Electromagnetic Lagrangian and charge-field mechanics (Ch. 2.8 of Unit 2)

Charge mechanics in electromagnetic fields
Vector analysis for particle-in- (\mathbf{A}, Φ)-potential
Lagrangian for particle-in- (\boldsymbol{A}, Φ)-potential
Hamiltonian for particle-in-(A, Φ)-potential
Canonical momentum in (\boldsymbol{A}, Φ) potential
Hamiltonian formulation
Hamilton's equations

Crossed E and B field mechanics

Classical Hall-effect and cyclotron orbit orbit equations Vector theory vs. complex variable theory Mechanical analog of cyclotron and FBI rule

Cycloid and epicycloid ruler\& compass geometry
Cycloid geometry of flying levers

This mechanical analog of $\left(E_{x}, B_{z}\right)$ field mimics \mathbf{A}-field with tabletop \mathbf{v}-field Practical poolhall application

Charge mechanics in electromagnetic fields

\longrightarrow Vector analysis for particle-in-(A, Φ)-potential Lagrangian for particle-in-($\boldsymbol{A}, \Phi)$-potential Hamiltonian for particle-in-(\boldsymbol{A}, Φ)-potential

Canonical momentum in (\boldsymbol{A}, Φ) potential Hamiltonian formulation Hamilton's equations

Vector analysis for particle-in- (\boldsymbol{A}, Φ)-potential
So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B}
scalar potential field $\Phi=\Phi(\mathbf{r}, t)$
vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

Vector analysis for particle-in- (\boldsymbol{A}, Φ)-potential
So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B}
scalar potential field $\Phi=\Phi(\mathbf{r}, t)$
vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right]
$$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

Righthand Rule

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

Vector analysis for particle-in- (\boldsymbol{A}, Φ)-potential
So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B}
scalar potential field $\Phi=\Phi(\mathbf{r}, t)$
vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right]
$$

Doing a double-cross

$$
[\mathbf{v} \times(\nabla \times \mathbf{A})]_{k}=\varepsilon_{k i j} v_{i}(\nabla \times \mathbf{A})_{j}
$$ $\varepsilon_{i j k}$-Tensor analysis of $\mathbf{v} \times(\nabla \times \mathbf{A}) \quad[\mathbf{v} \times(\nabla \times \mathbf{A})]_{k}=\varepsilon_{k i j} v_{i}(\nabla \times \mathbf{A})_{j}$

$\mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}$
$\mathbf{B}=\nabla \times \mathbf{A}$

Vector analysis for particle-in-(A, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B}
scalar potential field $\Phi=\Phi(\mathbf{r}, t)$
vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right]
$$

Doing a double-cross

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

$$
\varepsilon_{i j k} \text {-Tensor analysis of } \mathbf{v} \times(\nabla \times \mathbf{A}) \quad[\mathbf{v} \times(\nabla \times \mathbf{A})]_{k}=\varepsilon_{k i j} v_{i}(\nabla \times \mathbf{A})_{j}
$$

$$
\begin{aligned}
& \varepsilon_{i j k}=\left\{\begin{array}{l}
+1 \text { for even permutaion of } i<j<k \\
0 \text { if any of } i, j, k \text { are equal } \\
-1 \text { for odd permutaion of } i<j<k
\end{array}\right. \\
& \varepsilon_{i j k}=\varepsilon_{i k j}=\varepsilon_{k i j}=1 \\
& =-\varepsilon_{j i k}=-\varepsilon_{j k i}=-\varepsilon_{k j i}
\end{aligned}
$$

Vector analysis for particle-in-(A, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B}
scalar potential field $\Phi=\Phi(\mathbf{r}, t)$
vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right]
$$

Doing a double-cross

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

$$
\varepsilon_{i j k} \text {-Tensor analysis of } \mathbf{v} \times(\nabla \times \mathbf{A}) \quad[\mathbf{v} \times(\nabla \times \mathbf{A})]_{k}=\varepsilon_{k i j} v_{i}(\nabla \times \mathbf{A})_{j}
$$

$$
\begin{aligned}
& \varepsilon_{i j k}=\left\{\begin{array}{l}
+1 \text { for even permutaion of } i<j<k \\
0 \text { if any of } i, j, k \text { are equal } \\
-1 \text { for odd permutaion of } i<j<k
\end{array}\right. \\
& \varepsilon_{i j k}=\varepsilon_{i k j}=\varepsilon_{k i j}=1 \\
& =-\varepsilon_{j i k}=-\varepsilon_{j k i}=-\varepsilon_{k j i}
\end{aligned}
$$

Vector analysis for particle-in- (\boldsymbol{A}, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B}
scalar potential field $\Phi=\Phi(\mathbf{r}, t)$
vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right]
$$

Doing a double-cross

$$
\varepsilon_{i j k} \text {-Tensor analysis of } \mathbf{v} \times(\nabla \times \mathbf{A}) \quad[\mathbf{v} \times(\nabla \times \mathbf{A})]_{k}=\varepsilon_{k i j} v_{i}(\nabla \times \mathbf{A})_{j}
$$

$$
\varepsilon_{i j k}=\left\{\begin{array}{l}
+1 \text { for } e v e n \text { permutaion of } i<j<k \\
0 \quad \text { if any of } i, j, k \text { are equal } \\
-1 \text { for odd permutaion of } i<j<k
\end{array}\right.
$$

$$
\varepsilon_{i j k}=\varepsilon_{i k j}=\varepsilon_{k i j}=1
$$

$$
\begin{aligned}
& =\varepsilon_{k i j} v_{i}\left(\varepsilon_{a b j}\left(\partial_{a} A_{b}\right)\right) \\
& =\quad \varepsilon_{k i j} \varepsilon_{a b j} \quad v_{i}\left(\partial_{a} A_{b}\right) \\
& =\left(\delta_{k a} \delta_{i b}-\delta_{k b} \delta_{i a}\right) v_{i}\left(\partial_{a} A_{b}\right)
\end{aligned}
$$

$$
=-\varepsilon_{j i k}=-\varepsilon_{j k i}=-\varepsilon_{k j i}
$$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

Applying Levi-Civita ε-identity:

$$
\varepsilon_{k i j} \varepsilon_{a b j}=\delta_{k a} \delta_{i b}-\delta_{k b} \delta_{i a}
$$

Vector analysis for particle-in-(A, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B}
scalar potential field $\Phi=\Phi(\mathbf{r}, t)$
vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right]
$$

Doing a double-cross

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

$$
\varepsilon_{i j k} \text {-Tensor analysis of } \mathbf{v} \times(\nabla \times \mathbf{A}) \quad[\mathbf{v} \times(\nabla \times \mathbf{A})]_{k}=\boldsymbol{\varepsilon}_{k i j} v_{i}(\nabla \times \mathbf{A})_{j}
$$

Rgshmand Rule Th
B

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

$$
\varepsilon_{i j k}=\left\{\begin{array}{l}
+1 \text { for } \text { even permutaion of } i<j<k \\
0 \quad \text { if any of } i, j, k \text { are equal } \\
-1 \text { for } \text { odd permutaion of } i<j<k
\end{array}\right.
$$

$$
=\varepsilon_{k i j} v_{i}\left(\varepsilon_{a b j}\left(\partial_{a} A_{b}\right)\right)
$$

Applying Levi-Civita ε-identity:

$$
=\varepsilon_{k i j} \varepsilon_{a b j} \quad v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
\varepsilon_{k j i j} \varepsilon_{a b j}=\delta_{k a} \delta_{i b}-\delta_{k b} \delta_{i a}
$$

$$
=\left(\delta_{k a} \delta_{i b}-\delta_{k b} \delta_{i a}\right) v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
\varepsilon_{i j k}=\varepsilon_{i k j}=\varepsilon_{k i j}=1
$$

$$
=-\varepsilon_{j i k}=-\varepsilon_{j k i}=-\varepsilon_{k j i}
$$

Vector analysis for particle-in-(A, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B} scalar potential field $\Phi=\Phi(\mathbf{r}, t)$
vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right]
$$

Doing a double-cross

$$
\varepsilon_{i j k} \text {-Tensor analysis of } \mathbf{v} \times(\nabla \times \mathbf{A}) \quad[\mathbf{v} \times(\nabla \times \mathbf{A})]_{k}=\boldsymbol{\varepsilon}_{k j j} v_{i}(\nabla \times \mathbf{A})_{j}
$$

$$
\begin{aligned}
& \varepsilon_{i j k}=\left\{\begin{array}{l}
+1 \text { for even permutaion of } i<j<k \\
0 \text { if any of } i, j, k \text { are equal } \\
-1 \text { for odd permutaion of } i<j<k
\end{array}\right. \\
& \varepsilon_{i j k}=\varepsilon_{i k j}=\varepsilon_{k i j}=1 \\
& =-\varepsilon_{j i k}=-\varepsilon_{j k i}=-\varepsilon_{k j i}
\end{aligned}
$$

$$
=\varepsilon_{k i j} v_{i}\left(\varepsilon_{a b j}\left(\partial_{a} A_{b}\right)\right)
$$

$$
=\varepsilon_{k i j} \varepsilon_{a b j} \quad v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=\left(\delta_{k a} \delta_{i b}-\delta_{k b} \delta_{i a}\right) v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

Applying Levi-Civita ε-identity:

$$
\varepsilon_{k j j} \varepsilon_{a b j}=\delta_{k a} \delta_{i b}-\delta_{k b} \delta_{i a}
$$

Vector analysis for particle-in-(A, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B} scalar potential field $\Phi=\Phi(\mathbf{r}, t)$ vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right]
$$

Doing a double-cross

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

$$
\varepsilon_{i j k} \text {-Tensor analysis of } \mathbf{v} \times(\nabla \times \mathbf{A}) \quad[\mathbf{v} \times(\nabla \times \mathbf{A})]_{k}=\boldsymbol{\varepsilon}_{k i j} v_{i}(\nabla \times \mathbf{A})_{j}
$$

$$
\begin{aligned}
& \varepsilon_{i j k}=\left\{\begin{array}{l}
+1 \text { for } \text { even permutaion of } i<j<k \\
0 \text { if any of } i, j, k \text { are equal } \\
-1 \text { for odd permutaion of } i<j<k
\end{array}\right. \\
& \qquad \varepsilon_{i j k}=\varepsilon_{i k j}=\varepsilon_{k i j}=1 \\
& =-\varepsilon_{j i k}=-\varepsilon_{j k i}=-\varepsilon_{k j i}
\end{aligned}
$$

$$
=\varepsilon_{k i j} v_{i}\left(\varepsilon_{a b j}\left(\partial_{a} A_{b}\right)\right)
$$

$$
=\varepsilon_{k j i} \varepsilon_{a b j} \quad v_{i}\left(\partial_{a} A_{b}\right)
$$

Applying Levi-Civita ε-identity:

$$
\varepsilon_{k i j} \varepsilon_{a b j}=\delta_{k a} \delta_{i b}-\delta_{k b} \delta_{i a}
$$

$$
=\left(\delta_{k a} \delta_{i b}-\delta_{k b} \delta_{i a}\right) v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=\delta_{k a} \delta_{i b} v_{i}\left(\partial_{a} A_{b}\right)-\delta_{k b} \delta_{i a} v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=v_{b}\left(\partial_{k} A_{b}\right) \quad-v_{a}\left(\partial_{a} A_{k}\right)
$$

$$
=\left(\partial_{k} A_{b}\right) v_{b} \quad-v_{a}\left(\partial_{a} A_{k}\right)
$$

$$
=\partial_{k}\left(A_{b} v_{b}\right)-\left(\partial_{k} v_{b}\right) A_{b}-v_{a}\left(\partial_{a} A_{k}\right)
$$

Vector analysis for particle-in- (\boldsymbol{A}, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{{ }_{e}=-1.1 .602176 \cdot 10^{10} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B} scalar potential field $\Phi=\Phi(\mathbf{r}, t)$ vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right]
$$

Doing a double-cross

$$
\varepsilon_{i j k} \text {-Tensor analysis of } \mathbf{v} \times(\nabla \times \mathbf{A}) \quad[\mathbf{v} \times(\nabla \times \mathbf{A})]_{k}=\boldsymbol{\varepsilon}_{k i j} v_{i}(\nabla \times \mathbf{A})_{j}
$$

$$
\begin{aligned}
& \varepsilon_{i j k}=\left\{\begin{array}{l}
+1 \text { for even permutaion of } i<j<k \\
0 \text { if any of } i, j, k \text { are equal } \\
-1 \text { for odd permutaion of } i<j<k
\end{array}\right. \\
& \varepsilon_{i j k}=\varepsilon_{i k j}=\varepsilon_{k i j}=1 \\
& =-\varepsilon_{j i k}=-\varepsilon_{j k i}=-\varepsilon_{k j i}
\end{aligned}
$$

$$
=\varepsilon_{k i j} v_{i}\left(\varepsilon_{a b j}\left(\partial_{a} A_{b}\right)\right)
$$

$$
=\varepsilon_{k i j} \varepsilon_{a b j} \quad v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=\left(\delta_{k a} \delta_{i b}-\delta_{k b} \delta_{i a}\right) v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=\delta_{k a} \delta_{i b} v_{i}\left(\partial_{a} A_{b}\right)-\delta_{k b} \delta_{i a} v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=v_{b}\left(\partial_{k} A_{b}\right) \quad-v_{a}\left(\partial_{a} A_{k}\right)
$$

$$
=\quad\left(\partial_{k} A_{b}\right) v_{b} \quad-v_{a}\left(\partial_{a} A_{k}\right)=(\nabla \mathbf{A}) \cdot \mathbf{v}-\mathbf{v} \cdot \nabla \mathbf{A}
$$

$$
=\partial_{k}\left(A_{b} v_{b}\right)-\left(\partial_{k} v_{b}\right) A_{b}-v_{a}\left(\partial_{a} A_{k}\right)=\nabla(\mathbf{A} \cdot \mathbf{v})-(\nabla \mathbf{v}) \cdot \mathbf{A}-\mathbf{v} \cdot \nabla \mathbf{A}
$$

Converting back to Gibbs's bold notation involves tensors like $\nabla \mathbf{A}$ and $\nabla \mathbf{v}$.

Vector analysis for particle-in- (\boldsymbol{A}, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{{ }^{\text {electronic charge: }} e=1.602176 \cdot 10 \cdot 1{ }^{\prime \prime} \text { Coulombs }}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B} scalar potential field $\Phi=\Phi(\mathbf{r}, t)$ vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
\mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}
$$

$$
\mathbf{B}=\nabla \times \mathbf{A}
$$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right]
$$

Doing a double-cross

$$
\varepsilon_{i j k} \text {-Tensor analysis of } \mathbf{v} \times(\nabla \times \mathbf{A}) \quad[\mathbf{v} \times(\nabla \times \mathbf{A})]_{k}=\boldsymbol{\varepsilon}_{k i j} v_{i}(\nabla \times \mathbf{A})_{j}
$$

$$
\begin{aligned}
& \varepsilon_{i j k}=\left\{\begin{array}{l}
+1 \text { for } \text { even permutaion of } i<j<k \\
0 \text { if any of } i, j, k \text { are equal } \\
-1 \text { for odd } \text { permutaion of } i<j<k
\end{array}\right. \\
& \varepsilon_{i j k}=\varepsilon_{i k j}=\varepsilon_{k i j}=1 \\
& =-\varepsilon_{j i k}=-\varepsilon_{j k i}=-\varepsilon_{k j i}
\end{aligned}
$$

$$
=\varepsilon_{k i j} v_{i}\left(\varepsilon_{a b j}\left(\partial_{a} A_{b}\right)\right)
$$

$$
=\varepsilon_{k i j} \varepsilon_{a b j} \quad v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=\left(\delta_{k a} \delta_{i b}-\delta_{k b} \delta_{i a}\right) v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=\delta_{k a} \delta_{i b} v_{i}\left(\partial_{a} A_{b}\right)-\delta_{k b} \delta_{i a} v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=v_{b}\left(\partial_{k} A_{b}\right) \quad-v_{a}\left(\partial_{a} A_{k}\right)
$$

$$
=\left(\partial_{k} A_{b}\right) v_{b} \quad-v_{a}\left(\partial_{a} A_{k}\right)=(\nabla \mathbf{A}) \cdot \mathbf{v}-\mathbf{v} \cdot \nabla \mathbf{A}
$$

$$
=\partial_{k}\left(A_{b} v_{b}\right)-\left(\partial_{k} v_{b}\right) A_{b}-v_{a}\left(\partial_{a} A_{k}\right)=\nabla(\mathbf{A} \cdot \mathbf{v})-(\nabla \mathbf{v}) \cdot \mathbf{A}-\mathbf{v} \cdot \nabla \mathbf{A}
$$

Converting back to Gibbs's bold notation involves tensors like $\nabla \mathbf{A}$ and $\nabla \mathbf{v}$.
Newtonian mechanics has no explicit dependence of position \mathbf{r} and velocity \mathbf{v}.

Abstract

\mathbf{r}-partial derivative of \mathbf{v} (or vice-versa) is identically zero. $\quad \partial_{k} \nu^{j} \equiv 0$ iff: $\nabla \mathbf{v}=\frac{\partial \mathbf{v}}{\partial \mathbf{r}}=\mathbf{0}$

Vector analysis for particle-in- (\boldsymbol{A}, Φ)-potential
So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\stackrel{\text { electronic charge: }}{e=-1.602176 \cdot 10^{\prime \prime}} \text { Coulombs }}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B} scalar potential field $\Phi=\Phi(\mathbf{r}, t)$ vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right]
$$

$$
\begin{array}{cl}
\text { Doing a double-cross } & d t \\
\varepsilon_{i j k} \text {-Tensor analysis of } \mathbf{v} \times(\nabla \times \mathbf{A}) & {[\mathbf{v} \times(\nabla \times \mathbf{A})]_{k}=\varepsilon_{k i j} v_{i}(\nabla \times \mathbf{A})_{j}}
\end{array}
$$

$$
\begin{aligned}
& \varepsilon_{i j k}=\left\{\begin{array}{l}
+1 \text { for } \text { even permutaion of } i<j<k \\
0 \quad \text { if any of } i, j, k \text { are equal } \\
-1 \text { for odd permutaion of } i<j<k
\end{array}\right. \\
& =\varepsilon_{i j k}=\varepsilon_{i k j}=\varepsilon_{k i j}=1 \\
& =-\varepsilon_{j i k}=-\varepsilon_{j k i}=-\varepsilon_{k j i}
\end{aligned}
$$

$$
=\varepsilon_{k i j} v_{i}\left(\varepsilon_{a b j}\left(\partial_{a} A_{b}\right)\right)
$$

$$
=\varepsilon_{k i j} \varepsilon_{a b j} \quad v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=\left(\delta_{k a} \delta_{i b}-\delta_{k b} \delta_{i a}\right) v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=\delta_{k a} \delta_{i b} v_{i}\left(\partial_{a} A_{b}\right)-\delta_{k b} \delta_{i a} v_{i}\left(\partial_{a} A_{b}\right)
$$

$$
=v_{b}\left(\partial_{k} A_{b}\right) \quad-v_{a}\left(\partial_{a} A_{k}\right)
$$

$$
=\left(\partial_{k} A_{b}\right) v_{b} \quad-v_{a}\left(\partial_{a} A_{k}\right)=(\nabla \mathbf{A}) \cdot \mathbf{v}-\mathbf{v} \cdot \nabla \mathbf{A}
$$

$$
=\partial_{k}\left(A_{b} v_{b}\right)-\left(\partial_{k} v_{b}\right) A_{b}-v_{a}\left(\partial_{a} A_{k}\right)=\nabla(\mathbf{A} \cdot \mathbf{v})-(\nabla \mathbf{v}) \cdot \mathbf{A}-\mathbf{v} \cdot \nabla \mathbf{A}
$$

Converting back to Gibbs's bold notation involves tensors like $\nabla \mathbf{A}$ and $\nabla \mathbf{v}$.
Newtonian mechanics has no explicit dependence of position \mathbf{r} and velocity \mathbf{v}. \mathbf{r}-partial derivative of \mathbf{v} (or vice-versa) is identically zero. $\quad \partial_{k}{ }^{j} \equiv 0$ iff: $\nabla \mathbf{v}=\frac{\partial \mathbf{v}}{\partial \mathbf{r}}=\mathbf{0}$

$$
\mathbf{v} \times(\nabla \times \mathbf{A})=\nabla(\mathbf{A} \cdot \mathbf{v})-\quad 0 \quad-\mathbf{v} \cdot \nabla \mathbf{A} \quad \text { for particle mechanics }
$$

Summary of Vector analysis for particle-in- (\boldsymbol{A}, Φ)-potential

Tensor index notation helps to distinguish $(\nabla \mathbf{A}) \cdot \mathbf{v}, \mathbf{v} \cdot(\nabla \mathbf{A})$, and $\nabla(\mathbf{A} \cdot \mathbf{v})=(\nabla \mathbf{A}) \cdot \mathbf{v}+(\nabla \mathbf{v}) \cdot \mathbf{A}$

$$
\begin{array}{rrr}
{[(\nabla \mathbf{A}) \cdot \mathbf{v}]_{k}=\frac{\partial A_{j}}{\partial x_{k}} v_{j}} & {[\mathbf{v} \cdot(\nabla \mathbf{A})]_{k}=v_{j} \frac{\partial A_{k}}{\partial x_{j}}} & {[\nabla(\mathbf{A} \cdot \mathbf{v})]_{k}=[(\nabla \mathbf{A}) \cdot \mathbf{v}+(\nabla \mathbf{v}) \cdot \mathbf{A}]_{k}} \\
=\left(\partial_{k} A_{j}\right) v_{j} & =\left(v_{j} \partial_{j} A_{k}\right) & \partial_{k}\left(A_{b} v_{b}\right)=\left(\partial_{k} v_{b}\right) A_{b}-\left(\partial_{k} v_{a}\right) A_{a}
\end{array}
$$

$$
\mathbf{v} \times(\nabla \times \mathbf{A})=\nabla(\mathbf{A} \cdot \mathbf{v})-\quad 0 \quad-\mathbf{v} \cdot \nabla \mathbf{A} \quad \text { for particle mechanics }
$$

Charge mechanics in electromagnetic fields

Vector analysis for particle-in-(A, $\Phi)$-potential
\rightarrow Lagrangian for particle-in-(A, Φ)-potential Hamiltonian for particle-in-(A, Φ)-potential

Canonical momentum in (\boldsymbol{A}, Φ) potential Hamiltonian formulation Hamilton's equations

Lagrangian for particle-in-(A, Φ)-potential

$$
\begin{aligned}
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) & \begin{array}{c}
\text { Electric field } \mathbf{E} \text { and magnetic field } \mathbf{B} \\
\text { scalar potential field } \Phi=\Phi(\mathbf{r}, t) \\
\text { vector potential field } \mathbf{A}=\mathbf{A}(\mathbf{r}, t)
\end{array} \\
m \frac{\mathbf{d \mathbf { v }}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right] & \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

$$
\mathbf{v} \times(\nabla \times \mathbf{A})=\nabla(\mathbf{A} \cdot \mathbf{v})-\quad 0 \quad-\mathbf{v} \cdot \nabla \mathbf{A} \quad \text { for particle mechanics }
$$

Lagrangian for particle-in-(A, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B}
scalar potential field $\Phi=\Phi(\mathbf{r}, t)$
vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$
$\mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}$
$\mathbf{B}=\nabla \times \mathbf{A}$

$$
\begin{aligned}
& m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right] \\
& m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\nabla(\mathbf{v} \bullet \mathbf{A})-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]
\end{aligned}
$$

Chain rule expansion of vector potential total t-derivative: $\frac{d \mathbf{A}}{d t}=\frac{\partial \mathbf{A}}{\partial x} \dot{x}+\frac{\partial \mathbf{A}}{\partial y} \dot{y}+\frac{\partial \mathbf{A}}{\partial z} \dot{z}+\frac{\partial \mathbf{A}}{\partial t}=\frac{\partial \mathbf{A}}{\partial t}+(\underline{v} \bullet \nabla) \mathbf{A}$

Lagrangian for particle-in- (\boldsymbol{A}, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B}
scalar potential field $\Phi=\Phi(\mathbf{r}, t)$
vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

$$
\begin{aligned}
& m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right] \\
& m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\nabla(\mathbf{v} \bullet \mathbf{A})-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]
\end{aligned}
$$

Righthand Rule

$$
\mathbf{F}=q \mathbf{V} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

Chain rule expansion of vector potential total t gerivative $\frac{\dot{d} \mathbf{A}}{d t}=\frac{\partial \mathbf{A}}{\partial x} \dot{x}+\frac{\partial \mathbf{A}}{\partial y} \dot{y}+\frac{\partial \mathbf{A}}{\partial z} \dot{z}+\frac{\partial \mathbf{A}}{\partial t}=\frac{\partial \mathbf{A}}{\partial t}+(\mathbf{v} \bullet \nabla) \mathbf{A}$

$$
m \frac{d \mathbf{v}}{d t}=e\left[-\nabla \Phi+\nabla(\mathbf{v} \bullet \mathbf{A})-\frac{\partial \dot{A}}{\partial t}-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]
$$

Lagrangian for particle-in- (\boldsymbol{A}, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\quad{ }_{e}=-1.602176 \cdot 10^{1 / 1} \mathrm{Coulombs}}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Electric field \mathbf{E} and magnetic field \mathbf{B}
scalar potential field $\Phi=\Phi(\mathbf{r}, t)$
vector potential field $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$

$$
\begin{aligned}
& m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right] \\
& m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\nabla(\mathbf{v} \bullet \mathbf{A})-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

Righthand Rule
B

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

Chain rule expansion of vector potential total t glerivative $\frac{\dot{d} \mathbf{A}}{d t}=\frac{\partial \mathbf{A}}{\partial x} \dot{x}+\frac{\partial \mathbf{A}}{\partial y} \dot{y}+\frac{\partial \mathbf{A}}{\partial z} \dot{z}+\frac{\partial \mathbf{A}}{\partial t} \frac{\partial \mathbf{A}}{\partial t}+(\mathbf{v} \bullet \nabla) \mathbf{A}$

$$
m \frac{d \mathbf{v}}{d t}=e\left[-\nabla \Phi+\nabla(\mathbf{v} \bullet \mathbf{A})-\frac{\partial \mathbf{A}}{\partial t}-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]=e\left[-\nabla(\Phi-\mathbf{v} \bullet \mathbf{A})-\frac{d \mathbf{A}}{d t}\right]
$$

Lagrangian for particle-in- (\boldsymbol{A}, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\stackrel{\text { electronic charge: }}{e=-1.602176 \cdot 10^{\prime \prime}} \text { Coulombs }}$

$$
\begin{array}{r}
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \quad \begin{array}{c}
\text { Electric field } \mathbf{E} \text { and magnetic field } \mathbf{B} \\
\text { scalar potential field } \Phi=\Phi(\mathbf{r}, t) \\
\text { vector potential field } \mathbf{A}=\mathbf{A}(\mathbf{r}, t)
\end{array} \\
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right] \\
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\nabla(\mathbf{v} \bullet \mathbf{A})-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]
\end{array}
$$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

B

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

Chain rule expansion of vector potential total t derivative $\frac{\dot{d} \mathbf{A}}{d t}=\frac{\partial \mathbf{A}}{\partial x} \dot{x}+\frac{\partial \mathbf{A}}{\partial y} \dot{y}+\frac{\partial \mathbf{A}}{\partial z} \dot{z}+\frac{\partial \mathbf{A}}{\partial t} \frac{\partial \mathbf{A}}{\partial t}+(\mathbf{v} \bullet \nabla) \mathbf{A}$

$$
m \frac{d \mathbf{v}}{d t}=e\left[-\nabla \Phi+\nabla(\mathbf{v} \bullet \mathbf{A})-\frac{\partial \mathbf{A}}{\partial t}-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]=e\left[-\nabla(\Phi-\mathbf{v} \bullet \mathbf{A})-\frac{d \mathbf{A}}{d t}\right]
$$

$$
m \frac{d \mathbf{v}}{d t}=\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}} \frac{1}{2} m \mathbf{v} \bullet \mathbf{v} \quad \frac{d}{d t} \frac{\partial}{\partial \mathbf{v}} \frac{1}{2} m \mathbf{v} \bullet \mathbf{v}=\frac{d}{d t}(-e \mathbf{A}) \quad-\nabla(\ddot{e} \boldsymbol{\Phi}-\mathbf{v} \bullet e \mathbf{A})^{-} \frac{d \mathbf{A}}{d t}
$$

Lagrangian for particle-in- (\boldsymbol{A}, Φ)-potential

$$
\begin{array}{r}
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \quad \begin{array}{c}
\text { Electric field } \mathbf{E} \text { and magnetic field } \mathbf{B} \\
\text { scalar potential field } \Phi=\Phi(\mathbf{r}, t) \\
\text { vector potential field } \mathbf{A}=\mathbf{A}(\mathbf{r}, t)
\end{array} \\
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right] \\
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\nabla(\mathbf{v} \bullet \mathbf{A})-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]
\end{array}
$$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

Rgshumand fule

B

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

Chain rule expansion of vector potential total tederivative $\frac{d}{d t}=\frac{\partial \mathbf{A}}{\partial x} \dot{x}+\frac{\partial \mathbf{A}}{\partial y} \dot{y}+\frac{\partial \mathbf{A}}{\partial z} \dot{z}+\frac{\partial \mathbf{A}}{\partial t} \frac{\partial \mathbf{A}}{\partial t}+(\mathbf{v} \bullet \nabla) \mathbf{A}$

$$
m \frac{d \mathbf{v}}{d t}=e\left[-\nabla \Phi+\nabla(\mathbf{v} \bullet \mathbf{A})-\frac{\partial \mathbf{A}}{\partial t}-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]=e\left[-\nabla(\Phi-\mathbf{v} \bullet \mathbf{A})-\frac{d \mathbf{A}}{d t}\right]
$$

$m \frac{d \mathbf{v}}{d t}=\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}} \frac{1}{2} m \mathbf{v} \bullet \mathbf{v} \quad \frac{d}{d t} \frac{\partial}{\partial \mathbf{v}} \frac{1}{2} m \mathbf{v} \bullet \mathbf{v}=\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}}(e \Phi-\mathbf{v} \bullet e \mathbf{A})-\nabla(e \Phi-\mathbf{v} \bullet e \mathbf{A}) \quad \frac{d}{d t} \frac{\partial}{\partial \mathbf{v}}(e \Phi-\mathbf{v} \bullet e \mathbf{A})=-e \frac{d \mathbf{A}}{d t}$
Inserting Φ-term that $\partial_{\mathbf{v}}$ zeros : \quad This step requires that: $\left.\frac{\partial}{\partial \mathbf{v}}(e \Phi)=0\right)\left(\right.$ and $\left.: \frac{\partial}{\partial \mathbf{v}}(\mathbf{v} \bullet e \mathbf{A})=e \mathbf{A}\right)$

Lagrangian for particle-in- (\boldsymbol{A}, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\stackrel{\text { electronic charge: }}{e=-1.602176 \cdot 10^{\prime}}{ }^{10} \text { Coulombs }}$

$$
\begin{array}{rr}
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \quad \begin{array}{c}
\text { Electric field } \mathbf{E} \text { and magnetic field } \mathbf{B} \\
\text { scalar potential field } \Phi=\Phi(\mathbf{r}, t) \\
\text { vector potential field } \mathbf{A}=\mathbf{A}(\mathbf{r}, t)
\end{array} \\
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right] \\
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\nabla(\mathbf{v} \bullet \mathbf{A})-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]
\end{array}
$$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

Reghumand fue Th
(B)

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

Chain rule expansion of vector potential total t derivative $\frac{d \mathbf{A}}{d t}=\frac{\partial \mathbf{A}}{\partial x} \dot{x}+\frac{\partial \mathbf{A}}{\partial y} \dot{y}+\frac{\partial \mathbf{A}}{\partial z} \dot{z}+\frac{\partial \mathbf{A}}{\partial t} \frac{\partial \mathbf{A}}{\partial t}+(\mathbf{v} \bullet \nabla) \mathbf{A}$

$$
m \frac{d \mathbf{v}}{d t}=e\left[-\nabla \Phi+\nabla(\mathbf{v} \bullet \mathbf{A})-\frac{\partial \mathbf{A}}{\partial t}-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]=e\left[-\nabla(\Phi-\mathbf{v} \bullet \mathbf{A})-\frac{d \mathbf{A}}{d t}\right]
$$

$m \frac{d \mathbf{v}}{d t}=\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}} \frac{1}{2} m \mathbf{v} \bullet \mathbf{v} \quad \frac{d}{d t} \frac{\partial}{\partial \mathbf{v}} \frac{1}{2} m \mathbf{v} \bullet \mathbf{v}=\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}}(e \Phi-\mathbf{v} \bullet e \mathbf{A})-\nabla(e \dddot{\sigma}-\mathbf{v} \bullet e \mathbf{A}) \quad \frac{d}{d t} \frac{\partial}{\partial \mathbf{v}}(e \Phi-\mathbf{v} \bullet e \mathbf{A})=-e \frac{d \mathbf{A}}{d t}$

$$
\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi-\mathbf{v} \bullet e \mathbf{A})\right)=\frac{\partial}{\partial \mathbf{r}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi-\mathbf{v} \bullet e \dot{\mathbf{A}})\right)
$$

Inserting $\mathbf{v} \bullet \mathbf{v}$-term that $\partial_{\mathbf{r}}$ zeros :

Lagrangian for particle-in- (\boldsymbol{A}, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\stackrel{\text { electronic charge: }}{e=-1.602176 \cdot 10^{\prime \prime}} \text { Coulombs }}$

$$
\begin{array}{r}
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \quad \begin{array}{c}
\text { Electric field } \mathbf{E} \text { and magnetic field } \mathbf{B} \\
\text { scalar potential field } \Phi=\Phi(\mathbf{r}, t) \\
\text { vector potential field } \mathbf{A}=\mathbf{A}(\mathbf{r}, t)
\end{array} \\
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right] \\
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\nabla(\mathbf{v} \bullet \mathbf{A})-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]
\end{array}
$$

$$
\begin{aligned}
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

Rgyhumand Rue Th
B

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

Chain rule expansion of vector potential total t derivative $\frac{\dot{d} \mathbf{A}}{d t}=\frac{\partial \mathbf{A}}{\partial x} \dot{x}+\frac{\partial \mathbf{A}}{\partial y} \dot{y}+\frac{\partial \mathbf{A}}{\partial z} \dot{z}+\frac{\partial \mathbf{A}}{\partial t} \frac{\partial \mathbf{A}}{\partial t}+(\mathbf{v} \bullet \nabla) \mathbf{A}$

$$
m \frac{d \mathbf{v}}{d t}=e\left[-\nabla \Phi+\nabla(\mathbf{v} \bullet \mathbf{A})-\frac{\partial \mathbf{A}}{\partial t}-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]=e\left[-\nabla(\Phi-\mathbf{v} \bullet \mathbf{A})-\frac{d \mathbf{A}}{d t}\right]
$$

$$
\begin{aligned}
& m \frac{d \mathbf{v}}{d t}=\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}} \frac{1}{2} m \mathbf{v} \bullet \mathbf{v} \quad \frac{d}{d t} \frac{\partial}{\partial \mathbf{v}} \frac{1}{2} m \mathbf{v} \bullet \mathbf{v}=\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}}(e \Phi-\mathbf{v} \bullet e \mathbf{A})-\nabla(e \widetilde{\Phi}-\mathbf{v} \bullet e \mathbf{A}) \\
& \frac{d}{d t} \frac{\partial}{\partial \mathrm{v}}(e \Phi-\mathrm{v} \bullet e \mathbf{A})=-e \frac{d \mathbf{A}}{d t} \\
& \begin{aligned}
\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}}(\underbrace{\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi-\mathbf{v} \bullet e \mathbf{A})}_{\frac{d}{d t} \frac{\partial L}{\partial \mathbf{v}}}) & =\frac{\partial}{\partial \mathbf{r}}(\underbrace{\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi-\mathbf{v} \bullet e \dot{\mathbf{A}})}_{\frac{\partial L}{\partial \mathbf{r}}}) \quad \frac{\partial}{\partial \mathbf{r}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}\right)=0 \\
& =\quad
\end{aligned}
\end{aligned}
$$

Lagrangian for particle-in- (\boldsymbol{A}, Φ)-potential

So-called pondermotive form for Newton's $F=m a$ equation for a mass m of charge $e{ }^{\stackrel{\text { electronic charge: }}{e=-1.602176 \cdot 10^{\prime \prime}} \text { Coulombs }}$

$$
m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \quad \begin{array}{cl}
\text { Electric field } \mathbf{E} \text { and magnetic field } \mathbf{B} & \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \begin{array}{l}
\text { scalar potential field } \Phi=\Phi(\mathbf{r}, t) \\
\text { vector potential field } \mathbf{A}=\mathbf{A}(\mathbf{r}, t)
\end{array} \\
\mathbf{B}=\nabla \times \mathbf{A}
\end{array}
$$

$$
\begin{aligned}
& m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \times(\nabla \times \mathbf{A})\right] \\
& m \frac{d \mathbf{v}}{d t}=\mathbf{F}=e\left[-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}+\nabla(\mathbf{v} \bullet \mathbf{A})-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]
\end{aligned}
$$

Reghumand Rue TC
B

$$
\mathbf{F}=q \mathbf{V} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

Chain rule expansion of vector potential total t derivative $\frac{\dot{d} \mathbf{A}}{d t}=\frac{\partial \mathbf{A}}{\partial x} \dot{x}+\frac{\partial \mathbf{A}}{\partial y} \dot{y}+\frac{\partial \mathbf{A}}{\partial z} \dot{z}+\frac{\partial \mathbf{A}}{\partial t} \frac{\partial \mathbf{A}}{\partial t}+(\mathbf{v} \bullet \nabla) \mathbf{A}$

$$
m \frac{d \mathbf{v}}{d t}=e\left[-\nabla \Phi+\nabla(\mathbf{v} \bullet \mathbf{A})-\frac{\partial \mathbf{A}}{\partial t}-(\mathbf{v} \bullet \nabla) \mathbf{A}\right]=e\left[-\nabla(\Phi-\mathbf{v} \bullet \mathbf{A})-\frac{d \mathbf{A}}{d t}\right]
$$

$m \frac{d \mathbf{v}}{d t}=\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}} \frac{1}{2} m \mathbf{v} \bullet \mathbf{v} \quad \frac{d}{d t} \frac{\partial}{\partial \mathbf{v}} \frac{1}{2} m \mathbf{v} \bullet \mathbf{v}=\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}}(e \Phi-\mathbf{v} \bullet e \mathbf{A})-\nabla(e \dddot{\Phi}-\mathbf{v} \bullet e \mathbf{A}) \quad \frac{d}{d t} \frac{\partial}{\partial \mathbf{v}}(e \Phi-\mathbf{v} \bullet e \mathbf{A})=-e \frac{d \mathbf{A}}{d t}$

$$
\begin{aligned}
\frac{d}{d t} \frac{\partial}{\partial \mathbf{v}}(\underbrace{\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi-\mathbf{v} \bullet e \mathbf{A})}_{\frac{d}{d t} \frac{\partial L}{\partial \mathbf{v}}}) & =\frac{\partial}{\partial \mathbf{r}}(\underbrace{\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi-\mathbf{v} \bullet e \hat{\mathbf{A}})}_{\frac{\partial L}{\partial \mathbf{r}}}) \quad \frac{\partial}{\partial \mathbf{r}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}\right)=0 \\
& =\quad
\end{aligned}
$$

Lagrangian has a linear velocity term $e \boldsymbol{v}^{\bullet} \mathbf{A}$ in addition to the usual quadratic $K E=m v^{2} / 2$ and $P E=e \Phi$.

$$
L=L(\mathbf{r}, \mathbf{v}, t)=\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))
$$

Charge mechanics in electromagnetic fields

Vector analysis for particle-in- (\boldsymbol{A}, Φ)-potential Lagrangian for particle-in- (\boldsymbol{A}, Φ)-potential Hamiltonian for particle-in-(A, Φ)-potential
\longrightarrow Canonical momentum in (A, Φ) potential Hamiltonian formulation Hamilton's equations

Hamiltonian for particle-in-($\boldsymbol{A}, \Phi)$-potential

Lagrangian has a linear velocity term $e \mathbf{v} \cdot \mathbf{A}$ in addition to the usual quadratic $K E=m v^{2} / 2$ and $P E=e \Phi$.

$$
L=L(\mathbf{r}, \mathbf{v}, t)=\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))
$$

Canonical momentum in (\boldsymbol{A}, Φ) potential
Canonical momentum is defined by L 's \mathbf{v}-derivative

$$
\begin{aligned}
& \mathbf{p}=\frac{\partial L}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))\right) \\
& \mathbf{p}=m \mathbf{v}+e \mathbf{A}(\mathbf{r}, t)
\end{aligned}
$$

Hamiltonian for particle-in-($\boldsymbol{A}, \Phi)$-potential

Lagrangian has a linear velocity term $e \mathbf{v} \cdot \mathbf{A}$ in addition to the usual quadratic $K E=m v^{2} / 2$ and $P E=e \Phi$.

$$
L=L(\mathbf{r}, \mathbf{v}, t)=\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))
$$

Canonical momentum in (\boldsymbol{A}, Φ) potential
Canonical momentum is defined by L 's \mathbf{v}-derivative

$$
\begin{aligned}
\mathbf{p}=\frac{\partial L}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))\right) & =\frac{\partial}{\partial \mathbf{v}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-e \Phi(\mathbf{r}, t)\right)_{F o r}^{\mathbf{A}(\mathbf{r}, t)=0} \\
\mathbf{p}=m \mathbf{v}+e \mathbf{A}(\mathbf{r}, t) & =m \mathbf{v}
\end{aligned}
$$

Hamiltonian for particle-in-($\boldsymbol{A}, \Phi)$-potential

Lagrangian has a linear velocity term $e \mathbf{v} \cdot \mathbf{A}$ in addition to the usual quadratic $K E=m v^{2} / 2$ and $P E=e \Phi$.

$$
L=L(\mathbf{r}, \mathbf{v}, t)=\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))
$$

Canonical momentum in (\boldsymbol{A}, Φ) potential
Canonical momentum is defined by L 's \mathbf{v}-derivative

$$
\begin{array}{rlrl}
\mathbf{p}=\frac{\partial L}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))\right) & =\frac{\partial}{\partial \mathbf{v}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-e \Phi(\mathbf{r}, t)\right)_{F o r} \mathbf{A}(\mathbf{r}, t)=0 \\
\mathbf{p}=m \mathbf{v}+e \mathbf{A}(\mathbf{r}, t) & =m \mathbf{v} & \text { For } \mathbf{A}(\mathbf{r}, t)=0
\end{array}
$$

Lagrangian is usual form $L=T-V$ with electric (scalar) potential $V=\Phi(\mathbf{r}, t)$
if magnetic (vector) potential $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$ is zero everywhere.

Hamiltonian for particle-in- (\boldsymbol{A}, Φ)-potential

Lagrangian has a linear velocity term $e \mathbf{v} \cdot \mathbf{A}$ in addition to the usual quadratic $K E=m v^{2} / 2$ and $P E=e \Phi$.

$$
L=L(\mathbf{r}, \mathbf{v}, t)=\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))
$$

Canonical momentum in (\boldsymbol{A}, Φ) potential
Canonical momentum is defined by L 's \mathbf{v}-derivative

$$
\begin{aligned}
\mathbf{p}=\frac{\partial L}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))\right) & =\frac{\partial}{\partial \mathbf{v}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-e \Phi(\mathbf{r}, t)\right)_{F o r} \mathbf{A}(\mathbf{r}, t)=0 \\
\mathbf{p}=m \mathbf{v}+e \mathbf{A}(\mathbf{r}, t) & =m \mathbf{v}
\end{aligned}
$$

Lagrangian is usual form $L=T-V$ with electric (scalar) potential $V=\Phi(\mathbf{r}, t)$
if magnetic (vector) potential $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$ is zero everywhere.
Then canonical momentum is usual form: $\mathbf{p}=m \mathbf{v}$
$(\operatorname{For} \mathbf{A}(\mathbf{r}, t)=0)$

Hamiltonian for particle-in- (\boldsymbol{A}, Φ)-potential

Lagrangian has a linear velocity term $e \mathbf{v} \cdot \mathbf{A}$ in addition to the usual quadratic $K E=m v^{2} / 2$ and $P E=e \Phi$.

$$
L=L(\mathbf{r}, \mathbf{v}, t)=\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))
$$

Canonical momentum in (\boldsymbol{A}, Φ) potential
Canonical momentum is defined by L 's \mathbf{v}-derivative

$$
\begin{aligned}
\mathbf{p}=\frac{\partial L}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))\right) & =\frac{\partial}{\partial \mathbf{v}}\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-e \Phi(\mathbf{r}, t)\right)_{\text {For } \mathbf{A}(\mathbf{r}, t)=0} \\
\mathbf{p}=m \mathbf{v}+e \mathbf{A}(\mathbf{r}, t) & =m \mathbf{v}
\end{aligned}
$$

Lagrangian is usual form $L=T-V$ with electric (scalar) potential $V=\Phi(\mathbf{r}, t)$
if magnetic (vector) potential $\mathbf{A}=\mathbf{A}(\mathbf{r}, t)$ is zero everywhere.
Then canonical momentum is usual form: $\mathbf{p}=m \mathbf{v}$

$$
(\text { For } \mathbf{A}(\mathbf{r}, t)=0)
$$

Otherwise vector potential term -v.eA leads to an extraordinary canonical momentum: $\mathbf{p}=m \mathbf{v}+e \mathbf{A}(\mathbf{r}, t)$.
Particle momentum $m \mathbf{v}$ is not canonical, but related to canonical \mathbf{p} as follows: $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$

Charge mechanics in electromagnetic fields

Vector analysis for particle-in-($\boldsymbol{A}, \Phi)$-potential Lagrangian for particle-in- (\boldsymbol{A}, Φ)-potential Hamiltonian for particle-in-(\boldsymbol{A}, Φ)-potential

Canonical momentum in (\boldsymbol{A}, Φ) potential
\longrightarrow Hamiltonian formulation
Hamilton's equations

Hamiltonian for charged particle in fields The Hamiltonian function of the Legendre-Poincare form is the following.

$$
H=\sum_{\mu} \dot{q}^{\mu} p_{\mu}-L=\mathbf{v} \bullet \mathbf{p}-L=\mathbf{v} \bullet(m \mathbf{v}+e \mathbf{A}(\mathbf{r}, t))-\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A}(\mathbf{r}, t))\right)
$$

Hamiltonian for charged particle in fields The Hamiltonian function of the Legendre-Poincare form is the following.

$$
\begin{aligned}
& H=\sum_{\mu} \dot{q}^{\mu} p_{\mu}-L=\mathbf{v} \bullet \mathbf{p}-L=\mathbf{v} \bullet(m \mathbf{v}+e \overrightarrow{\mathbf{A}} \mathbf{t} \mathbf{r} \mathbf{T})-\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A} \mathbf{f}(\mathbb{T}))\right. \\
& H=\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}+e \Phi(\mathbf{r}, t)
\end{aligned}
$$

Hamiltonian for charged particle in fields The Hamiltonian function of the Legendre-Poincare form is the following.

$$
\begin{aligned}
& H=\sum_{\mu} \dot{q}^{\mu} p_{\mu}-L=\mathbf{v} \bullet \mathbf{p}-L=\mathbf{v} \bullet(m \mathbf{v}+e \overrightarrow{\mathbf{A}} \mathbf{r} \mathbf{r} \mathbf{T})-\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A} \mathbf{R}(\mathbb{T}))\right. \\
& H=\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}+e \Phi(\mathbf{r}, t)
\end{aligned}
$$

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

Vector potential A seems to cancel out completely, leaving a familiar $H=T+V$ with only scalar $V=e \Phi$.

Hamiltonian for charged particle in fields The Hamiltonian function of the Legendre-Poincare form is the following.

$$
\begin{aligned}
& H=\sum_{\mu} \dot{q}^{\mu} p_{\mu}-L=\mathbf{v} \bullet \mathbf{p}-L=\mathbf{v} \bullet(m \mathbf{v}+e \overparen{\mathbf{A}(\mathbf{r}, \mathbf{T})})-\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathbf{A} \mathbf{f}(\mathbb{T}))\right. \\
& H=\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}+e \Phi(\mathbf{r}, t)
\end{aligned}
$$

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

Vector potential A seems to cancel out completely, leaving a familiar $H=T+V$ with only scalar $V=e \Phi$.
But Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

Hamiltonian for charged particle in fields

The Hamiltonian function of the Legendre-Poincare form is the following.

$$
\begin{aligned}
& H=\sum_{\mu} \dot{q}^{\mu} p_{\mu}-L=\mathbf{v} \bullet \mathbf{p}-L=\mathbf{v} \bullet(m \mathbf{v}+e \hat{\mathbf{A}(\mathbf{r}, \tau)})-\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathrm{~A}(\mathbb{R}, t))\right. \\
& H=\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}+e \Phi(\mathbf{r}, t) \quad\binom{\text { Only cornect }}{\text { nummerically! }}
\end{aligned}
$$

Vector potential A seems to cancel out completely, leaving a familiar $H=T+V$ with only scalar $V=e \Phi$.
But Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)) \cdot(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t))+e \Phi(\mathbf{r}, t) \quad\binom{\text { Coprext fomaly }}{\text { and }}
$$

Hamiltonian for charged particle in fields

The Hamiltonian function of the Legendre-Poincare form is the following.

$$
\begin{aligned}
& H=\sum_{\mu} \dot{q}^{\mu} p_{\mu}-L=\mathbf{v} \bullet \mathbf{p}-L=\mathbf{v} \bullet\left(m \mathbf{v}+e \mathrm{~A}\left(\mathbf{r}, \tau^{\prime}\right)-\left(\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}-(e \Phi(\mathbf{r}, t)-\mathbf{v} \bullet e \mathrm{~A}(\mathbb{R}, t))\right.\right. \\
& H=\frac{1}{2} m \mathbf{v} \bullet \mathbf{v}+e \Phi(\mathbf{r}, t) \quad\binom{\text { Only correct }}{\text { nummerically! }}
\end{aligned}
$$

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}
$$

Vector potential A seems to cancel out completely, leaving a familiar $H=T+V$ with only scalar $V=e \Phi$.
But Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
\begin{aligned}
& H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)) \bullet(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t))+e \Phi(\mathbf{r}, t) \quad\binom{\text { Conreat fommaly }}{\text { and }} \\
& H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t)
\end{aligned}
$$

Charge mechanics in electromagnetic fields

Vector analysis for particle-in-($\boldsymbol{A}, \Phi)$-potential
Lagrangian for particle-in-($\boldsymbol{A}, \Phi)$-potential
Hamiltonian for particle-in-(A, Φ)-potential
Canonical momentum in (\boldsymbol{A}, Φ) potential
Hamiltonian formulation
\longrightarrow Hamilton's equations

Hamilton's equations for charged particle in fields
Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
\begin{aligned}
& H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)) \bullet(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t))+e \Phi(\mathbf{r}, t) \\
& H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t) \quad \text { (Expanded) }
\end{aligned}
$$

Hamiltonian for charged particle in fields

Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
\begin{aligned}
& H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)) \bullet(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t))+e \Phi(\mathbf{r}, t) \quad\left(\begin{array}{c}
\text { Conreat ommaly } \\
\text { and unmenicaly })
\end{array}\right. \\
& H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t) \quad \text { (Expanded) }
\end{aligned}
$$

Hamilton's \mathbf{v} equation: $\quad \mathbf{v}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)}{m}$

Hamilton's equations for charged particle in fields

Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
\begin{aligned}
& \left.H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)) \cdot(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t))+e \Phi(\mathbf{r}, t) \quad \begin{array}{c}
\text { Copret tromaly } \\
\text { ann in mencialy }
\end{array}\right) \\
& H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t) \quad \text { (Expanded) }
\end{aligned}
$$

Hamilton's \mathbf{v} equation: $\quad \mathbf{v}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)}{m} \quad$ (Just copies particle velocity relation.)

Hamilton's equations for charged particle in fields

Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
\begin{aligned}
& H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)) \cdot(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t))+e \Phi(\mathbf{r}, t) \quad\binom{\text { Coneret formaly }}{\text { annd }} \\
& H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t) \quad \text { (Expanded) }
\end{aligned}
$$

Hamilton's \mathbf{v} equation: $\quad \mathbf{v}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)}{m} \quad$ (Just copies particle velocity relation.)
Hamilton's $d \mathbf{p}$ /dt equation: $\dot{p}_{a}=-\frac{\partial \stackrel{\partial}{H}}{\partial x_{a}}=-\frac{m^{\partial}}{\partial x_{a}} \frac{\left(p_{\mu}-e A_{\mu}\right)\left(p_{\mu}-e A_{\mu}\right)}{2 m}-e \frac{\partial \Phi}{\partial x_{a}}$ (In index notation.)

Hamilton's equations for charged particle in fields

Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
\begin{aligned}
& H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)) \cdot(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t))+e \Phi(\mathbf{r}, t) \quad \begin{array}{c}
\text { Coneret fornaly } \\
\text { annctu })
\end{array} \\
& H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t) \quad \text { (Expanded) }
\end{aligned}
$$

Hamilton's \mathbf{v} equation: $\quad \mathbf{v}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)}{m} \quad$ (Just copies particle velocity relation.)
Hamilton's $d \mathbf{p} / d t$ equation: $\dot{p}_{a}=-\frac{\partial \mathbf{p}}{\partial x_{a}}=-\frac{\partial}{\partial x_{a}} \frac{\left(p_{\mu}-e A_{\mu}\right)\left(p_{\mu}-e A_{\mu}\right)}{2 m}-e \frac{\partial \Phi}{\partial x_{a}}$
(In index notation.)
$m \mathbf{v}+e \mathbf{A}(\mathbf{r}, t)=\mathbf{p} \cdots \cdots \cdots \cdots \dot{p}_{a}=m \dot{v}_{a}+e \dot{A}_{a}=+\frac{\left(p_{\mu}-e A_{\mu}\right)}{m} e \frac{\partial A_{\mu}}{\partial x_{a}} \quad-e \frac{\partial \Phi}{\partial x_{a}}$

Hamilton's equations for charged particle in fields

Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
\begin{aligned}
& H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)) \bullet(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t))+e \Phi(\mathbf{r}, t) \quad \begin{array}{l}
\binom{\text { Corect fomaly }}{\text { and numerially }}
\end{array} \\
& H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t) \quad \text { (Expanded) }
\end{aligned}
$$

Hamilton's \mathbf{v} equation: $\quad \mathbf{v}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)}{m} \quad$ (Just copies particle velocity relation.)
Hamilton's $d \mathbf{p}$ /dt equation: $\dot{p}_{a}=-\frac{\partial{ }^{\frac{\mathbf{p}}{}}}{\partial x_{a}}=-\frac{m^{\partial}}{\partial x_{a}} \frac{\left(p_{\mu}-e A_{\mu}\right)\left(p_{\mu}-e A_{\mu}\right)}{2 m}-e \frac{\partial \Phi}{\partial x_{a}}$

$$
\begin{aligned}
& \text { (In index notation.) }
\end{aligned}
$$

$$
\begin{aligned}
& m \mathbf{v}+e \mathbf{A}(\mathbf{r}, t)=\mathbf{p}
\end{aligned}
$$

Hamilton's equations for charged particle in fields

Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

Hamilton's \mathbf{v} equation: $\quad \mathbf{v}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)}{m} \quad$ (Just copies particle velocity relation.)
Hamilton's $d \mathbf{p}$ /dt equation: $\dot{p}_{a}=-\frac{\partial H}{\partial x_{a}}=-\frac{\partial}{\partial x_{a}} \frac{\left(p_{\mu}-e A_{\mu}\right)\left(p_{\mu}-e A_{\mu}\right)}{2 m}-e \frac{\partial \Phi}{\partial x_{a}}$

$$
\mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}
$$

$$
\begin{aligned}
& \text { (In index notation.) } \\
& \text {. }\left(p_{\mu}-e A_{\mu}\right) \partial A_{\mu} \quad \partial \Phi \quad E_{a}=-\frac{\partial \Phi}{\partial x^{a}}-\frac{\partial A_{a}}{\partial t} \\
& m \mathbf{v}+e \mathbf{A}(\mathbf{r}, t)=\mathbf{p} \\
& \begin{array}{l}
\dot{p}_{a}=m \dot{v}_{a}+e \dot{A}_{a}=+\frac{\left(p_{\mu}-e A_{\mu}\right)}{m} e \frac{\partial A_{\mu}}{\partial x_{a}}-e \frac{\partial \Phi}{\sum_{x_{a}}} \ldots \\
\dot{p}_{a}=m \dot{v}_{a}+e \dot{A}_{a}=e(\overbrace{v_{\mu} \frac{\partial A_{\mu}}{\partial x_{a}}}^{v_{\frac{\partial A_{a}}{\partial t}+E_{a}}^{\partial t}})
\end{array} \\
& E_{a}=-\frac{\partial \Phi}{\partial x^{a}}-\frac{\partial A_{a}}{\partial t} \\
& -\frac{\partial \Phi}{\partial x^{a}}=\frac{\partial A_{a}}{\partial t}+E_{a} \\
& \frac{\partial \mathbf{A}}{\partial t}=\frac{d \mathbf{A}}{d t}-(v \bullet \nabla) \mathbf{A} \\
& \dot{p}_{a}=m \dot{v}_{a}+e \dot{A}_{a}=e\left(v_{\mu} \frac{\partial A_{\mu}}{\partial x_{a}}+\dot{A}_{a}-v_{\mu} \frac{\partial A_{a}}{\partial x_{\mu}}+E_{a}\right) \quad \frac{\partial A_{a}}{\partial t}=\dot{A}_{a}-v_{\mu} \frac{\partial A_{a}}{\partial \partial_{\mu}}
\end{aligned}
$$

$$
\begin{aligned}
& H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t) \quad \text { (Expanded) }
\end{aligned}
$$

Hamilton's equations for charged particle in fields

Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
\begin{aligned}
& H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t) \quad \text { (Expanded) }
\end{aligned}
$$

Hamilton's \mathbf{v} equation: $\quad \mathbf{v}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)}{m} \quad$ (Just copies particle velocity relation.)
Hamilton's $d \mathbf{p}$ /dt equation: $\quad \dot{p}_{a}=-\frac{\partial H}{\partial x_{a}}=-\frac{\partial}{\partial x_{a}} \frac{\left(p_{\mu}-e A_{\mu}\right)\left(p_{\mu}-e A_{\mu}\right)}{2 m}-e \frac{\partial \Phi}{\partial x_{a}}$
(In index notation.)

$$
\begin{aligned}
& \left(p_{\mu}-e A_{\mu}\right) \partial A_{\mu} \quad \partial \Phi \quad E_{a}=-\frac{\partial \Phi}{\partial x^{a}}-\frac{\partial A_{a}}{\partial t} \\
& \dot{p}_{a}=m \dot{v}_{a}+e \dot{\ddot{f}}_{a}=e\left(v_{\mu} \frac{\partial A_{\mu}}{\partial x_{a}}+\dot{A}_{a}-v_{\mu} \frac{\partial A_{a}}{\partial x_{\mu}}+E_{a}\right) \quad \frac{\partial A_{a}}{\partial t}=\dot{A}_{a}-v_{\mu} \frac{\partial A_{a}}{\partial x_{\mu}}
\end{aligned}
$$

Hamilton's equations for charged particle in fields

Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
\begin{aligned}
& \left.H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)) \bullet(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t))+e \Phi(\mathbf{r}, t) \quad \begin{array}{l}
\text { (Corect formaly } \\
\text { and numerically }
\end{array}\right) \\
& H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t) \quad \text { (Expanded) }
\end{aligned}
$$

Hamilton's \mathbf{v} equation: $\quad \mathbf{v}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)}{m} \quad$ (Just copies particle velocity relation.)
Hamilton's $d \mathbf{p}$ /d equation: $\dot{p}_{a}=-\frac{\partial \hat{\partial}}{\partial x_{a}}=-\frac{m}{\partial x_{a}} \frac{\left(p_{\mu}-e A_{\mu}\right)\left(p_{\mu}-e A_{\mu}\right)}{2 m}-e \frac{\partial \Phi}{\partial x_{a}}$
(In index notation.)

$$
m \dot{v}_{a}=e\left(v_{\mu} \frac{\partial A_{\mu}}{\partial x_{a}}-v_{\mu} \frac{\partial A_{a}}{\partial x_{\mu}}+E_{a}\right)
$$

Hamilton's equations for charged particle in fields

Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
\begin{aligned}
& \left.H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)) \bullet(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t))+e \Phi(\mathbf{r}, t) \quad \begin{array}{l}
\text { (Corect formaly } \\
\text { and numencially }
\end{array}\right) \\
& H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t) \quad \text { (Expanded) }
\end{aligned}
$$

Hamilton's \mathbf{v} equation: $\quad \mathbf{v}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)}{m} \quad$ (Just copies particle velocity relation.)
Hamilton's $d \mathbf{p}$ /dt equation: $\dot{p}_{a}=-\frac{\partial{ }^{\partial H}}{\partial x_{a}}=-\frac{m^{\prime}}{\partial x_{a}} \frac{\left(p_{\mu}-e A_{\mu}\right)\left(p_{\mu}-e A_{\mu}\right)}{2 m}-e \frac{\partial \Phi}{\partial x_{a}}$

$$
m \dot{v}_{a}=e(\underbrace{v_{\mu} \underbrace{\frac{\partial A_{\mu}}{\partial x_{a}}-v_{\mu} \frac{\partial A_{a}}{\partial x_{\mu}}}+E_{a}), ~}
$$

$$
m \dot{\mathbf{v}} \quad=e(\quad \mathbf{v} \times(\nabla \times \mathbf{A}) \quad+\mathbf{E})=e(\mathbf{v} \times \mathbf{B}+\mathbf{E}) \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

$$
\begin{aligned}
& \text { (In index notation.) }
\end{aligned}
$$

Hamilton's equations for charged particle in fields

Hamiltonian is explicit function of momentum \mathbf{p}. Must replace velocity \mathbf{v} using $m \mathbf{v}=\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)$.

$$
\begin{aligned}
& H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)) \bullet(\mathbf{p}-e \mathbf{A}(\mathbf{r}, t))+e \Phi(\mathbf{r}, t) \quad\left(\begin{array}{l}
\text { Conect fommaly } \\
\text { and }
\end{array}\right. \\
& \left.H=\frac{\mathbf{p} \bullet \mathbf{p}}{2 m}-\frac{e}{2 m}(\mathbf{p} \bullet \mathbf{A}+\mathbf{A} \bullet \mathbf{p})+\frac{e^{2}}{2 m} \mathbf{A} \bullet \mathbf{A}+e \Phi(\mathbf{r}, t) \quad \text { (Expandy }\right)
\end{aligned}
$$

$\begin{array}{ll}\text { Hamilton's } \mathbf{v} \text { equation: } & \mathbf{v}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\mathbf{p}-e \mathbf{A}(\mathbf{r}, t)}{m} \quad \text { (Just copies particle } v \\ \text { Hamilton's } d \mathbf{p} \text { /dt equation: } & \dot{p}_{a}=-\frac{\partial H}{\partial x_{a}}=-\frac{\partial}{\partial x_{a}} \frac{\left(p_{\mu}-e A_{\mu}\right)\left(p_{\mu}-e A_{\mu}\right)}{2 m}-e \frac{\partial \Phi}{\partial x_{a}}\end{array}$
... and now
we come back

$$
m \dot{v}_{a}=e(\underbrace{v_{\mu} \frac{\partial A_{\mu}}{\partial x_{a}}-v_{\mu} \frac{\partial A_{a}}{\partial x_{\mu}}}+E_{a})
$$

$$
m \dot{\mathbf{v}} \quad=e(\quad \mathbf{v} \times(\nabla \times \mathbf{A}) \quad+\mathbf{E})=e(\mathbf{v} \times \mathbf{B}+\mathbf{E}) \quad \mathbf{B}=\nabla \times \mathbf{A}
$$ full circle...

$$
\mathbf{v} \times(\nabla \times \mathbf{A})=\mathbf{v} \cdot(\nabla \mathbf{A})-(\mathbf{v} \cdot \nabla) \mathbf{A} \quad \text { for particle mechanics }
$$

$$
\begin{aligned}
& m \mathbf{v}+e \mathbf{A}(\mathbf{r}, t)=\mathbf{p} \\
& \left.\begin{array}{l}
\dot{p}_{a}=m \dot{v}_{a}+e \dot{A}_{a}=+\frac{\left(p_{\mu}-e A_{\mu}\right)}{m} e \frac{\partial A_{\mu}}{\partial x_{a}}-e \frac{\partial \Phi}{\partial x_{a}} \\
\dot{p}_{a}=m \dot{v}_{a}+e \dot{A}_{a}=e(\overbrace{v_{\mu} \frac{\partial A_{\mu}}{\partial x_{a}}}^{v_{a}}+\frac{\partial A_{a}}{\partial t}+E_{a}
\end{array}\right) \\
& \dot{p}_{a}=m \dot{v}_{a}+e \dot{A}_{a}=e(v_{\mu} \frac{\partial A_{\mu}}{\partial x_{a}}+\overbrace{\left.\dot{A}_{a}-v_{\mu} \frac{\partial A_{a}}{\partial x_{\mu}}+E_{a}\right) \quad \frac{\partial A_{a}}{\partial t}=\dot{A}_{a}-\sum_{\mu} v_{\mu} \frac{\partial A_{a}}{\partial x_{\mu}}, ~}^{\text {at }}
\end{aligned}
$$

Crossed E and B field mechanics

\longrightarrow Classical Hall-effect and cyclotron orbit orbit equations Vector theory vs. complex variable theory Mechanical analog of cyclotron and FBI rule

Cycloid and epicycloid ruler\& compass geometry
Cycloid geometry of flying levers Practical poolhall application

Crossed E and B field mechanics

A constant \mathbf{E} field has a scalar potential field Φ with constant gradient.

$$
\Phi(\mathbf{r})=-\mathbf{E} \bullet \mathbf{r}, \quad-\nabla \Phi(\mathbf{r})=\nabla(-\mathbf{E} \bullet \mathbf{r})=\mathbf{E}=\text { const } .
$$

Fig. 2.4.1.

Crossed E and B field mechanics

A constant \mathbf{E} field has a scalar potential field Φ with constant gradient.

$$
\Phi(\mathbf{r})=-\mathbb{E} \bullet \mathbf{r}, \quad-\nabla \Phi(\mathbf{r})=-\nabla(-\mathbb{E} \bullet \mathbf{r})=\mathbb{E}=\text { const } .
$$

Crossed E and B field mechanics

A constant \mathbf{E} field has a scalar potential field Φ with constant gradient.

$$
\Phi(\mathbf{r})=-\mathbb{E} \bullet \mathbf{r}, \quad-\nabla \Phi(\mathbf{r})=-\nabla(-\mathbb{E} \bullet \mathbf{r})=\mathbb{E}=\text { const }
$$

A constant \mathbf{B} field has a vector potential field \mathbf{A} that resembles a disc spinning counter-clockwise around the \mathbf{B} axis.

$$
\mathbf{A}(\mathbf{r})=\frac{1}{2} \mathbf{B} \times \mathbf{r}, \quad \nabla \times \mathbf{A}(\mathbf{r})=\nabla \times\left(\frac{1}{2} \mathbf{B} \times \mathbf{r}\right)=\mathbf{B}=\text { const } .
$$

Fig. 2.8.1.

This mechanical analog of $\left(E_{x}, B_{z}\right)$ field mimics \mathbf{A}-field with tabletop \mathbf{v}-field

Crossed E and B field mechanics

A constant \mathbf{E} field has a scalar potential field Φ with constant gradient.

$$
\Phi(\mathbf{r})=-\mathbb{E} \bullet \mathbf{r}, \quad-\nabla \Phi(\mathbf{r})=-\nabla(-\mathbb{E} \bullet \mathbf{r})=\mathbb{E}=\text { const. }
$$

A constant \mathbf{B} field has a vector potential field \mathbf{A} that resembles a disc spinning counter-clockwise around the \mathbf{B} axis.

$$
\mathrm{A}(\mathbf{r})=\frac{1}{2} \mathbf{B} \times \mathbf{r}, \quad \nabla \times \mathrm{A}(\mathbf{r})=\nabla \times\left(\frac{1}{2} \mathbf{B} \times \mathbf{r}\right)=\mathbf{B}=\text { const } .
$$

Newtonian electromagnetic equations of motion: $m \dot{\mathbf{v}}=e(\mathbb{E}+\mathbf{v} \times \mathbf{B})$

$$
\dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B} .
$$

Fig. 2.8.1.

Crossed E and B field mechanics

A constant \mathbf{E} field has a scalar potential field Φ with constant gradient.

$$
\Phi(\mathbf{r})=-\mathbb{E} \bullet \mathbf{r}, \quad-\nabla \Phi(\mathbf{r})=-\nabla(-\mathbb{E} \bullet \mathbf{r})=\mathbb{E}=\text { const. }
$$

A constant \mathbf{B} field has a vector potential field \mathbf{A} that resembles a disc spinning counter-clockwise around the \mathbf{B} axis.

$$
\mathrm{A}(\mathbf{r})=\frac{1}{2} \mathbf{B} \times \mathbf{r}, \quad \nabla \times \mathrm{A}(\mathbf{r})=\nabla \times\left(\frac{1}{2} \mathbf{B} \times \mathbf{r}\right)=\mathbf{B}=\text { const } .
$$

Newtonian electromagnetic equations of motion: $m \dot{\mathbf{v}}=e(\mathbb{E}+\mathbf{v} \times \mathbf{B})$

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z} \\
& \text { Shorthand Labeling }
\end{aligned}
$$

Crossed E and B field mechanics

A constant \mathbf{E} field has a scalar potential field Φ with constant gradient.

$$
\Phi(\mathbf{r})=-\mathbb{E} \bullet \mathbf{r}, \quad-\nabla \Phi(\mathbf{r})=-\nabla(-\mathbb{E} \bullet \mathbf{r})=\mathbb{E}=\text { const. }
$$

A constant \mathbf{B} field has a vector potential field \mathbf{A} that resembles a disc spinning counter-clockwise around the \mathbf{B} axis.

$$
\mathrm{A}(\mathbf{r})=\frac{1}{2} \mathbf{B} \times \mathbf{r}, \quad \nabla \times \mathrm{A}(\mathbf{r})=\nabla \times\left(\frac{1}{2} \mathbf{B} \times \mathbf{r}\right)=\mathbf{B}=\text { const } .
$$

Newtonian electromagnetic equations of motion: $m \dot{\mathbf{v}}=e(\mathbb{E}+\mathbf{v} \times \mathbf{B})$

Gibb's notation:

$$
\begin{aligned}
\dot{\mathbf{v}} & =\mathbf{\varepsilon}+\mathbf{v} \quad \times B \hat{\mathbf{e}}_{\mathbf{z}} \\
\dot{v}_{x} \hat{\mathbf{e}}_{\mathbf{x}}+\dot{v}_{y} \hat{\mathbf{e}}_{\mathbf{y}} & =\varepsilon_{x} \hat{\mathbf{e}}_{\mathbf{x}}+\varepsilon_{y} \hat{\mathbf{e}}_{\mathbf{y}}+\left(v_{x} \hat{\mathbf{e}}_{\mathbf{x}}+v_{y} \hat{\mathbf{e}}_{\mathbf{y}}\right) \times B \hat{\mathbf{e}}_{\mathbf{z}} \\
& =\varepsilon_{x} \hat{\mathbf{e}}_{\mathbf{x}}+\varepsilon_{y} \hat{\mathbf{e}}_{\mathbf{y}}-B v_{x} \hat{\mathbf{e}}_{\mathbf{y}}+B v_{y} \hat{\mathbf{e}}_{\mathbf{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
\varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z} \\
\text { Shorthand Labeling }
\end{array} \\
& \text { where: } \hat{\mathbf{e}}_{\mathbf{x}} \times \hat{\mathbf{e}}_{\mathbf{z}}=-\hat{\mathbf{e}}_{\mathbf{x}} \quad \text { and: } \hat{\mathbf{e}}_{\mathbf{y}} \times \hat{\mathbf{e}}_{\mathbf{z}}=\hat{\mathbf{e}}_{\mathbf{x}}
\end{aligned}
$$

Crossed E and B field mechanics

Classical Hall-effect and cyclotron orbit orbit equations \rightarrow Vector theory vs. complex variable theory Mechanical analog of cyclotron and FBI rule

Cycloid and epicycloid ruler\& compass geometry
Cycloid geometry of flying levers Practical poolhall application

Crossed E and B field mechanics

A constant \mathbf{E} field has a scalar potential field Φ with constant gradient.

$$
\Phi(\mathbf{r})=-\mathbb{E} \bullet \mathbf{r}, \quad-\nabla \Phi(\mathbf{r})=-\nabla(-\mathbb{E} \bullet \mathbf{r})=\mathbb{E}=\text { const. } y
$$

A constant \mathbf{B} field has a vector potential field \mathbf{A} that resembles a disc spinning counter-clockwise around the \mathbf{B} axis.

$$
\mathrm{A}(\mathbf{r})=\frac{1}{2} \mathbf{B} \times \mathbf{r}, \quad \nabla \times \mathrm{A}(\mathbf{r})=\nabla \times\left(\frac{1}{2} \mathbf{B} \times \mathbf{r}\right)=\mathbf{B}=\text { const } .
$$

Newtonian electromagnetic equations of motion: $m \dot{\mathbf{v}}=e(\mathbb{E}+\mathbf{v} \times \mathbf{B})$

Gibb's notation:

$$
\begin{aligned}
\dot{\mathbf{v}} & =\mathbf{\varepsilon}+\mathbf{v} \quad \times B \hat{\mathbf{e}}_{\mathbf{z}} \\
\dot{v}_{x} \hat{\mathbf{e}}_{\mathbf{x}}+\dot{v}_{y} \hat{\mathbf{e}}_{\mathbf{y}} & =\varepsilon_{x} \hat{\mathbf{e}}_{\mathbf{x}}+\varepsilon_{y} \hat{\mathbf{e}}_{\mathbf{y}}+\left(v_{x} \hat{\mathbf{e}}_{\mathbf{x}}+v_{y} \hat{\mathbf{e}}_{\mathbf{y}}\right) \times B \hat{\mathbf{e}}_{\mathbf{z}} \\
& =\varepsilon_{x} \hat{\mathbf{e}}_{\mathbf{x}}+\varepsilon_{y} \hat{\mathbf{e}}_{\mathbf{y}}-B v_{x} \hat{\mathbf{e}}_{\mathbf{y}}+B v_{y} \hat{\mathbf{e}}_{\mathbf{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\dot{\mathbf{v}}=\frac{e}{m} \mathbf{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
\varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z} \\
\text { Shorthand Labeling }
\end{array} \\
& \text { where: } \hat{\mathbf{e}}_{\mathbf{x}} \times \hat{\mathbf{e}}_{\mathbf{z}}=-\hat{\mathbf{e}}_{\mathbf{x}} \quad \text { and: } \hat{\mathbf{e}}_{\mathbf{y}} \times \hat{\mathbf{e}}_{\mathbf{z}}=\hat{\mathbf{e}}_{\mathbf{x}}
\end{aligned}
$$

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$

$$
\begin{aligned}
\dot{v}_{x}+i \dot{v}_{y} & =\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right) \\
\dot{v} & =\varepsilon-i B v \quad \text { with replacements }: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad \text { and }: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}
\end{aligned}
$$

Crossed E and B field mechanics

A constant \mathbf{E} field has a scalar potential field Φ with constant gradient.

$$
\Phi(\mathbf{r})=-\mathbb{E} \bullet \mathbf{r}, \quad-\nabla \Phi(\mathbf{r})=-\nabla(-\mathbb{E} \bullet \mathbf{r})=\mathbb{E}=\text { const. } y
$$

A constant \mathbf{B} field has a vector potential field \mathbf{A} that resembles a disc spinning counter-clockwise around the \mathbf{B} axis.

$$
\mathrm{A}(\mathbf{r})=\frac{1}{2} \mathbf{B} \times \mathbf{r}, \quad \nabla \times \mathrm{A}(\mathbf{r})=\nabla \times\left(\frac{1}{2} \mathbf{B} \times \mathbf{r}\right)=\mathbf{B}=\text { const } .
$$

Newtonian electromagnetic equations of motion: $m \dot{\mathbf{v}}=e(\mathbb{E}+\mathbf{v} \times \mathbf{B})$

Gibb's notation:

$$
\begin{aligned}
\dot{\mathbf{v}} & =\mathbf{\varepsilon}+\mathbf{v} \\
\dot{v}_{x} \hat{\mathbf{e}}_{\mathbf{x}}+\dot{v}_{y} \hat{\mathbf{e}}_{\mathbf{y}} & =\varepsilon_{x} \hat{\mathbf{e}}_{\mathbf{x}}+\varepsilon_{y} \hat{\mathbf{e}}_{\mathbf{y}}+\left(v_{x} \hat{\mathbf{e}}_{\mathbf{x}}+v_{y} \hat{\mathbf{e}}_{\mathbf{y}}\right) \times B \hat{\mathbf{e}}_{\mathbf{z}} \\
& =\varepsilon_{\mathbf{x}} \hat{\mathbf{e}}_{\mathbf{x}}+\varepsilon_{y} \hat{\mathbf{e}}_{\mathbf{y}}-B v_{x} \hat{\mathbf{e}}_{\mathbf{y}}+B v_{y} \hat{\mathbf{e}}_{\mathbf{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z}
\end{aligned}
$$

Shorthand Labeling

$$
\text { where: } \hat{\mathbf{e}}_{\mathbf{x}} \times \hat{\mathbf{e}}_{\mathbf{z}}=-\hat{\mathbf{e}}_{\mathbf{x}} \quad \text { and: } \hat{\mathbf{e}}_{\mathbf{y}} \times \hat{\mathbf{e}}_{\mathbf{z}}=\hat{\mathbf{e}}_{\mathbf{x}}
$$

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$

$$
\dot{v}_{x}+i \dot{v}_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right)
$$

$$
\dot{v}=\varepsilon-i B v \quad \text { with replacements }: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad \text { and }: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}
$$

A velocity transformation $V(t)=v(t)+\beta$ cancels constant ε-field to give an equation: $\dot{V}=($ const. $) V$

$$
\begin{aligned}
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v= & \varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { Then } \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B} \\
& \text { Pick } \beta \text { so: } i B \beta=-\varepsilon
\end{aligned}
$$

Crossed E and B field mechanics

A constant \mathbf{E} field has a scalar potential field Φ with constant gradient.

$$
\Phi(\mathbf{r})=-\mathbb{E} \bullet \mathbf{r}, \quad-\nabla \Phi(\mathbf{r})=-\nabla(-\mathbb{E} \bullet \mathbf{r})=\mathbb{E}=\text { const. } y
$$

A constant \mathbf{B} field has a vector potential field \mathbf{A} that resembles a disc spinning counter-clockwise around the \mathbf{B} axis.

$$
\mathrm{A}(\mathbf{r})=\frac{1}{2} \mathbf{B} \times \mathbf{r}, \quad \nabla \times \mathrm{A}(\mathbf{r})=\nabla \times\left(\frac{1}{2} \mathbf{B} \times \mathbf{r}\right)=\mathbf{B}=\text { const } .
$$

Newtonian electromagnetic equations of motion: $m \dot{\mathbf{v}}=e(\mathbb{E}+\mathbf{v} \times \mathbf{B})$

Gibb's notation:

$$
\begin{aligned}
\dot{\mathbf{v}} & =\mathbf{\varepsilon}+\mathbf{v} \\
\dot{v}_{x} \hat{\mathbf{e}}_{\mathbf{x}}+\dot{v}_{y} \hat{\mathbf{e}}_{\mathbf{y}} & =\varepsilon_{x} \hat{\mathbf{e}}_{\mathbf{x}}+\varepsilon_{y} \hat{\mathbf{e}}_{\mathbf{y}}+\left(v_{x} \hat{\mathbf{e}}_{\mathbf{x}}+v_{y} \hat{\mathbf{e}}_{\mathbf{y}}\right) \times B \hat{\mathbf{e}}_{\mathbf{z}} \\
& =\varepsilon_{\mathbf{z}} \hat{\mathbf{e}}_{\mathbf{x}}+\varepsilon_{y} \hat{\mathbf{e}}_{\mathbf{y}}-B v_{x} \hat{\mathbf{e}}_{\mathbf{y}}+B v_{y} \hat{\mathbf{e}}_{\mathbf{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z}
\end{aligned}
$$

Shorthand Labeling

$$
\text { where: } \hat{\mathbf{e}}_{\mathbf{x}} \times \hat{\mathbf{e}}_{\mathbf{z}}=-\hat{\mathbf{e}}_{\mathbf{x}} \quad \text { and: } \hat{\mathbf{e}}_{\mathbf{y}} \times \hat{\mathbf{e}}_{\mathbf{z}}=\hat{\mathbf{e}}_{\mathbf{x}}
$$

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$

$$
\dot{v}_{x}+i \dot{v}_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right)
$$

$$
\dot{v}=\varepsilon-i B v \quad \text { with replacements }: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad \text { and }: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}
$$

A velocity transformation $V(t)=v(t)+\beta$ cancels constant ε-field to give an equation: $\dot{V}=($ const. $) V$

$$
\begin{aligned}
V(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v= & \varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { Then } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B} \\
& \operatorname{Pick} \beta \text { so: } i B \beta=-\varepsilon
\end{aligned}
$$

Move last part of this calculation UP \uparrow

Crossed E and B field mechanics (Solution by complex variables)

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z}
\end{aligned}
$$

Shorthand Labeling

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$

$$
\begin{aligned}
\dot{v}_{x}+i \dot{v}_{y} & =\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right) \\
\dot{v} & =\varepsilon-i B v \quad \text { with replacements }: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad \text { and }: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}
\end{aligned}
$$

A velocity transformation $V(t)=v(t)+\beta$ cancels constant ε-field to give an equation: $\dot{V}=($ const. $) V$

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

Crossed E and B field mechanics (Solution by complex variables)

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z}
\end{aligned}
$$

Shorthand Labeling

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$

$$
\begin{aligned}
\dot{v}_{x}+i \dot{v}_{y} & =\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right) \\
\dot{v} & =\varepsilon-i B v \quad \text { with replacements }: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad \text { and }: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}
\end{aligned}
$$

A velocity transformation $V(t)=v(t)+\beta$ cancels constant ε-field to give an equation: $\dot{V}=($ const. $) V$

$$
\dot{V}(t)=\dot{\nu}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2 D rotation.

Crossed E and B field mechanics (Solution by complex variables)

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z}
\end{aligned}
$$

Shorthand Labeling

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$

$$
\begin{aligned}
\dot{v}_{x}+i \dot{v}_{y} & =\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right) \\
\dot{v} & =\varepsilon-i B v \quad \text { with replacements }: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad \text { and }: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}
\end{aligned}
$$

A velocity transformation $V(t)=v(t)+\beta$ cancels constant ε-field to give an equation: $\dot{V}=($ const. $) V$

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2 D rotation.
$v(t)+\beta=V(t)=e^{-i B \cdot t} V(0)=e^{-i B \cdot t}(v(0)+\beta)$

Crossed E and B field mechanics (Solution by complex variables)

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z}
\end{aligned}
$$

Shorthand Labeling

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$

$\dot{\nu}_{x}+i \dot{v}_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right)$
$\dot{v}=\varepsilon-i B v \quad$ with replacements $: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad$ and $: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}$
A velocity transformation $V(t)=v(t)+\beta$ cancels constant ε-field to give an equation: $\dot{V}=($ const. $) V$

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2 D rotation. $v(t)+\beta=V(t)=e^{-i B \cdot t} V(0)=e^{-i B \cdot t}(v(0)+\beta) \quad$ or: $\quad v(t)=e^{-i B \cdot t}(v(0)+\beta)-\beta=e^{-i B \cdot t}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B}$

Crossed E and B field mechanics (Solution by complex variables)

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z}
\end{aligned}
$$

Shorthand Labeling

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$

$$
\begin{aligned}
\dot{v}_{x}+i \dot{v}_{y} & =\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right) \\
\dot{v} & =\varepsilon-i B v \quad \text { with replacements }: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad \text { and }: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}
\end{aligned}
$$

A velocity transformation $V(t)=v(t)+\beta$ cancels constant ε-field to give an equation: $\dot{V}=($ const. $) V$

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2 D rotation. $v(t)+\beta=V(t)=e^{-i B \cdot t} V(0)=e^{-i B \cdot t}(v(0)+\beta) \quad$ or: $\quad v(t)=e^{-i B \cdot t}(v(0)+\beta)-\beta=e^{-i B \cdot t}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B}$
Expanding $e^{-i B t}, v=v_{x}+i v_{y}$, and $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$ reveals x (Real) and y (Imaginary) components

$$
\binom{v_{x}(t)}{v_{y}(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{v_{x}(0)-\frac{\varepsilon_{y}}{B}}{v_{y}(0)+\frac{\varepsilon_{x}}{B}}+\binom{\frac{\varepsilon_{y}}{B}}{-\frac{\varepsilon_{x}}{B}}
$$

Crossed E and B field mechanics (Solution by complex variables)

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z}
\end{aligned}
$$

Shorthand Labeling

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$
$\dot{v}_{x}+i \dot{v}_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right)$ $\dot{v}=\varepsilon-i B v \quad$ with replacements $: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad$ and $: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}$
A velocity transformation $V(t)=v(t)+\beta$ cancels constant ε-field to give an equation: $\dot{V}=($ const. $) V$

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2 D rotation. $v(t)+\beta=V(t)=e^{-i B \cdot t} V(0)=e^{-i B \cdot t}(v(0)+\beta) \quad$ or: $\quad v(t)=e^{-i B \cdot t}(v(0)+\beta)-\beta=e^{-i B \cdot t}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B}$
Expanding $e^{-i B t}, \boldsymbol{v}=v_{x}+i v_{y}$, and $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$ reveals x (Real) and y (Imaginary) components

$$
\begin{aligned}
& \binom{v_{x}(t)}{v_{y}(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{v_{x}(0)-\frac{\varepsilon_{y}}{B}}{v_{y}(0)+\frac{\varepsilon_{x}}{B}}+\binom{\frac{\varepsilon_{y}}{B}}{-\frac{\varepsilon_{x}}{B}} \\
& \text { vector form }
\end{aligned}
$$

Integrating $v(t)$ yields complex coordinate $q=x+i y$ affected by both ε_{x} and ε_{y}.

Crossed E and B field mechanics (Solution by complex variables)

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z}
\end{aligned}
$$

Shorthand Labeling

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$

$$
\begin{aligned}
\dot{v}_{x}+i \dot{v}_{y} & =\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right) \\
\dot{v} & =\varepsilon-i B v \quad \text { with replacements }: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad \text { and }: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}
\end{aligned}
$$

A velocity transformation $V(t)=v(t)+\beta$ cancels constant ε-field to give an equation: $\dot{V}=($ const. $) V$

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2D rotation. $v(t)+\beta=V(t)=e^{-i B \cdot t} V(0)=e^{-i B \cdot t}(v(0)+\beta) \quad$ or: $\quad v(t)=e^{-i B \cdot t}(v(0)+\beta)-\beta=e^{-i B \cdot t}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B}$
Expanding $e^{-i B t}, \nu=v_{x}+i v_{y}$, and $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$ reveals x (Real) and y (Imaginary) components

$$
\begin{aligned}
& \binom{v_{x}(t)}{v_{y}(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{v_{x}(0)-\frac{\varepsilon_{y}}{B}}{v_{y}(0)+\frac{\varepsilon_{x}}{B}}+\binom{\frac{\varepsilon_{y}}{B}}{-\frac{\varepsilon_{x}}{B}} \\
& \text { eected by both } \varepsilon_{x} \text { and } \varepsilon_{y} .
\end{aligned}
$$

Integrating $v(t)$ yields complex coordinate $q=x+i y$ affected by both ε_{x} and ε_{y}.

$$
q(t)=\int v(t) d t=\frac{e^{-i B \cdot t}}{-i B}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B} \cdot t+\text { Const. } \quad \text { where: Const. }=q(0)-\left(\frac{v(0)}{-i B}-\frac{\varepsilon}{B^{2}}\right) \quad \text { complex form }
$$

Crossed E and B field mechanics (Solution by complex variables)

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z}
\end{aligned}
$$

Shorthand Labeling

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$

$$
\begin{aligned}
\dot{v}_{x}+i \dot{v}_{y} & =\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right) \\
\dot{v} & =\varepsilon-i B v \quad \text { with replacements }: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad \text { and }: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}
\end{aligned}
$$

A velocity transformation $V(t)=v(t)+\beta$ cancels constant ε-field to give an equation: $\dot{V}=($ const. $) V$

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2D rotation. $v(t)+\beta=V(t)=e^{-i B \cdot t} V(0)=e^{-i B \cdot t}(v(0)+\beta) \quad$ or: $\quad v(t)=e^{-i B \cdot t}(v(0)+\beta)-\beta=e^{-i B \cdot t}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B}$
Expanding $e^{-i B t}, \nu=v_{x}+i v_{y}$, and $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$ reveals x (Real) and y (Imaginary) components

$$
\begin{aligned}
& \binom{v_{x}(t)}{v_{y}(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{v_{x}(0)-\frac{\varepsilon_{y}}{B}}{v_{y}(0)+\frac{\varepsilon_{x}}{B}}+\binom{\frac{\varepsilon_{y}}{B}}{-\frac{\varepsilon_{x}}{B}} \\
& \text { ected by both } \varepsilon_{x} \text { and } \varepsilon_{y} .
\end{aligned}
$$

Integrating $v(t)$ yields complex coordinate $q=x+i y$ affected by both ε_{x} and ε_{y}.

$$
\begin{aligned}
q(t)=\int v(t) d t & =\frac{e^{-i B \cdot t}}{-i B}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B} \cdot t+\text { Const. } \quad \text { where: Const. }=q(0)-\left(\frac{v(0)}{-i B}-\frac{\varepsilon}{B^{2}}\right) \quad \text { complex form } \\
x(t)+i y(t) & =e^{-i B \cdot t}\left(i \frac{v(0)}{B}-\frac{\varepsilon}{B^{2}}\right)-i \frac{\varepsilon}{B} \cdot t+x(0)+i y(0)-i \frac{v(0)}{B}+\frac{\varepsilon}{B^{2}}
\end{aligned}
$$

Crossed E and B field mechanics (Solution by complex variables)

$$
\begin{aligned}
& \dot{\mathbf{v}}=\frac{e}{m} \mathbb{E}+\mathbf{v} \times \frac{e}{m} \mathbf{B}=\varepsilon+\mathbf{v} \times \frac{e}{m} B \hat{\mathbf{e}}_{Z} \\
& \varepsilon_{x}=\frac{e}{m} E_{x} \quad \varepsilon_{y}=\frac{e}{m} E_{y} \quad B=\frac{e}{m} B_{z}
\end{aligned}
$$

Shorthand Labeling

Complex variable velocity: $v=v_{x}+i v_{y}$ and electric field: $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$

$$
\begin{aligned}
\dot{v}_{x}+i \dot{v}_{y} & =\varepsilon_{x}+i \varepsilon_{y}-i B v_{x}+B v_{y}=\varepsilon_{x}+i \varepsilon_{y}-i B\left(v_{x}+i v_{y}\right) \\
\dot{v} & =\varepsilon-i B v \quad \text { with replacements }: \hat{\mathbf{e}}_{\mathbf{x}} \rightarrow 1 \quad \text { and }: \hat{\mathbf{e}}_{\mathbf{y}} \rightarrow i=\sqrt{-1}
\end{aligned}
$$

A velocity transformation $V(t)=v(t)+\beta$ cancels constant ε-field to give an equation: $\dot{V}=($ const. $) V$

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2D rotation. $v(t)+\beta=V(t)=e^{-i B \cdot t} V(0)=e^{-i B \cdot t}(v(0)+\beta) \quad$ or: $\quad v(t)=e^{-i B \cdot t}(v(0)+\beta)-\beta=e^{-i B \cdot t}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B}$
Expanding $e^{-i B t}, \nu=v_{x}+i v_{y}$, and $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$ reveals x (Real) and y (Imaginary) components

$$
\begin{aligned}
& \binom{v_{x}(t)}{v_{y}(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{v_{x}(0)-\frac{\varepsilon_{y}}{B}}{v_{y}(0)+\frac{\varepsilon_{x}}{B}}+\binom{\frac{\varepsilon_{y}}{B}}{-\frac{\varepsilon_{x}}{B}} \\
& \text { fected by both } \varepsilon_{x} \text { and } \varepsilon_{y} .
\end{aligned}
$$

Integrating $v(t)$ yields complex coordinate $q=x+i y$ affected by both ε_{x} and ε_{y}.

$$
\begin{aligned}
q(t)=\int v(t) d t & =\frac{e^{-i B \cdot t}}{-i B}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B} \cdot t+\text { Const. } \quad \text { where: Const. }=q(C \\
x(t)+i y(t) & =e^{-i B \cdot t}\left(i \frac{v(0)}{B}-\frac{\varepsilon}{B^{2}}\right)-i \frac{\varepsilon}{B} \cdot t+x(0)+i y(0)-i \frac{v(0)}{B}+\frac{\varepsilon}{B^{2}}
\end{aligned}
$$

Move last part of this calculation UP \uparrow

Crossed E and B field mechanics (Solution by complex variables)

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2D rotation. $v(t)+\beta=V(t)=e^{-i B \cdot t} V(0)=e^{-i B \cdot t}(v(0)+\beta) \quad$ or: $\quad v(t)=e^{-i B \cdot t}(v(0)+\beta)-\beta=e^{-i B \cdot t}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B}$
Expanding $e^{-i B t}, \nu=v_{x}+i v_{y}$, and $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$ reveals x (Real) and y (Imaginary) components

$$
\binom{v_{x}(t)}{v_{y}(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{v_{x}(0)-\frac{\varepsilon_{y}}{B}}{v_{y}(0)+\frac{\varepsilon_{x}}{B}}+\binom{\frac{\varepsilon_{y}}{B}}{-\frac{\varepsilon_{x}}{B}}
$$

Integrating $v(t)$ yields complex coordinate $q=x+i y$ affected by both ε_{x} and ε_{y}.

$$
\begin{gathered}
q(t)=\int v(t) d t=\frac{e^{-i B \cdot t}}{-i B}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B} \cdot t+\text { Const. } \quad \text { where: Const. }=q(0)-\left(\frac{v(0)}{-i B}-\frac{\varepsilon}{B^{2}}\right) \text { complex form } \\
x(t)+i y(t)=e^{-i B \cdot t}\left(i \frac{v(0)}{B}-\frac{\varepsilon}{B^{2}}\right)-i \frac{\varepsilon}{B} \cdot t+x(0)+i y(0)-i \frac{v(0)}{B}+\frac{\varepsilon}{B^{2}} \quad \text { complex form }
\end{gathered}
$$

Crossed E and B field mechanics (Solution by complex variables)

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2D rotation. $v(t)+\beta=V(t)=e^{-i B \cdot t} V(0)=e^{-i B \cdot t}(v(0)+\beta) \quad$ or: $\quad v(t)=e^{-i B \cdot t}(v(0)+\beta)-\beta=e^{-i B \cdot t}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B}$
Expanding $e^{-i B t}, \nu=v_{x}+i v_{y}$, and $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$ reveals x (Real) and y (Imaginary) components

$$
\binom{v_{x}(t)}{v_{y}(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{v_{x}(0)-\frac{\varepsilon_{y}}{B}}{v_{y}(0)+\frac{\varepsilon_{x}}{B}}+\binom{\frac{\varepsilon_{y}}{B}}{-\frac{\varepsilon_{x}}{B}}
$$

Integrating $v(t)$ yields complex coordinate $q=x+i y$ affected by both ε_{x} and ε_{y}.

$$
\begin{aligned}
& q(t)=\int v(t) d t=\frac{e^{-i B \cdot t}}{-i B}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B} \cdot t+\text { Const. } \quad \text { where: Cons. }=q(0)-\left(\frac{v(0)}{-i B}-\frac{\varepsilon}{B^{2}}\right) \text { complex form } \\
& x(t)+i y(t)=e^{-i B \cdot t}\left(i \frac{v(0)}{B}-\frac{\varepsilon}{B^{2}}\right)-i \frac{\varepsilon}{B} \cdot t+x(0)+i y(0)-i \frac{v(0)}{B}+\frac{\varepsilon}{B^{2}} \text { complex form } \\
& \binom{x(t)}{y(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{-\frac{v_{y}(0)}{B}-\frac{\varepsilon_{x}}{B^{2}}}{\frac{v_{x}(0)}{B}-\frac{\varepsilon_{y}}{B^{2}}}+\binom{\frac{\varepsilon_{y}}{B} t}{-\frac{\varepsilon_{x}}{B} t}+\binom{x(0)+\frac{v_{y}(0)}{B}+\frac{\varepsilon_{x}}{B^{2}}}{y(0)-\frac{v_{x}(0)}{B}+\frac{\varepsilon_{y}}{B^{2}}} \text { vector form }
\end{aligned}
$$

Crossed E and B field mechanics (Solution by complex variables)

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2D rotation. $v(t)+\beta=V(t)=e^{-i B \cdot t} V(0)=e^{-i B \cdot t}(v(0)+\beta) \quad$ or: $\quad v(t)=e^{-i B \cdot t}(v(0)+\beta)-\beta=e^{-i B \cdot t}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B}$
Expanding $e^{-i B t}, \nu=v_{x}+i v_{y}$, and $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$ reveals x (Real) and y (Imaginary) components

$$
\left.\begin{array}{l}
\binom{v_{x}(t)}{v_{y}(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{v_{x}(0)-\frac{\varepsilon_{y}}{B}}{v_{y}(0)+\frac{\varepsilon_{x}}{B}}+(\begin{array}{c}
\frac{\varepsilon_{y}}{B} \\
\text { elected by both } \varepsilon_{x} \text { and } \varepsilon_{y} .
\end{array} \underbrace{B}_{\text {very }}
\end{array}\right)
$$

Integrating $v(t)$ yields complex coordinate $q=x+i y$ affected by both ε_{x} and ε_{y}.

$$
\begin{aligned}
& q(t)=\int v(t) d t=\frac{e^{-i B \cdot t}}{-i B}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B} \cdot t+\text { Const. } \quad \text { where: Const. }=q(0)-\left(\frac{v(0)}{-i B}-\frac{\varepsilon}{B^{2}}\right) \\
& x(t)+i y(t)=\begin{array}{llll}
e^{-i B \cdot t} & \left(i \frac{v(0)}{B}-\frac{\varepsilon}{B^{2}}\right) & -i \frac{\varepsilon}{B} \cdot t \quad+x(0)+i y(0)-i \frac{v(0)}{B}+\frac{\varepsilon}{B^{2}}
\end{array}
\end{aligned}
$$

$$
\binom{x(t)}{y(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{-\frac{v_{y}(0)}{B}-\frac{\varepsilon_{x}}{B^{2}}}{\frac{v_{x}(0)}{B}-\frac{\varepsilon_{y}}{B^{2}}}+\binom{\frac{\varepsilon_{y}}{B} t}{-\frac{\varepsilon_{x}}{B} t}+\binom{x(0)+\frac{v_{y}(0)}{B}+\frac{\varepsilon_{x}}{B^{2}}}{y(0)-\frac{v_{x}(0)}{B}+\frac{\varepsilon_{y}}{B^{2}}}
$$

Crossed E and B field mechanics (Solution by complex variables)

$$
\dot{V}(t)=\dot{v}(t)+\dot{\beta}=\varepsilon-i B v=\varepsilon-i B(V(t)-\beta)=-i B V(t) \quad \text { where } \quad \beta=-\frac{\varepsilon}{i B}=i \frac{\varepsilon}{B}
$$

An exponential $V(t)=e^{-i B t} V(0)$ solution results: $e^{-i B t}$ is a clockwise 2D rotation.
$v(t)+\beta=V(t)=e^{-i B \cdot t} V(0)=e^{-i B \cdot t}(v(0)+\beta) \quad$ or: $\quad v(t)=e^{-i B \cdot t}(v(0)+\beta)-\beta=e^{-i B \cdot t}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B}$
Expanding $e^{-i B t}, \nu=v_{x}+i v_{y}$, and $\varepsilon=\varepsilon_{x}+i \varepsilon_{y}$ reveals x (Real) and y (Imaginary) components

$$
\begin{aligned}
& \binom{v_{x}(t)}{v_{y}(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{v_{x}(0)-\frac{\varepsilon_{y}}{B}}{v_{y}(0)+\frac{\varepsilon_{x}}{B}}+\binom{\frac{\varepsilon_{y}}{B}}{-\frac{\varepsilon_{x}}{B}} \\
& \text { vector form by both } \varepsilon_{x} \text { and } \varepsilon_{y .}
\end{aligned}
$$

Integrating $v(t)$ yields complex coordinate $q=x+i y$ affected by both ε_{x} and ε_{y}.

$$
\begin{aligned}
& q(t)=\int v(t) d t=\frac{e^{-i B \cdot t}}{-i B}\left(v(0)+i \frac{\varepsilon}{B}\right)-i \frac{\varepsilon}{B} \cdot t+\text { Const. } \quad \text { where: Const. }=q(0)-\left(\frac{v(0)}{-i B}-\frac{\varepsilon}{B^{2}}\right) \\
& x(t)+i y(t)=\begin{array}{llll}
e^{-i B \cdot t} & \left(i \frac{v(0)}{B}-\frac{\varepsilon}{B^{2}}\right) & -i \frac{\varepsilon}{B} \cdot t \quad+x(0)+i y(0)-i \frac{v(0)}{B}+\frac{\varepsilon}{B^{2}}
\end{array}
\end{aligned}
$$

$$
\binom{x(t)}{y(t)}=\left(\begin{array}{cc}
\cos B \cdot t & \sin B \cdot t \\
-\sin B \cdot t & \cos B \cdot t
\end{array}\right)\binom{-\frac{v_{y}(0)}{B}-\frac{\varepsilon_{x}}{B^{2}}}{\frac{v_{x}(0)}{B}-\frac{\varepsilon_{y}}{B^{2}}}+\binom{\frac{\varepsilon_{y}}{B} t}{-\frac{\varepsilon_{x}}{B} t}+\binom{x(0)+\frac{v_{y}(0)}{B}+\frac{\varepsilon_{x}}{B^{2}}}{y(0)-\frac{v_{x}(0)}{B}+\frac{\varepsilon_{y}}{B^{2}}}
$$

Righthand Rule
$\mathbf{F}=q \mathbf{v} \times \mathbf{B}=\mathbf{I} \times \mathbf{B}$

Cycloid example: initial $(x(0), y(0))=(0,0)$ and $\quad\left(\mathrm{v}_{x}(0), v_{y}(0)\right)=(0,0)$
$\binom{x(t)}{y(t)}=\begin{aligned} & \text { is on rim of a } \\ & \text { of radius } R_{W}=E / B^{2}\end{aligned}$ $\left(\begin{array}{cc}\cos B \cdot t & \sin B \cdot t \\ -\sin B \cdot t & \cos B \cdot t\end{array}\right)\binom{-\frac{E}{B^{2}}}{0}$ $+\binom{0}{-\frac{E}{B} t}+\binom{\frac{E}{B^{2}}}{0}$

Fig. 2.8.2 Trajectories of unit charge and mass in magnetic and electric fields $(E=1 / 2, B=1)$

Fig. 2.8.3 Rolling railroad wheel and rim analogy for cyclotron orbits

Initial position $\mathrm{x}(0)=1.382631$ (
Initial position $\mathrm{y}(0)=1.49839: \%$	
Initial momentum $\mathrm{px}(0)=0$	
Initial momentum py $(0)=0$ (
Terminal time $\mathrm{t}(\mathrm{off})=6.28318: \mathrm{A}$	
Maximum step size dt $=0.08$	
Charge of Nucleus $1=0$	
Charge of Nucleus 2 $=0$	
Coulomb (k12) $=0$	
Core thickness r $=0.000001$ -	
x-Stark field Ex $=0$ (
y-Stark field Ey $=-0.1$	
Zeeman field $\mathrm{Bz}=1$ (
Diamagnetic strength $\mathrm{k}=0$ (
Plank constant h-bar $=1.570791$ (
Color quantization hues $=64$	
Color quantization bands $=2$	
Fractional Error $\left(\mathrm{e}^{-\mathrm{x}}\right), \mathrm{x}=8$	
Particle Size $=8$ (
Fix $r(0) \bigcirc$ Fix $p(0) \bigcirc$ Do swarm Beam	
Plot $\mathrm{r}(\mathrm{t})$ 『 Plot $\mathrm{p}(\mathrm{t})$	
Color action No stops \checkmark Field vectors \checkmark Info \downarrow	
Draw masses \downarrow Axes \downarrow Coordinates Lenz Set p by ϕ Elastic \downarrow 2 Free Save to GIF	

Initial position $x(0)=-0.0021 \cdot \hat{\theta}$
Initial position $y(0)=-0.0064: \%$
Initial momentum $\mathrm{px}(0)=-0.50161 /$
Initial momentum $\operatorname{py}(0)=0$ \qquad

Terminal time $\mathrm{t}(\mathrm{off})=6.28318$
Maximum step size $\mathrm{dt}=0.08$
\rightleftharpoons Charge of Nucleus $1=0$

Charge of Nucleus $2=0$

$$
\text { Coulomb }(\mathrm{k} 12)=0
$$

$$
\text { Core thickness } r=0.000001
$$

$$
x \text {-Stark field } E x=0
$$

$$
y \text {-Stark field } E y=-0.1
$$

Zeeman field $\mathrm{Bz}=1$ \square
Diamagnetic strength $\mathrm{k}=0$
Plank constant h-bar $=1.570791 / \frac{1}{6}$
Color quantization hues $=64$
Color quantization bands $=2$
Fractional Error $\left(e^{-x}\right), x=8$

\longrightarrow

Particle Size $=8$
Fix $r(0) \oslash$ Fix $p(0) \oslash$ Do swarm
Beam
Plot $\mathrm{r}(\mathrm{t}) \quad$ Plot $\mathrm{p}(\mathrm{t}) \square$
Color action No stops \downarrow Field vectors Info \downarrow
Draw masses \downarrow Axes \downarrow Coordinates Lenz \square Set p by $\phi \quad$ Elastic $\downarrow \quad 2$ Free

$$
\begin{aligned}
\mathrm{t} & =136.1600 \\
\mathrm{x} & =-13.2656 \quad y=0.5875 \\
\mathrm{px} & =0.0923 \quad \mathrm{py}=-0.3526
\end{aligned}
$$

http://www.uark.edu/ua/modphys/markup/CoulItWeb.html?scenario=SynchrotronMotion2

Crossed E and B field mechanics

Classical Hall-effect and cyclotron orbit orbit equations Vector theory vs. complex variable theory
\rightarrow Mechanical analog of cyclotron and FBI rule
Cycloid and epicycloid ruler\&compass geometry
Cycloid geometry of flying levers Practical poolhall application

Mechanical analog of cyclotron and FBI rule

Velocity vector of the ball contact point $(\mathrm{v}(t)-\omega(t) \times \mathbb{R})$ equals table surface velocity $\Omega \times \mathbf{r}(t)$ at its contact point $\mathbf{r}(t)$.

Turntable turning at constant angular velocity $\Omega=\Omega \hat{\mathbf{z}}$.

YouTube Video of Analog to Syncrotron Motion

Mechanical analog of cyclotron and FBI rule
Velocity vector of the ball contact point $(\mathrm{v}(t)-\omega(t) \times \mathbb{R})$ equals table surface velocity $\Omega \times \mathbf{r}(t)$ at its contact point $\mathbf{r}(t)$.

Turntable turning at constant angular velocity $\Omega=\Omega \hat{\mathbf{z}}$.

$$
\begin{aligned}
& \text { Torque-and- } \mathrm{F}=\mathrm{ma} \\
& \text { equations of motion: } \\
& \begin{aligned}
\text { İ }(t) & =\mathbf{F}(t) \times \mathbf{R} \\
& =m \dot{\mathbf{v}}(t) \times \mathbf{R} \\
& =m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R
\end{aligned}
\end{aligned}
$$

Mechanical analog of cyclotron and FBI rule

Velocity vector of the ball contact point $(v(t)-\omega(t) \times \mathbb{R})$ equals table surface velocity $\Omega \times \mathbf{r}(t)$ at its contact point $\mathbf{r}(t)$.

Rolling Constraint

Equations of Motion:

 rotation Torque $=\mathbf{F} \times \mathbf{R}=I \dot{\omega}$ $\mathbf{F x R}=I \dot{\oplus}(t)$ $\mathbf{F}=m \dot{\mathbf{v}}(t)$translation Force $=\mathbf{F}=m \dot{\mathbf{v}}$
Turntable turning at constant angular velocity $\Omega=\Omega \hat{\mathbf{z}}$.
No-slipping: $\mathbf{v}(t)-\omega(t) \times \mathbf{R}=\boldsymbol{\Omega} \times \mathbf{r}(t) \quad$ (where: $\mathbb{R}=R \hat{\mathbf{z}}$ and $\boldsymbol{\Omega}=\Omega \hat{\mathbf{z}}$ are constant.)
$I \dot{\omega}(t)=\mathbf{F}(t) \times \mathbf{R}$
$=m \dot{\mathbf{v}}(t) \times \mathbf{R}$
$=m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R$

Mechanical analog of cyclotron and FBI rule

Velocity vector of the ball contact point $(\mathrm{v}(t)-\omega(t) \times \mathbb{R})$ equals table surface velocity $\Omega \times \mathbf{r}(t)$ at its contact point $\mathbf{r}(t)$.

Rolling Constraint

Equations of Motion:

rotation Torque $=\mathbf{F} \times \mathbf{R}=I \dot{\omega}$
$\mathbf{F x R}=I \dot{\omega}(t)$
$\mathbf{F}=m \dot{\mathbf{V}}(t)$
translation Force $=\mathbf{F}=m \dot{\mathbf{v}}$
Turntable turning at constant angular velocity $\Omega=\Omega \hat{\mathbf{z}}$.
No-slipping: $\mathbf{v}(t)-\omega(t) \times \mathbf{R}=\Omega \times \mathbf{r}(t) \quad$ (where: $\mathbb{R}=R \hat{\mathbf{z}}$ and $\boldsymbol{\Omega}=\Omega \hat{\mathbf{z}}$ are constant.)

$$
\mathbf{v}(t)=\boldsymbol{\Omega} \times \mathbf{r}(t)+\boldsymbol{\omega}(t) \times \mathbf{R}=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \hat{\mathbf{z}} R
$$

Torque-and- $\mathrm{F}=\mathrm{ma}$
equations of motion:
$I \dot{\omega}(t)=\mathbf{F}(t) \times \mathbf{R}$
$=m \dot{\mathbf{v}}(t) \times \mathbf{R}$
$=m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R$

Mechanical analog of cyclotron and FBI rule

Velocity vector of the ball contact point $(v(t)-\omega(t) \times \mathbb{R})$ equals table surface velocity $\Omega \times \mathbf{r}(t)$ at its contact point $\mathbf{r}(t)$.

Rolling Constraint

Equations of Motion:

 rotation Torque $=\mathbf{F} \times \mathbf{R}=I \dot{\omega}$ $\mathbf{F x} \mathbf{R}=I \dot{\omega}(t)$ $\mathbf{F}=m \dot{\mathbf{V}}(t)$ translation Force $=\mathbf{F}=m \dot{\mathbf{v}}$
Turntable turning at constant angular velocity $\Omega=\Omega \hat{\mathbf{z}}$.
No-slipping: $\mathbf{v}(t)-\omega(t) \times \mathbf{R}=\Omega \times \mathbf{r}(t) \quad$ (where: $\mathbb{R}=R \hat{\mathbf{z}}$ and $\boldsymbol{\Omega}=\Omega \hat{\mathbf{z}}$ are constant.)

Torque-and-F=ma
equations of motion:

$$
\begin{aligned}
& \mathbf{v}(t)=\boldsymbol{\Omega} \times \mathbf{r}(t)+\boldsymbol{\omega}(t) \times \mathbf{R}=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \hat{\mathbf{z}} R \quad \text { Do time-derivative } \\
& \dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \dot{\mathbf{r}}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R=\boldsymbol{\Omega} \times \mathbf{v}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R
\end{aligned}
$$

$$
I \dot{\omega}(t)=\mathbf{F}(t) \times \mathbf{R}
$$

$$
=m \dot{\mathbf{v}}(t) \times \mathbf{R}
$$

$$
=m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R
$$

Mechanical analog of cyclotron and FBI rule

Velocity vector of the ball contact point $(v(t)-\omega(t) \times \mathbb{R})$ equals table surface velocity $\Omega \times \mathbf{r}(t)$ at its contact point $\mathbf{r}(t)$.

Rolling Constraint

Equations of Motion:

rotation Torque $=\mathbf{F} \times \mathbf{R}=I \dot{\omega}$
$\mathbf{F} \mathbf{x R}=I \dot{\oplus}(t)$
$\mathbf{F}=m \dot{\mathbf{V}}(t)$
translation Force $=\mathbf{F}=m \dot{\mathbf{v}}$

Turntable turning at constant angular velocity $\Omega=\Omega \hat{\mathbf{z}}$.

Torque-and-F=ma
equations of motion:
$I \dot{\omega}(t)=\mathbf{F}(t) \times \mathbf{R}$ $\mathbf{v}(t)-\omega(t) \times \mathbb{R}=\Omega \times \mathbf{r}(t) \quad$ (where: $\mathbb{R}=R \hat{\mathbf{z}}$ and $\Omega=\Omega \hat{\mathbf{z}}$ are constant.)
$\mathbf{v}(t)=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \mathbf{R}=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \hat{\mathbf{z}} R \quad$ Do time-derivative $\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \dot{\mathbf{r}}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R=\boldsymbol{\Omega} \times \mathbf{v}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R$ $\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \dot{\mathbf{r}}(t)+\dot{\omega}(t) \quad \times \hat{\mathbf{z}} R \quad$ use: $\quad \dot{\omega}(t)=\frac{m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R}{I}$ $=m \dot{\mathbf{v}}(t) \times \mathbf{R}$
$=m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R$

Mechanical analog of cyclotron and FBI rule

Velocity vector of the ball contact point $(\mathrm{v}(t)-\omega(t) \times \mathbb{R})$ equals table surface velocity $\Omega \times \mathbf{r}(t)$ at its contact point $\mathbf{r}(t)$.

Equations of Motion:

Rolling Constraint

Turntable turning at constant angular velocity $\Omega=\Omega \hat{\mathbf{z}}$.
No-slipping: $\mathbf{v}(t)-\omega(t) \times \mathbf{R}=\Omega \times \mathbf{r}(t) \quad$ (where: $\mathbf{R}=R \hat{\mathbf{z}}$ and $\boldsymbol{\Omega}=\Omega \hat{\mathbf{z}}$ are constant.)

Torque-and-F=ma
equations of motion:
$I \dot{\omega}(t)=\mathbf{F}(t) \times \mathbf{R}$

$$
\mathbf{v}(t)=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \mathbf{R}=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \hat{\mathbf{z}} R \quad \text { Do time-derivative }
$$

$$
\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \dot{\mathbf{r}}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R=\boldsymbol{\Omega} \times \mathbf{v}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R
$$

$$
=m \dot{\mathbf{v}}(t) \times \mathbf{R} .
$$

$$
\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \dot{\mathbf{r}}(t)+\dot{\omega}(t) \quad \times \hat{\mathbf{z}} R \quad \text { use: } \quad \dot{\boldsymbol{\omega}}(t)=\frac{m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R}{I}
$$

$$
=m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R \quad \dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \mathbf{v}(t)+\frac{m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R}{I} \times \hat{\mathbf{z}} R
$$

$$
\text { use: } \quad(\mathbf{B} \times \mathbf{C}) \times \mathbf{A}=(\mathbf{A} \cdot \mathbf{B}) \mathbf{C}-(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}
$$

$$
\text { with }: \mathbf{B}=\frac{m \dot{\mathbf{v}}(t)}{I} \text { and: } \mathbf{A}=\hat{\mathbf{z}} R=\mathbf{C}
$$

Mechanical analog of cyclotron and FBI rule

Velocity vector of the ball contact point $(\mathrm{v}(t)-\omega(t) \times \mathbb{R})$ equals table surface velocity $\Omega \times \mathbf{r}(t)$ at its contact point $\mathbf{r}(t)$.

Rolling Constraint

Equations of Motion:

$$
\text { rotation Torque }=\mathbf{F} \times \mathbf{R}=I \dot{\omega}
$$

$\mathbf{F} \mathbf{x R}=I \dot{\oplus}(t)$
$\mathbf{F}=m \dot{\mathbf{V}}(t)$
translation Force $=\mathbf{F}=m \dot{\mathbf{v}}$

Turntable turning at constant angular velocity $\Omega=\Omega \hat{\mathbf{z}}$.
No-slipping: $\mathbf{v}(t)-\omega(t) \times \mathbb{R}=\Omega \times \mathbf{r}(t)$ (where: $\mathbb{R}=R \hat{\mathbf{z}}$ and $\boldsymbol{\Omega}=\Omega \hat{\mathbf{z}}$ are constant.)

Torque-and-F=ma
equations of motion:
$I \dot{\omega}(t)=\mathbf{F}(t) \times \mathbf{R}$
$\mathbf{v}(t)=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \mathbf{R}=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \hat{\mathbf{z}} R \quad$ Do time-derivative

$$
\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \dot{\mathbf{r}}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R=\boldsymbol{\Omega} \times \mathbf{v}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R
$$

$$
\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \dot{\mathbf{r}}(t)+\dot{\omega}(t) \quad \times \hat{\mathbf{z}} R \quad \text { use: } \quad \dot{\omega}(t)=\frac{m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R}{I}
$$

$$
\begin{array}{ll}
=m \dot{\mathbf{v}}(t) \times \mathbf{R} \\
=m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R & \dot{\mathbf{v}}(t)=\mathbf{\Omega} \times \mathbf{v}(t)+\frac{m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R}{I} \times \hat{\mathbf{z}} R \quad \text { use: } \quad(\mathbf{B} \times \mathbf{C}) \times \mathbf{A}=(\mathbf{A} \cdot \mathbf{B}) \mathbf{C}-(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}
\end{array}
$$

$$
\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \mathbf{v}(t)+\frac{m \dot{\mathbf{v}}(t) \cdot \hat{\mathbf{z}} R}{I} \hat{\mathbf{z}} R-\frac{m R^{2}}{I} \dot{\mathbf{v}}(t)
$$

$$
\text { with }: \mathbf{B}=\frac{m \dot{\mathbf{v}}(t)}{I} \text { and: } \mathbf{A}=\hat{\mathbf{z}} R=\mathbf{C}
$$

Mechanical analog of cyclotron and FBI rule

Velocity vector of the ball contact point $(v(t)-\omega(t) \times \mathbb{R})$ equals

 table surface velocity $\Omega \times \mathbf{r}(t)$ at its contact point $\mathbf{r}(t)$.
Rolling Constraint

Equations of Motion:

$$
\text { rotation Torque }=\mathbf{F} \times \mathbf{R}=I \dot{\omega}
$$

Turntable turning at constant angular velocity $\Omega=\Omega \hat{\mathbf{z}}$.
No-slipping: $\mathbf{v}(t)-\omega(t) \times \mathbb{R}=\Omega \times \mathbf{r}(t)$ (where: $\mathbb{R}=R \hat{\mathbf{z}}$ and $\boldsymbol{\Omega}=\Omega \hat{\mathbf{z}}$ are constant.)

Torque-and-F=ma
equations of motion:
$I \dot{\omega}(t)=\mathbf{F}(t) \times \mathbf{R}$

$$
\begin{aligned}
\mathbf{v}(t) & =\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \mathbf{R}=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \hat{\mathbf{z}} R \\
\dot{\mathbf{v}}(t) & =\boldsymbol{\Omega} \times \dot{\mathbf{r}}(t)+\dot{\boldsymbol{\omega}}(t) \times \hat{\mathbf{z}} R=\boldsymbol{\Omega} \times \mathbf{v}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R
\end{aligned}
$$

$$
=m \dot{\mathbf{v}}(t) \times \mathbf{R} .
$$

$$
\begin{aligned}
& =m \dot{\mathbf{v}}(t) \times \mathbf{R} \quad \\
& =m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R \quad \dot{\mathbf{v}}(t)=\mathbf{\Omega} \times \mathbf{v}(t)+\frac{m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R}{I} \times \hat{\mathbf{z}} R \quad \text { use: } \quad(\mathbf{B} \times \mathbf{C}) \times \mathbf{A}=(\mathbf{A} \cdot \mathbf{B}) \mathbf{C}-(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}
\end{aligned}
$$

$$
\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \mathbf{v}(t)+\frac{m \dot{\mathbf{v}}(t) \cdot \hat{\mathbf{z}} R}{I} \hat{\mathbf{z}} R-\frac{m R^{2}}{I} \dot{\mathbf{v}}(t)
$$

$$
\text { with }: \mathbf{B}=\frac{m \dot{\mathbf{v}}(t)}{I} \text { and: } \mathbf{A}=\hat{\mathbf{z}} R=\mathbf{C}
$$

$$
\dot{\mathbf{v}}(t)=\Omega \times \mathbf{v}(t)+\begin{gathered}
I \\
\\
\\
\end{gathered}
$$

since $\dot{\mathbf{v}}(t)$ always in table plane

Mechanical analog of cyclotron and FBI rule

Velocity vector of the ball contact point $(v(t)-\omega(t) \times \mathbb{R})$ equals

 table surface velocity $\Omega \times \mathbf{r}(t)$ at its contact point $\mathbf{r}(t)$.Rolling Constraint

Equations of Motion:

$$
\text { rotation Torque }=\mathbf{F} \times \mathbf{R}=I \dot{\omega}
$$

$\mathbf{F x R}=I \dot{\omega}(t)$
$\mathbf{F}=m \dot{\mathbf{v}}(t)$
translation Force $=\mathbf{F}=m \dot{\mathbf{v}}$

Turntable turning at constant angular velocity $\Omega=\Omega \hat{\mathbf{z}}$.
No-slipping: $\mathbf{v}(t)-\omega(t) \times \mathbb{R}=\Omega \times \mathbf{r}(t) \quad$ (where: $\mathbb{R}=R \hat{\mathbf{z}}$ and $\Omega=\Omega \hat{\mathbf{z}}$ are constant.)

Torque-and-F=ma
equations of motion:
$I \dot{\omega}(t)=\mathbf{F}(t) \times \mathbf{R}$

$$
\mathbf{v}(t)=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \mathbf{R}=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \hat{\mathbf{z}} R \quad \text { Do time-derivative }
$$

$$
\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \dot{\mathbf{r}}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R=\boldsymbol{\Omega} \times \mathbf{v}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R
$$

$$
=m \dot{\mathbf{v}}(t) \times \mathbf{R}
$$

$$
\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \dot{\mathbf{r}}(t)+\dot{\boldsymbol{\omega}}(t) \quad \times \hat{\mathbf{z}} R \quad \text { use: } \quad \dot{\boldsymbol{\omega}}(t)=\frac{m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R}{I}
$$

$$
\begin{aligned}
& =m \mathbf{v}(t) \times \mathbf{R} \\
& =m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R
\end{aligned}
$$

$$
=m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R
$$

$$
\begin{aligned}
& \dot{\mathbf{v}}(t)= \boldsymbol{\Omega} \times \mathbf{v}(t)+\frac{m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R}{I} \times \hat{\mathbf{z}} R \\
& \dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \mathbf{v}(t)+\frac{m \dot{\mathbf{v}}(t) \cdot \hat{\mathbf{z}} R}{I} \hat{\mathbf{z}} R-\frac{m R^{2}}{I} \dot{\mathbf{v}}(t) \\
& \quad(\mathbf{v}(t) \text { always normal to } \hat{\mathbf{z}})
\end{aligned}
$$

$$
\text { use: } \quad(\mathbf{B} \times \mathbf{C}) \times \mathbf{A}=(\mathbf{A} \cdot \mathbf{B}) \mathbf{C}-(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}
$$

$$
\text { with }: \mathbf{B}=\frac{m \dot{\mathbf{v}}(t)}{I} \text { and: } \mathbf{A}=\hat{\mathbf{z}} R=\mathbf{C}
$$

since $\dot{\mathbf{v}}(t)$ always in table plane

$$
\begin{aligned}
& \dot{\mathbf{v}}(t)=\mathbf{\Omega} \times \mathbf{v}(t)+\begin{array}{ll}
0 & -\frac{m R^{2}}{I} \dot{\mathbf{v}}(t) \\
\left(1+\frac{m R^{2}}{I}\right) \dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \mathbf{v}(t)
\end{array}
\end{aligned}
$$

$$
\text { or : } \begin{gathered}
\mathbf{F}=\mathbb{B} \times \mathbf{v} \text { mechanical analog: } \\
\dot{\mathbf{v}}(t)=\frac{\mathbf{\Omega}}{1+\frac{m R^{2}}{I}} \times \mathbf{v}(t)
\end{gathered}
$$

Mechanical analog of cyclotron and FBI rule

Velocity vector of the ball contact point $(v(t)-\omega(t) \times \mathbb{R})$ equals

 table surface velocity $\Omega \times \mathbf{r}(t)$ at its contact point $\mathbf{r}(t)$.Rolling Constraint

Equations of Motion:

$$
\text { rotation Torque }=\mathbf{F} \times \mathbf{R}=I \dot{\omega}
$$

$\mathbf{F x R}=I \dot{\omega}(t)$
$\mathbf{F}=m \dot{\mathbf{v}}(t)$
translation Force $=\mathbf{F}=m \dot{\mathbf{v}}$
Turntable turning at constant angular velocity $\Omega=\Omega \hat{\mathbf{z}}$.
No-slipping: $\mathbf{v}(t)-\omega(t) \times \mathbb{R}=\Omega \times \mathbf{r}(t) \quad$ (where: $\mathbb{R}=R \hat{\mathbf{z}}$ and $\Omega=\Omega \hat{\mathbf{z}}$ are constant.)

Torque-and-F=ma
equations of motion:
$I \dot{\omega}(t)=\mathbf{F}(t) \times \mathbb{R}$

$$
\mathbf{v}(t)=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \mathbf{R}=\boldsymbol{\Omega} \times \mathbf{r}(t)+\omega(t) \times \hat{\mathbf{z}} R
$$

$$
\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \dot{\mathbf{r}}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R=\boldsymbol{\Omega} \times \mathbf{v}(t)+\dot{\omega}(t) \times \hat{\mathbf{z}} R
$$

$$
=m \dot{\mathbf{v}}(t) \times \mathbf{R} .
$$

$$
\begin{aligned}
& =m \dot{\mathbf{v}}(t) \times \mathbf{R} \\
& =m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R \quad \dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \mathbf{v}(t)+\frac{m \dot{\mathbf{v}}(t) \times \hat{\mathbf{z}} R}{I} \times \hat{\mathbf{z}} R \quad \text { use: } \quad(\mathbf{B} \times \mathbf{C}) \times \mathbf{A}=(\mathbf{A} \cdot \mathbf{B}) \mathbf{C}-(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}
\end{aligned}
$$

Mechanical analog cyclotron frequency

$$
\dot{\mathbf{v}}(t)=\boldsymbol{\Omega} \times \mathbf{v}(t)+\frac{m \dot{\mathbf{v}}(t) \cdot \hat{\mathbf{z}} R}{I} \hat{\mathbf{z}} R-\frac{m R^{2}}{I} \dot{\mathbf{v}}(t)
$$

$$
\omega=\frac{e}{m} B=\frac{\boldsymbol{\Omega}}{1+\frac{m R^{2}}{I}}
$$

$$
\dot{\mathbf{v}}(t)=\mathbf{\Omega} \times \mathbf{v}(t)+\begin{gathered}
I \\
0
\end{gathered}
$$

$$
\omega=\frac{2}{7} \boldsymbol{\Omega} \text { for: } \frac{1}{m R^{2}}=\frac{2}{5} C
$$

$$
=\frac{2}{5} \boldsymbol{\Omega} \text { for: } \frac{1}{m R^{2}}=\frac{2}{3}
$$

$$
\left(1+\frac{m R^{2}}{I}\right) \dot{\mathbf{v}}(t)=\mathbf{\Omega} \times \mathbf{v}(t)
$$

$$
\text { or : } \begin{aligned}
& \text { ma }=e \mathbf{B} \times \mathbf{v} \text { mechanical analog: } \\
& \dot{\mathbf{v}}(t)=\frac{\boldsymbol{\Omega}}{1+\frac{m R^{2}}{I}} \times \mathbf{v}(t)
\end{aligned}
$$

YouTube Video of Analog to Syncrotron Motion

Crossed E and B field mechanics

Classical Hall-effect and cyclotron orbit orbit equations
Vector theory vs. complex variable theory
Mechanical analog of cyclotron and FBI rule
\longrightarrow Cycloid and epicycloid ruler\&compass geometry
Cycloid geometry of flying levers
Practical poolhall application

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$ is a rational length of rolled-out circumference $R \phi=(\beta / \pi) m \pi / n=3 m / n$. Diameter is $2 R=6 / \pi=1.91$

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$ is a rational length of rolled -out circumference $R \phi=(3 / \pi) m \pi / n=3 m / n$. Diameter is $2 R=6 / \pi=1.91$

Red circle rolls left-to-right on $y=3.82$ ceiling
Contact point goes from ($\mathrm{x}=6 / 2, \mathrm{y}=3.82$) to $\mathrm{x}=\underline{0}$.

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$ is a rational length of rolled -out circumference $R \phi=(3 / \pi) m \pi / n=3 m / n$. Diameter is $2 R=6 / \pi=1.91$
Red circle rolls left-to-right on $\mathrm{y}=3.82$ ceiling
Contact point goes from $(\mathrm{x}=6 / 2, \mathrm{y}=3.82$) to $\mathrm{x}=0$.
Ceiling $\mathrm{y}=3.82$

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$ is a rational length of rolled -out circumference $R \phi=(3 / \pi) m \pi / n=3 m / n$. Diameter is $2 R=6 / \pi=1.91$

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$ is a rational length of rolled-out circumference $R \phi=(\beta / \pi) m \pi / n=3 m / n$. Diameter is $2 R=6 / \pi=1.91$

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$ is a rational length of rolled-out circumference $R \phi=(\beta / \pi) m \pi / n=3 m / n$. Diameter is $2 R=6 / \pi=1.91$

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$ is a rational length of rolled-out circumference $R \phi=(\beta / \pi) m \pi / n=3 \mathrm{~m} / \mathrm{n}$. Diameter is $2 R=6 / \pi=1.91$

Compare cycloid of y -diameter $2 R$ and x -diameter $2 \pi R$
to circle arc of radius $4 R$

Crossed E and B field mechanics

Classical Hall-effect and cyclotron orbit orbit equations
Vector theory vs. complex variable theory
Mechanical analog of cyclotron and FBI rule
\longrightarrow Cycloid ad epicycloid rar\&compass geometry
Cycloid geometry of flying levers
Practical poolhall application

Hyper-and-Hypo-Cycloidal coordinate geometry and dynamics

Hyper-and-Hypo-Cycloidal coordinate geometry and dynamics

Hyper-cycloid constrained by: $\theta r=R \phi$ or: $\theta=\frac{R}{r} \phi$
$x=-(R+r) \sin \phi+r \sin (\theta+\phi)=r\left[-\left(\frac{R}{r}+1\right) \sin \phi+\sin \left(\frac{R}{r}+1\right) \phi\right]$
$y=(R+r) \cos \phi-r \cos (\theta+\phi)=r\left[\left(\frac{R}{r}+1\right) \cos \phi-\cos \left(\frac{R}{r}+1\right) \phi\right]$

Hypo-cycloid constrained by: $-\theta r=-R \phi$ or: $\theta=\frac{R}{r} \phi$
$x=-(R-r) \sin \phi+r \sin (\theta-\phi)=r\left[-\left(\frac{R}{r}-1\right) \sin \phi+\sin \left(\frac{R}{r}-1\right) \phi\right]$
$y=(R-r) \cos \phi+r \cos (\theta-\phi)=r\left[\left(\frac{R}{r}-1\right) \cos \phi+\cos \left(\frac{R}{r}-1\right) \phi\right]$

Hyper-and-Hypo-Cycloidal coordinate geometry and dyramics

Hyper-cycloid constrained by: $\theta r=R \phi$ or: $\theta=\frac{R}{r} \phi$
$x=-(R+r) \sin \phi+r \sin (\theta+\phi)=r\left[-\left(\frac{R}{r}+1\right) \sin \phi+\sin \left(\frac{R}{r}+1\right) \phi\right]$
$y=(R+r) \cos \phi-r \cos (\theta+\phi)=r\left[\left(\frac{R}{r}+1\right) \cos \phi-\cos \left(\frac{R}{r}+1\right) \phi\right]$

Hypo-cycloid constrained by: $-\theta r=-R \phi$ or: $\theta=\frac{R}{r} \phi$
$x=-(R-r) \sin \phi+r \sin (\theta-\phi)=r\left[-\left(\frac{R}{r}-1\right) \sin \phi+\sin \left(\frac{R}{r}-1\right) \phi\right]$
$y=(R-r) \cos \phi+r \cos (\theta-\phi)=r\left[\left(\frac{R}{r}-1\right) \cos \phi+\cos \left(\frac{R}{r}-1\right) \phi\right]$

Hyper-and-Hypo-Cycloidal coordinate geometry and dynamics

Hyper-cycloid constrained by: $\theta r=R \phi$ or: $\theta=\frac{R}{r} \phi$
$x=-(R+r) \sin \phi+r \sin (\theta+\phi)=r\left[-\left(\frac{R}{r}+1\right) \sin \phi+\sin \left(\frac{R}{r}+1\right) \phi\right]$
$y=(R+r) \cos \phi-r \cos (\theta+\phi)=r\left[\left(\frac{R}{r}+1\right) \cos \phi-\cos \left(\frac{R}{r}+1\right) \phi\right]$

Hypo-cycloid constrained by: $-\theta r=-R \phi$ or: $\theta=\frac{R}{r} \phi$
$x=-(R-r) \sin \phi+r \sin (\theta-\phi)=r\left[-\left(\frac{R}{r}-1\right) \sin \phi+\sin \left(\frac{R}{r}-1\right) \phi\right]$
$y=(R-r) \cos \phi+r \cos (\theta-\phi)=r\left[\left(\frac{R}{r}-1\right) \cos \phi+\cos \left(\frac{R}{r}-1\right) \phi\right]$

Hypo-Cycloidal coordinate geometry and dynamics

Hypo-cycloid constrained by: $-\theta r=-R \phi$ or: $\theta=\frac{R}{r} \phi$
$x=-(R-r) \sin \phi+r \sin (\theta-\phi)=r\left[-\left(\frac{R}{r}-1\right) \sin \phi+\sin \left(\frac{R}{r}-1\right) \phi\right]$
$y=(R-r) \cos \phi+r \cos (\theta-\phi)=r\left[\left(\frac{R}{r}-1\right) \cos \phi+\cos \left(\frac{R}{r}-1\right) \phi\right]$
Hypo-cycloid trajectory radius ρ for: $r=1$
$x=-(R-1) \sin \phi+\sin (R-1) \phi \quad x^{2}=(R-1)^{2} \sin ^{2} \phi-2(R-1) \sin \phi \sin (R-1) \phi+\sin ^{2}(R-1) \phi$ $y=(R-1) \cos \phi+\cos (R-1) \phi \quad y^{2}=(R-1)^{2} \cos ^{2} \phi+2(R-1) \cos \phi \cos (R-1) \phi+\cos ^{2}(R-1) \phi$

$$
\rho^{2}=x^{2}+y^{2}=(R-1)^{2}+2(R-1)[\cos \phi \cos (R-1) \phi-\sin \phi \sin (R-1) \phi]+1
$$

$$
\rho^{2}=x^{2}+y^{2}=(R-1)^{2}+2(R-1) \cos (R \phi)+1
$$

Hypo-Cycloidal coordinate geometry and dynamics

Hypo-cycloid constrained by: $-\theta r=-R \phi$ or: $\theta=\frac{R}{r} \phi$
$x=-(R-r) \sin \phi+r \sin (\theta-\phi)=r\left[-\left(\frac{R}{r}-1\right) \sin \phi+\sin \left(\frac{R}{r}-1\right) \phi\right]$
$y=(R-r) \cos \phi+r \cos (\theta-\phi)=r\left[\left(\frac{R}{r}-1\right) \cos \phi+\cos \left(\frac{R}{r}-1\right) \phi\right]$
Hypo-cycloid trajectory radius ρ for: $r=1$
$x=-(R-1) \sin \phi+\sin (R-1) \phi \quad x^{2}=(R-1)^{2} \sin ^{2} \phi-2(R-1) \sin \phi \sin (R-1) \phi+\sin ^{2}(R-1) \phi$
$y=(R-1) \cos \phi+\cos (R-1) \phi \quad y^{2}=(R-1)^{2} \cos ^{2} \phi+2(R-1) \cos \phi \cos (R-1) \phi+\cos ^{2}(R-1) \phi$ $\rho^{2}=x^{2}+y^{2}=(R-1)^{2}+2(R-1)[\cos \phi \cos (R-1) \phi-\sin \phi \sin (R-1) \phi]+1$ $\rho^{2}=x^{2}+y^{2}=(R-1)^{2}+2(R-1) \cos (R \phi)+1=R^{2}-4(R-1) \sin ^{2} \frac{R \phi}{2}$

Crossed E and B field mechanics

Classical Hall-effect and cyclotron orbit orbit equations
Vector theory vs. complex variable theory
Mechanical analog of cyclotron and FBI rule
Cycloid and epicycloid ruler\&compass geometry
\rightarrow Cycloid geometry of flying levers
Practical poolhall application

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\Pi / M=V_{\text {Center }}=|p \omega|=p \cdot h \Pi / I
$$

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\begin{aligned}
& \Pi / M=V_{\text {Center }}=|p \omega| \\
& I / M=p \cdot h \Pi / I \\
&=\quad=p \cdot h
\end{aligned}
$$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\begin{aligned}
\Pi / M & =V_{\text {Center }}
\end{aligned}=|p \omega|=p \cdot h \Pi / I, \quad=\quad=p \cdot h \quad \text { or: } p=I /(M h)
$$

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\begin{aligned}
& \Pi / M=V_{\text {Center }}=|p \omega| \\
& I / M=p \cdot h \Pi / I \\
&=\quad=p \cdot h \quad \text { or: } p=I /(M h)
\end{aligned}
$$ P follows a normal cycloid made by a circle of radius $p=I /(M h)$ rolling on an imaginary road

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick. thru point P in direction of Π.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left.=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\begin{aligned}
& \Pi / M=V_{\text {Center }}=|p \omega| \\
& I / M=p \cdot h \Pi / I \\
&=\quad=p \cdot h \quad \text { or: } p=I /(M h)
\end{aligned}
$$ P follows a normal cycloid made by a circle of radius $p=I /(M h)$ rolling on an imaginary road

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick. thru point P in direction of Π.

The percussion radius $p=\ell^{2} / 3 h$ is of the CoP point that has no velocity just after hammer hits at h.

Crossed E and B field mechanics

Classical Hall-effect and cyclotron orbit orbit equations
Vector theory vs. complex variable theory Mechanical analog of cyclotron and FBI rule

Cycloid and epicycloid ruler\& compass geometry
Cycloid geometry of flying levers
\rightarrow Practical poolhall application

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

The Zamboni-Ice-Shot problem

(Assumes frictionless ice rink)

Where on a meter-stick do you hit it so as to not disturb marbles A or B and...
...knock marble C down as shown.

