{p}_{2}-\frac{\partial L}{\partial q^{2}}=\lambda_{1} C_{2}^{1}+\lambda_{2} C_{2}^{2}+\ldots
\end{array}
$$

If a differential can't be integrated to give a constraint function it's called a non-holonomic constraint. I guess that means that integrable ones are holonomic. (But why do we need the bigger words?) A requirement for integrability (or "holonomicty") is that double differentials are symmetric.

$$
\frac{\partial^{2} c^{\gamma}}{\partial q^{j} \partial q^{k}}=\frac{\partial^{2} c^{\gamma}}{\partial q^{k} \partial q^{j}}
$$

Force components $F_{k}^{\gamma}=\frac{\partial c^{\gamma}}{\partial q^{k}}=C_{k}^{\gamma}$ must satisfy reciprocity relations to be gradients of a c^{γ} function.

Integral constraint differentials

$$
\frac{\partial F_{k}^{\gamma}}{\partial q^{j}}=\frac{\partial^{2} c^{\gamma}}{\partial q^{j} \partial q^{k}}=\frac{\partial F_{j}^{\gamma}}{\partial q^{k}}
$$

General differential constraint relations

$$
\frac{\partial C_{k}^{\gamma}}{\partial q^{j}} \text { maynot be } \frac{\partial C_{j}^{\gamma}}{\partial q^{k}}
$$

