Lecture 16 Tue.10.27.2015

GCC Lagrange and Riemann Equations for Trebuchet (Ch. 1-5 of Unit 2 and Unit 3)

Review (Mostly Unit 2.): Was the Trebuchet a dream problem for Galileo? Not likely. Forces in Lagrange force equation: total, genuine, potential, and/or fictitious

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" $(q^1=\theta, q^2=\phi)$ -manifold and "Flat" $(x=\theta, y=\phi)$ -graph Review of covariant \mathbf{E}_n and contravariant \mathbf{E}^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43) Tangent $\{\mathbf{E}_n\}$ space vs. Normal $\{\mathbf{E}^m\}$ space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" ($q^1=\theta$, $q^2=\phi$)-manifold and "Flat" ($x=\theta$, $y=\phi$)-graph Review of covariant \mathbf{E}_n and contravariant \mathbf{E}^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} Tangent { \mathbf{E}_n }space vs. Normal { \mathbf{E}^m }space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Chapter 1. The Trebuchet: A dream problem for Galileo?

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" $(q^1=\theta, q^2=\phi)$ -manifold and "Flat" $(x=\theta, y=\phi)$ -graph Review of covariant \mathbf{E}_n and contravariant \mathbf{E}^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} Tangent $\{\mathbf{E}_n\}$ space vs. Normal $\{\mathbf{E}^m\}$ space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Forces in Lagrange force equation: total, genuine, potential, and/or fictitious

Tuesday, October 27, 2015

Forces in Lagrange force equation: total, genuine, potential, and/or fictitious

Tuesday, October 27, 2015

Geometric and topological properties of GCC transformations (Mostly from Unit 3.)
 Trebuchet Cartesian projectile coordinates are double-valued
 Toroidal "rolled-up" (q1=θ, q2=φ)-manifold and "Flat" (x=θ, y=φ)-graph
 Review of covariant E_n and contravariant E^m vectors: Jacobian J vs. Kajobian K
 Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43)
 Tangent {E_n}space vs. Normal {E^m}space
 Covariant vs. contravariant coordinate transformations
 Metric g_{mn} tensor geometric relations to length, area, and volume

Trebuchet Cartesian projectile coordinates are double-valued

Fig. 2.2.3 Trebuchet configurations with the same coordinates x and y of projectile m.

Trebuchet Cartesian projectile coordinates are double-valued...(Belong to 2 distinct manifolds)

Fig. 2.2.3 Trebuchet configurations with the same coordinates x and y of projectile m.

So, for example, are polar coordinates ... (for each angle there are two r-values)

Fig. 3.1.4 Polar coordinates and possible embedding space on conical surface.

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued → Toroidal "rolled-up" (q1=θ, q2=φ)-manifold and "Flat" (x=θ, y=φ)-graph Review of covariant E_n and contravariant E^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43) Tangent {E_n}space vs. Normal {E^m}space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Fig. 3.1.3 "Flattened" ($q^1 = \theta$, $q^2 = \phi$) *coordinate manifold for trebuchet*

Toroidal "rolled-up" ($q^1=\theta$, $q^2=\phi$)-manifold of trebuchet positions (a) Coordinate lines

Toroidal "rolled-up" ($q1=\theta$, $q2=\phi$)-manifold of trebuchet positions and "Flat" ($q1=\theta$, $q2=\phi$)-graph

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" (q1=θ, q2=φ)-manifold and "Flat" (x=θ, y=φ)-graph Review of covariant E_n and contravariant E^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent {E_n}space vs. Normal {E^m}space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

A dual set of *quasi-unit vectors* show up in Jacobian J and Kajobian K. (*from p. 43 of Lect. 10*) J-Columns are *covariant vectors* $\{\mathbf{E}_1 = \mathbf{E}_r, \mathbf{E}_2 = \mathbf{E}_{\phi}\}$ K-Rows are *contravariant vectors* $\{\mathbf{E}^1 = \mathbf{E}^r, \mathbf{E}^2 = \mathbf{E}^{\phi}\}$

Derived from polar definition: $x=r \cos \phi$ *and* $y=r \sin \phi$

 \mathbf{E}_m are convenient bases for *ex*tensive quantities like distance and velocity.

$$\mathbf{V} = V^{1}\mathbf{E}_{1} + V^{2}\mathbf{E}_{2} = V^{1}\frac{\partial \mathbf{r}}{\partial q^{1}} + V^{2}\frac{\partial \mathbf{r}}{\partial q^{2}}$$

*Contra*variant $\{\mathbf{E}^1 \mathbf{E}^2\}$ match reciprocal cells

are 2D drawings! <u>No</u> 3D <u>perspective</u>

NOTE:These

E¹ is normal to q^1 =const. since **gradient** of q^1 is vector sum ∇q^1 = of all its partial derivatives

 $\left(\begin{array}{c} \frac{\partial q^{1}}{\partial x} \\ \frac{\partial q^{1}}{\partial y} \end{array}\right)$

 \mathbf{E}^{m} are convenient bases for *in*tensive quantities like force and momentum. $\mathbf{F} = F_1 \mathbf{E}^1 + F_2 \mathbf{E}^2 = F_1 \frac{\partial q^1}{\partial \mathbf{r}} + F_2 \frac{\partial q^2}{\partial \mathbf{r}} = F_1 \nabla q^1 + F_2 \nabla q^2$

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" (q1=θ, q2=φ)-manifold and "Flat" (x=θ, y=φ)-graph Review of covariant E_n and contravariant E^m vectors Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent {E_n}space vs. Normal {E^m}space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Fig. 3.2.2 Example of covariant unitary vectors and their tangent space.

 Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" (q1=θ, q2=φ)-manifold and "Flat" (x=θ, y=φ)-graph Review of covariant En and contravariant E^m vectors: Jacobian J vs. Kajobian K Covariant metric gmn vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent {En} space vs. Normal {E^m} space Covariant vs. contravariant coordinate transformations Metric gmn tensor geometric relations to length, area, and volume

Kajobian transfomation matrix

versus

$$\left\langle \frac{\partial q^{m}}{\partial x^{j}} \right\rangle = \begin{array}{c} Using 2x2 \ inverse \\ \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \frac{\begin{vmatrix} D & -B \\ -C & A \end{vmatrix}}{AD - BC}$$

$\left rac{\partial q^1}{\partial r^1} ight $	$rac{\partial q^1}{\partial r^2}$		\mathbf{E}^1		<u> </u>	$\frac{\partial \theta}{\partial \theta}$		$\ell\sin\phi$	$-\ell\cos\phi$	$\mathbf{E}^{ heta}$
$\left \frac{\partial q^2}{\partial r^1} \right $	$rac{\partial q^2}{\partial r^2}$		\mathbf{E}^2	=	$\frac{\partial x}{\partial \phi}$	$\frac{\partial y}{\partial \phi}$	=	$\frac{r\sin\theta}{\ell r\sin\theta}$	$\frac{-r\cos\theta}{\cos\phi - \ell r \sin\phi}$	\mathbf{E}^{ϕ} $\mathbf{b}\cos\theta$
	÷	·	:	l	∂x	∂y)			

 $\overline{\mathbf{X}}$

Kajobian transfomation matrix

versus

-*C A*

AD - BC

$$\left\langle \frac{\partial q^{m}}{\partial x^{j}} \right\rangle = \begin{array}{c} Using 2x2 \text{ inverse} \\ \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{array}{c} D & -B \\ -C & A \\ AD - BC \end{array}$$

Contravariant vectors \mathbf{E}^m

versus

$$\mathbf{E}^{\theta} = \left(\begin{array}{cc} \ell \sin \phi & -\ell \cos \phi \end{array} \right) / r \ell \sin(\theta - \phi)$$
$$\mathbf{E}^{\phi} = \left(\begin{array}{cc} r \sin \theta & -r \cos \theta \end{array} \right) / r \ell \sin(\theta - \phi)$$

Jacobian transformation matrix $x = -r\sin\theta + \ell\sin\phi$ ∂x^j $y = r\cos\theta - \ell\cos\phi$ = $\overline{\partial q}^m$ from p. 18 of Lect. 15 \mathbf{E}_{1} \mathbf{E}_2 ••• $\left(\begin{array}{cc} \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \end{array} \right) = \left(\begin{array}{cc} \mathbf{E}_{\theta} & \mathbf{E}_{\phi} \\ -r\cos\theta & \ell\cos\phi \\ -r\sin\theta & \ell\sin\phi \end{array} \right)$ $\frac{\partial x^1}{\partial q^1}$ $\frac{\partial x^1}{\partial q^2}$... $rac{\partial x^2}{\partial q^2}$ $\frac{\partial x^2}{\partial q^1}$ ••• ·. Covariant vectors \mathbf{E}_n $\mathbf{E}_{\theta} = \begin{pmatrix} -r\cos\theta \\ -r\sin\theta \end{pmatrix}, \quad \mathbf{E}_{\phi} = \begin{pmatrix} \ell\cos\phi \\ \ell\sin\phi \end{pmatrix}$

Fig. 3.2.2 Example of covariant unitary vectors and their tangent space.

Kajobian transfomation matrix

versus

$$\left\langle \frac{\partial q^{m}}{\partial x^{j}} \right\rangle = \begin{array}{c} Using 2x2 \text{ inverse} \\ \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{array}{c} D & -B \\ -C & A \\ AD - BC \end{array}$$

Contravariant vectors \mathbf{E}^m

$$\mathbf{E}^{\theta} = \left(\begin{array}{cc} \ell \sin \phi & -\ell \cos \phi \end{array} \right) / r\ell \sin(\theta - \phi)$$
$$\mathbf{E}^{\phi} = \left(\begin{array}{cc} r \sin \theta & -r \cos \theta \end{array} \right) / r\ell \sin(\theta - \phi)$$

Covariant tangent-space GCC vectors $E_1=E_{\theta}$ and $E_2=E_{\phi}$

Fig. 3.2.3 Example of contravariant unitary vectors and their normal space.

Fig. 3.2.2 Example of covariant unitary vectors and their tangent space.

Kajobian transfomation matrix *Jacobian transformation matrix* versus Using 2x2 inverse $\begin{bmatrix} D & -B \\ -C & A \end{bmatrix}$ $\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{bmatrix} D & -B \\ -C & A \\ AD - BC \end{bmatrix}$ ${\displaystyle {\left({{\partial q^m } \over {\partial {x^j }}}
ight)} }$ $\begin{vmatrix} \frac{\partial q^{1}}{\partial x^{1}} & \frac{\partial q^{1}}{\partial x^{2}} & \cdots \\ \frac{\partial q^{2}}{\partial x^{1}} & \frac{\partial q^{2}}{\partial x^{2}} & \cdots \\ \vdots & \vdots & \ddots \end{vmatrix} = \begin{pmatrix} \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \\ \frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} \\ \frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} \end{pmatrix} = \frac{\begin{vmatrix} \ell \sin \phi & -\ell \cos \phi & \mathbf{E}^{\theta} \\ r \sin \theta & -r \cos \theta & \mathbf{E}^{\theta} \\ r \ell \sin(\theta - \phi) \\ r \ell \sin(\theta - \phi) \end{vmatrix}$

Contravariant vectors \mathbf{E}^m

$$\mathbf{E}^{\theta} = \left(\begin{array}{cc} \ell \sin \phi & -\ell \cos \phi \end{array} \right) / r \ell \sin(\theta - \phi)$$
$$\mathbf{E}^{\phi} = \left(\begin{array}{cc} r \sin \theta & -r \cos \theta \end{array} \right) / r \ell \sin(\theta - \phi)$$

$$\mathbf{E}^{\theta} \bullet \mathbf{E}_{\phi} = 0 = \mathbf{E}_{\theta} \bullet \mathbf{E}$$
$$\mathbf{E}^{\theta} \bullet \mathbf{E}_{\theta} = 1 = \mathbf{E}_{\phi} \bullet \mathbf{E}^{\theta}$$

$$\begin{pmatrix} \frac{\partial x^{j}}{\partial q^{m}} \end{pmatrix} = \begin{pmatrix} x = -r\sin\theta + \ell\sin\phi \\ y = r\cos\theta - \ell\cos\phi \end{pmatrix}$$

$$\begin{vmatrix} \mathbf{E}_{1} & \mathbf{E}_{2} & \cdots \\ \frac{\partial x^{1}}{\partial q^{1}} & \frac{\partial x^{1}}{\partial q^{2}} & \cdots \\ \frac{\partial x^{2}}{\partial q^{1}} & \frac{\partial x^{2}}{\partial q^{2}} & \cdots \\ \vdots & \vdots & \ddots \end{vmatrix} = \begin{pmatrix} \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \end{vmatrix} = \begin{vmatrix} \mathbf{E}_{\theta} & \mathbf{E}_{\phi} \\ -r\cos\theta & \ell\cos\phi \\ -r\sin\theta & \ell\sin\phi \end{vmatrix}$$

$$\begin{pmatrix} covariant vectors \mathbf{E}_{n} \\ covariant vectors \mathbf{E}_{n} \end{pmatrix}$$

$$= \mathbf{E}_{\theta} \cdot \mathbf{E}^{\phi} \qquad \mathbf{E}_{\theta} = \begin{pmatrix} -r\cos\theta \\ -r\sin\theta \end{pmatrix}, \quad \mathbf{E}_{\phi} = \begin{pmatrix} \ell\cos\phi \\ \ell\sin\phi \end{pmatrix}$$

Fig. 3.2.3 Example of contravariant unitary vectors and their normal space.

Fig. 3.2.2 Example of covariant unitary vectors and their tangent space.

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" $(q^1=\theta, q^2=\phi)$ -manifold and "Flat" $(x=\theta, y=\phi)$ -graph Review of covariant \mathbf{E}_n and contravariant \mathbf{E}^m vectors. Jacobian J 's. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent $\{\mathbf{E}_n\}$ space vs. Normal $\{\mathbf{E}^m\}$ space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Covariant g_{mn}

30

 $\uparrow \mathbf{E}_1 \uparrow \mathbf{E}_2 \qquad \uparrow \mathbf{E}_r \qquad \uparrow \mathbf{E}_{\phi}$

*g*_{mn}

Polar coordinate examples (again):

 $= \begin{pmatrix} 1 & 0 \\ 0 & \pi^2 \end{pmatrix}$

Covariant

metric tensor

<u>Covariant</u> g_{mn}

 $\mathbf{E}_{m} \cdot \mathbf{E}_{n} = \frac{\partial \mathbf{r}}{\partial a^{m}} \cdot \frac{\partial \mathbf{r}}{\partial a^{n}} \equiv g_{mn} \qquad \mathbf{E}_{m} \cdot \mathbf{E}^{n} = \frac{\partial \mathbf{r}}{\partial a^{m}} \cdot \frac{\partial q^{n}}{\partial \mathbf{r}} = \delta_{m}^{n}$

 \mathcal{VS} .

Invariant Kroneker unit tensor

Invariant δ_m^n

 \mathcal{VS} .

$\delta_m^n \equiv \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$

Invariant δ_m^n

 $= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

<u>Contravariant</u> g^{mn}

$$\mathbf{E}^{m} \cdot \mathbf{E}^{n} = \frac{\partial q^{m}}{\partial \mathbf{r}} \cdot \frac{\partial q^{n}}{\partial \mathbf{r}} \equiv g^{mn}$$

Contravariant metric tensor g^{mn}

from p. 53 of Lect. 10

 $\begin{array}{ccc} Kajobian \ transfomation \ matrix \\ \left\langle \frac{\partial q^{m}}{\partial x^{j}} \right\rangle = & \begin{array}{ccc} Using \ 2x2 \ inverse \\ \left(\begin{array}{c} A & B \\ C & D \end{array} \right)^{-1} = \begin{array}{c} D & -B \\ -C & A \\ AD - BC \end{array} \end{array}$ versus ∂x^{x}

Contravariant vectors \mathbf{E}^m

versus

$$\mathbf{E}^{\theta} = \left(\begin{array}{cc} \ell \sin \phi & -\ell \cos \phi \end{array}\right) / r\ell \sin(\theta - \phi) \qquad \mathbf{E}^{\theta} \cdot \mathbf{E}_{\phi} = \mathbf{0} = \mathbf{E}_{\theta} \cdot \mathbf{E}^{\phi}$$
$$\mathbf{E}^{\phi} = \left(\begin{array}{cc} r \sin \theta & -r \cos \theta \end{array}\right) / r\ell \sin(\theta - \phi) \qquad \mathbf{E}^{\theta} \cdot \mathbf{E}_{\theta} = \mathbf{1} = \mathbf{E}_{\phi} \cdot \mathbf{E}^{\phi}$$
$$Contravariant metric \ g^{mn} = \mathbf{E}^{m} \cdot \mathbf{E}^{n} = g^{nm} \qquad versus$$

$$\begin{pmatrix} \frac{\partial x^{j}}{\partial q^{m}} \end{pmatrix} = \begin{pmatrix} x = -r \sin \theta + \ell \sin \phi \\ y = r \cos \theta - \ell \cos \phi \\ from p. 18 of Lect \\ \hline \frac{\partial x^{1}}{\partial q^{1}} \frac{\partial x^{1}}{\partial q^{2}} \cdots \\ \frac{\partial x^{2}}{\partial q^{1}} \frac{\partial x^{2}}{\partial q^{2}} \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial \theta} \frac{\partial y}{\partial \phi} \\ \frac{\partial y}{\partial \theta} \frac{\partial y}{\partial \phi} \end{pmatrix} = \begin{vmatrix} \mathbf{E}_{\theta} & \mathbf{E}_{\phi} \\ -r \cos \theta & \ell \cos \phi \\ -r \sin \theta & \ell \sin \phi \end{vmatrix}$$
$$\mathbf{E}_{\theta} = \begin{pmatrix} -r \cos \theta \\ -r \sin \theta \end{pmatrix}, \quad \mathbf{E}_{\phi} = \begin{pmatrix} \ell \cos \phi \\ \ell \sin \phi \end{pmatrix}$$

Jacobian transformation matrix $x = -r\sin\theta + \ell\sin\phi$

$$\begin{aligned} \left(\begin{array}{c} g_{\theta\theta} & g_{\theta\phi} \\ g_{\phi\theta} & g_{\phi\phi} \end{array}\right) &= \left(\begin{array}{c} \mathbf{E}_{\theta} \cdot \mathbf{E}_{\theta} & \mathbf{E}_{\theta} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{\theta} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell(\cos\theta\cos\phi + \sin\theta\sin\phi) \\ g_{\phi\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\phi\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\phi\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\phi\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\phi\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\phi\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\phi\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\phi\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\phi\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\phi\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\phi\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ \\ \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ g_{\theta} & \ell^{2} \end{array}\right) \\ \\ \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ \\ \\ \\ \\ \\ &= \left(\begin{array}{c} r^{2} & -r\ell\cos(\theta - \phi) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$$

5

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" (q1=θ, q2=φ)-manifold and "Flat" (x=θ, y=φ)-graph Review of covariant E_n and contravariant E^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent {E_n}space vs. Normal {E^m}space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Kajobian transfomation matrix Jacobian transformation matrix versus $\left\langle \frac{\partial q^{m}}{\partial x^{j}} \right\rangle = \begin{array}{c} Using 2x2 \ inverse \\ \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \frac{\begin{vmatrix} D & -B \\ -C & A \end{vmatrix}}{AD - BC}$ $x = -r\sin\theta + \ell\sin\phi$ $\left\langle \frac{\partial x^j}{\partial q^m} \right\rangle =$ $y = r\cos\theta - \ell\cos\phi$ *from p. 18 of Lect. 15* $\frac{\partial q^{1}}{\partial x^{1}} \quad \frac{\partial q^{1}}{\partial x^{2}} \quad \cdots \quad \mathbf{E}^{1} \quad = \left(\begin{array}{cc} \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \\ \frac{\partial q^{2}}{\partial x^{1}} & \frac{\partial q^{2}}{\partial x^{2}} & \cdots \end{array}\right) \mathbf{E}^{2} \quad = \left(\begin{array}{cc} \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \\ \frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} \end{array}\right) = \frac{\left|\begin{array}{c} \ell \sin \phi & -\ell \cos \phi \\ r \sin \theta & -r \cos \theta \end{array}\right| \mathbf{E}^{\theta}}{r\ell \sin(\theta - \phi)}$ $\frac{1}{\partial x^{1}} \frac{2}{\partial q^{1}} \frac{\partial x^{1}}{\partial q^{2}} \dots = \begin{pmatrix} \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \end{pmatrix} = \begin{vmatrix} \mathbf{E}_{\theta} & \mathbf{E}_{\phi} \\ -r\cos\theta & \ell\cos\phi \\ -r\sin\theta & \ell\sin\phi \end{vmatrix}$ Contravariant vectors \mathbf{E}^m Covariant vectors \mathbf{E}_n versus $\mathbf{E}_{\theta} = \begin{pmatrix} -r\cos\theta \\ -r\sin\theta \end{pmatrix}, \quad \mathbf{E}_{\phi} = \begin{pmatrix} \ell\cos\phi \\ \ell\sin\phi \end{pmatrix}$ $\mathbf{E}^{\theta} = \left(\ell \sin \phi - \ell \cos \phi \right) / r \ell \sin(\theta - \phi) \qquad \mathbf{E}^{\theta} \cdot \mathbf{E}_{\phi} = \mathbf{0} = \mathbf{E}_{\theta} \cdot \mathbf{E}^{\phi}$ $\mathbf{E}^{\phi} = \left(r \sin \theta - r \cos \theta \right) / r \ell \sin(\theta - \phi) \qquad \mathbf{E}^{\theta} \cdot \mathbf{E}_{\theta} = 1 = \mathbf{E}_{\phi} \cdot \mathbf{E}^{\phi}$ Contravariant metric $g^{mn} = \mathbf{E}^m \cdot \mathbf{E}^n = g^{nm}$ *Covariant metric* $g_{mn} = \mathbf{E}_m \cdot \mathbf{E}_n = g_{nm}$ versus $egin{array}{ccc} g^{ heta heta} & g^{ heta \phi} \ g^{\phi \phi} & g^{\phi \phi} \end{array} \end{array} = \left(egin{array}{ccc} {f E}^{ heta} {f f E}^{ heta} & {f E}^{ heta} {f f E}^{ heta} \ {f E}^{ heta} {f f f E}^{ heta} {f f E}^{ heta} \end{array}
ight) = \left(egin{array}{ccc} {f E}^{ heta} {f f E}^{ heta} {f E}^{ heta} {f E}^{ heta} {f f E}^{ heta} \ {f E}^{ heta} {f f f E}^{ heta} {f f E}^{ heta} \end{array}
ight)$ $\left| \begin{array}{cc} g_{\theta\theta} & g_{\theta\phi} \\ g_{\phi\theta} & g_{\phi\phi} \end{array} \right| = \left| \begin{array}{cc} \mathbf{E}_{\theta} \cdot \mathbf{E}_{\theta} & \mathbf{E}_{\theta} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{\theta} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi} \end{array} \right|$ $= \left(\begin{array}{cc} \ell^2 & r\ell(\sin\phi\sin\theta + \cos\phi\cos\theta) \\ a^{\phi\theta} & r^2 \end{array} \right) / r^2 \ell^2 \sin^2(\theta - \phi)$ $= \left(\begin{array}{cc} r^2 & -r\ell(\cos\theta\cos\phi + \sin\theta\sin\phi) \\ g_{\phi\theta} & \ell^2 \end{array} \right)$ $= \begin{pmatrix} \ell^2 & r\ell\cos(\theta - \phi) \\ r^2\ell^2\sin^2(\theta - \phi) \end{pmatrix} / r^2\ell^2\sin^2(\theta - \phi)$ $= \left(\begin{array}{cc} r^2 & -r\ell\cos(\theta - \phi) \\ g_{\downarrow 0} & \ell^2 \end{array}\right) \qquad \mathbf{Y}_{\downarrow 50}$ =-0.97-0.98 0.01E E Eθ $\theta = -0.49$ **0.01E** θ b = -0.97=-0.98 \checkmark $\theta = -0.48$

 $\theta = -0.40$

X

Tuesday, October 27, 2015

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" (q1=θ, q2=φ)-manifold and "Flat" (x=θ, y=φ)-graph Review of covariant E_n and contravariant E^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) → Tangent {E_n}space vs. Normal {E^m}space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Metric g_{mn} or g^{mn} tensor geometric relations to length, area, and volume

Metric g_{mn} or g^{mn} tensor geometric relations to length, area, and volume

Review (Mostly Unit 2.): Was the Trebuchet a dream problem for Galileo? Not likely. Forces in Lagrange force equation: total, genuine, potential, and/or fictitious

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" (q¹=θ, q²=φ)-manifold and "Flat" (x=θ, y=φ)-graph Review of covariant E_n and contravariant E^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) <u>Tangent {E_n}space</u> vs. Normal {E^m}space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Lagrange force equation analysis of trebuchet model (Mostly from Unit 2.) Review of trebuchet canonical (covariant) momentum and mass metric γ_{mn} (Lect. 15 p. 77) Review and application of trebuchet covariant forces F_{θ} and F_{ϕ} (Lect. 15 p. 69) Riemann equation derivation for trebuchet model Riemann equation force analysis 2nd-guessing Riemann equation?

using a "*chain-saw-sum rule*"....

$$\mathbf{E}^{\mathbf{m}} = \frac{\partial q^{m}}{\partial \mathbf{r}} = \frac{\partial q^{m}}{\partial \mathbf{r}} = \frac{\partial q^{m}}{\partial \overline{q}^{\overline{m}}} \frac{\partial \overline{q}^{\overline{m}}}{\partial \mathbf{r}} , \text{ or: } \mathbf{E}^{\mathbf{m}} = \frac{\partial q^{m}}{\partial \overline{q}^{\overline{m}}} \mathbf{\overline{E}}^{\overline{\mathbf{m}}}$$

Tuesday, October 27, 2015

Review (Mostly Unit 2.): Was the Trebuchet a dream problem for Galileo? Not likely. Forces in Lagrange force equation: total, genuine, potential, and/or fictitious

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" $(q^1=\theta, q^2=\phi)$ -manifold and "Flat" $(x=\theta, y=\phi)$ -graph Review of covariant \mathbf{E}_n and contravariant \mathbf{E}^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent { \mathbf{E}_n } space vs. Normal { \mathbf{E}^m } space Covariant vs. contravariant coordinate transformations

 \longrightarrow Metric g_{mn} tensor geometric relations to length, area, and volume

Lagrange force equation analysis of trebuchet model (Mostly from Unit 2.) Review of trebuchet canonical (covariant) momentum and mass metric γ_{mn} (Lect. 15 p. 77) Review and application of trebuchet covariant forces F_{θ} and F_{ϕ} (Lect. 15 p. 69) Riemann equation derivation for trebuchet model Riemann equation force analysis 2nd-guessing Riemann equation?

Metric g_{mn} or g^{mn} tensor geometric relations to length, <u>area</u>, and volume

Tangent space (Covariant) area spanned by V1E₁ and V2E₂ $Area(V^{1}E_{1}, V^{2}E_{2}) = V^{1}V^{2}|E_{1} \times E_{2}| = V^{1}V^{2}\sqrt{(E_{1} \times E_{2}) \cdot (E_{1} \times E_{2})}$ $Area(V^{1}E_{1}, V^{2}E_{2}) = V^{1}V^{2}\sqrt{(E_{1} \cdot E_{1})(E_{2} \cdot E_{2}) - (E_{1} \cdot E_{2})(E_{1} \cdot E_{2})}$ $= V^{1}V^{2}\sqrt{g_{11}g_{22} - g_{12}g_{21}}$ where: $g_{12} = E_{1} \cdot E_{2} = g_{21}$ $V_{0} \cdot V_{0} = V^{0}E_{0} + V^{0}E_{0}$ $V_{0} = V^{0}E_{0} + V^{0}E_{0}$

Metric g_{mn} or g^{mn} tensor geometric relations to length, <u>area</u>, and volume

Tangent space (Covariant) area spanned by V1E₁ and V2E₂

$$Area \left(V^{1}E_{1}, V^{2}E_{2} \right) = V^{1}V^{2} | \mathbf{E}_{1} \times \mathbf{E}_{2} | = V^{1}V^{2} \sqrt{(\mathbf{E}_{1} \times \mathbf{E}_{2}) \cdot (\mathbf{E}_{1} \times \mathbf{E}_{2})} \cdot (\mathbf{E}_{1} \times \mathbf{E}_{2})}$$

$$Area \left(V^{1}E_{1}, V^{2}E_{2} \right) = V^{1}V^{2} \sqrt{(\mathbf{E}_{1} \cdot \mathbf{E}_{1})(\mathbf{E}_{2} \cdot \mathbf{E}_{2}) - (\mathbf{E}_{1} \cdot \mathbf{E}_{2})(\mathbf{E}_{1} \cdot \mathbf{E}_{2})}$$

$$= V^{1}V^{2} \sqrt{g_{11}g_{22} - g_{12}g_{21}} = V^{1}V^{2} \sqrt{\det \begin{vmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{vmatrix}}$$

$$V = V^{\theta}E_{\theta} + V^{\phi}E_{\phi}$$

$$V^{\theta}_{\theta} = V^{\theta}E_{\theta} + V^{\theta}E_{\phi}$$

Metric g_{mn} or g^{mn} tensor geometric relations to length, area, and volume

Normal space (Contravariant) area spanned by $V_1 \mathbf{E}^1$ and $V_2 \mathbf{E}^2$

Normal space (Contravariant)

$$\mathbf{V} = V_{\theta} \mathbf{E}^{\theta} + V_{\phi} \mathbf{E}^{\phi}$$

$$Area \left(V_{1} \mathbf{E}^{1}, V_{2} \mathbf{E}^{2}\right) = V_{1} V_{2} \left| \mathbf{E}^{1} \times \mathbf{E}^{2} \right| = V_{1} V_{2} \sqrt{\left(\mathbf{E}^{1} \times \mathbf{E}^{2}\right) \cdot \left(\mathbf{E}^{1} \times \mathbf{E}^{2}\right)}$$

$$Area \left(V_{1} \mathbf{E}^{1}, V_{2} \mathbf{E}^{2}\right) = V_{1} V_{2} \sqrt{\left(\mathbf{E}^{1} \cdot \mathbf{E}^{1}\right) \left(\mathbf{E}^{2} \cdot \mathbf{E}^{2}\right) - \left(\mathbf{E}^{1} \cdot \mathbf{E}^{2}\right) \left(\mathbf{E}^{1} \cdot \mathbf{E}^{2}\right)}$$

$$= V_{1} V_{2} \sqrt{g^{11} g^{22} - g^{12} g^{21}} = V_{1} V_{2} \sqrt{\det \left| \begin{array}{c} g^{11} & g^{12} \\ g^{21} & g^{22} \end{array} \right|}$$

$$Metric g_{mn} \text{ or } g^{mn} \text{ tensor geometric} \\ relations to length, area, and volume} \quad \text{where: } g^{12} = \mathbf{E}^{1} \cdot \mathbf{E}^{2} = g^{21}$$

$$Area\left(\nu^{1}\mathbf{E}_{1},\nu^{2}\mathbf{E}_{2}\right) = \nu^{1}\nu^{2}|\mathbf{E}_{1}\times\mathbf{E}_{2}| = \nu^{1}\nu^{2}\sqrt{(\mathbf{E}_{1}\times\mathbf{E}_{2}) \cdot (\mathbf{E}_{1}\times\mathbf{E}_{2})}$$

$$Area\left(\nu^{1}\mathbf{E}_{1},\nu^{2}\mathbf{E}_{2}\right) = \nu^{1}\nu^{2}\sqrt{(\mathbf{E}_{1}\cdot\mathbf{E}_{1})(\mathbf{E}_{2}\cdot\mathbf{E}_{2}) - (\mathbf{E}_{1}\cdot\mathbf{E}_{2})(\mathbf{E}_{1}\cdot\mathbf{E}_{2})}$$

$$= \nu^{1}\nu^{2}\sqrt{g_{11}g_{22}-g_{12}g_{21}} = \nu^{1}\nu^{2}\sqrt{\det\left[\frac{g_{11}-g_{12}}{g_{21}-g_{22}}\right]}}$$

$$= \nu^{1}\nu^{2}\sqrt{g_{11}g_{22}-g_{12}g_{21}} = \nu^{1}\nu^{2}\sqrt{\det\left[\frac{g_{11}-g_{12}}{g_{21}-g_{22}}\right]}}$$

$$= \nu^{0}\mathbf{E}_{0} + \nu^{0}\mathbf{E}_{0}$$

$$Peretrie intervers intervers$$

3D Covariant Jacobian determinant J-columns are E_1 , E_2 and E_3 .

$$Volume\left(V^{1}\mathbf{E}_{1}, V^{2}\mathbf{E}_{2}, V^{3}\mathbf{E}_{3}\right) = V^{1}V^{2}V^{3}\left|\mathbf{E}_{1}\times\mathbf{E}_{2}\bullet\mathbf{E}_{3}\right| = V^{1}V^{2}V^{3}\det\left|\begin{array}{c}\frac{\partial x^{1}}{\partial q^{1}} & \frac{\partial x^{1}}{\partial q^{2}} & \frac{\partial x^{1}}{\partial q^{3}}\\ \frac{\partial x^{2}}{\partial q^{1}} & \frac{\partial x^{2}}{\partial q^{2}} & \frac{\partial x^{2}}{\partial q^{3}}\\ \frac{\partial x^{3}}{\partial q^{1}} & \frac{\partial x^{3}}{\partial q^{2}} & \frac{\partial x^{3}}{\partial q^{3}}\end{array}\right|$$

Metric g_{mn} *or* g^{mn} *tensor geometric relations to length, area, and* <u>volume</u>

3D Covariant Jacobian determinant J-columns are E_1 , E_2 and E_3 .

$$Volume\left(V^{1}\mathbf{E}_{1}, V^{2}\mathbf{E}_{2}, V^{3}\mathbf{E}_{3}\right) = V^{1}V^{2}V^{3}\left|\mathbf{E}_{1}\times\mathbf{E}_{2}\bullet\mathbf{E}_{3}\right| = V^{1}V^{2}V^{3}\det\left|\begin{array}{c}\frac{\partial x^{1}}{\partial q^{1}} & \frac{\partial x^{1}}{\partial q^{2}} & \frac{\partial x^{1}}{\partial q^{3}}\\ \frac{\partial x^{2}}{\partial q^{1}} & \frac{\partial x^{2}}{\partial q^{2}} & \frac{\partial x^{2}}{\partial q^{3}}\\ \frac{\partial x^{3}}{\partial q^{1}} & \frac{\partial x^{3}}{\partial q^{2}} & \frac{\partial x^{3}}{\partial q^{3}}\end{array}\right|$$

Covariant metric matrix is product of *J*-matrix and its transpose J^T

$$\mathbf{g}_{cov} \equiv \left(\begin{array}{ccc} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{array}\right) = \left(\begin{array}{cccc} \frac{\partial x^1}{\partial q^1} & \frac{\partial x^2}{\partial q^1} & \frac{\partial x^3}{\partial q^1} \\ \frac{\partial x^1}{\partial q^2} & \frac{\partial x^2}{\partial q^2} & \frac{\partial x^3}{\partial q^2} \\ \frac{\partial x^1}{\partial q^3} & \frac{\partial x^2}{\partial q^3} & \frac{\partial x^3}{\partial q^3} \end{array}\right) \bullet \left(\begin{array}{cccc} \frac{\partial x^1}{\partial q^1} & \frac{\partial x^1}{\partial q^2} & \frac{\partial x^1}{\partial q^3} \\ \frac{\partial x^2}{\partial q^1} & \frac{\partial x^2}{\partial q^2} & \frac{\partial x^2}{\partial q^3} \\ \frac{\partial x^3}{\partial q^1} & \frac{\partial x^3}{\partial q^2} & \frac{\partial x^3}{\partial q^3} \end{array}\right) = J^T \bullet J$$

Metric g_{mn} or g^{mn} tensor geometric relations to length, area, and <u>volume</u>

3D Covariant Jacobian determinant *J*-columns are E_1 , E_2 and E_3 .

$$Volume\left(V^{1}\mathbf{E}_{1}, V^{2}\mathbf{E}_{2}, V^{3}\mathbf{E}_{3}\right) = V^{1}V^{2}V^{3}\left|\mathbf{E}_{1}\times\mathbf{E}_{2}\bullet\mathbf{E}_{3}\right| = V^{1}V^{2}V^{3}\det\left|\begin{array}{c}\frac{\partial x^{1}}{\partial q^{1}} & \frac{\partial x^{1}}{\partial q^{2}} & \frac{\partial x^{1}}{\partial q^{3}}\\ \frac{\partial x^{2}}{\partial q^{1}} & \frac{\partial x^{2}}{\partial q^{2}} & \frac{\partial x^{2}}{\partial q^{3}}\\ \frac{\partial x^{3}}{\partial q^{1}} & \frac{\partial x^{3}}{\partial q^{2}} & \frac{\partial x^{3}}{\partial q^{3}}\end{array}\right|$$

Covariant metric matrix is product of J-matrix and its transpose J^T

$$\mathbf{g}_{cov} \equiv \left(\begin{array}{ccc} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{array}\right) = \left(\begin{array}{ccc} \frac{\partial x^1}{\partial q^1} & \frac{\partial x^2}{\partial q^1} & \frac{\partial x^3}{\partial q^1} \\ \frac{\partial x^1}{\partial q^2} & \frac{\partial x^2}{\partial q^2} & \frac{\partial x^3}{\partial q^2} \\ \frac{\partial x^1}{\partial q^3} & \frac{\partial x^2}{\partial q^3} & \frac{\partial x^3}{\partial q^3} \end{array}\right) \bullet \left(\begin{array}{ccc} \frac{\partial x^1}{\partial q^1} & \frac{\partial x^1}{\partial q^2} & \frac{\partial x^1}{\partial q^3} \\ \frac{\partial x^2}{\partial q^2} & \frac{\partial x^2}{\partial q^2} & \frac{\partial x^2}{\partial q^3} \\ \frac{\partial x^3}{\partial q^3} & \frac{\partial x^2}{\partial q^3} & \frac{\partial x^3}{\partial q^3} \end{array}\right) = J^T \bullet J$$

Then determinant product $(det|A| det|B| = det|A \cdot B|)$ and symmetry $(det|A^T| = det|A|)$ gives:

$$Volume\left(V^{1}\mathbf{E}_{1},V^{2}\mathbf{E}_{2},V^{3}\mathbf{E}_{3}\right) = V^{1}V^{2}V^{3}\det\left|\boldsymbol{J}\right| = V^{1}V^{2}V^{3}\sqrt{\det\left|\mathbf{g}_{cov}\right|}$$

Metric g_{mn} *or* g^{mn} *tensor geometric relations to length, area, and* <u>volume</u>

3D Contravariant Kajobian determinant *K*-rows are \mathbf{E}^1 , \mathbf{E}^2 and \mathbf{E}^3 .

$$Volume\left(V_{1}\mathbf{E}^{1}, V_{2}\mathbf{E}^{2}, V_{3}\mathbf{E}^{3}\right) = V_{1}V_{2}V_{3}\left|\mathbf{E}^{1}\times\mathbf{E}^{2}\bullet\mathbf{E}^{3}\right| = V_{1}V_{2}V_{3}\det\left|\begin{array}{c}\frac{\partial q^{1}}{\partial x^{1}} & \frac{\partial q^{1}}{\partial x^{2}} & \frac{\partial q^{1}}{\partial x^{3}}\\ \frac{\partial q^{2}}{\partial x^{1}} & \frac{\partial q^{2}}{\partial x^{2}} & \frac{\partial q^{2}}{\partial x^{3}}\\ \frac{\partial q^{3}}{\partial x^{1}} & \frac{\partial q^{3}}{\partial x^{2}} & \frac{\partial q^{3}}{\partial x^{3}}\end{array}\right|$$

Contravariant metric matrix is product of K-matrix and its transpose K^T

$$\mathbf{g}^{cont} \equiv \left(\begin{array}{ccc} g^{11} & g^{12} & g^{13} \\ g^{21} & g^{22} & g^{23} \\ g^{31} & g^{32} & g^{33} \end{array}\right) = \left(\begin{array}{ccc} \frac{\partial q^1}{\partial x^1} & \frac{\partial q^1}{\partial x^2} & \frac{\partial q^1}{\partial x^3} \\ \frac{\partial q^2}{\partial x^1} & \frac{\partial q^2}{\partial x^2} & \frac{\partial q^2}{\partial x^3} \\ \frac{\partial q^3}{\partial x^1} & \frac{\partial q^3}{\partial x^2} & \frac{\partial q^3}{\partial x^3} \end{array}\right) \bullet \left(\begin{array}{ccc} \frac{\partial q^1}{\partial x^1} & \frac{\partial q^2}{\partial x^1} & \frac{\partial x^1}{\partial q^3} \\ \frac{\partial q^1}{\partial x^2} & \frac{\partial q^2}{\partial x^2} & \frac{\partial q^3}{\partial x^2} \\ \frac{\partial q^1}{\partial x^3} & \frac{\partial q^2}{\partial x^3} & \frac{\partial q^3}{\partial x^3} \end{array}\right) = K \bullet K^T$$

Then determinant product $(det|A| det|B| = det|A \cdot B|)$ and symmetry $(det|A^T| = det|A|)$ gives:

$$Volume\left(V_{1}\mathbf{E}^{1}, V_{2}\mathbf{E}^{2}, V_{3}\mathbf{E}^{3}\right) = V_{1}V_{2}V_{3}\det\left|K\right| = V_{1}V_{2}V_{3}\sqrt{\det\left|\mathbf{g}^{cont}\right|}$$

Metric g_{mn} *or* g^{mn} *tensor geometric relations to length, area, and* <u>volume</u>

Review (Mostly Unit 2.): Was the Trebuchet a dream problem for Galileo? Not likely. Forces in Lagrange force equation: total, genuine, potential, and/or fictitious

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" ($q^1=\theta$, $q^2=\phi$)-manifold and "Flat" ($x=\theta$, $y=\phi$)-graph Review of covariant \mathbf{E}_n and contravariant \mathbf{E}^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent { \mathbf{E}_n }space vs. Normal { \mathbf{E}^m }space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Lagrange force equation analysis of trebuchet model (Mostly from Unit 2.) Review of trebuchet canonical (covariant) momentum and mass metric γ_{mn} (Lect. 15 p. 77) Review and application of trebuchet covariant forces F_{θ} and F_{ϕ} (Lect. 15 p. 69) Riemann equation derivation for trebuchet model Riemann equation force analysis 2nd-guessing Riemann equation?

Canonical momentum and γ_{mn} tensor (Review of p_{θ} , p_{ϕ} vs γ_{mn} from p. 77 of Lect. 15) Standard formulation of $p_m = \frac{\partial I}{\partial \dot{a}^m}$ *The* γ_{mn} *tensor/matrix formulation* Total KE = T = T(M) + T(m)Total KE = T = T(M) + T(m) $=\frac{1}{2}\begin{pmatrix}\dot{\theta} & \dot{\phi}\end{pmatrix} \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix} \begin{pmatrix} \dot{\theta} \\ \dot{\phi} \end{pmatrix} = \frac{1}{2}\gamma_{mn}\dot{q}^{m}\dot{q}^{n}$ $=\frac{1}{2}\left[\left(MR^{2}+mr^{2}\right)\dot{\theta}^{2}-2mr\ell\cos(\theta-\phi)\dot{\theta}\dot{\phi}+m\ell^{2}\dot{\phi}^{2}\right]$ $p_{\theta} = \frac{\partial T}{\partial \dot{\theta}} = \frac{\partial}{\partial \dot{\theta}} \left(\frac{1}{2} (MR^{2} + mr^{2}) \dot{\theta}^{2} - mr\ell \cos(\theta - \phi) \dot{\theta} \dot{\phi} + \frac{1}{2}m\ell^{2} \dot{\phi}^{2} \right) \quad \begin{array}{l} \text{where:} \\ \gamma_{mn} \text{ tensor is} \end{array} \left(\begin{array}{l} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{array} \right) = \left(\begin{array}{l} MR^{2} + mr^{2} & -mr\ell \cos(\theta - \phi) \\ -mr\ell \cos(\theta - \phi) & m\ell^{2} \end{array} \right)$ $= (MR^{2} + mr^{2})\dot{\theta} - mr\ell\dot{\phi}\cos(\theta - \phi)$ Momentum γ_{mn} -matrix theorem: (matrix-proof on page 43) $p_{\phi} = \frac{\partial T}{\partial \dot{\phi}} = \frac{\partial}{\partial \dot{\phi}} \left(\frac{1}{2} (MR^{2} + mr^{2}) \dot{\theta}^{2} - mr\ell \cos(\theta - \phi) \dot{\theta} \dot{\phi} + \frac{1}{2}m\ell^{2} \dot{\phi}^{2} \right) \left(\begin{array}{c} p_{\theta} \\ p_{\phi} \end{array} \right) = \left(\begin{array}{c} \frac{\partial T}{\partial \dot{\theta}} \\ \frac{\partial T}{\partial \dot{\phi}} \end{array} \right) = \left(\begin{array}{c} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{array} \right) \left(\begin{array}{c} \dot{\theta} \\ \dot{\phi} \end{array} \right) \text{ if: } \gamma_{\phi,\theta} = \gamma_{\theta,\phi} \text{ (symmetry)}$ $= m\ell^{2} \dot{\phi} - mr\ell \dot{\theta} \cos(\theta - \phi)$ $= \begin{pmatrix} MR^{2} + mr^{2} & -mr\ell\cos(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{pmatrix} \begin{pmatrix} \dot{\theta} \\ \dot{\phi} \end{pmatrix}$ Momentum γ_{mn} -tensor theorem: (proof here) $p_m = \gamma_{mn} \dot{q}^n$ Given: $p_m = \frac{\partial T}{\partial \dot{q}^m}$ where: $T = \frac{1}{2} \gamma_{jk} \dot{q}^j \dot{q}^k$ p<u>roof</u>: Then: $p_m = \frac{\partial}{\partial \dot{a}^m} \frac{1}{2} \gamma_{jk} \dot{q}^j \dot{q}^k = \frac{1}{2} \gamma_{jk} \frac{\partial \dot{q}^j}{\partial \dot{a}^m} \dot{q}^k + \frac{1}{2} \gamma_{jk} \dot{q}^j \frac{\partial \dot{q}^k}{\partial \dot{a}^m}$ $=\frac{1}{2}\gamma_{ik}\delta_m^j\dot{q}^k + \frac{1}{2}\gamma_{ik}\dot{q}^j\delta_m^k = \frac{1}{2}\gamma_{mk}\dot{q}^k + \frac{1}{2}\gamma_{im}\dot{q}^j$ = $\gamma_{mn} \dot{q}^n$ if : $\gamma_{mn} = \gamma_{nm}$ **OED**

Lagrange equation force analysis

Dot means *total* differentiation

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

Everything that can move contributes. (Very easy to miss a term!)

 $\dot{p}_{\theta} = \frac{d}{dt} p_{\theta} = \frac{d}{dt} \left(\left(MR^2 + mr^2 \right) \dot{\theta} - mr \ell \dot{\phi} \cos(\theta - \phi) \right) \quad [\dot{M}, \dot{R}, \dot{m}, \dot{r}, \text{ and } \dot{\ell} \text{ are (thankfully) zero]}$

p-dot part of Lagrange 2nd equations

$$\dot{p}_{\phi} = \frac{d}{dt} p_{\phi} = \frac{d}{dt} \left(m\ell^2 \dot{\phi} - mr\ell \dot{\theta} \cos(\theta - \phi) \right)$$

$$p_{\theta} = \frac{\partial T}{\partial \dot{\theta}} = \frac{\partial}{\partial \dot{\theta}} \left(\frac{1}{2} (MR^{2} + mr^{2})\dot{\theta}^{2} - mr\ell\cos(\theta - \phi) \dot{\theta}\dot{\phi} + \frac{1}{2}m\ell^{2}\dot{\phi}^{2} \right)$$
$$= (MR^{2} + mr^{2})\dot{\theta} - mr\ell\dot{\phi}\cos(\theta - \phi)$$
$$p_{\phi} = \frac{\partial T}{\partial \dot{\phi}} = \frac{\partial}{\partial \dot{\phi}} \left(\frac{1}{2} (MR^{2} + mr^{2})\dot{\theta}^{2} - mr\ell\cos(\theta - \phi) \dot{\theta}\dot{\phi} + \frac{1}{2}m\ell^{2}\dot{\phi}^{2} \right)$$
$$= m\ell^{2}\dot{\phi} - mr\ell\dot{\theta}\cos(\theta - \phi)$$

From preceding Lagrange 1st equations Lagrange equation force analysis Dot means *total* differentiation

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

Everything that can move contributes. (Very easy to miss a term!)

$$\dot{p}_{\theta} = \frac{d}{dt} p_{\theta} = \frac{d}{dt} \left(\left(MR^2 + mr^2 \right) \dot{\theta} - mr\ell \dot{\phi} \cos(\theta - \phi) \right) \quad [\dot{M}, \dot{R}, \dot{m}, \dot{r}, \text{ and } \dot{\ell} \text{ are (thankfully) zero]} \\ = \left(MR^2 + mr^2 \right) \ddot{\theta} - mr\ell \ddot{\phi} \cos(\theta - \phi) + mr\ell \dot{\phi} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi) \right)$$

p-dot part of Lagrange 2nd equations

$$\dot{p}_{\phi} = \frac{d}{dt} p_{\phi} = \frac{d}{dt} \left(m\ell^2 \dot{\phi} - mr\ell \dot{\theta} \cos(\theta - \phi) \right)$$
$$= m\ell^2 \ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) + mr\ell \dot{\theta} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi)$$

$$p_{\theta} = \frac{\partial T}{\partial \dot{\theta}} = \frac{\partial}{\partial \dot{\theta}} \left(\frac{1}{2} (MR^{2} + mr^{2})\dot{\theta}^{2} - mr\ell\cos(\theta - \phi)\dot{\theta}\dot{\phi} + \frac{1}{2}m\ell^{2}\dot{\phi}^{2} \right)$$
$$= (MR^{2} + mr^{2})\dot{\theta} - mr\ell\dot{\phi}\cos(\theta - \phi)$$
$$p_{\phi} = \frac{\partial T}{\partial \dot{\phi}} = \frac{\partial}{\partial \dot{\phi}} \left(\frac{1}{2} (MR^{2} + mr^{2})\dot{\theta}^{2} - mr\ell\cos(\theta - \phi)\dot{\theta}\dot{\phi} + \frac{1}{2}m\ell^{2}\dot{\phi}^{2} \right)$$
$$= m\ell^{2}\dot{\phi} - mr\ell\dot{\theta}\cos(\theta - \phi)$$

From preceding Lagrange 1st equations Lagrange equation force analysis Dot means *total* differentiation

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

Everything that can move contributes. (Very easy to miss a term!)

$$\begin{split} \dot{p}_{\theta} &= \frac{d}{dt} p_{\theta} = \frac{d}{dt} \Big(\Big(MR^{2} + mr^{2} \Big) \dot{\theta} - mr\ell \dot{\phi} \cos(\theta - \phi) \Big) \quad [\dot{M}, \dot{R}, \dot{m}, \dot{r}, \text{ and } \dot{\ell} \text{ are (thankfully) zero]} \\ &= \Big(MR^{2} + mr^{2} \Big) \ddot{\theta} - mr\ell \ddot{\phi} \cos(\theta - \phi) + mr\ell \dot{\phi} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi) \\ &= \Big(MR^{2} + mr^{2} \Big) \ddot{\theta} - mr\ell \ddot{\phi} \cos(\theta - \phi) + mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) - mr\ell \dot{\phi}^{2} \sin(\theta - \phi) \Big) \\ \dot{p}_{\phi} &= \frac{d}{dt} p_{\phi} = \frac{d}{dt} \Big(m\ell^{2} \dot{\phi} - mr\ell \dot{\theta} \cos(\theta - \phi) \Big) \\ &= m\ell^{2} \ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) + mr\ell \dot{\theta} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi) \\ &= m\ell^{2} \ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) - mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) + mr\ell \dot{\theta}^{2} \sin(\theta - \phi) \end{split}$$

$$p_{\theta} = \frac{\partial T}{\partial \dot{\theta}} = \frac{\partial}{\partial \dot{\theta}} \left(\frac{1}{2} (MR^{2} + mr^{2})\dot{\theta}^{2} - mr\ell\cos(\theta - \phi)\dot{\theta}\dot{\phi} + \frac{1}{2}m\ell^{2}\dot{\phi}^{2} \right)$$
$$= (MR^{2} + mr^{2})\dot{\theta} - mr\ell\dot{\phi}\cos(\theta - \phi)$$
$$p_{\phi} = \frac{\partial T}{\partial \dot{\phi}} = \frac{\partial}{\partial \dot{\phi}} \left(\frac{1}{2} (MR^{2} + mr^{2})\dot{\theta}^{2} - mr\ell\cos(\theta - \phi)\dot{\theta}\dot{\phi} + \frac{1}{2}m\ell^{2}\dot{\phi}^{2} \right)$$
$$= m\ell^{2}\dot{\phi} - mr\ell\dot{\theta}\cos(\theta - \phi)$$

From preceding Lagrange 1st equations

p-dot part of

2nd equations

Lagrange

Review (Mostly Unit 2.): Was the Trebuchet a dream problem for Galileo? Not likely. Forces in Lagrange force equation: total, genuine, potential, and/or fictitious

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" ($q^1=\theta$, $q^2=\phi$)-manifold and "Flat" ($x=\theta$, $y=\phi$)-graph Review of covariant \mathbf{E}_n and contravariant \mathbf{E}^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent { \mathbf{E}_n }space vs. Normal { \mathbf{E}^m }space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Lagrange force equation analysis of trebuchet model (Mostly from Unit 2.) Review of trebuchet canonical (covariant) momentum and mass metric γ_{mn} (Lect. 15 p. 77) Review and application of trebuchet covariant forces F_{θ} and F_{ϕ} (Lect. 15 p. 69) Riemann equation derivation for trebuchet model Riemann equation force analysis 2nd-guessing Riemann equation?

Completes derivation of Lagrange covariant-force equation for each GCC variable θ and ϕ .

Lagrange equation force analysis Dot means *total* differentiation

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

Everything that can move contributes. (Very easy to miss a term!)

$$\begin{split} \dot{p}_{\theta} &= \frac{d}{dt} p_{\theta} = \frac{d}{dt} \left(\left(MR^{2} + mr^{2} \right) \dot{\theta} - mr\ell \dot{\phi} \cos(\theta - \phi) \right) \quad [\dot{M}, \dot{R}, \dot{m}, \dot{r}, \text{ and } \dot{\ell} \text{ are (thankfully) zero]} \\ &= \left(MR^{2} + mr^{2} \right) \ddot{\theta} - mr\ell \ddot{\phi} \cos(\theta - \phi) + mr\ell \dot{\phi} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi) \\ &= \left(MR^{2} + mr^{2} \right) \ddot{\theta} - mr\ell \ddot{\phi} \cos(\theta - \phi) + mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) - mr\ell \dot{\phi}^{2} \sin(\theta - \phi) \right) \\ \dot{p}_{\phi} &= \frac{d}{dt} p_{\phi} = \frac{d}{dt} \left(m\ell^{2}\dot{\phi} - mr\ell \dot{\theta} \cos(\theta - \phi) \right) \\ &= m\ell^{2}\ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) + mr\ell \dot{\theta} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi) \\ &= m\ell^{2}\ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) - mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) + mr\ell \dot{\theta}^{2} \sin(\theta - \phi) \end{split}$$

Set equal to real (*gravity*) force F_{μ} plus *fictitious force* $\partial T/\partial q^{\mu}$ terms

$$\dot{p}_{\theta} = F_{\theta} + \frac{\partial T}{\partial \theta} = F_{\theta} + \frac{\partial}{\partial \theta} \left(\frac{1}{2} \left(MR^2 + mr^2 \right) \dot{\theta}^2 + \frac{1}{2} m\ell^2 \dot{\phi}^2 - mr\ell \dot{\theta} \dot{\phi} \cos(\theta - \phi) \right)$$

p-dot part of Lagrange 2nd equations

> *The rest of Lagrange* 2nd equations

$$\dot{p}_{\phi} = F_{\phi} + \frac{\partial T}{\partial \phi} = F_{\phi} + \frac{\partial}{\partial \phi} \left(\frac{1}{2} \left(MR^2 + mr^2 \right) \dot{\theta}^2 + \frac{1}{2} m\ell^2 \dot{\phi}^2 - mr\ell \dot{\theta} \dot{\phi} \cos(\theta - \phi) \right)$$

Lagrange equation force analysis Dot means *total* differentiation

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

Everything that can move contributes. (Very easy to miss a term!)

$$\begin{split} \dot{p}_{\theta} &= \frac{d}{dt} p_{\theta} = \frac{d}{dt} \left(\left(MR^{2} + mr^{2} \right) \dot{\theta} - mr\ell \dot{\phi} \cos(\theta - \phi) \right) \quad [\dot{M}, \dot{R}, \dot{m}, \dot{r}, \text{ and } \dot{\ell} \text{ are (thankfully) zero]} \\ &= \left(MR^{2} + mr^{2} \right) \ddot{\theta} - mr\ell \ddot{\phi} \cos(\theta - \phi) + mr\ell \dot{\phi} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi) \\ &= \left[(MR^{2} + mr^{2}) \ddot{\theta} - mr\ell \ddot{\phi} \cos(\theta - \phi) + mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) - mr\ell \dot{\phi}^{2} \sin(\theta - \phi) \right] \\ \dot{p}_{\phi} &= \frac{d}{dt} p_{\phi} = \frac{d}{dt} \left(m\ell^{2}\dot{\phi} - mr\ell \dot{\theta} \cos(\theta - \phi) \right) \\ &= m\ell^{2} \ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) + mr\ell \dot{\theta} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi) \\ &= m\ell^{2} \ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) - mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) + mr\ell \dot{\theta}^{2} \sin(\theta - \phi) \end{split}$$

Set equal to real (*gravity*) force F_{μ} plus *fictitious force* $\partial T/\partial q^{\mu}$ terms

$$\dot{p}_{\theta} = F_{\theta} + \frac{\partial T}{\partial \theta} = F_{\theta} + \frac{\partial}{\partial \theta} \left(\frac{1}{2} \left(MR^2 + mr^2 \right) \dot{\theta}^2 + \frac{1}{2} m\ell^2 \dot{\phi}^2 - mr\ell \dot{\theta} \dot{\phi} \cos(\theta - \phi) \right)$$
$$= F_{\theta} + mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi)$$
$$\dot{p}_{\phi} = F_{\phi} + \frac{\partial T}{\partial \phi} = F_{\phi} + \frac{\partial}{\partial \phi} \left(\frac{1}{2} \left(MR^2 + mr^2 \right) \dot{\theta}^2 + \frac{1}{2} m\ell^2 \dot{\phi}^2 - mr\ell \dot{\theta} \dot{\phi} \cos(\theta - \phi) \right)$$
$$= F_{\phi} - mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi)$$

p-dot part of Lagrange 2nd equations

> *The rest of Lagrange* 2nd equations

Review (Mostly Unit 2.): Was the Trebuchet a dream problem for Galileo? Not likely. Forces in Lagrange force equation: total, genuine, potential, and/or fictitious

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" ($q^1=\theta$, $q^2=\phi$)-manifold and "Flat" ($x=\theta$, $y=\phi$)-graph Review of covariant \mathbf{E}_n and contravariant \mathbf{E}^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent { \mathbf{E}_n }space vs. Normal { \mathbf{E}^m }space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Lagrange force equation analysis of trebuchet model (Mostly from Unit 2.) Review of trebuchet canonical (covariant) momentum and mass metric γ_{mn} (Lect. 15 p. 77) Review and application of trebuchet covariant forces F_{θ} and F_{ϕ} (Lect. 15 p. 69) Riemann equation derivation for trebuchet model Riemann equation force analysis 2nd-guessing Riemann equation? Lagrange equation force analysis Dot means *total* differentiation

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

Everything that can move contributes. (Very easy to miss a term!)

$$\begin{split} \dot{p}_{\theta} &= \frac{d}{dt} p_{\theta} = \frac{d}{dt} \left(\left(MR^{2} + mr^{2} \right) \dot{\theta} - mr\ell \dot{\phi} \cos(\theta - \phi) \right) \quad [\dot{M}, \dot{R}, \dot{m}, \dot{r}, \text{ and } \dot{\ell} \text{ are (thankfully) zero]} \\ &= \left(MR^{2} + mr^{2} \right) \ddot{\theta} - mr\ell \ddot{\phi} \cos(\theta - \phi) + mr\ell \dot{\phi} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi) \\ &= \left[\left(MR^{2} + mr^{2} \right) \ddot{\theta} - mr\ell \ddot{\phi} \cos(\theta - \phi) + mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) - mr\ell \dot{\phi}^{2} \sin(\theta - \phi) \right] \\ \dot{p}_{\phi} &= \frac{d}{dt} p_{\phi} = \frac{d}{dt} \left(m\ell^{2} \dot{\phi} - mr\ell \dot{\theta} \cos(\theta - \phi) \right) \\ &= m\ell^{2} \ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) + mr\ell \dot{\theta} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi) \\ &= m\ell^{2} \ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) - mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) + mr\ell \dot{\theta}^{2} \sin(\theta - \phi) \end{split}$$

Set equal to real (*gravity*) force F_{μ} plus *fictitious force* $\partial T/\partial q^{\mu}$ terms

$$\dot{p}_{\theta} = F_{\theta} + \frac{\partial T}{\partial \theta} = F_{\theta} + \frac{\partial}{\partial \theta} \left(\frac{1}{2} \left(MR^2 + mr^2 \right) \dot{\theta}^2 + \frac{1}{2} m\ell^2 \dot{\phi}^2 - mr\ell \dot{\theta} \dot{\phi} \cos(\theta - \phi) \right)$$

$$= F_{\theta} + mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi)$$

$$\dot{p}_{\phi} = F_{\phi} + \frac{\partial T}{\partial \phi} = F_{\phi} + \frac{\partial}{\partial \phi} \left(\frac{1}{2} \left(MR^2 + mr^2 \right) \dot{\theta}^2 + \frac{1}{2} m\ell^2 \dot{\phi}^2 - mr\ell \dot{\theta} \dot{\phi} \cos(\theta - \phi) \right)$$

$$= F_{\phi} - mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi)$$
gravity forces F_{μ} from p.69 of Lect. 15 (see above)
 $F_{\theta} = -MgR \sin\theta + mgr \sin\theta$

$$F_{\phi} = -mg\ell\sin\phi$$

Lagrange equation force analysis $\frac{d}{dt}\frac{\partial T}{\partial \dot{a}^{\mu}} - \frac{\partial T}{\partial a^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial a^{\mu}} = F_{\mu}$ Dot means *total* differentiation Everything that can move contributes. (Very easy to miss a term!) $\dot{p}_{\theta} = \frac{d}{dt} p_{\theta} = \frac{d}{dt} \left(\left(MR^2 + mr^2 \right) \dot{\theta} - mr \ell \dot{\phi} \cos(\theta - \phi) \right) \quad [\dot{M}, \dot{R}, \dot{m}, \dot{r}, \text{ and } \dot{\ell} \text{ are (thankfully) zero]}$ $= \left(MR^{2} + mr^{2}\right)\ddot{\theta} - mr\ell\dot{\phi}\cos(\theta - \phi) + mr\ell\dot{\phi}(\dot{\theta} - \dot{\phi})\sin(\theta - \phi)$ $= \left(MR^2 + mr^2 \right) \ddot{\theta} - mr\ell \dot{\phi} \cos(\theta - \phi) + mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) - mr\ell \dot{\phi}^2 \sin(\theta - \phi) = F_{\theta} + mr\ell \dot{\theta} \dot{\phi} \sin(\theta - \phi)$ $\dot{p}_{\phi} = \frac{d}{dt} p_{\phi} = \frac{d}{dt} \left(m\ell^2 \dot{\phi} - mr\ell \dot{\theta} \cos(\theta - \phi) \right)$ $= m\ell^2 \ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) + mr\ell \dot{\theta} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi)$ $= m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) - mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi) + mr\ell\dot{\theta}^{2}\sin(\theta - \phi) = F_{\phi} - mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi)$ Set equal to real (*gravity*) force F_{μ} plus *fictitious force* $\partial T/\partial q^{\mu}$ terms $\dot{p}_{\theta} = F_{\theta} + \frac{\partial T}{\partial \theta} = F_{\theta} + \frac{\partial}{\partial \theta} \left(\frac{1}{2} \left(MR^2 + mr^2 \right) \dot{\theta}^2 + \frac{1}{2} m\ell^2 \dot{\phi}^2 - mr\ell \dot{\theta} \dot{\phi} \cos(\theta - \phi) \right)$ $= F_{\rho} + mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi)$ $\dot{p}_{\phi} = F_{\phi} + \frac{\partial T}{\partial \phi} = F_{\phi} + \frac{\partial}{\partial \phi} \left(\frac{1}{2} \left(MR^2 + mr^2 \right) \dot{\theta}^2 + \frac{1}{2} m\ell^2 \dot{\phi}^2 - mr\ell \dot{\theta} \dot{\phi} \cos(\theta - \phi) \right)$ $= F_{\phi} - mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi)$ gravity forces F_{μ} from p.69 of Lect. 15 (see above) $F_{\theta} = -MgR\sin\theta + mgr\sin\theta$ $F_{\phi} = -mg\ell\sin\phi$

$$\begin{aligned} Lagrange equation force analysis & \frac{d}{dt} \frac{\partial T}{\partial q^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu} \\ \text{Dot means total differentiation} \\ \hline \text{Everything that can move contributes. (Very easy to miss a term!)} \\ \dot{p}_{\theta} = \frac{d}{dt} p_{\theta} = \frac{d}{dt} \Big((MR^{2} + mr^{2})\dot{\theta} - mr\ell\dot{\phi}\cos(\theta - \phi) \Big) & [\dot{M}, \dot{R}, \dot{m}, \dot{r}, \text{ and } \dot{\ell} \text{ are (thankfully) zero]} \\ &= (MR^{2} + mr^{2})\ddot{\theta} - mr\ell\ddot{\phi}\cos(\theta - \phi) + mr\ell\dot{\phi}(\dot{\theta} - \dot{\phi})\sin(\theta - \phi) \\ &= \left((MR^{2} + mr^{2})\ddot{\theta} - mr\ell\ddot{\phi}\cos(\theta - \phi) + mr\ell\dot{\phi}\dot{\phi}\sin(\theta - \phi) \right) \\ \dot{p}_{\phi} = \frac{d}{dt} p_{\phi} = \frac{d}{dt} (m\ell^{2}\dot{\phi} - mr\ell\dot{\theta}\cos(\theta - \phi) + mr\ell\dot{\theta}(\dot{\theta} - \dot{\phi})\sin(\theta - \phi) \\ &= m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) + mr\ell\dot{\theta}(\dot{\theta} - \dot{\phi})\sin(\theta - \phi) \\ &= m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) - mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi) \\ &= m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) - mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi) \\ &= m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) - mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi) \\ &= m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) - mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi) \\ &= m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) - mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi) \\ &= F_{\theta} - mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi) \\ &= F_{\theta} + mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi) \\ &= F_{\theta} + mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi) \\ &= F_{\theta} + mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi) \\ &= F_{\phi} - mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi) \\ &= F_{\theta} - m$$

Lagrange equation force analysis

Dot means *total* differentiation

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

Everything that can move contributes. (Very easy to miss a term!)

$$\begin{split} \dot{p}_{\theta} &= \frac{d}{dt} p_{\theta} = \frac{d}{dt} \left(\left(MR^{2} + mr^{2} \right) \dot{\theta} - mr \ell \dot{\phi} \cos(\theta - \phi) \right) \quad [\dot{M}, \dot{R}, \dot{m}, \dot{r}, \text{ and } \dot{\ell} \text{ are (thankfully) zero]} \\ &= \left(MR^{2} + mr^{2} \right) \ddot{\theta} - mr \ell \ddot{\phi} \cos(\theta - \phi) + mr \ell \dot{\phi} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi) \\ &= \left[(MR^{2} + mr^{2}) \ddot{\theta} - mr \ell \ddot{\theta} \cos(\theta - \phi) - mr \ell \dot{\phi}^{2} \sin(\theta - \phi) \right] \\ \dot{p}_{\phi} &= \frac{d}{dt} p_{\phi} = \frac{d}{dt} \left(m\ell^{2}\dot{\phi} - mr \ell \dot{\theta} \cos(\theta - \phi) \right) \\ &= m\ell^{2} \ddot{\phi} - mr \ell \ddot{\theta} \cos(\theta - \phi) + mr \ell \dot{\theta} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi) \\ &= m\ell^{2} \ddot{\phi} - mr \ell \ddot{\theta} \cos(\theta - \phi) + mr \ell \dot{\theta}^{2} \sin(\theta - \phi) \\ &= m\ell^{2} \ddot{\phi} - mr \ell \ddot{\theta} \cos(\theta - \phi) + mr \ell \dot{\theta}^{2} \sin(\theta - \phi) \\ \text{Set equal to real } (gravity) \text{ force } F_{\mu} \text{ plus } fictitious force } \partial T / \partial q^{\mu} \text{ terms} \\ \dot{p}_{\theta} &= F_{\theta} + \frac{\partial T}{\partial \theta} = F_{\theta} + \frac{\partial}{\partial \theta} \left(\frac{1}{2} \left(MR^{2} + mr^{2} \right) \dot{\theta}^{2} + \frac{1}{2} m\ell^{2} \dot{\phi}^{2} - mr \ell \dot{\theta} \dot{\phi} \cos(\theta - \phi) \right) \\ &= F_{\theta} - mr \ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) \\ &= F_{\phi} - mr \ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) \\ = F_{\phi} - mr \ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) \\ = F_{\phi} - mr \ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) \\ = F_{\phi} - mr \ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) \\ &= F_{\phi} - mr \ell \dot{\theta} \dot{\phi} \sin(\theta - \phi) \\ \end{bmatrix}$$

gravity forces F_{μ} from p.69 of Lect. 15 (see above) $F_{\theta} = -MgR\sin\theta + mgr\sin\theta$ $F_{\phi} = -mg\ell\sin\phi$

Lagrange equation force analysis $\frac{d}{dt}\frac{\partial T}{\partial \dot{a}^{\mu}} - \frac{\partial T}{\partial a^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial a^{\mu}} = F_{\mu}$ Dot means *total* differentiation Everything that can move contributes. (Very easy to miss a term!) $\dot{p}_{\theta} = \frac{d}{dt} p_{\theta} = \frac{d}{dt} \left(\left(MR^2 + mr^2 \right) \dot{\theta} - mr \ell \dot{\phi} \cos(\theta - \phi) \right) \quad [\dot{M}, \dot{R}, \dot{m}, \dot{r}, \text{ and } \dot{\ell} \text{ are (thankfully) zero]}$ $= (MR^{2} + mr^{2})\ddot{\theta} - mr\ell\dot{\phi}\cos(\theta - \phi) + mr\ell\dot{\phi}(\dot{\theta} - \dot{\phi})\sin(\theta - \phi)$ $= \left(MR^{2} + mr^{2} \right) \ddot{\theta} - mr\ell \ddot{\phi} \cos(\theta - \phi) - mr\ell \dot{\phi}^{2} \sin(\theta - \phi)$ $= F_{\theta} = -MgR\sin\theta + mgr\sin\theta$ $\dot{p}_{\phi} = \frac{d}{dt} p_{\phi} = \frac{d}{dt} \left(m\ell^2 \dot{\phi} - mr\ell \dot{\theta} \cos(\theta - \phi) \right)$ $= m\ell^2 \ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) + mr\ell \dot{\theta} (\dot{\theta} - \dot{\phi}) \sin(\theta - \phi)$ $= m\ell^2 \ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) + mr\ell \dot{\theta}^2 \sin(\theta - \phi)$ $=F_{\phi}=-mg\ell\sin\phi$ Set equal to real (*gravity*) force F_{μ} plus *fictitious force* $\partial T/\partial q^{\mu}$ terms $\dot{p}_{\theta} = F_{\theta} + \frac{\partial T}{\partial \theta} = F_{\theta} + \frac{\partial}{\partial \theta} \left(\frac{1}{2} \left(MR^2 + mr^2 \right) \dot{\theta}^2 + \frac{1}{2} m\ell^2 \dot{\phi}^2 - mr\ell \dot{\theta} \dot{\phi} \cos(\theta - \phi) \right)$ $= F_{\theta} + mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi)$ $\dot{p}_{\phi} = F_{\phi} + \frac{\partial T}{\partial \phi} = F_{\phi} + \frac{\partial}{\partial \phi} \left(\frac{1}{2} \left(MR^2 + mr^2 \right) \dot{\theta}^2 + \frac{1}{2} m\ell^2 \dot{\phi}^2 - mr\ell \dot{\theta} \dot{\phi} \cos(\theta - \phi) \right)$ $= F_{\phi} - mr\ell\dot{\theta}\dot{\phi}\sin(\theta - \phi)$ gravity forces F_{μ} from p.69 of Lect. 15 (see above) $F_{\rm A} = -MgR\sin\theta + mgr\sin\theta$ $F_{\phi} = -mg\ell\sin\phi$

Lagrange equation force analysis

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

$$\dot{p}_{\theta} = \left(MR^2 + mr^2 \right) \ddot{\theta} - mr\ell \dot{\phi} \cos(\theta - \phi) - mr\ell \dot{\phi}^2 \sin(\theta - \phi) = F_{\theta} = -MgR\sin\theta + mgr\sin\theta$$

$$\dot{p}_{\phi} = m\ell^2 \ddot{\phi} - mr\ell \ddot{\theta} \cos(\theta - \phi) + mr\ell \dot{\theta}^2 \sin(\theta - \phi) = F_{\phi} = -mg\ell \sin\phi$$
Review (Mostly Unit 2.): Was the Trebuchet a dream problem for Galileo? Not likely. Forces in Lagrange force equation: total, genuine, potential, and/or fictitious

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" ($q^1=\theta$, $q^2=\phi$)-manifold and "Flat" ($x=\theta$, $y=\phi$)-graph Review of covariant \mathbf{E}_n and contravariant \mathbf{E}^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent { \mathbf{E}_n }space vs. Normal { \mathbf{E}^m }space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

 Lagrange force equation analysis of trebuchet model (Mostly from Unit 2.) Review of trebuchet canonical (covariant) momentum and mass metric γ_{mn} (Lect. 15 p. 77) Review and application of trebuchet covariant forces F_θ and F_φ (Lect. 15 p. 69)
 Riemann equation derivation for trebuchet model Riemann equation force analysis 2nd-guessing Riemann equation?

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

Riemann equation force analysis solves for GCC accelerations $\ddot{\theta}$ and $\ddot{\phi}$

$$\dot{p}_{\theta} = \left(MR^2 + mr^2\right)\ddot{\theta} - mr\ell\ddot{\phi}\cos(\theta - \phi) - mr\ell\dot{\phi}^2\sin(\theta - \phi) = F_{\theta} = -MgR\sin\theta + mgr\sin\theta$$

$$\dot{p}_{\phi} = m\ell^2 \ddot{\phi} - m\ell \ddot{\theta} \cos(\theta - \phi) + m\ell \dot{\theta}^2 \sin(\theta - \phi) = F_{\phi} = -mg\ell \sin\phi$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

Riemann equation force analysis solves for GCC accelerations $\ddot{\theta}$ and $\ddot{\phi}$

$$\dot{p}_{\theta} = \left(MR^2 + mr^2 \right) \ddot{\theta} - mr\ell \dot{\phi} \cos(\theta - \phi) - mr\ell \dot{\phi}^2 \sin(\theta - \phi) = F_{\theta} = -MgR\sin\theta + mgr\sin\theta$$

$$\dot{p}_{\phi} = \frac{m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) + mr\ell\dot{\theta}^{2}\sin(\theta - \phi)}{mt^{2}} = F_{\phi} = -mg\ell\sin\phi$$
In matrix form:

$$\begin{pmatrix}\dot{p}_{\theta}\\\dot{p}_{\phi}\end{pmatrix} = \begin{pmatrix} (MR^{2} + mr^{2}) & -mr\ell\cos(\theta - \phi)\\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{pmatrix} \begin{pmatrix} \ddot{\theta}\\ \ddot{\phi} \end{pmatrix} - \begin{pmatrix} mr\ell\dot{\phi}^{2}\sin(\theta - \phi)\\ -mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \end{pmatrix} = \begin{pmatrix} F_{\theta}\\ F_{\phi} \end{pmatrix}$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

Riemann equation force analysis solves for GCC accelerations $\ddot{\theta}$ and $\ddot{\phi}$

$$\dot{p}_{\theta} = \left(MR^2 + mr^2 \right) \ddot{\theta} - mr\ell \dot{\phi} \cos(\theta - \phi) - mr\ell \dot{\phi}^2 \sin(\theta - \phi) = F_{\theta} = -MgR\sin\theta + mgr\sin\theta$$

$$\dot{p}_{\phi} = \frac{m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) + mr\ell\dot{\theta}^{2}\sin(\theta - \phi)}{In \ matrix \ form:} = F_{\phi} = -mg\ell\sin\phi$$

$$In \ matrix \ form:$$

$$\begin{pmatrix} \dot{p}_{\theta} \\ \dot{p}_{\phi} \end{pmatrix} = \begin{pmatrix} (MR^{2} + mr^{2}) & -mr\ell\cos(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{pmatrix} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} - \begin{pmatrix} mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ -mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \end{pmatrix} = \begin{pmatrix} F_{\theta} \\ F_{\phi} \end{pmatrix}$$

$$This \ uses \ the \ \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix} = \begin{pmatrix} MR^{2} + mr^{2} & -mr\ell\cos(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{pmatrix} = \begin{pmatrix} -MgR\sin\theta + mgr\sin\theta \\ -mg\ell\sin\phi \end{pmatrix}$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}$$

Riemann equation force analysis solves for GCC accelerations $\ddot{\theta}$ and $\ddot{\phi}$

$$\dot{p}_{\theta} = \left(MR^2 + mr^2 \right) \ddot{\theta} - mr\ell \dot{\phi} \cos(\theta - \phi) - mr\ell \dot{\phi}^2 \sin(\theta - \phi) = F_{\theta} = -MgR\sin\theta + mgr\sin\theta$$

$$\begin{split} \dot{p}_{\phi} &= \boxed{m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) + mr\ell\dot{\theta}^{2}\sin(\theta - \phi)} = F_{\phi} = -mg\ell\sin\phi \\ In \ matrix \ form: \\ \begin{pmatrix} \dot{p}_{\theta} \\ \dot{p}_{\phi} \end{pmatrix} &= \begin{pmatrix} (MR^{2} + mr^{2}) & -mr\ell\cos(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{pmatrix} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} - \begin{pmatrix} mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ -mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \end{pmatrix} = \begin{pmatrix} F_{\theta} \\ F_{\phi} \end{pmatrix} \\ \end{split}$$

$$\begin{aligned} This \ uses \ the \left(\begin{array}{c} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{array} \right) = \begin{pmatrix} MR^{2} + mr^{2} & -mr\ell\cos(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{pmatrix} \\ \hline \begin{pmatrix} \dot{p}_{\theta} \\ \dot{p}_{\phi} \end{array} \right) = \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = \begin{pmatrix} F_{\theta} + mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ F_{\phi} - mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \end{pmatrix} \end{split}$$

Need to invert the γ_{mn} -matrix... Let's consolidate ...

Tuesday, October 27, 2015

$$\begin{aligned} Riemann\ equation\ force\ analysis & \frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu} \\ \dot{p}_{\theta} = \begin{bmatrix} (MR^{2} + mr^{2})\ddot{\theta} - mr\ell\ddot{\phi}\cos(\theta - \phi) - mr\ell\dot{\phi}^{2}\sin(\theta - \phi) & = F_{\theta} = -MgR\sin\theta + mgr\sin\theta \\ \dot{p}_{\phi} = m\ell^{2}\dot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) + mr\ell\dot{\theta}^{2}\sin(\theta - \phi) & = F_{\phi} = -mg\ell\sin\phi \\ In\ matrix\ form: \\ \begin{pmatrix} \dot{p}_{\theta} \\ \dot{p}_{\phi} \end{pmatrix} = \begin{pmatrix} (MR^{2} + mr^{2}) & -mr\ell\cos(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{pmatrix} \begin{pmatrix} \ddot{\theta} \\ \dot{\phi} \end{pmatrix} - \begin{pmatrix} mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ -mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \end{pmatrix} = \begin{pmatrix} F_{\theta} \\ F_{\phi} \end{pmatrix} \\ \hline This\ uses\ the \begin{bmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix} = \begin{pmatrix} MR^{2} + mr^{2} & -mr\ell\cos(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{pmatrix} \\ \begin{pmatrix} \dot{p}_{\theta} \\ \dot{p}_{\phi} \end{pmatrix} = \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = \begin{pmatrix} F_{\theta} + mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ F_{\phi} - mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \end{pmatrix} \\ \end{pmatrix} \end{aligned}$$

Need to invert the γ_{mn} -matrix...

$$\begin{aligned} Riemann\ equation\ force\ analysis\ \frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu} \\ \dot{p}_{\theta} = \left[(MR^{2} + mr^{2})\ddot{\theta} - mr\ell\ddot{\phi}\cos(\theta - \phi) - mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ \dot{p}_{\theta} = \left[m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) + mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \\ -mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) \\ m\ell^{2} \end{array} \right] = \left[\frac{mr\ell\dot{\theta}^{2}\sin(\theta - \phi)}{(mr\ell\dot{\theta}^{2}\sin(\theta - \phi))} \right] = \left[\frac{F_{\theta}}{F_{\theta}} \right] \\ \hline In\ matrix\ form: \\ \left(\dot{p}_{\theta} \\ \dot{p}_{\theta} \right) = \left(\frac{(MR^{2} + mr^{2}) - mr\ell\cos(\theta - \phi)}{(mr\ell\cos(\theta - \phi))} \\ -mr\ell\cos(\theta - \phi) \\ m\ell^{2} \end{array} \right] \left[\frac{\ddot{\theta}}{\phi} \right] - \left(\frac{mr\ell\dot{\theta}^{2}\sin(\theta - \phi)}{(mr\ell\sigma^{2}\sin(\theta - \phi))} \right] = \left[\frac{F_{\theta}}{F_{\theta}} \right] \\ \hline In\ matrix\ form: \\ \left(\dot{p}_{\theta} \\ \dot{p}_{\theta} \\$$

$$\begin{aligned} Riemann\ equation\ force\ analysis\ \frac{d}{dt}\frac{\partial T}{\partial q^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}\ becomes\ \gamma^{\mu\nu}\dot{p}_{\mu} = \ddot{q}^{\nu}...\\ \dot{p}_{\theta} = \begin{bmatrix} (MR^{2} + mr^{2})\ddot{\theta} - mr\ell\ddot{\theta}\cos(\theta - \phi) - mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \\ = F_{\theta} = -MgR\sin\theta + mgr\sin\theta \\ \dot{p}_{\phi} = \begin{bmatrix} m\ell^{2}\ddot{\phi} & -mr\ell\ddot{\theta}\cos(\theta - \phi) + mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \\ = mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{bmatrix} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \\ \dot{\phi} \\ \end{pmatrix} = \begin{pmatrix} (MR^{2} + mr^{2}) & -mr\ell\cos(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{pmatrix} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \\ \end{pmatrix} - \begin{pmatrix} mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ -mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \\ -mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \end{pmatrix} = \begin{pmatrix} F_{\theta} \\ F_{\phi} \\ \end{pmatrix} \\ \hline{this\ uses\ the\ (\gamma_{\theta,\theta}, \gamma_{\theta,\phi})} = \begin{pmatrix} MR^{2} + mr^{2} & -mr\ell\cos(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{pmatrix} = \begin{pmatrix} -MgR\sin\theta + mgr\sin\theta \\ -mg\ell\sin\phi \\ -mg\ell\sin\phi \end{pmatrix} \\ \begin{pmatrix} \dot{p}_{\theta} \\ \dot{p}_{\phi} \\ \dot{p}_{\phi} \\ \end{pmatrix} = \begin{pmatrix} \gamma_{\theta,\theta}, \gamma_{\theta,\phi} \\ \ddot{\phi} \\ \dot{\phi} \\ \end{pmatrix} = \begin{pmatrix} F_{\theta} + mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ F_{\phi} - mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \\ F_{\phi} - mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) \\ m\ell^{2}\left[mr\ell\cos(\theta - \phi) & MR^{2} + mr^{2} \\ m\ell^{2}\left[MR^{2} + mr^{2}\sin^{2}(\theta - \phi) \right] \\ & \hline{this\ uses\ the\ (\gamma_{\theta,\theta}, \gamma_{\theta,\phi})} \end{bmatrix}^{-1} \begin{pmatrix} \phi_{\theta} \\ \dot{\phi} \\ \dot{\phi} \\ \end{pmatrix} = \begin{pmatrix} \varphi_{\theta} & \gamma_{\theta,\phi} \\ \dot{\phi}_{\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} F_{\theta} \\ \phi \\ \phi \\ \end{pmatrix} = \begin{pmatrix} \varphi_{\theta} & \gamma_{\theta,\phi} \\ \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \end{pmatrix}^{-1} \begin{pmatrix} F_{\theta} + mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ F_{\theta} - mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ F_{\theta} - mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \end{pmatrix} \\ Riemann \\ equation \\ form \end{pmatrix}$$

$$\begin{aligned} Riemann\ equation\ force\ analysis\ \frac{d}{dt}\frac{\partial T}{\partial q^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu}\ becomes\ \gamma^{\mu\nu}\dot{p}_{\mu} = \ddot{q}^{\nu} \dots \\ \dot{p}_{\theta} = \left[(MR^{2} + mr^{2})\ddot{\theta} - mr\ell\ddot{\phi}\cos(\theta - \phi) - mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \right] = F_{\theta} = -MgR\sin\theta + mgr\sin\theta \\ \dot{p}_{\phi} = \left[m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) + mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \right] = F_{\phi} = -mg\ell\sin\phi \\ In\ matrix\ form: \\ \left(\dot{p}_{\theta} \\ \dot{p}_{\phi} \right) = \left((MR^{2} + mr^{2}) - mr\ell\cos(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{array} \right) \left(\begin{array}{c} \ddot{\theta} \\ \ddot{\phi} \end{array} \right) - \left(mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ -mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \end{array} \right) = \left(\begin{array}{c} F_{\theta} \\ F_{\phi} \end{array} \right) \\ \hline This\ uses\ the \left(\gamma_{\theta,\theta} \gamma_{\theta,\phi} \\ \gamma_{\theta,\theta} \gamma_{\theta,\phi} \end{array} \right) = \left(\begin{array}{c} MR^{2} + mr^{2} & -mr\ell\cos(\theta - \phi) \\ -mr\ell\cos(\theta - \phi) & m\ell^{2} \end{array} \right) \\ \left(\dot{p}_{\theta} \\ \dot{p}_{\phi} \end{array} \right) = \left(\begin{array}{c} \gamma_{\theta,\theta} \gamma_{\theta,\phi} \\ \gamma_{\theta,\theta} \gamma_{\theta,\phi} \end{array} \right) \left(\begin{array}{c} \ddot{\theta} \\ \ddot{\phi} \end{array} \right) = \left(\begin{array}{c} F_{\theta} + mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ F_{\phi} - mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \end{array} \right) \\ Ried\ to\ invert\ the\ \gamma_{mn}-matrix... \\ \left(\begin{array}{c} \gamma_{\theta,\theta} \gamma_{\theta,\phi} \\ \gamma_{\theta,\theta} \gamma_{\theta,\phi} \end{array} \right)^{-1} \left(\begin{array}{c} \ddot{p}_{\theta} \\ \ddot{\phi} \end{array} \right) = \left(\begin{array}{c} \ddot{\theta} \\ \ddot{\phi} \end{array} \right) = \left(\begin{array}{c} \ddot{\theta} \\ \ddot{\phi} \end{array} \right) = \left(\begin{array}{c} \gamma_{\theta,\theta} \gamma_{\theta,\phi} \\ \gamma_{\theta,\theta} \gamma_{\theta,\phi} \end{array} \right)^{-1} \left(\begin{array}{c} \dot{p}_{\theta} \\ \ddot{\phi} \end{array} \right)^{-1} \left(\begin{array}{c} F_{\theta} + mr\ell\dot{\phi}^{2}\sin(\theta - \phi) \\ F_{\phi} - mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \end{array} \right) \\ Ried\ to\ invert\ the\ \gamma_{mn}-matrix... \\ \left(\begin{array}{c} \gamma_{\theta,\theta} \gamma_{\theta,\phi} \\ \gamma_{\theta,\theta} \gamma_{\theta,\phi} \end{array} \right)^{-1} \left(\begin{array}{c} \dot{p}_{\theta} \\ \ddot{\phi} \end{array} \right) = \left(\begin{array}{c} \ddot{\theta} \\ \ddot{\phi} \end{array} \right) = \left(\begin{array}{c} \ddot{\theta} \\ \ddot{\phi} \end{array} \right) = \left(\begin{array}{c} \ddot{\theta} \\ \ddot{\phi} \end{array} \right) = \left(\begin{array}{c} \gamma_{\theta,\theta} \gamma_{\theta,\phi} \\ \gamma_{\theta,\theta} \gamma_{\theta,\phi} \end{array} \right)^{-1} \left(\begin{array}{c} \dot{p} \\ F_{\theta} - mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \\ F_{\phi} - mr\ell\dot{\theta}^{2}\sin(\theta - \phi) \end{array} \right) \\ Riemann \\ F_{\theta} = \left(\begin{array}{c} \ddot{\theta} \\ \ddot{\theta} \end{array} \right) = \left(\begin{array}{c} \dot{\theta} \\ \ddot{\theta} \end{array} \right) = \left(\begin{array}{c} \dot{\phi}^{2} \\ \dot{\phi}^{2} \\ -\dot{\theta}^{2} \end{array} \right) mr\ell\sin(\theta - \phi) \end{aligned} \right) \\ Riemann \\ F_{\theta} = \left(\begin{array}{c} \dot{\theta} \\ \dot{\theta} \end{array} \right) = \left$$

Tuesday, October 27, 2015

$$\begin{aligned} Riemann\ equation\ force\ analysis\ \frac{d}{dt}\frac{\partial T}{\partial q^{u}} - \frac{\partial T}{\partial q^{u}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{u}} = F_{\mu}\ becomes\ \gamma^{\mu\nu}\dot{p}_{\mu} = \ddot{q}^{\nu} \dots \\ \dot{p}_{0} = \left[(MR^{2} + mr^{2})\ddot{\theta} - mr\ell\ddot{\phi}\cos(\theta - \phi) - mr\ell\dot{\phi}^{2}\sin(\theta - \phi)\right] \\ = F_{\theta} = -MgR\sin\theta + mgr\sin\theta \\ \dot{p}_{\phi} = \left[m\ell^{2}\ddot{\phi} - mr\ell\ddot{\theta}\cos(\theta - \phi) + mr\ell\dot{\theta}^{2}\sin(\theta - \phi)\right] \\ = F_{\theta} = -mg\ell\sin\phi \\ In\ matrix\ form: \\ \left(\dot{p}_{\theta}\\ \dot{p}_{\theta}\right) = \left((MR^{2} + mr^{2}) - mr\ell\cos(\theta - \phi)\right) \\ -mr\ell\cos(\theta - \phi)\ m\ell^{2}\right) \\ \left(\ddot{\theta}\\ \dot{\phi}\right) = \left(\frac{mr\ell\dot{\phi}^{2}\sin(\theta - \phi)}{\gamma_{\theta,\theta}}\right) = \left(\frac{MR^{2} + mr^{2}}{-mr\ell\cos(\theta - \phi)}\right) \\ = \left(\frac{mr\ell\dot{\phi}^{2}\sin(\theta - \phi)}{\gamma_{\theta,\theta}}\right) = \left(\frac{MR^{2} + mr^{2}}{-mr\ell\cos(\theta - \phi)}\right) \\ \left(\dot{p}_{\theta}\\ \dot{p}_{\theta}\right) = \left(\frac{\gamma_{\theta,\theta}}{\gamma_{\theta,\theta}}, \gamma_{\theta,\phi}\right) \\ \left(\ddot{\theta}\\ \ddot{\phi}\right) = \left(\frac{F_{\theta}}{\gamma_{\theta,\theta}}, \gamma_{\theta,\phi}\right) \\ \left(\ddot{\theta}\\ \ddot{\phi}\right) = \left(\frac{F_{\theta}}{\gamma_{\theta,\theta}}, \gamma_{\theta,\phi}\right) \\ \left(\ddot{\theta}\\ \ddot{\phi}\right) = \left(\frac{F_{\theta}}{F_{\theta}} + mr\ell\dot{\phi}^{2}\sin(\theta - \phi)\right) \\ \left(\frac{mr\ell}{F_{\theta}} - mr\ell\cos(\theta - \phi)\right) \\ \left($$

Tuesday, October 27, 2015

Review (Mostly Unit 2.): Was the Trebuchet a dream problem for Galileo? Not likely. Forces in Lagrange force equation: total, genuine, potential, and/or fictitious

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" ($q^1=\theta$, $q^2=\phi$)-manifold and "Flat" ($x=\theta$, $y=\phi$)-graph Review of covariant \mathbf{E}_n and contravariant \mathbf{E}^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent { \mathbf{E}_n }space vs. Normal { \mathbf{E}^m }space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Lagrange force equation analysis of trebuchet model (Mostly from Unit 2.) Review of trebuchet canonical (covariant) momentum and mass metric γ_{mn} (Lect. 15 p. 77) Review and application of trebuchet covariant forces F_{θ} and F_{ϕ} (Lect. 15 p. 69) Riemann equation derivation for trebuchet model Riemann equation force analysis 2nd-guessing Riemann equation?

$$\begin{aligned} Riemann \ equation \ force \ analysis \ \frac{d}{dt} \frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu} \quad becomes \ \gamma^{\mu\nu} \dot{p}_{\mu} = \ddot{q}^{\nu} \dots \\ \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \dot{p}_{\phi} \end{pmatrix}^{-1} \begin{pmatrix} \dot{p}_{\theta} \\ \dot{p}_{\phi} \end{pmatrix} = \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} F_{\theta} + mr\ell\phi^{2}\sin(\theta-\phi) \\ F_{\phi} - mr\ell\phi^{2}\sin(\theta-\phi) \end{pmatrix} \quad Riemann \\ equation \\ form \end{aligned}$$

$$Gravity-free \ case: I_{s} = m\ell^{2} \left[MR^{2} + mr^{2}\sin^{2}(\theta-\phi) \right] \\ F_{\theta} = 0 = F_{\phi} \\ I_{s} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = I_{s} \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} \phi^{2} \\ -\dot{\phi}^{2} \end{pmatrix} mr\ell\sin(\theta-\phi) = \begin{pmatrix} m\ell^{2} & mr\ell\cos(\theta-\phi) \\ mr\ell\cos(\theta-\phi) & MR^{2} + mr^{2} \end{pmatrix} \begin{pmatrix} \phi^{2} \\ -\dot{\phi}^{2} \end{pmatrix} mr\ell\sin(\theta-\phi) \\ Let: (\theta-\phi) = -\frac{\pi}{2} \quad so: \quad I_{s} = m\ell^{2} \left[MR^{2} + mr^{2} \right] \quad and \ et: \ \omega \equiv \dot{\theta} = \phi \\ I_{s} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = I_{s} \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} -\phi^{2} \\ \dot{\theta}^{2} \end{pmatrix} mr\ell = \begin{pmatrix} m\ell^{2} & 0 \\ 0 & MR^{2} + mr^{2} \end{pmatrix} \begin{pmatrix} -\omega^{2} \\ \omega^{2} \end{pmatrix} mr\ell \\ \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} -\phi^{2} \\ \dot{\theta}^{2} \end{pmatrix} mr\ell = \begin{pmatrix} m\ell^{2} & 0 \\ 0 & MR^{2} + mr^{2} \end{pmatrix} \begin{pmatrix} -mr\ell\omega^{2} \\ mr\ell\omega^{2} \end{pmatrix} = \begin{pmatrix} \frac{-mr\ell\omega^{2}}{MR^{2} + mr^{2}} \\ \frac{MR^{2} + mr^{2}}{MR^{2} + mr^{2}} \end{pmatrix} = \begin{pmatrix} \frac{-mr\ell\omega^{2}}{MR^{2} + mr^{2}} \\ \frac{MR^{2} + mr^{2}}{MR^{2} + mr^{2}} \end{pmatrix} \\ Trying \ to \ 2nd-guess \ Riemann \ results \end{aligned}$$

Fig. 2.5.1 Centrifugal force for a particular state of motion ($\omega \equiv \dot{\theta} = \dot{\phi}, \ \theta = \frac{-\pi}{2}, \ \phi = 0$) Tuesday, October 27, 2015

$$\begin{aligned} Riemann\ equation\ force\ analysis\ \frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu} \quad becomes\ \gamma^{\mu\nu}\dot{p}_{\mu} = \ddot{q}^{\nu}..\\ \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \dot{p}_{\phi} \end{pmatrix}^{-1} \begin{pmatrix} \dot{p}_{\theta} \\ \dot{p}_{\phi} \end{pmatrix} = \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} F_{\theta} + mr\ell\dot{\phi}^{2}\sin(\theta-\phi) \\ F_{\phi} - mr\ell\dot{\theta}^{2}\sin(\theta-\phi) \end{pmatrix} \quad \underset{equation\ form\ equation\ equation\ equation\ form\ equation\ form\ equation\ equad$$

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$.

Fig. 2.5.1 Centrifugal force for a particular state of motion ($\omega \equiv \dot{\theta} = \dot{\phi}, \ \theta = \frac{-\pi}{2}, \ \phi = 0$) Tuesday, October 27, 2015

$$\begin{aligned} Riemann \ equation \ force \ analysis \ \frac{d}{dt} \frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu} \quad becomes \ \gamma^{\mu\nu} \dot{p}_{\mu} = \ddot{q}^{\nu} \dots \\ \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \dot{p}_{\phi} \end{pmatrix}^{-1} \begin{pmatrix} \dot{p}_{\theta} \\ \dot{p}_{\phi} \end{pmatrix} = \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} F_{\theta} + mr\ell\phi^{2}\sin(\theta-\phi) \\ F_{\phi} - mr\ell\theta^{2}\sin(\theta-\phi) \end{pmatrix} \xrightarrow{Riemann} \\ equation \\ form \end{aligned}$$

$$Gravity-free \ case: I_{x} = m\ell^{2} \left[MR^{2} + mr^{2}\sin^{2}(\theta-\phi) \right] \\ F_{\theta} = 0 = F_{\phi} \\ I_{s} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = I_{s} \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} \phi^{2} \\ -\dot{\theta}^{2} \end{pmatrix} mr\ell\sin(\theta-\phi) = \begin{pmatrix} m\ell^{2} & mr\ell\cos(\theta-\phi) \\ mr\ell\cos(\theta-\phi) & MR^{2} + mr^{2} \end{pmatrix} \begin{pmatrix} \phi^{2} \\ -\dot{\theta}^{2} \end{pmatrix} mr\ell\sin(\theta-\phi) \\ Let : (\theta-\phi) = -\frac{\pi}{2} \qquad \text{so:} \qquad I_{s} = m\ell^{2} \left[MR^{2} + mr^{2} \right] \quad \text{and let:} \ \omega \equiv \dot{\theta} = \dot{\phi} \\ I_{s} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = I_{s} \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} -\dot{\phi}^{2} \\ \dot{\theta}^{2} \end{pmatrix} mr\ell = \begin{pmatrix} m\ell^{2} & 0 \\ 0 & MR^{2} + mr^{2} \end{pmatrix} \begin{pmatrix} -\omega^{2} \\ \omega^{2} \end{pmatrix} mr\ell \\ \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = \left[\begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} -\dot{\phi}^{2} \\ \dot{\theta}^{2} \end{pmatrix} mr\ell = \left(\frac{m\ell^{2} & 0 \\ 0 & MR^{2} + mr^{2} \end{pmatrix} \begin{pmatrix} -mr\ell\omega^{2} \\ mr\ell\omega^{2} \end{pmatrix} = \left[\frac{-mr\ell\omega^{2}}{MR^{2} + mr^{2}} \\ \frac{m^{2}\ell}{MR^{2} + mr^{2}} \end{pmatrix} \\ Trying \ to \ 2nd$$
-guess Riemann results (Gravity-free \ case)

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$. This is the rate of change of ϕ -angular momentum around the pivot at the top of ℓ .

$$m\ell^{2}\ddot{\phi} = FL = m\omega^{2}\sqrt{r^{2} + \ell^{2}} \frac{r\ell}{\sqrt{r^{2} + \ell^{2}}} = m\omega^{2}r\ell$$

$$m\ell\omega^{2} = |\mathbf{F}|\ell/\sqrt{(r^{2} + \ell^{2})} \qquad |\mathbf{F}| = m\omega^{2}\sqrt{(r^{2} + \ell^{2})} \qquad |\mathbf{F}| = m\omega^{2}\sqrt{(r$$

Move to top of page...

Fig. 2.5.1 Centrifugal force for a particular state of motion (Tuesday, October 27, 2015

$$\begin{aligned} Riemann \ equation \ force \ analysis \ \frac{d}{dt} \frac{\partial T}{\partial \dot{q}^{\mu}} - \frac{\partial T}{\partial q^{\mu}} = \dot{p}_{\mu} - \frac{\partial T}{\partial q^{\mu}} = F_{\mu} \quad becomes \ \gamma^{\mu\nu} \dot{p}_{\mu} = \ddot{q}^{\nu} \dots \\ \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \dot{p}_{\phi} \end{pmatrix}^{-1} \begin{pmatrix} \dot{p}_{\theta} \\ \dot{p}_{\phi} \end{pmatrix} = \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} F_{\theta} + mr\ell\dot{\phi}^{2}\sin(\theta-\phi) \\ F_{\phi} - mr\ell\dot{\theta}^{2}\sin(\theta-\phi) \end{pmatrix} \quad Riemann \\ equation \\ form \end{aligned}$$

$$Gravity-free \ case: I_{s} = m\ell^{2} \left[MR^{2} + mr^{2}\sin^{2}(\theta-\phi) \right] \\ F_{\theta} = 0 = F_{\phi} \\ I_{s} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = I_{s} \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} \phi^{2} \\ -\dot{\theta}^{2} \end{pmatrix} mr\ell\sin(\theta-\phi) = \begin{pmatrix} m\ell^{2} & mr\ell\cos(\theta-\phi) \\ mr\ell\cos(\theta-\phi) & MR^{2} + mr^{2} \end{pmatrix} \begin{pmatrix} \phi^{2} \\ -\dot{\theta}^{2} \end{pmatrix} mr\ell\sin(\theta-\phi) \\ Let : (\theta-\phi) = -\frac{\pi}{2} \quad so: \quad I_{s} = m\ell^{2} \left[MR^{2} + mr^{2} \right] \quad and \ let: \ \omega \equiv \dot{\theta} = \phi \\ I_{s} \begin{pmatrix} \ddot{\theta} \\ \ddot{\phi} \end{pmatrix} = I_{s} \begin{pmatrix} \gamma_{\theta,\theta} & \gamma_{\theta,\phi} \\ \gamma_{\phi,\theta} & \gamma_{\phi,\phi} \end{pmatrix}^{-1} \begin{pmatrix} -\phi^{2} \\ \dot{\theta}^{2} \end{pmatrix} mr\ell = \begin{pmatrix} m\ell^{2} & 0 \\ 0 & MR^{2} + mr^{2} \end{pmatrix} \begin{pmatrix} -\omega^{2} \\ \omega^{2} \end{pmatrix} mr\ell \\ \begin{pmatrix} \ddot{\theta} \\ mr\ell\omega^{2} \end{pmatrix} = \left[\frac{-mr\ell\omega^{2}}{MR^{2} + mr^{2}} \right] \\ F_{y} ing \ to \ 2nd -guess \ Riemann \ results \ (Gravity-free \ case) \end{cases}$$

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$. This is the rate of change of ϕ -angular momentum around the pivot at the top of ℓ .

$$m\ell \omega^{2} = |\mathbf{F}|\ell / \sqrt{(r^{2} + \ell^{2})}$$

$$(r, \ell)$$

$$m\ell \omega^{2} = |\mathbf{F}|\ell / \sqrt{(r^{2} + \ell^{2})}$$

$$(r, \ell)$$

$$m\ell \omega^{2} = |\mathbf{F}|\ell / \sqrt{(r^{2} + \ell^{2})}$$

$$m\ell^2 \ddot{\phi} = FL = m\omega^2 \sqrt{r^2 + \ell^2} \frac{r\ell}{\sqrt{r^2 + \ell^2}} = m\omega^2 r\ell$$

or: $\ddot{\phi} = FL / m\ell^2 = \omega^2 r / \ell$

Fig. 2.5.1 Centrifugal force for a particular state of motion ($\omega \equiv \dot{\theta} = \dot{\phi}, \ \theta = \frac{-\pi}{2}, \ \phi = 0$) Tuesday, October 27, 2015 Move to top of page...

Trying to 2nd-guess Riemann results (Gravity-free case) The ϕ terms on mass m on leg l due to contribute large is formed times mean entermy $L = w l/b \left(w^2 + l^2 \right)$

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$. This is the rate of change of ϕ -angular momentum around the pivot at the top of ℓ .

$$L/\ell = r/\sqrt{(r^2 + \ell^2)}$$

$$L/\ell = r/\sqrt{(r^2 + \ell^2)}$$

$$R/\omega^2 = |\mathbf{F}|\ell/\sqrt{(r^2 + \ell^2)}$$

$$|\mathbf{F}| = m\omega^2\sqrt{(r^2 + \ell^2)}$$

$$(r, \ell)$$
-hypotenuse

$$m\ell^2 \ddot{\phi} = FL = m\omega^2 \sqrt{r^2 + \ell^2} \frac{r\ell}{\sqrt{r^2 + \ell^2}} = m\omega^2 r\ell$$

or: $\ddot{\phi} = FL / m\ell^2 = \omega^2 r / \ell$

Fig. 2.5.1 Centrifugal force for a particular state of motion ($\omega \equiv \dot{\theta} = \dot{\phi}, \ \theta = \frac{-\pi}{2}, \ \phi = 0$) Tuesday, October 27, 2015

88

Move to top of page...

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$. This is the rate of change of ϕ -angular momentum around the pivot at the top of ℓ .

Fig. 2.5.1 Centrifugal force for state of motion ($\omega \equiv \dot{\theta} = \dot{\phi}, \theta = \frac{-\pi}{2}, \phi = 0$)

Review (Mostly Unit 2.): Was the Trebuchet a dream problem for Galileo? Not likely. Forces in Lagrange force equation: total, genuine, potential, and/or fictitious

Geometric and topological properties of GCC transformations (Mostly from Unit 3.) Trebuchet Cartesian projectile coordinates are double-valued Toroidal "rolled-up" ($q^1=\theta$, $q^2=\phi$)-manifold and "Flat" ($x=\theta$, $y=\phi$)-graph Review of covariant \mathbf{E}_n and contravariant \mathbf{E}^m vectors: Jacobian J vs. Kajobian K Covariant metric g_{mn} vs. contravariant metric g^{mn} (Lect. 10 p.43-49) Tangent { \mathbf{E}_n }space vs. Normal { \mathbf{E}^m }space Covariant vs. contravariant coordinate transformations Metric g_{mn} tensor geometric relations to length, area, and volume

Lagrange force equation analysis of trebuchet model (Mostly from Unit 2.) Review of trebuchet canonical (covariant) momentum and mass metric γ_{mn} (Lect. 15 p. 77) Review and application of trebuchet covariant forces F_{θ} and F_{ϕ} (Lect. 15 p. 69) Riemann equation derivation for trebuchet model Riemann equation force analysis \longrightarrow 2nd-guessing Riemann equation?

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$. This is the rate of change of ϕ -angular momentum around the pivot at the top of ℓ .

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$. This is the rate of change of ϕ -angular momentum around the pivot at the top of ℓ .

It may seem paradoxical that the θ -coordinate for main *r*-arm feels any torque or acceleration at all.

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$. This is the rate of change of ϕ -angular momentum around the pivot at the top of ℓ .

It may seem paradoxical that the θ -coordinate for main *r*-arm feels any torque or acceleration at all. Indeed, if the device is rigid there can be none since the centrifugal force has no moment; (Its line of action hits the θ -axis of the *R*-arm.)

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$. This is the rate of change of ϕ -angular momentum around the pivot at the top of ℓ .

It may seem paradoxical that the θ -coordinate for main *r*-arm feels any torque or acceleration at all. Indeed, if the device is rigid there can be none since the centrifugal force has no moment; (Its line of action hits the θ -axis of the *R*-arm.)

However, this device isn't rigid. The ℓ -leg pivot is frictionless and can only transmit a component $m \cdot \ell \omega^2$ of force along ℓ .

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$. This is the rate of change of ϕ -angular momentum around the pivot at the top of ℓ .

It may seem paradoxical that the θ -coordinate for main *r*-arm feels any torque or acceleration at all. Indeed, if the device is rigid there can be none since the centrifugal force has no moment; (Its line of action hits the θ -axis of the *R*-arm.)

However, this device isn't rigid. The ℓ -leg pivot is frictionless and can only transmit a component $m \cdot \ell \omega^2$ of force along ℓ .

This causes a negative torque $-mr\ell \omega^2$ on the big *r*-arm.

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$. This is the rate of change of ϕ -angular momentum around the pivot at the top of ℓ .

It may seem paradoxical that the θ -coordinate for main *r*-arm feels any torque or acceleration at all. Indeed, if the device is rigid there can be none since the centrifugal force has no moment; (Its line of action hits the θ -axis of the *R*-arm.)

However, this device isn't rigid. The ℓ -leg pivot is frictionless and can only transmit a component $m \cdot \ell \omega^2$ of force along ℓ .

This causes a negative torque $-mr\ell \omega^2$ on the big *r*-arm.

It reduces θ -angular momentum to exactly cancel the rate of increase in ϕ -momentum.

$$\left(MR^2 + mr^2\right)\ddot{\theta} = -mr\ell\omega^2$$

Checks with $\ddot{\theta}$ Riemann equation.....

The ϕ -torque on mass *m* on leg ℓ due to centrifugal force is force times *moment* arm $L = r \cdot \ell / \sqrt{(r^2 + \ell^2)}$. This is the rate of change of ϕ -angular momentum around the pivot at the top of ℓ .

It may seem paradoxical that the θ -coordinate for main *r*-arm feels any torque or acceleration at all. Indeed, if the device is rigid there can be none since the centrifugal force has no moment; (Its line of action hits the θ -axis of the *R*-arm.)

However, this device isn't rigid. The ℓ -leg pivot is frictionless and can only transmit a component $m \cdot \ell \omega^2$ of force along ℓ .

This causes a negative torque $-mr\ell \omega^2$ on the big *r*-arm.

It reduces θ -angular momentum to exactly cancel the rate of increase in ϕ -momentum.

$$\left(MR^2 + mr^2\right)\ddot{\theta} = -mr\ell\omega^2$$

Checks with $\ddot{\theta}$ Riemann equation.....

Note the time derivative of total momentum is zero if outside torques are zero.(twirling skater analogy)

$$\dot{p}_{\theta} + \dot{p}_{\phi} = 0$$
, if $F_{\theta} = 0 = F_{\phi}$