Poincare, Lagrange, Hamiltonian, and Jacobi mechanics

(Unit 1 Ch. 12, Unit 2 Ch. 2-7, Unit 3 Ch. 1-3, Unit 7 Ch. 1-2)
Examples of Hamiltonian mechanics in phase plots
1D Pendulum and phase plot (Simulations of pendulum and cycloidulum)
1D-HO phase-space control (Simulation of "Catcher in the Eye")
Exploring phase space and Lagrangian mechanics more deeply
A weird "derivation" of Lagrange's equations
Poincare identity and Action, Jacobi-Hamilton equations
How Classicists might have "derived" quantum equations
Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
("Color-Quantization" simulations: Davis-Heller "Color-Quantization" or "Classical Chromodynamics")

Examples of Hamiltonian mechanics in phase plots

1D Pendulum and phase plot (Simulation)
1D-HO phase-space control (Simulation of "Catcher in the Eye")

1D Pendulum and phase plot
(a) Force geometry (b) Energy geometry (c) Time geometry

Lagrangian function $L=K E-P E=T$ - U where potential energy is $U(\theta)=-M g R \cos \theta$

$$
L(\dot{\theta}, \theta)=\frac{1}{2} I \dot{\theta}^{2}-U(\theta)=\frac{1}{2} I \dot{\theta}^{2}+M g R \cos \theta
$$

1D Pendulum and phase plot (a) Force geometry
(b) Energy geometry
(c) Time geometry

$$
L(\dot{\theta}, \theta)=\frac{1}{2} I \dot{\theta}^{2}-U(\theta)=\frac{1}{2} I \dot{\theta}^{2}+\overparen{M g R \cos \theta}
$$

Hamiltonian function $H=K E+P E=T+U$ where potential energy is $U(\theta)=-M g R \cos \theta$

$$
H\left(p_{\theta}, \theta\right)=\frac{1}{2 I} p_{\theta}^{2}+U(\theta)=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta=E=\text { const. }
$$

1D Pendulum and phase plot (a) Force geometry
(b) Energy geometry
(c) Time geometry
c) Time geometry

$$
L(\dot{\theta}, \theta)=\frac{1}{2} I \dot{\theta}^{2}-U(\theta)=\frac{1}{2} I \dot{\theta}^{2}+\overparen{M g R \cos \theta}
$$

Hamiltonian function $H=K E+P E=T+U$ where potential energy is $U(\theta)=-M g R \cos \theta$

$$
H\left(p_{\theta}, \theta\right)=\frac{1}{2 I} p_{\theta}^{2}+U(\theta)=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta=E=\text { const. }
$$

implies: $p_{\theta}=\sqrt{2 I(E+M g R \cos \theta)}$

Example of plot of Hamilton for 1D-solid pendulum in its Phase Space $\left(\theta, p_{\theta}\right)$

$$
H\left(p_{\theta}, \theta\right)=E=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta, \text { or: } p_{\theta}=\sqrt{2 I(E+M g R \cos \theta)}
$$

Example of plot of Hamilton for 1D-solid pendulum in its Phase Space $\left(\theta, p_{\theta}\right)$

$$
H\left(p_{\theta}, \theta\right)=E=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta, \text { or: } p_{\theta}=\sqrt{2 I(E+M g R \cos \theta)}
$$

Funny way to look at Hamilton's equations:
$\binom{\dot{q}}{\dot{p}}=\binom{\partial_{p} H}{-\partial_{q} H}=\mathbf{e}_{\mathbf{H}} \times(-\nabla H)=\left(\overrightarrow{\mathrm{H}-\mathrm{axis})} \times(\overrightarrow{\text { fall line }})\right.$, where: $\left\{\begin{array}{c}(\overrightarrow{\mathrm{H}-\mathrm{axis}})=\mathbf{e}_{\mathbf{H}}=\mathbf{e}_{\mathbf{q}} \times \mathbf{e}_{\mathbf{p}} \\ (\mathrm{fall} \text { line })\end{array}\right)=-\nabla H$.

http://www.uark.edu/ua/modphys/markup/PendulumWeb.html
See also: http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html
(Simulations of cycloidulum)

http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html

Examples of Hamiltonian dynamics and phase plots 1D Pendulum and phase plot (Simulation)
Phase control (Simulation of "Catcher in the Eye"))

$$
U(Y)=(1 / 2) k Y^{2}+M g Y
$$

Unit 1
Fig. 7.4

Simulation of atomic classical (or semi-classical) dynamics using varying phase control

Exploring phase space and Lagrangian mechanics more deeply

A weird "derivation" of Lagrange's equations

Poincare identity and Action, Jacobi-Hamilton equations
How Classicists might have "derived" quantum equations
Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics

Variational calculus finds extreme (minimum or maximum) values to entire integrals
Minimize (or maximize): $S(q)=\int^{t_{1}} d t L(q(t), \dot{q}(t), t)$.

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

$$
\begin{equation*}
\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right) \tag{1}
\end{equation*}
$$

1st order $L(q+\delta q)$ approximate:

$$
S(q+\delta q)=\int_{t_{0}}^{t} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right] \text { where: } \delta \dot{q}=\frac{d}{d t} \delta q
$$

A weird "derivation" of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$$
S(q)=\int_{t_{0}}^{t_{1}} d t L(q(t), \dot{q}(t), t)
$$

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

Ist order $L(q+\delta q)$ approximate: $\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right)$
$S(q+\delta q)=\int_{t_{0}}^{t_{1}} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right]$ where: $\delta \dot{q}=\frac{d}{d t} \delta q \quad$ Replace $\frac{\partial L}{\partial \dot{q}} \delta \dot{q}$ with $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q$

Variational calculus finds extreme (minimum or maximum) values to entire integrals

$$
S(q)=\int_{t_{0}}^{t_{1}} d t L(q(t), \dot{q}(t), t)
$$

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

1st order $L(q+\delta q)$ approximate: $\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right)$
$S(q+\delta q)=\int_{t_{0}}^{t} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right]$ where: $\delta \dot{q}=\frac{d}{d t} \delta q \quad$ Replace $\frac{\partial L}{\partial \dot{q}} \delta \dot{q}$ with $\frac{d}{d t}\left(\frac{\partial \dot{L}}{\partial \dot{q}} \delta q\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q$
$S(q+\delta q)=\int_{t_{0}}^{t} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q\right]+\int_{t_{0}}^{t} d t \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right)$

Variational calculus finds extreme (minimum or maximum) values to entire integrals

$$
S(q)=\int_{t_{0}}^{t_{1}} d t L(q(t), \dot{q}(t), t)
$$

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

1 st $\operatorname{order} L(q+\delta q)$ approximate: $\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right)$

$$
S(q+\delta q)=\int_{t_{0}}^{t} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right] \text { where: } \delta \dot{q}=\frac{d}{d t} \delta q \quad \text { Replace } \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \text { with } \frac{d}{d t}\left(\frac{\partial \dot{L}}{\partial \dot{q}} \delta q\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q
$$

$$
\begin{aligned}
S(q+\delta q) & =\int_{t_{0}}^{t_{1}} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q\right]+\int_{t_{0}}^{t} d t \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right) \\
& \left.=\int_{t_{0}}^{t} d t L(q, \dot{q}, t)+\int_{t_{0}}^{t} d t\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right] \delta q+\left(\frac{\partial L}{\partial \dot{q}} \delta q\right) \right\rvert\, t_{t_{0}}
\end{aligned}
$$

A weird "derivation" of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$$
S(q)=\int_{t_{1}}^{t_{1}} d t L(q(t), \dot{q}(t), t)
$$

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

1st order $L(q+\delta q)$ approximate: $\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right)$

$$
S(q+\delta q)=\int_{t_{0}}^{t} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right] \text { where: } \delta \dot{q}=\frac{d}{d t} \delta q
$$

$$
S(q+\delta q)=\int_{t_{0}}^{t_{0}} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q\right]+\int_{t_{0}}^{t} d t \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right)
$$

$$
\left.=\int_{t_{0}}^{t_{1}} d t L(q, \dot{q}, t)+\int_{t_{0}}^{t_{1}} d t\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right] \delta q+\left(\frac{\partial L}{\partial q} \delta q\right) \right\rvert\, t_{0}^{t_{1}}
$$

due to requiring (1)
Third term vanishes by (1). This leaves first order variation: $\delta S=S(q+\delta q)-S(q)=\int_{t_{0}}^{t_{0}} d t\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right] \delta q$ Extreme value (actually minimum value) of $S(q)$ occurs if and only if Lagrange equation is satisfied!

$$
\delta S=0 \Rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=0 \quad \text { Euler-Lagrange equation }(s)
$$

A weird "derivation" of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$$
S(q)=\int_{t_{1}}^{t_{1}} d t L(q(t), \dot{q}(t), t)
$$

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

1st order $L(q+\delta q)$ approximate: $\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right)$

$$
S(q+\delta q)=\int_{t_{0}} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right] \quad \text { where: } \delta \dot{q}=\frac{d}{d t} \delta q \quad \text { Replace } \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \quad \text { with } \quad \frac{d}{d t}\left(\frac{\partial \dot{L}}{\partial \dot{q}} \delta q\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q
$$

$$
\begin{aligned}
S(q+\delta q) & =\int_{t_{0}}^{t_{1}} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q\right]+\int_{t_{0}}^{t_{1}} d t \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right) \\
& \left.=\int_{t_{0}}^{t_{1}} d t L(q, \dot{q}, t)+\int_{t_{0}}^{t_{1}} d t\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right] \delta q+\frac{\partial L}{\partial q} \delta q\right] t_{t_{0}}^{t_{1}}
\end{aligned}
$$

Third term vanishes by (1). This leaves first order variation: $\delta S=S(q+\delta q)-S(q)=\int_{t_{0}}^{t_{0}} d t\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right] \delta q$ Extreme value (actually minimum value) of $S(q)$ occurs if and only if Lagrange equation is satisfied!

$$
\delta S=0 \Rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=0 \quad \text { Euler-Lagrange equation }(s)
$$

But, WHY is nature so inclined to fly JUST SO as to minimize the Lagrangian $L=T$ - U???

Exploring phase space and Lagrangian mechanics more deeply A weird "derivation" of Lagrange's equations
Poincare identity and Action, Jacobi-Hamilton equations
How Classicists might have "derived" quantum equations
Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad\left(\mathbf{v}=\frac{d \mathbf{r}}{d t} \text { implies: } \mathbf{v} \cdot d t=d \mathbf{r}\right)
$$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad\left(\mathbf{v}=\frac{d \mathbf{r}}{d t} \text { implies: } \mathbf{v} \cdot d t=d \mathbf{r}\right)
$$

This is the time differential $d S$ of action $S=\int L \cdot d t \quad$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where: } \quad L=\frac{d S}{d t}
$$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

This is the time differential $d S$ of action $S=\int L \cdot d t$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where }: \quad L=\frac{d S}{d t}
$$

Unit 8 shows DeBroglie law $\mathbf{p}=\hbar \mathbf{k}$ and Planck law $H=\hbar \omega$ make quantum plane wave phase Φ :

$$
\Phi=S / \hbar=\int L \cdot d t / \hbar
$$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

This is the time differential $d S$ of action $S=\int L \cdot d t \quad$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where: } \quad L=\frac{d S}{d t}
$$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

This is the time differential $d S$ of action $S=\int L \cdot d t \quad$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where }: \quad L=\frac{d S}{d t}
$$

Unit 8 shows DeBroglie law $\mathbf{p}=\hbar \mathbf{k}$ and Planck law $H=\hbar \omega$ make quantum plane wave phase $\Phi:$ $\begin{array}{r}\Phi=S / \hbar=\int L \cdot d t / \hbar\end{array}$

$$
\psi(\mathbf{r}, t)=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathbf{k} \cdot \mathbf{r}-\omega \cdot t)}
$$

$\mathrm{Q}:$ When is the Action-differential $d S$ integrable?
A: A differential $d W=f_{x}(x, y) d x+f_{y}(x, y) d y$ is integrable to a $W(x, y)$ if: $f_{x}=\frac{\partial W}{\partial x}$ and: $f_{y}=\frac{\partial W}{\partial y}$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

This is the time differential $d S$ of action $S=\int L \cdot d t \quad$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where }: \quad L=\frac{d S}{d t}
$$

Unit 8 shows DeBroglie law $\mathbf{p}=\hbar \mathbf{k}$ and Planck law $H=\hbar \omega$ make quantum plane wave phase $\Phi:$ $\begin{array}{r}\Phi=S / \hbar=\int L \cdot d t / \hbar\end{array}$

$$
\begin{aligned}
& \psi(\mathbf{r}, \boldsymbol{t})=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathbf{k} \cdot \mathbf{r}-\omega \cdot t)} \longleftarrow \\
& \text { ee Action-differential } d S \text { integrable? } \\
& \text { al } d W=f_{x}(x, y) d x+f_{y}(x, y) d y \text { is integrable to a } W(x, y) \text { if: } f_{x}=\frac{\partial W}{\partial x} \text { and: } f_{y}=\frac{\partial W}{\partial y}
\end{aligned}
$$

Similar to conditions
for integrating work differential $d W=\mathbf{f} \cdot d \mathbf{r}$ to get potential $W(\mathbf{r})$. That condition is no curl allowed: $\nabla \times \mathbf{f}=\mathbf{0}$ or $\underline{\partial \text {-symmetry }}$ of W :

$$
\frac{\partial f_{x}}{\partial y}=\frac{\partial^{2} W}{\partial y \partial x}=\frac{\partial^{2} W}{\partial x \partial y}=\frac{\partial f_{y}}{\partial x}
$$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

This is the time differential $d S$ of action $S=\int L \cdot d t \quad$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where }: \quad L=\frac{d S}{d t}
$$

Unit 8 shows DeBroglie law $\mathbf{p = \hbar k}$ and Planck law $H=\hbar \omega$ maker quantum plane wave phase $\Phi:$ $\begin{array}{r}\Phi=S / \hbar=\int L \cdot d t / \hbar\end{array}$

$$
\begin{aligned}
& \begin{array}{l}
\psi(\mathbf{r}, t)=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathbf{k} \cdot \mathbf{r}-\omega \cdot t)} \\
\\
\text { he Action-differential } d S \text { integrable? } \\
d W=f_{x}(x, y) d x+f_{y}(x, y) d y \text { is integrable to a } W(x, y) \text { if: } f_{x}=\frac{\partial W}{\partial x} \text { and: } f_{y}=\frac{\partial W}{\partial y}
\end{array} \\
& \text { Similar to conditions } \\
& \text { for integrating work } \\
& \text { differential } d W=\mathbf{f} \bullet d \mathbf{r} \\
& \text { to get potential } W(\mathbf{r}) \text {. } \\
& \text { That condition is no } \\
& \text { curl allowed: } \nabla \times \mathbf{f}=\mathbf{0} \\
& d S \text { is integrable if: } \frac{\partial S}{\partial \mathbf{r}}=\mathbf{p} \text { and: } \frac{\partial S}{\partial t}=-H \\
& \mathrm{Q} \text { : When is the Action-differential } d S \text { integrable? } \\
& \text { A: Differential } d W=f_{x}(x, y) d x+f_{y}(x, y) d y \text { is integrable to a } W(x, y) \text { if: } f_{x}=\frac{\partial W}{\partial x} \text { and: } f_{y}=\frac{\partial W}{\partial y}
\end{aligned}
$$

Exploring phase space and Lagrangian mechanics more deeply A weird "derivation" of Lagrange's equations
Poincare identity and Action, Jacobi-Hamilton equations
How Classicists might have "derived" quantum equations
Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics

How Jacobi-Hamilton could have "derived" Schrodinger equations

 (Given "quantum wave")$$
\psi(\mathbf{r}, t)=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathbf{k} \cdot \mathbf{r}-\omega \cdot t)}
$$

$$
d S \text { is integrable if: } \frac{\partial S}{\partial \mathbf{r}}=\mathbf{p} \text { and: } \frac{\partial S}{\partial t}=-H
$$

These conditions are known as Jacobi-Hamilton equations

How Jacobi-Hamilton could have "derived" Schrodinger equations (Given "quantum wave")

$$
\psi(\mathbf{r}, t)=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathrm{k} \cdot \mathbf{r}-\omega \cdot t)}
$$

$$
d S \text { is integrable if: } \frac{\partial S}{\partial \mathbf{r}}=\mathbf{p} \text { and: } \frac{\partial S}{\partial t}=-H
$$

These conditions are known as Jacobi-Hamilton equations

Try $1{ }^{\text {st }} \mathbf{r}$-derivative of wave ψ

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t) & =\frac{\partial}{\partial \mathbf{r}} e^{i S / \hbar}=\frac{\partial(i S / \hbar)}{\partial \mathbf{r}} e^{i S / \hbar}=(i / \hbar) \frac{\partial S}{\partial \mathbf{r}} \psi(\mathbf{r}, t) \\
\frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t) & =(i / \hbar) \mathbf{p} \psi(\mathbf{r}, t) \text { or: } \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t)=\mathbf{p} \psi(\mathbf{r}, t)
\end{aligned}
$$

How Jacobi-Hamilton could have "derived" Schrodinger equations

 (Given "quantum vave")$$
\psi(\mathbf{r}, t)=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathrm{k} \cdot \mathbf{r}-\omega \cdot t)}
$$

$$
d S \text { is integrable if: } \frac{\partial S}{\partial \mathbf{r}}=\mathbf{p} \text { and: } \frac{\partial S}{\partial t}=-H
$$

These conditions are known as Jacobi-Hamilton equations

Try ${ }^{\text {st }} \mathbf{r}$-derivative of wave ψ

$$
\begin{aligned}
& \frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t)=\frac{\partial}{\partial \mathbf{r}} e^{i S / \hbar}=\frac{\partial(i S / \hbar)}{\partial \mathbf{r}} e^{i S / \hbar}=(i / \hbar) \frac{\partial S}{\partial \mathbf{r}} \psi(\mathbf{r}, t) \\
& \frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t)=(i / \hbar) \mathbf{p} \psi(\mathbf{r}, t) \text { or: } \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t)=\mathbf{p} \psi(\mathbf{r}, t)
\end{aligned}
$$

Try $1^{\text {st }} \boldsymbol{t}$-derivative of wave ψ

$$
\begin{aligned}
\frac{\partial}{\partial t} \psi(\mathbf{r}, t) & =\frac{\partial}{\partial t} e^{i S / \hbar}=\frac{\partial(i S / \hbar)}{\partial t} e^{i S / \hbar}=(i / \hbar) \frac{\partial S}{\partial t} \psi(\mathbf{r}, t) \\
& =(i / \hbar)(-H) \psi(\mathbf{r}, t) \text { or: } \mathrm{i} \hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t)=H \psi(\mathbf{r}, t)
\end{aligned}
$$

Exploring phase space and Lagrangian mechanics more deeply

A weird "derivation" of Lagrange's equations

Poincare identity and Action, Jacobi-Hamilton equations
How Classicists might have "derived" quantum equations
Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics

Each point \mathbf{r}_{k} on a wavefront "broadcasts" in all directions.
Only minimum action path interferes constructively

Fig. 12.12

Huygen's contact transformations enforce minimum action

Each point \mathbf{r}_{k} on a wavefront "broadcasts" in all directions.
Only minimum action path interferes constructively

$$
\sum_{\mathbf{r}^{\prime}}\left\langle\mathbf{r}_{1} \mid \mathbf{r}^{\prime}\right\rangle\left\langle\mathbf{r}^{\prime} \mid \mathbf{r}_{0}\right\rangle \cong \sum_{\mathbf{r}^{\prime}} e^{i\left(S_{H}\left(\mathbf{r}_{0} \cdot \mathbf{x}^{\prime}\right)+S_{H}\left(\mathbf{r}^{\prime} \mathbf{r}_{1}\right)\right) / \hbar}=e^{i S_{H}\left(\mathbf{r}_{0} \cdot \mathbf{r}_{1}\right) / \hbar}=\left\langle\mathbf{r}_{1} \mid \mathbf{r}_{0}\right\rangle
$$

Exploring phase space and Lagrangian mechanics more deeply

A weird "derivation" of Lagrange's equations

Poincare identity and Action, Jacobi-Hamilton equations
How Classicists might have "derived" quantum equations
Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
Davis-Heller "Color-Quantization" or "Classical Chromodynamics"

How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S_{H} / \hbar in amplitude to be an integral multiple n of 2π after a closed loop integral $S_{H}\left(\mathbf{r}_{0}: \mathbf{r}_{0}\right)=\int_{r_{0}}^{r_{0}} \mathbf{p} \cdot d \mathbf{r}$. The integer $n(n=0,1,2, \ldots)$ is a quantum number.

$$
l=\left\langle\mathbf{r}_{0} \mid \mathbf{r}_{0}\right\rangle=e^{i S_{H}\left(\mathbf{r}_{0} \cdot \mathbf{r}_{0}\right) / \hbar}=e^{i \Sigma_{H} / \hbar}=1 \text { for: } \Sigma_{H}=2 \pi \hbar n=h n
$$

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the current accumulated value of action $S_{H}(\mathbf{0}: \mathbf{r}) / \hbar$. Adjust energy to quantized pattern (if closed system*)

$$
S_{H}(\mathbf{0}: \mathbf{r})=S_{p}(\mathbf{0}, 0: \mathbf{r}, t)+H t=\int_{0}^{t} L d t+H t
$$

How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S_{H} / \hbar in amplitude to be an integral multiple n of 2π after a closed loop integral $S_{H}\left(\mathbf{r}_{0}: \mathbf{r}_{0}\right)=\int_{r_{0}}^{r_{0}} \mathbf{p} \cdot d \mathbf{r}$. The integer $n(n=0,1,2, \ldots)$ is a quantum number.

$$
l=\left\langle\mathbf{r}_{0} \mid \mathbf{r}_{0}\right\rangle=e^{i S_{H}\left(\mathbf{r}_{0} \cdot \mathbf{r}_{0}\right) / \hbar}=e^{i \Sigma_{H} / \hbar}=1 \text { for: } \Sigma_{H}=2 \pi \hbar n=h n
$$

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the current accumulated value of action $S_{H}(\mathbf{0}: \mathbf{r}) / \hbar$. Adjust energy to quantized pattern (if closed system*)

$$
S_{H}(\mathbf{0}: \mathbf{r})=S_{p}(\mathbf{0}, 0: \mathbf{r}, t)+H t=\int_{0}^{t} L d t+H t .
$$

The hue should represent the phase angle $S_{H}(\mathbf{0}: \mathbf{r}) / \hbar$ modulo 2π as, for example,
$0=$ red, $\pi / 4=$ orange, $\pi / 2=$ yellow, $3 \pi / 4=$ green, $\pi=$ cyan (opposite of red), $5 \pi / 4=$ indigo, $3 \pi / 2=$ blue, $7 \pi / 4=$ purple, and $2 \pi=$ red (full color circle). Interpolating action on a palette of 32 colors is enough precision for low quanta.
N

```
simulation
    by
"Color U(2)"
Unit 1
Fig.
12.13
*closed system
has quantized E.
Standing wave has
only two phases(\pm)
cyan and red
```

Wavepacket and Color-quantization:
M. J. Davis and E. J. Heller, J. Chem. Phys. 75, 246 (1981)

How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S_{H} / \hbar in amplitude to be an integral multiple n of 2π after a closed loop integral $S_{H}\left(\mathbf{r}_{0}: \mathbf{r}_{0}\right)=\int_{r_{0}}^{r_{0}} \mathbf{p} \cdot d \mathbf{r}$. The integer $n(n=0,1,2, \ldots)$ is a quantum number.

$$
l=\left\langle\mathbf{r}_{0} \mid \mathbf{r}_{0}\right\rangle=e^{i S_{H}\left(\mathbf{r}_{0} \cdot \mathbf{r}_{0}\right) / \hbar}=e^{i \Sigma_{H} / \hbar}=1 \text { for: } \Sigma_{H}=2 \pi \hbar n=h n
$$

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the current accumulated value of action $S_{H}(\mathbf{0}: \mathbf{r}) / \hbar$. Adjust energy to quantized pattern (if closed system*)

$$
S_{H}(\mathbf{0}: \mathbf{r})=S_{p}(\mathbf{0}, 0: \mathbf{r}, t)+H t=\int_{0}^{t} L d t+H t
$$

The hue should represent the phase angle $S_{H}(\mathbf{0}: \mathbf{r}) / \hbar$ modulo 2π as, for example,
$0=$ red, $\pi / 4=$ orange, $\pi / 2=$ yellow, $3 \pi / 4=$ green, $\pi=$ cyan (opposite of red), $5 \pi / 4=$ indigo, $3 \pi / 2=$ blue, $7 \pi / 4=$ purple, and $2 \pi=$ red (full color circle). Interpolating action on a palette of 32 colors is enough precision for low quanta.

A moving wave has a quantum phase velocity found by setting $S=$ const. or $d S(0,0: r, t)=0=\mathbf{p} \cdot d \mathbf{r}-H d t$.

$$
\mathbf{V}_{\text {phase }}=\frac{d \mathbf{r}}{d t}=\frac{H}{\mathbf{p}}=\frac{\omega}{\mathbf{k}}
$$

Quantum "phase wavefronts"
(a) $S_{H}=0.3$
(b) $S_{H_{1}}=0.35$

wavefront
"cat ears"
scoot outward..
Unit 1
Fig. 12.15
(d) $S_{H}=0.9$

A moving wave has a quantum phase velocity found by setting $S=$ const. or $d S(0,0: r, t)=0=\mathbf{p} \cdot d \mathbf{r}-H d t$.

$$
\mathbf{V}_{\text {phase }}=\frac{d \mathbf{r}}{d t}=\frac{H}{\mathbf{p}}=\frac{\omega}{\mathbf{k}}
$$

This is quite the opposite of classical particle velocity which is quantum group velocity.
Quantum "phase wavefronts"
(a) $S_{H}=0.3$
(b) $S_{H}=0.35$
(c) $S_{H}=0.4$

$$
\mathbf{V}_{\text {group }}=\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\partial \omega}{\partial \mathbf{k}}
$$

Note: This is Hamilton's $1^{1 \text { st }}$ Equation

Unit 1
Fig. 12.15
(d) $S_{H}=0.9$

nothing left but a smile!

A moving wave has a quantum phase velocity found by setting $S=$ const. or $d S(0,0: r, t)=0=\mathbf{p} \cdot d \mathbf{r}-H d t$.

$$
\mathbf{V}_{\text {phase }}=\frac{d \mathbf{r}}{d t}=\frac{H}{\mathbf{p}}=\frac{\omega}{\mathbf{k}}
$$

This is quite the opposite of classical particle velocity which is quantum group velocity.

Quantum "phase wavefronts"
(a) $S_{H}=0.3$

(d) $S_{H}=0.9$

Unit 1
Fig. 12.15

$$
\mathbf{V}_{\text {group }}=\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\partial \omega}{\partial \mathbf{k}}
$$

Note: This is Hamilton's $1^{\text {st }}$ Equation
wavefront
"cat ears"
scoot outward.

16th Century carving on St. Wifred's in Grappenhall

...on St. Nicolas

After a while .. nothing left but a smile!

A moving wave has a quantum phase velocity found by setting $S=$ const. or $d S(0,0: r, t)=0=\mathbf{p} \cdot d \mathbf{r}-H d t$.

$$
\mathbf{V}_{\text {phase }}=\frac{d \mathbf{r}}{d t}=\frac{H}{\mathbf{p}}=\frac{\omega}{\mathbf{k}}
$$

This is quite the opposite of classical particle velocity which is quantum group velocity.

Quantum "phase wavefronts"
(a) $S_{H}=0.3$

(d) $S_{H}=0.9$
$\mathbf{V}_{\text {group }}=\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\partial \omega}{\partial \mathbf{k}}$
Note: This is Hamilton's $1^{\text {st }}$ Equation

Classical "blast wavefronts"

(c) $T=2.3$ lower $V_{\text {group }}$ up here ...quantum group velocity that is classical particle velocity

Check out the Heller Galleries

http://www.ericihellergallery.com/index.pl?page=image;iid=76
Resonance Fine Art
Home II Gallery II About the Artist II About the Art II Exhibitions II Articles II Order
Chladni

The diagrams of Ernst Chladni (1756-1827) are the scientific, artistic, and even the sociological birthplace of the modern field of wave physics and quantum chaos. Educated in Law at the University of Leipzig, and an amateur musician, Chladni soon followed his love of science and wrote one of the first treatises on acoustics, "Discovery of the Theory of Pitch". Chladni had an inspired idea: to make waves in a solid material visible. This he did by getting metal plates to vibrate, stroking them with a violin bow. Sand or a similar substance spread on the surface of the plate naturally settles to the places where the metal vibrates the least, making such places visible. These places are the so-called nodes, which are wavy lines on the surface. The plates vibrate at pure, audible pitches, and each pitch has a unique nodal pattern. Chladni took the trouble to carefully diagram the patterns, which helped to popularize his work. Then he hit the lecture circuit, fascinating audiences in Europe with live demonstrations. This culminated with a command performance for Napoleon, who was so impressed that he offered a prize to anyone who could explain the patterns. More than that, according to Chladni himself, Napoleon remarked that irregularly shaped plate would be much harder to understand! While this was surely also known to Chladni, it is remarkable that Napoleon had this insight. Chladni received a sum of 6000 francs from Napoleon, who also offered 3000 francs to anyone who could explain the patterns. The mathematician Sophi Germain took he prize in 1816, although her solutions were not completed until the work of Kirchoff thirty years later. Even so, the patterns for irregular shapes remained (and to some extent remains) unexplained. Government funding of waves research goes back a long way! (Chladni was also the first to maintain that meteorites were extraterrestrial; before that, the popular theory was that they were of volcanic origin.) One of his diagrams is the basis for image, which is a playfully colored version of Chaldni's original line drawing. Chladni's original work on waves confined to a region was followed by equally remarkable progress a few years later.

Check out the Heller Galleries

http://www.ericihellergallery.com/index.pl?page=image;iid=76

National Science Foundation (NSF)
 Arlington, VA

September-November 2002
Selected images
http://search.nsf.gov/search?ie=\&site=nsf\&output=xml no dtd\&proxyreload=1\&client=nsf\&lr=\&proxystylesheet=http \%3A\%2F\%2Fwww.nsf.gov\%2Fsearch\%2Fnsf new.xslt\&oe=\&btnG.x=0\&btnG.y=0\&q=eric+heller

University Museum, University of Arkansas, Fayetteville, AK
October 2002 - December 2002
"Approaching Chaos: Visions from the Quantum Frontier"

Approaching Chaos is supported by a grant from the National Science Foundation and by MIT Museum and the Center for Theoretical Physics at the Massachusetts Institute of Technology.

Check out the Heller Galleries

http://www.ericihellergallery.com/index.pl?page=image;iid=76

National Science Foundation (NSF)
 Arlington, VA

September-November 2002
Selected images.
http://search.nsf.gov/search?ie=\&site=nsf\&output=xml no dtd\&proxyreload=1\&client=nsf\&lr=\&proxystylesheet=http \%3A\%2F\%2Fwww.nsf.gov\%2Fsearch\%2Fnsf new.xslt\&oe=\&btnG.x=0\&btnG.y=0\&q=eric+heller

University Museum, University of Arkansas, Fayetteville, AK
October 2002 - December 2002
"Approaching Chaos: Visions from the Quantum Frontier"

Approaching Chaos is supported by a grant from the National Science Foundation and by MIT Museum and the Center for Theoretical Physics at the Massachusetts Institute of Technology.
*UAF Museum closed after this exhibit

