Hamiltonian vs. Lagrange mechanics in Generalized Curvilinear Coordinates (GCC)

(Unit 1 Ch. 12, Unit 2 Ch. 2-7, Unit 3 Ch. 1-3)
Review of Lectures 9-12 procedures:
Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity \dot{q}^{m} Hamilton prefers Contravariant $g^{m n}$ with Covariant momentum p_{m}

Deriving Hamilton's equations from Lagrange's equations
Expressing Hamiltonian $H\left(p_{m}, q^{n}\right)$ using $g^{m n}$ and covariant momentum p_{m}
Polar-coordinate example of Hamilton's equations
Hamilton's equations in Runga-Kutta (computer solution) form
Examples of Hamiltonian mechanics in effective potentials
$I_{\text {soropoic }} H_{\text {armonic }} O_{\text {scillator }}$ in polar coordinates and effective potential (Simulation)
Coulomb orbits in polar coordinates and effective potential (Simulation)
Parabolic and 2D-IHO orbital envelopes
Clues for future assignment _ (Simulation)
Examples of Hamiltonian mechanics in phase plots
$1 D$ Pendulum and phase plot (Simulation)
1D-HO phase-space control (Simulation)

Quick Review of Lagrange Relations in Lectures 9-11
$\longrightarrow 0^{\text {th }}$ and $1^{\text {st }}$ equations of Lagrange and Hamilton and their geometric relations

Quick Review of Lagrange Relations in Lectures 9-11

$0^{\text {th }}$ and $1^{\text {st }}$ equations of Lagrange and Hamilton

Starts out with simple demands for explicit-dependence, "loyalty" or "fealty to the colors"

Lagrangian and Estrangian have no explicit dependence on momentum \mathbf{p}

$$
\frac{\partial L}{\partial p_{k}} \equiv 0 \equiv \frac{\partial E}{\partial p_{k}}
$$

Hamiltonian and Estrangian have no explicit dependence on velocity \mathbf{v}

$$
\frac{\partial H}{\partial v_{k}} \equiv 0 \equiv \frac{\partial E}{\partial v_{k}}
$$

Lagrangian and Hamiltonian have no explicit dependence on speedinum \mathbf{V}

$$
\frac{\partial L}{\partial V_{k}} \equiv 0 \equiv \frac{\partial H}{\partial V_{k}}
$$

Such non-dependencies hold in spite of "under-the-table" matrix and partial-differential connections

$$
\nabla_{v} L=\frac{\partial L}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}} \frac{\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}}{2}
$$

$$
\nabla_{p} H=\mathbf{v}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\partial}{\partial \mathbf{p}} \frac{\mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}}{2}
$$

$$
=\mathbf{M}^{-1} \cdot \mathbf{p}=\mathbf{v}
$$

$$
\binom{\frac{\partial L}{\partial v_{1}}}{\frac{\partial L}{\partial v_{2}}}=\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{p_{1}}{p_{2}}
$$

Lagrange's $1^{\text {st }}$ equation(s)
$\frac{\partial L}{\partial v_{k}}=p_{k} \quad$ or: $\quad \frac{\partial L}{\partial \mathbf{v}}=\mathbf{p}$

Unit 1
(a)
Lagrangian plot
$L(\mathbf{v})=$ const. $=\mathbf{v} \cdot \mathbf{M} \bullet \mathbf{v} / 2$

Fig. 12.2
(b)
plot

(c) Overlapping plots

Lagrangian tangent at velocity \mathbf{v} $1^{\text {st }}$ equation of Lagrange
(d) Less mass
 is normal to momentum \mathbf{p}

Review of Lagrange Equations in Lecture 11

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity \dot{q}^{m} GCC Lagrangian definition GCC "canonical" momentum p_{m} definition
$\longrightarrow G C C$ "canonical" force F_{m} definition
Coriolis "fictitious" forces (... and weather effects)

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian $K E-U$ is supposed to be explicit function of velocity.
(Review of Lecture 12)
$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$
Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{r} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$

This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

 Lagrangian $K E-U$ is supposed to be explicit function of velocity.$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$
Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\bullet} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$

This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coodinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :

$$
p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{r r} \dot{r}=M \dot{r}
$$

Nothing too surprising;
radial momentum p_{r} has the usual linear $M \cdot v$ form

$$
p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=M g_{\phi \phi \phi} \dot{\phi}=M r^{2} \dot{\phi}
$$

Wow! $g_{\phi \phi}$ gives moment-of-inertia factor $M r^{2}$ automatically for the angular momentum $p_{\phi}=M r^{2} \omega$.

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian $K E-U$ is supposed to be explicit function of velocity.
(Review of Lecture 12)
$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$
Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{lll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\bullet} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$
This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :

$$
p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{r r} \dot{r}=M \dot{r} \quad \begin{aligned}
& \text { Nothing too surprising; } \\
& \text { radial momentum pr has the } \\
& \text { usual linear } M \cdot v \text { form }
\end{aligned} \quad p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=M g_{\phi \phi} \dot{\phi}=M r^{2} \dot{\phi}
$$

Wow! $g_{\phi \phi}$ gives moment-of-inertia factor $M r^{2}$ automatically for the angular momentum $p_{\phi}=M r^{2} \omega$.
$2^{\text {nd }} L$-equation involves total time derivative \dot{p}_{m} for each momentum p_{m} :

$$
\dot{p}_{r}=\frac{\partial L}{\partial r}=\frac{M}{2} \frac{\partial g_{\phi \phi}}{\partial r} \dot{\phi}^{2}-\frac{\partial U}{\partial r}=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \quad \begin{aligned}
& \text { Centrifugal } \\
& \text { force Mr } \omega^{2}
\end{aligned} \quad \dot{p}_{\phi}=\frac{\partial L}{\partial \phi}=0-\frac{\partial U}{\partial \phi} \quad \begin{aligned}
& \text { Angular momentum } p_{\phi} \text { is conserved if } \\
& \text { potential } U \text { has no explicit } \phi \text {-dependence }
\end{aligned}
$$

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

 Lagrangian KE-U is supposed to be explicit function of velocity.$$
L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})
$$

Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{lll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\bullet} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$
This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :

$$
\begin{aligned}
& p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{r r} \dot{r}=M \dot{r} \\
& \text { Nothing too surprising; } \\
& \text { radial momentum } p_{r} \text { has the } \\
& \text { usual linear } M \cdot v \text { form } \\
& p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=M g_{\phi \phi} \dot{\phi}=M r^{2} \dot{\phi} \\
& \text { Wow! } g_{\phi \phi} \text { gives moment-of-inertia } \\
& \text { factor } M r^{2} \text { automatically for the } \\
& \text { angular momentum } p_{\phi}=M r^{2} \omega \text {. } \\
& 2^{\text {nd }} L \text {-equation invфlves total time derivative } \dot{p}_{m} \text { for each momentum } p_{m} \text { : } \\
& \dot{p}_{r}=\frac{\partial L}{\partial r}=\frac{M}{2} \frac{\partial g_{\phi \rho}}{\partial r} \dot{\phi}^{2}-\frac{\partial U}{\partial r}=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \quad \begin{array}{l}
\text { Centrifugal } \\
\text { force Mral }
\end{array} \quad \dot{p}_{\phi}=\frac{\partial L}{\partial \phi}=0-\frac{\partial U}{\partial \phi} \\
& \text { Find } \dot{p}_{m} \text { directly from } 1^{s t} L \text {-equation: } \dot{p}_{m} \equiv \frac{d p_{m}}{d t}=\frac{d}{d t} M\left(g_{m n} \dot{q}^{n}\right)=M\left(\dot{g}_{n n} \dot{q}^{n}+g_{m n} \ddot{q}^{n}\right) \text {. } \\
& \dot{p}_{r} \equiv \frac{d p_{r}}{d t}=M \ddot{\ddot{r}}
\end{aligned}
$$

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

 Lagrangian $K E-U$ is supposed to be explicit function of velocity.$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$
Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{lll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\mathbf{E}} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$
This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :

$$
p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{r r} \dot{r}=M \dot{r}
$$

Nothing too surprising; radial momentum p_{r} has the usual linear $M \cdot v$ form

$$
p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=M g_{\phi \phi} \dot{\phi}=M r^{2} \dot{\phi}
$$

Wow! $g_{\phi \phi}$ gives moment-of-inertia factor $M r^{2}$ automatically for the angular momentum $p_{\phi}=M r^{2} \omega$. $2^{\text {nd }} L$-equation invplves total time derivative \dot{p}_{m} for each momentum p_{m} :

$$
\dot{p}_{r}=\frac{\partial L}{\partial r}=\frac{M}{2} \frac{\partial g_{\phi \phi}}{\partial r} / \dot{\phi}^{2}-\frac{\partial U}{\partial r}=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \quad \begin{aligned}
& \text { Centrifugal } \\
& \text { force Mr } \omega^{2}
\end{aligned} \quad \dot{p}_{\phi}=\frac{\partial L}{\partial \phi}=0-\frac{\partial U}{\partial \phi}
$$

$$
\begin{aligned}
& \text { Angular momentum } p_{\phi} \text { is conserved if } \\
& \text { potential U has no explicit } \phi \text {-dependence }
\end{aligned}
$$

$$
\text { Find } \dot{p}_{m} \text { directly from } 1^{s t} \text { L-equation: } \dot{p}_{m} \equiv \frac{d p_{m}}{d t}=\frac{d}{d t} M\left(g_{m n} \dot{q}^{n}\right)=M\left(\dot{g}_{m n} \dot{q}^{n} \int g_{m n} \ddot{q}^{n}\right) \text { Equate it to } \dot{p}_{m} \text { in } 2^{n d} \text { L-equation: }
$$

$$
\dot{p}_{r} \equiv \frac{d p_{r}}{d t}=M \ddot{r} \quad \text { Centrifugal (center-fleeing) force }
$$

$$
=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \quad \text { Centripetal (center-pulling) force }
$$

$$
\begin{aligned}
\dot{p}_{\phi} & \frac{d p_{\phi}}{d t}=2 M r \dot{r} \dot{\phi}+M r^{2} \ddot{\phi} \quad \begin{array}{l}
\text { Torque relates to two distinct parts: } \\
\text { Coriolis and angular acceleration }
\end{array} \\
& =0-\frac{\partial U}{\partial \phi} \quad \begin{array}{l}
\text { Angular momentum } p_{\phi} \text { is conserved if } \\
\text { potential } U \text { has no explicit } \phi \text {-dependence }
\end{array}
\end{aligned}
$$

$$
\begin{array}{rlr}
\dot{p}_{r} & \equiv \frac{d p_{r}}{d t}=M \ddot{r} & \text { Centrifugal (center-fleeing) force } \\
\text { equals total }
\end{array}
$$

$$
\begin{aligned}
\dot{p}_{\phi} & =\frac{d p_{\phi}}{d t}=2 M r \dot{r} \dot{\phi}+M r^{2} \ddot{\phi} \quad \begin{array}{l}
\text { Torque relates to two distinct parts: } \\
\text { Coriolis and angular: acceleration }
\end{array} \\
& =0-\frac{\partial U}{\partial \phi} \quad \begin{array}{l}
\text { Angular momentum } p_{\phi} \text { is conserved if } \\
\text { potential } U \text { has no explicit } \phi \text {-dependence }
\end{array}
\end{aligned}
$$

Conventional forms
radial force: $M \ddot{r}=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r}$ angular force or torque: $M r^{2} \ddot{\phi}=-2 M r \dot{r} \dot{\phi}-\frac{\partial U}{\partial \phi}$
Field-free ($U=0$) radial acceleration: $\quad \ddot{r}=r \dot{\phi}^{2}$ angular acceleration: $\ddot{\phi}=-2 \frac{\dot{r} \dot{\phi}}{r}$

$$
\begin{array}{rlr}
\dot{p}_{r} & \equiv \frac{d p_{r}}{d t}=M \ddot{r} & \text { Centrifugal (center-fleeing) force } \\
\text { equalstotal }
\end{array}
$$

$$
\begin{aligned}
\dot{p}_{\phi} & \stackrel{d p_{\phi}}{d t}=2 M r \dot{r} \dot{\phi}+M r^{2} \ddot{\phi} \quad \begin{array}{l}
\text { Torque relates to two distinct parts: } \\
\text { Coriolis and angular:acceleration }
\end{array} \\
& =0-\frac{\partial U}{\partial \phi} \quad \begin{array}{l}
\text { Angular momentum } p_{\phi} \text { is conserved if } \\
\text { potential } U \text { has no explicit } \phi \text {-dependence }
\end{array}
\end{aligned}
$$

Conventional forms

$$
\text { radial force: } M \ddot{r}=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r}
$$

$$
\text { angular force or torque: } M r^{2} \ddot{\phi}=-2 M r \dot{r} \dot{\phi}-\frac{\partial U}{\partial \phi}
$$

Field-free ($U=0$)
radial acceleration: $\quad \ddot{r}=r \dot{\phi}^{2}$
angular acceleration: $\ddot{\phi}=-2 \frac{\dot{r} \dot{\phi}}{r}$

Hamilton prefers Contravariant $g^{m n}$ with Covariant momentum p_{m}

\longrightarrow Deriving Hamilton's equations from Lagrange's equations
Expressing Hamiltonian $H\left(p_{m}, q^{n}\right)$ using $g^{m n}$ and covariant momentum p_{m}

Deriving Hamilton's equations from Lagrangian theory Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity $\dot{q} \ldots$

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{\dot{q}^{m}}{d t}
$$

\ldots of coordinates and velocity and time, too. (You can safely drop last chain-rule factor $[1=d t / d t]$)

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t} \frac{d t}{d t}
$$

Deriving Hamilton's equations from Lagrangian theory

 Consider total time derivative of Lagrangian $L=T-U$that is explicit function of coordinates and velocity $\dot{q} \ldots$

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U(t)-dial.)

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial}{\partial t}
$$

Cartoonish way to imagine explicit time dependence

Deriving Hamilton's equations from Lagrangian theory

Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity $\dot{q} \ldots$

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)

Recall Lagrange equations: $\quad \dot{p}_{m}=\frac{\partial L}{\partial q^{m}} \quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}$

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\dot{p}_{m} \frac{d q^{m}}{d t}+p_{m} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

Cartoonish way to imagine explicit time dependence

Deriving Hamilton's equations from Lagrangian theory

Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity $\dot{q} . .$.

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)

Recall Lagrange equations:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q_{\downarrow}^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}_{\downarrow}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

$$
\dot{p}_{m}=\frac{\partial L}{\partial q^{m}} \quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}
$$

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\ddot{p}_{m} \frac{d q^{m}}{d t}+p_{m} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

$$
=\frac{d L}{d t}=\frac{d}{d t}\left(p_{m} \dot{q}^{m}\right) \quad+\frac{\partial L}{\partial t}
$$

Cartoonish way to imagine explicit time dependence

Deriving Hamilton's equations from Lagrangian theory
Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity $\dot{q} . .$.

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)

Recall Lagrange equations:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q_{\downarrow}^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}_{\downarrow}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

$\dot{N}_{m} \frac{\partial q^{m}}{} p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}$

Use product rule:

$$
\begin{aligned}
\dot{L}(q, \dot{q}, t) & =\frac{d L}{d t}=\dot{p}_{m} \frac{d q^{m}}{d t}+p_{m}^{\downarrow} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t} \\
& =\frac{d L}{d t}=\frac{d}{\longleftrightarrow d}\left(p_{m} \dot{q}^{m}\right) \quad+\frac{\partial L}{\partial t}
\end{aligned}
$$

Cartoonish way to imagine explicit time dependence
and switch the $d L / d t$ and $\partial L / \partial t$ to define the Hamiltonian function $H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})$

$$
\frac{d}{d t}\left(p_{m} \dot{q}^{m}-L\right)=-\frac{\partial L}{\partial t}=\frac{d H}{d t} \quad \text { where }: H=p_{m} \dot{q}^{m}-L
$$

Deriving Hamilton's equations from Lagrangian theory
Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity \dot{q}^{\ldots}

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)

Recall Lagrange equations:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q_{\downarrow}^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}_{\downarrow}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

(That's the old Legendre transform)

$$
\frac{d}{d t}\left(p_{m} \dot{q}^{m}-L\right)=-\frac{\partial L}{\partial t}=\frac{d H}{d t} \quad \text { where }: H=p_{p_{m} \dot{q}^{m}-L}
$$

Deriving Hamilton's equations from Lagrangian theory
Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity \dot{q}^{\ldots}

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)

Recall Lagrange equations:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q_{\downarrow}^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}_{\downarrow}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

(That's the old Legendre transform)
Define the Hamiltonian function $H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})$

$$
\frac{d}{d t}\left(p_{m} \dot{q}^{m}-L\right)=-\frac{\partial L}{\partial t}=\frac{d H}{d t} \quad \text { where }: H=p_{m} \dot{q}^{m}-L
$$

Deriving Hamilton's equations from Lagrangian theory
Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity \dot{q}...

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)

Recall Lagrange equations:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q_{\downarrow}^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}_{\downarrow}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

$$
\dot{u} \frac{d v}{d t}+u \frac{d \dot{v}}{d t}=\frac{d}{d t}(u \dot{v})
$$

$$
=\frac{d L}{d t}=\stackrel{d}{\rightleftarrows}\left(p_{m} \dot{q}^{m}\right) \quad+\frac{\partial L}{\partial t}
$$

Use product rule:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\ddot{p}_{m} \frac{d q^{m}}{d t}+p_{m} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

Define the Hamiltonian function $H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})$
(That's the old Legendre transform)

$$
\frac{d}{d t}\left(p_{m} \dot{q}^{m}-L\right)=-\frac{\partial L}{\partial t}=\frac{d H}{d t} \text { where: } H=p_{m} \dot{q}^{m}-L \quad \text { (Recall: } \frac{\partial L}{\partial p_{m}} \equiv 0 \text { and: } \frac{\partial H}{\partial \dot{q}^{m}}=0
$$

Deriving Hamilton's equations from Lagrangian theory
Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity \dot{q}...

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)

Recall Lagrange equations:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q_{\downarrow}^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}_{\downarrow}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

Use product rule:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\dot{p}_{m} \frac{d q^{m}}{d t}+p_{m} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

$$
\dot{u} \frac{d v}{d t}+u \frac{d \dot{\dot{v}}}{d t}=\frac{d}{d t}(u \dot{v})
$$

$$
=\frac{d L}{d t} \stackrel{\rightharpoonup}{\rightleftarrows}=\frac{d}{d t}\left(p_{m} \dot{q}^{m}\right) \quad+\frac{\partial L}{\partial t}
$$

Define the Hamiltonian function $H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})$
(That's the old Legendre transform)

$$
\frac{d}{d t}\left(p_{m} \dot{q}^{m}-L\right)=-\frac{\partial L}{\partial t}=\frac{d H}{d t} \text { where }: H=p_{m} \dot{q}^{m}-L \quad \begin{aligned}
& \text { (Recall: } \left.\frac{\partial L}{\partial p_{m}} \equiv 0 \text { and }: \frac{\partial H}{\partial \dot{q}^{m}}=0\right) \\
& \text { so }: \frac{\partial H}{\partial p_{m}}=\frac{\partial p_{m}}{\partial p_{m}} \dot{q}_{-}^{m}-0
\end{aligned}
$$

Hamilton's $1^{\text {st }}$ GCC equation
 $$
\frac{\partial H}{\partial p_{m}}=\dot{q}^{m}
$$

Deriving Hamilton's equations from Lagrangian theory
Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity \dot{q}...

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)

Recall Lagrange equations:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q_{\downarrow}^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}_{\downarrow}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

Use product rule:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\dot{p}_{m} \frac{d q^{m}}{d t}+p_{m} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

$$
\dot{u} \frac{d v}{d t}+u \frac{d \dot{v}}{d t}=\frac{d}{d t}(u \dot{v})
$$

$$
=\frac{d L}{d t} \stackrel{\rightharpoonup}{\rightleftarrows}=\frac{d}{d t}\left(p_{m} \dot{q}^{m}\right) \quad+\frac{\partial L}{\partial t}
$$

Define the Hamiltonian function $H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})$
(That's the old Legendre transform)

$$
\frac{d}{d t}\left(p_{m} \dot{q}^{m}-L\right)=-\frac{\partial L}{\partial t}=\frac{d H}{d t} \text { where :H=}=p_{m} \dot{q}^{m}-L \quad \text { (Recall: } \frac{\partial L}{\partial p_{m}} \equiv 0 \text { and: } \frac{\partial \dot{H}}{\partial \dot{q}^{m}}=\frac{\partial H}{}=\frac{\partial p_{m}}{\partial p_{m}}=\frac{\dot{q}_{-}^{m}}{\partial p_{m}}
$$

Hamilton's $1^{\text {st }}$ GCC equation

$$
\frac{\partial H}{\partial p_{m}}=\dot{q}^{m}
$$

Note: $\frac{\partial p_{m}}{\partial q_{m}} \equiv 0$ and: $\frac{\partial \dot{q}^{m}}{\partial q_{m}} \equiv 0$

Deriving Hamilton's equations from Lagrangian theory

Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity \dot{q}...

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)

Recall Lagrange equations:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q_{\downarrow}^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}_{\downarrow}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

Use product rule:

$$
\dot{p}_{m}=\frac{\partial L}{\partial q^{m}} \quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}
$$

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\dot{p}_{m} \frac{d q^{m}}{d t}+p_{m}^{\downarrow} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

$$
\dot{u} \frac{d v}{d t}+u \frac{d \dot{v}}{d t}=\frac{d}{d t}(u \dot{v})
$$

$$
=\frac{d L}{d t} \stackrel{\rightharpoonup}{\rightleftarrows}=\frac{d}{d t}\left(p_{m} \dot{q}^{m}\right) \quad+\frac{\partial L}{\partial t}
$$

(That's the old Legendre transform) Define the Hamiltonian function $H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})$

$$
\frac{d}{d t}\left(p_{m} \dot{q}^{m}-L\right)=-\frac{\partial L}{\partial t}=\frac{d H}{d t} \text { where :H=}=p_{m} \dot{q}^{m}-L \text { Recall: } \frac{\partial L}{\partial p_{m}} \equiv 0 \text { and: } \frac{\partial H}{\partial \dot{q}^{m}}=
$$

Hamilton's $1^{\text {st }}$ GCC equation

$$
\frac{\partial H}{\partial p_{m}}=q^{m^{\prime}}
$$

$$
\begin{aligned}
& \text { Note: } \frac{\partial p_{m}}{\partial q_{m}}=0 \text { and: } \frac{\partial \dot{q}^{m}}{\partial q_{m}}=0 \\
& \frac{\partial H}{\partial q^{m}}=0 \cdot 0-\frac{\partial L}{\partial q^{m}}=-\dot{p}_{m}
\end{aligned}
$$

Deriving Hamilton's equations from Lagrangian theory

Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity \dot{q}...

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)

Recall Lagrange equations:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q_{\downarrow}^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}_{\downarrow}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

$$
\dot{p}_{m}=\frac{\partial L}{\partial q^{m}}
$$

$$
p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}
$$

Use product rule:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\dot{p}_{m} \frac{d q^{m}}{d t}+p_{m}^{\downarrow} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

$$
=\frac{d L}{d t}=\stackrel{d}{\rightleftarrows}\left(p_{m} \dot{q}^{m}\right) \quad+\frac{\partial L}{\partial t}
$$

(That's the old Legendre transform) Define the Hamiltonian function $H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})$

$$
\underline{d}\left(p_{\ldots} \dot{q}^{m}-L\right)=-\frac{\partial L}{L}=\frac{d H}{} \text { where: } H=p_{\ldots} \dot{\theta}^{m}-L
$$

$$
s o: \frac{\partial H}{\partial p_{m}}=\frac{\partial p_{m}}{\partial p_{m}} \dot{q}_{-}^{m}-0
$$

Hamilton's $1^{\text {st }}$ GCC equation
 $$
\frac{\partial H}{\partial p_{m}}=\dot{q}^{m}
$$

$$
\begin{aligned}
& \text { Note: } \frac{\partial p_{m}}{\partial q_{m}}=0 \text { and: } \frac{\partial \dot{q}^{m}}{\partial q_{m}} \equiv 0 \\
& \frac{\partial H}{\partial q^{m}}=0 \cdot 0-\frac{\partial L}{\partial q^{m}}=-\dot{p}_{m}
\end{aligned}
$$

Hamilton's $2^{\text {nd }}$ GCC equation
$\frac{\partial H}{\partial q^{m}}=-\dot{p}_{m}$

Deriving Hamilton's equations from Lagrangian theory
Consider total time derivative of Lagrangian $L=T-U$
that is explicit function of coordinates and velocity \dot{q}...

$$
\dot{L}(q, \dot{q},)=\frac{d L}{d t}=\frac{\partial L}{\partial q^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}^{m}} \frac{d \dot{q}^{m}}{d t}
$$

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)

Recall Lagrange equations:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\frac{\partial L}{\partial q_{\downarrow}^{m}} \frac{d q^{m}}{d t}+\frac{\partial L}{\partial \dot{q}_{\downarrow}^{m}} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

Use product rule:

$$
\dot{L}(q, \dot{q}, t)=\frac{d L}{d t}=\dot{p}_{m} \frac{d q^{m}}{d t}+p_{m} \frac{d \dot{q}^{m}}{d t}+\frac{\partial L}{\partial t}
$$

$$
\dot{u} \frac{d v}{d t}+u \frac{d \dot{v}}{d t}=\frac{d}{d t}(u \dot{v})
$$

$$
=\frac{d L}{d t} \stackrel{\vec{d}}{\stackrel{d}{d t}\left(p_{m} \dot{q}^{m}\right) \quad+\frac{\partial L}{\partial t}}
$$

Define the Hamiltonian function $H(\mathbf{p})=\mathbf{p} \cdot \mathbf{v}-L(\mathbf{v})$

$$
\frac{d}{d t}\left(p_{m} \dot{q}^{m}-L\right)=-\frac{\partial L}{\partial t}=\frac{d H}{d t} \text { where }: H=p_{m} \dot{q}^{m}-L \quad \begin{aligned}
& \text { (Recall: }: \frac{\partial L}{\partial p_{m}}=0 \text { and: }: \frac{\partial H}{\partial \dot{q}^{m}}= \\
& \text { angst peculiar relation } \\
& \text { involving partial vs total }
\end{aligned}
$$

(That's the old Legendre transform)

Hamilton's $1^{\text {st }}$ GCC equation

$$
\frac{\partial H}{\partial p_{m}}=\dot{q}^{m}
$$

Hamilton's $2^{\text {nd }}$ GCC equation
$\frac{\partial H}{\partial q^{m}}=-\dot{p}_{m}$

Hamilton prefers Contravariant $g^{m n}$ with Covariant momentum p_{m}

Deriving Hamilton's equations from Lagrange's equations
\longrightarrow Expressing Hamiltonian $H\left(p_{m}, q^{n}\right)$ using $g^{m n}$ and covariant momentum p_{m} Polar-coordinate example of Hamilton's equations

Hamilton's equations in Runga-Kutta (computer solution) form

Hamilton prefers Contravariant gmn with Covariant momentum p_{m}

 Using Legendre transform of Lagrangian $L=T-U$ with covariant metric definitions of L and p_{m} We already have: $H=p_{m} \dot{q}^{m}-L \quad$ and: $L(\dot{q})=\frac{1}{2} M g_{m n} \overleftarrow{\dot{q}^{m} \dot{q}^{n}-U \quad \text { and: } \quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}=M g_{m n} \dot{q}^{n}}$ Now we combine all these:
Hamilton prefers Contravariant $g^{m n}$ with Covariant momentum p_{m}

 Using Legendre transform of Lagrangian $L=T-U$ with covariant metric definitions of L and p_{m} We already have: $H=p_{m} \dot{q}^{m}-L \quad$ and: $L(\dot{q})=\frac{1}{2} M g_{m n} \overleftrightarrow{\dot{q}^{m} \dot{q}^{n}-U \quad \text { and: } \quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}=M \vec{g}_{m n} \dot{q}^{n}, ~ . ~}$Now we combine all these:

$$
\begin{aligned}
H & =p_{m} \dot{q}^{m}-L=\left(M g_{m n} \dot{q}^{n}\right) \dot{q}^{m}-\left(\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}-U\right) \\
& =M g_{m n} \dot{q}^{m} \dot{q}^{n}-\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U
\end{aligned}
$$

Hamilton prefers Contravariant $g^{m n}$ with Covariant momentum p_{m}

 Using Legendre transform of Lagrangian $L=T-U$ with covariant metric definitions of L and p_{m} We already have: $H=p_{m} \dot{q}^{m}-L \quad$ and: $L(\dot{q})=\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}-U \quad$ and: $p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}=M \vec{g}_{m n} \dot{q}^{n}$Now we combine all these:

$$
\begin{aligned}
H & =p_{m} \dot{q}^{m}-L=\left(M g_{m n} \dot{q}^{n}\right) \widehat{\dot{q}^{m}}-\left(\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}-U\right) \\
& =M g_{m n} \dot{q}^{m} \dot{q}^{n}-\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U
\end{aligned}
$$

This gives an "illegal dependence" for the Hamiltonian (It musn't be "explicit" in velocityq\dot{q}^{m}.)

$$
H=\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U=T+U
$$

($\left.\begin{array}{c}\text { Numerically } \\ \text { correct ONLY! }\end{array}\right)$

Hamilton prefers Contravariant gmn with Covariant momentum p_{m}

 Using Legendre transform of Lagrangian $L=T-U$ with covariant metric definitions of L and p_{m} We already have: $H=p_{m} \dot{q}^{m}-L \quad$ and: $L(\dot{q})=\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}-U \quad$ and $\quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}=M g_{m n} \dot{q}^{n}$ Now we combine all these:$$
\begin{aligned}
H & =p_{m} \dot{q}^{m}-L=\left(M g_{m n} \dot{q}^{n}\right) \overleftrightarrow{\dot{q}^{m}}-\left(\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}-U\right) \\
& =M g_{m n} \dot{q}^{m} \dot{q}^{n}-\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U
\end{aligned}
$$

This gives an "illegal dependence" for the Hamiltonian (It musn't be "explicit" in velocity \dot{q} ".)

$$
H=\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U=T+U \quad\binom{\text { Numerically }}{\text { correct ONLY! }}
$$

An inverse metric relation $\dot{q}^{m}=\frac{1}{M} g^{m n} p_{n}$ gives correct form that depends on momentum p_{m}.

$$
H=\frac{1}{2 M} g^{m n} p_{m} p_{n}+U=T+U \equiv E
$$

(Formally and Numerically) correct

Details of metric tensor algebra:
$\begin{array}{rlrl}\text { Given: } & H & =\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U \quad \text { Let: } \dot{q}^{m}=\frac{1}{M} g^{m n^{\prime}} \boldsymbol{p}_{n^{\prime}} \\ & H & =\frac{1}{2} M g_{m n} \frac{1}{M} g^{m n^{\prime}} \dot{p}_{n^{\prime}} \dot{q}^{n}+U & \text { Metric }\end{array}$

$$
=\frac{1}{2} g_{m n} g^{m n^{\prime}} p_{n^{\prime}} \dot{q}^{n}+U
$$

$$
\begin{gathered}
g_{m n}=g_{n m} \\
g^{m n^{\prime}}=g^{n^{\prime} m} \\
\text { (Always applies) }
\end{gathered}
$$

Details of metric tensor algebra:
Given: $\begin{array}{rlr}H & =\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U \quad \text { Let: } \dot{q}^{m}=\frac{1}{M} g^{m n^{\prime}} p_{n^{\prime}} \\ H & =\frac{1}{2} M g_{m n} \frac{1}{M} g^{m n^{\prime}} \hat{p}_{n^{\prime}} \dot{q}^{n}+U & \text { Metric }\end{array}$

$$
=\frac{1}{2} g_{m n} g^{m n^{\prime}} p_{n^{\prime}} \dot{q}^{n}+U
$$

$$
\begin{aligned}
& g_{m n}=g_{n m} \\
& g^{m n^{\prime}}=g^{n^{\prime} m}
\end{aligned}
$$

$$
=\frac{1}{2} \delta_{n}^{n^{\prime}} p_{n^{\prime}} \dot{q}^{n}+U \quad \text { where: } \quad \dot{q}^{n}=\frac{1}{M} g^{m^{\prime} n} p_{m^{\prime}}
$$

(Always applies)
Metric inversion symmetry:

$$
g_{m n} g^{m n^{\prime}}=\delta_{n}^{n^{\prime}}
$$

Details of metric tensor algebra:

Given: $\quad H=\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U$

$$
\begin{array}{rlr}
H & =\frac{1}{2} M g_{m n} \frac{1}{M} g^{m n^{\prime} \cdot \ldots ~} p_{n^{\prime}} \dot{q}^{n}+U & \begin{array}{r}
\text { Metric tensor symmetry: } \\
g_{m n}=g_{n m} \\
\\
\end{array}=\frac{1}{2} g_{m n} g^{m n^{\prime}} p_{n^{\prime}} \dot{q}^{n}+U \\
& g^{m n^{\prime}}=g^{n^{\prime m}} \\
& =\frac{1}{2} \delta_{n}^{n^{\prime}} p_{n^{\prime}} \dot{q}^{n}+U & \text { where: } \dot{q}^{n}=\frac{1}{M} g^{m^{\prime} n} p_{m^{\prime}} \\
& \text { (Always applies) } \\
& =\frac{1}{2} p_{n} \dot{q}^{n}+U=\frac{1}{2} p_{n} \frac{1}{M} g^{m^{\prime} n} p_{m^{\prime}}+U & g_{m n} g^{m n^{\prime}}=\delta_{n}^{n^{\prime}} \\
& =\frac{1}{2 M} g^{m n} p_{m} p_{n}+U &
\end{array}
$$

Hamilton prefers Contravariant gmn with Covariant momentum p_{m}

 Using Legendre transform of Lagrangian $L=T-U$ with covariant metric definitions of L and p_{m} We already have: $H=p_{m} \dot{q}^{m}-L$ and: $L(\dot{q})=\frac{1}{2} M g_{m n} \overleftarrow{q}^{m} \dot{q}^{n}-U \quad$ and: $p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}=M \vec{g}_{m n} \dot{q}^{n}$Now we combine all these:

$$
\begin{aligned}
H & =p_{m} \dot{q}^{m}-L=\left(M g_{m n} \dot{q}^{n}\right) \overleftrightarrow{\dot{q}^{m}}-\left(\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}-U\right) \\
& =M g_{m n} \dot{q}^{m} \dot{q}^{n}-\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U
\end{aligned}
$$

This gives an "illegal dependence" for the Hamiltonian (It musn't be "explicit" in velocity $\dot{q}{ }^{m}$.)

$$
H=\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U=T+U \quad \quad\binom{\text { Numerically }}{\text { correct ONLY! }}
$$

An inverse metric relation $\dot{q}^{m}=\frac{1}{M} g^{m n} p_{n}$ gives correct form that depends on momentum p_{m}.

$$
H=\frac{1}{2 M} g^{m n} p_{m} p_{n}+U=T+U \equiv E
$$

Polar coordinate Lagrangian was given as:

$$
L(\dot{r}, \dot{\phi}, r, \phi)=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(\dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

Hamilton prefers Contravariant gmn with Covariant momentum p_{m}

 Using Legendre transform of Lagrangian $L=T-U$ with covariant metric definitions of L and p_{m}We already have: $H=p_{m} \dot{q}^{m}-L \quad$ and: $L(\dot{q})=\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}-U \quad$ and $\quad p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}=M g_{m n} \dot{q}^{n}$
Now we combine all these:

$$
\begin{aligned}
H & =p_{m} \dot{q}^{m}-L=\left(M g_{m n} \dot{q}^{n}\right) \stackrel{\dot{q}^{m}-\left(\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}-U\right)}{ } \\
& =M g_{m n} \dot{q}^{m} \dot{q}^{n}-\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U
\end{aligned}
$$

This gives an "illegal dependence" for the Hamiltonian (It musn't be "explicit" in velocity $\dot{q}{ }^{m}$.)

$$
H=\frac{1}{2} M g_{m n} \dot{q}^{m} \dot{q}^{n}+U=T+U \quad \quad\binom{\text { Numerically }}{\text { correct ONLY! }}
$$

An inverse metric relation $\dot{q}^{m}=\frac{1}{M} g^{m n} p_{n}$ gives correct form that depends on momentum p_{m}.

$$
H=\frac{1}{2 M} g^{m n} p_{m} p_{n}+U=T+U \equiv E
$$

Polar coordinate Lagrangian was given as:

$$
L(\dot{r}, \dot{\phi}, r, \phi)=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(\dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

Polar coordinate Hamiltonian is given here:

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamilton prefers Contravariant $g^{m n}$ with Covariant momentum p_{m}
 Deriving Hamilton's equations from Lagrange's equations
 Expressing Hamiltonian $H\left(p_{m}, q^{n}\right)$ using $g^{m n}$ and covariant momentum p_{m}
 \longrightarrow Polar-coordinate example of Hamilton's equations
 Hamilton's equations in Runga-Kutta (computer solution) form

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:
Hamilton's 1st equations: $\frac{\partial H}{\partial p_{m}}=\dot{q}^{m} \| \quad$ Hamilton's 2nd equations: $\frac{\partial H}{\partial q^{m}}=-\dot{p}_{m}$

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $\quad H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:
Hamilton's 1st equations: $\frac{\partial H}{\partial p_{m}}=\dot{q}^{m}$ Hamilton's 2nd equations: $\frac{\partial H}{\partial q^{m}}=-\dot{p}_{m}$

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $\quad H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:
Hamilton's 1st equations: $\frac{\partial H}{\partial p_{m}}=\dot{q}^{m}$
$\frac{\partial H}{\partial p_{r}}=\dot{r} \quad \frac{\partial H}{\partial p_{\phi}}=\dot{\phi} \quad \frac{\partial H}{\partial r}=-\dot{p}_{r} \quad \frac{\partial H}{\partial \phi}=-\dot{p}_{\phi}$

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $\quad H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:

Hamilton:s	lst equations: $\frac{\partial H}{\partial p_{m}}=\dot{q}^{m}$	Hamilton's 2nd equations: $\frac{\partial H}{\partial q^{m}}=-\dot{p}_{m}$
$\frac{\partial H}{\partial p_{r}}=\dot{r}$	$\frac{\partial H}{\partial p_{\phi}}=\dot{\phi}$	$\frac{\partial H}{\partial r}=-\dot{p}_{r}$
$\frac{\partial H}{\partial p_{r}}=\frac{p_{r}}{M}$	$\frac{\partial H}{\partial \phi}=-\dot{p}_{\phi}$	

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $\quad H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:

$$
\begin{array}{l:c||c}
\text { Hamilton:s } & \text { 1st equations: } \frac{\partial H}{\partial p_{m}}=\dot{q}^{m} \\
\frac{\partial H}{\partial p_{r}}=\dot{r} & \frac{\partial H}{\partial p_{\phi}}=\dot{\phi} \\
\frac{\partial H}{\partial p_{r}}=\frac{p_{r}}{M} & \frac{\partial H}{\partial p_{\phi}}=\frac{p_{\phi}^{2}}{M r^{2}} & \frac{\partial H}{\partial r}=-\dot{p}_{r} \\
\frac{\partial H}{\partial \phi}=-\dot{p}_{\phi} \\
\end{array}
$$

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:

Hamilton:s	uations: $\frac{\partial H}{\partial p_{m}}=\dot{q}^{m}$	Hamilion's 2inde.equations	$\frac{\partial H}{\partial q^{m}}=-\dot{p}_{m}$
$\frac{\partial H}{\partial p_{r}}=\dot{r}$	$\frac{\partial H}{\partial p_{\phi}}=\dot{\phi}$	$\frac{\partial H}{\partial r}=-\hat{p}$	$\begin{aligned} & \frac{\partial H}{\partial \phi}=-\dot{p}_{\phi} \\ & \partial H^{\prime}=\partial U(r, \phi) \end{aligned}$
$\frac{\partial p_{r}}{}=\frac{\square}{M}$	$\begin{aligned} \overline{\partial p_{\phi}} & =\frac{M r^{2}}{p_{\phi}}=M r^{2} \dot{\phi} \end{aligned}$	$\frac{\partial \Pi}{\partial r}=-2 \frac{P_{\phi}}{2 M r^{3}}+\frac{\partial U(r, \phi)}{\partial r}$	$\overline{\partial \phi}=\frac{\partial \phi}{}$
$p_{r}=M \dot{r}$			

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(\underset{,}{(r, \phi)}$ in 2D-polar coordinates satifies:

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)$ in 2D-polar coordinates satifies:

Polar coordinate example of Hamilton's equations

$$
H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+U(r, \phi)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi)
$$

Hamiltonian $H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+U(r, \phi) \quad$ in 2D-polar coordinates satifies:

Hamilton prefers Contravariant $g^{m n}$ with Covariant momentum p_{m}
 Deriving Hamilton's equations from Lagrange's equations
 Expressing Hamiltonian $H\left(p_{m}, q^{n}\right)$ using $g^{m n}$ and covariant momentum p_{m} Polar-coordinate example of Hamilton's equations
 \longrightarrow Hamilton's equations in Runga-Kutta (computer solution) form

Polar coordinate example: Hamilton's equations in Runga-Kutta form

$p_{r}=M \dot{r}$

$$
\begin{aligned}
\dot{p}_{r}=M \ddot{r} & =\frac{p_{\phi}^{2}}{M r^{3}}-\frac{\partial U(r, \phi)}{\partial r} \\
& =M r \dot{\phi}^{2}-\partial_{r} U(r, \phi)
\end{aligned}
$$

$$
p_{\phi}=M r^{2} \dot{\phi}
$$

$$
\dot{p}_{\phi}=2 M r \dot{r} \dot{\phi}+M r^{2} \ddot{\phi}=-\partial_{\phi} U(r, \phi)
$$

Runga-Kutta form:

$$
\begin{aligned}
\dot{r}=\dot{r}\left(r, p_{r}, \phi, p_{\phi}\right) & =\frac{p_{r}}{M} \\
\dot{p}_{r}=\dot{p}_{r}\left(r, p_{r}, \phi, p_{\phi}\right) & =\frac{p_{\phi}^{2}}{M r^{3}}-\partial_{r} U(r, \phi) \\
\dot{\phi}=\dot{\phi}\left(r, p_{r}, \phi, p_{\phi}\right) & =\frac{p_{\phi}}{M r^{2}} \\
\dot{p}_{\phi}=\dot{p}_{\phi}\left(r, p_{r}, \phi, p_{\phi}\right) & =-\partial_{\phi} U(r, \phi)
\end{aligned}
$$

Examples of Hamiltonian mechanics in effective potentials

$I_{\text {sorropic }} H_{\text {armonic }} O_{\text {scillaor }}$ in polar coordinates and effective potential (Simulation) Coulomb orbits in polar coordinates and effective potential (Simulation)

Effective potential analysis (Reducing 2D-problem to 1D-problem) Polar coordinate Hamiltonian can take advantage of H-conservation and p_{m}-conservation

Consider polar coordinate Hamiltonian for $I_{\text {sorropic }} H_{\text {armonic }} O_{\text {scillator }}$ potential $U(r)=k r^{2} / 2$:
$H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+k \cdot r^{2} / 2=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+\frac{k \cdot r^{2}}{2}=E=$ const .

Effective potential analysis (Reducing 2D-problem to 1D-problem)

Polar coordinate Hamiltonian can take advantage of H-conservation and p_{m}-conservation

Consider polar coordinate Hamiltonian for $I_{\text {sororpoic }} H_{\text {armonic }} O_{\text {scillator }}$ potential $U(r)=k r^{2} / 2$:
$H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}{ }^{2}+g^{\phi \phi} p_{\phi}{ }^{2}\right)+k \cdot r^{2} / 2=\frac{1}{2 M}\left(p_{r}{ }^{2}+\frac{1}{r^{2}} \cdot p_{\phi}{ }^{2}\right)+\frac{k \cdot r^{2}}{2}=E=$ const.
H is not explicit function of ϕ, and so Hamilton's 2nd says: $\dot{p}_{\phi}=-\frac{\partial H}{\partial \phi}=0$
Thus momentum p_{ϕ} is conserved constant: $p_{\phi}=\ell=$ const .

Effective potential analysis (Reducing 2D-problem to 1D-problem)

Polar coordinate Hamiltonian can take advantage of H-conservation and p_{m}-conservation

Consider polar coordinate Hamiltonian for $I_{\text {sororopic }} H_{\text {armonic }} O_{\text {scillator }}$ potential $U(r)=k r^{2} / 2$:
$H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+k \cdot r^{2} / 2=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+\frac{k \cdot r^{2}}{2}=E=$ const .
H is not explicit function of ϕ, and so Hamilton's 2nd says: $\dot{p}_{\phi}=-\frac{\partial H}{\partial \phi}=0$
Thus momentum p_{ϕ} is conserved constant: $p_{\phi}=\ell=$ const.
$\frac{p_{r}^{2}}{2 M}+\frac{\dot{p}_{\phi}^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=\frac{p_{r}^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=E=$ const.

Effective potential analysis (Reducing 2D-problem to 1D-problem)

Polar coordinate Hamiltonian can take advantage of H-conservation and p_{m}-conservation

Consider polar coordinate Hamiltonian for $I_{\text {sororopic }} H_{\text {armonic }} O_{\text {scillator }}$ potential $U(r)=k r^{2} / 2$:
$H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}{ }^{2}+g^{\phi \phi} p_{\phi}{ }^{2}\right)+k \cdot r^{2} / 2=\frac{1}{2 M}\left(p_{r}{ }^{2}+\frac{1}{r^{2}} \cdot p_{\phi}{ }^{2}\right)+\frac{k \cdot r^{2}}{2}=E=$ const.
H is not explicit function of ϕ, and so Hamilton's 2nd says: $\dot{p}_{\phi}=-\frac{\partial H}{\partial \phi}=0$
Thus momentum p_{ϕ} is conserved constant: $p_{\phi}=\ell=$ const .
$\frac{p_{r}^{2}}{2 M}+\frac{\stackrel{i}{p}_{\phi}^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=\frac{p_{r}^{2}}{2 M}+\frac{\dot{\ell}^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=E=$ const.

Same applies to any radial potential $U(r)$

$$
E=\frac{p_{r}{ }^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+U(r)
$$

Effective potential analysis (Reducing 2D-problem to 1D-problem)

Polar coordinate Hamiltonian can take advantage of H-conservation and p_{m}-conservation

Consider polar coordinate Hamiltonian for $I_{\text {sororpoic }} H_{\text {armonic }} O_{\text {scillator }}$ potential $U(r)=k r^{2} / 2$:
$H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+k \cdot r^{2} / 2=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+\frac{k \cdot r^{2}}{2}=E=$ const .
H is not explicit function of ϕ, and so Hamilton's 2nd says: $\quad \dot{p}_{\phi}=-\frac{\partial H}{\partial \phi}=0$ Thus momentum p_{ϕ} is conserved constant: $p_{\phi}=\ell=$ const .
$\frac{p_{r}^{2}}{2 M}+\frac{p_{\phi}^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=\frac{p_{r}^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=E=$ const .
Solving for momentum : $p_{r}^{2}=2 M E-\frac{\ell^{2}}{r^{2}}-M k \cdot r^{2}$

Same applies to any radial potential $U(r)$

$$
E=\frac{p_{r}{ }^{2}}{2 M}+\underbrace{\frac{\ell^{2}}{2 M r^{2}}}_{\text {"centifugal-barrier"" }}+\overbrace{U(r)}^{U P}
$$

Effective potential analysis (Reducing 2D-problem to 1D-problem)

Polar coordinate Hamiltonian can take advantage of H-conservation and p_{m}-conservation

Consider polar coordinate Hamiltonian for $I_{\text {sorropic }} H_{\text {armonic }} O_{\text {scillator }}$ potential $U(r)=k r^{2} / 2$:
$H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}{ }^{2}+g^{\phi \phi} p_{\phi}{ }^{2}\right)+k \cdot r^{2} / 2=\frac{1}{2 M}\left(p_{r}{ }^{2}+\frac{1}{r^{2}} \cdot p_{\phi}{ }^{2}\right)+\frac{k \cdot r^{2}}{2}=E=$ const.
H is not explicit function of ϕ, and so Hamilton's 2nd says: $\dot{p}_{\phi}=-\frac{\partial H}{\partial \phi}=0$
Thus momentum p_{ϕ} is conserved constant: $p_{\phi}=\ell=$ const .
$\frac{p_{r}^{2}}{2 M}+\frac{\dot{p}_{\phi}^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=\frac{p_{r}^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=E=$ const.
Solving for momentum: $p_{r}^{2}=2 M E-\frac{\ell^{2}}{r^{2}}-M k \cdot r^{2}$

Same applies to any radial potential $U(r)$

$$
E=\frac{p_{r}{ }^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+U(r)
$$

"centifugal-barrier" PE
$p_{r}=M \dot{r}=\sqrt{2 M E-\frac{\ell^{2}}{r^{2}}-M k \cdot r^{2}}=\sqrt{2 M} \sqrt{E-\frac{\ell^{2}}{2 M r^{2}}-\frac{k}{2} \cdot r^{2}}$

Effective potential analysis (Reducing 2D-problem to 1D-problem)

Polar coordinate Hamiltonian can take advantage of H-conservation and p_{m}-conservation

Consider polar coordinate Hamiltonian for $I_{\text {sorropic }} H_{\text {armonic }} O_{\text {scillator }}$ potential $U(r)=k r^{2} / 2$:
$H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}^{2}\right)+k \cdot r^{2} / 2=\frac{1}{2 M}\left(p_{r}^{2}+\frac{1}{r^{2}} \cdot p_{\phi}^{2}\right)+\frac{k \cdot r^{2}}{2}=E=$ const .
H is not explicit function of ϕ, and so Hamilton's 2nd says: $\dot{p}_{\phi}=-\frac{\partial H}{\partial \phi}=0$
Thus momentum p_{ϕ} is conserved constant: $p_{\phi}=\ell=$ const .
$\frac{p_{r}^{2}}{2 M}+\frac{\dot{p}_{\phi}^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=\frac{p_{r}^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=E=$ const .
Solving for momentum: $p_{r}^{2}=2 M E-\frac{\ell^{2}}{r^{2}}-M k \cdot r^{2}$

Same applies to any radial potential $U(r)$

$$
E=\frac{p_{r}{ }^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+U(r)
$$

"centifugal-barrier" PE
$p_{r}=M \dot{r}=\sqrt{2 M E-\frac{\ell^{2}}{r^{2}}-M k \cdot r^{2}}=\sqrt{2 M} \sqrt{E-\frac{\ell^{2}}{2 M r^{2}}-\frac{k}{2} \cdot r^{2}}$
Radial $K E$ is: $\quad \frac{M \dot{r}^{2}}{2}=E-\frac{\ell^{2}}{2 M r^{2}}-\frac{k}{2} \cdot r^{2}$

Effective potential analysis (Reducing 2D-problem to 1D-problem)

Polar coordinate Hamiltonian can take advantage of H-conservation and p_{m}-conservation

Consider polar coordinate Hamiltonian for $I_{\text {soropopic }} H_{\text {armonic }} O_{\text {scillaor }}$ potential $U(r)=k r^{2} / 2$:
$H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}{ }^{2}\right)+k \cdot r^{2} / 2=\frac{1}{2 M}\left(p_{r}{ }^{2}+\frac{1}{r^{2}} \cdot p_{\phi}{ }^{2}\right)+\frac{k \cdot r^{2}}{2}=E=$ const .
H is not explicit function of ϕ, and so Hamilton's 2nd says: $\dot{p}_{\phi}=-\frac{\partial H}{\partial \phi}=0$ Thus momentum p_{ϕ} is conserved constant: $p_{\phi}=\ell=$ const .
$\frac{p_{r}^{2}}{2 M}+\frac{p_{\phi}^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=\frac{p_{r}^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=E=$ const .
Solving for momentum: $p_{r}^{2}=2 M E-\frac{\ell^{2}}{r^{2}}-M k \cdot r^{2}$

Same applies to any radial potential $U(r)$

$$
E=\frac{p_{r}{ }^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+U(r)
$$

"centifugal-barrier" PE
$p_{r}=M \dot{r}=\sqrt{2 M E-\frac{\ell^{2}}{r^{2}}-M k \cdot r^{2}}=\sqrt{2 M} \sqrt{E-\frac{\ell^{2}}{2 M r^{2}}-\frac{k}{2} \cdot r^{2}}$
Radial $K E$ is: $\frac{M \dot{r}^{2}}{2}=E-\frac{\ell^{2}}{2 M r^{2}}-\frac{k}{2} \cdot r^{2}$
Radial velocity:
$\dot{r}=\frac{d r}{d t}=\sqrt{\frac{2 E}{M}-\frac{\ell^{2}}{M^{2} r^{2}}-\frac{k}{M} \cdot r^{2}}$

Effective potential analysis (Reducing 2D-problem to 1D-problem)

Polar coordinate Hamiltonian can take advantage of H-conservation and p_{m}-conservation

Consider polar coordinate Hamiltonian for $I_{\text {soropopic }} H_{\text {armonic }} O_{\text {scillaor }}$ potential $U(r)=k r^{2} / 2$:
$H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}{ }^{2}\right)+k \cdot r^{2} / 2=\frac{1}{2 M}\left(p_{r}{ }^{2}+\frac{1}{r^{2}} \cdot p_{\phi}{ }^{2}\right)+\frac{k \cdot r^{2}}{2}=E=$ const .
H is not explicit function of ϕ, and so Hamilton's 2nd says: $\dot{p}_{\phi}=-\frac{\partial H}{\partial \phi}=0$ Thus momentum p_{ϕ} is conserved constant: $p_{\phi}=\ell=$ const .
$\frac{p_{r}^{2}}{2 M}+\frac{\dot{p}_{\phi}^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=\frac{p_{r}^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=E=$ const .
Solving for momentum: $p_{r}^{2}=2 M E-\frac{\ell^{2}}{r^{2}}-M k \cdot r^{2}$

Same applies to any radial potential $U(r)$

$$
E=\frac{p_{r}{ }^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+U(r)
$$

"centifugal-barrier" PE

$$
p_{r}=M \dot{r}=\sqrt{2 M E-\frac{\ell^{2}}{r^{2}}-M k \cdot r^{2}}=\sqrt{2 M} \sqrt{E-\frac{\ell^{2}}{2 M r^{2}}-\frac{k}{2} \cdot r^{2}}
$$

Radial KE is: $\frac{M \dot{r}^{2}}{2}=E-\frac{\ell^{2}}{2 M r^{2}}-\frac{k}{2} \cdot r^{2}$
Radial velocity:

$$
\dot{r}=\frac{d r}{d t}=\sqrt{\frac{2 E}{M}-\frac{\ell^{2}}{M^{2} r^{2}}-\frac{k}{M} \cdot r^{2}} \quad \text { Time vs } r: t=\int_{r<}^{r<} \frac{d r}{\frac{2 E}{M}-\frac{\ell^{2}}{M^{2} r^{2}}-\frac{k}{M} \cdot r^{2}}
$$

Effective potential analysis (Reducing 2D-problem to 1D-problem)

Polar coordinate Hamiltonian can take advantage of H-conservation and p_{m}-conservation

Consider polar coordinate Hamiltonian for $I_{\text {soropopic }} H_{\text {armonic }} O_{\text {scillaor }}$ potential $U(r)=k r^{2} / 2$:
$H\left(p_{r}, p_{\phi}, r, \phi\right)=\frac{1}{2 M}\left(g^{r r} p_{r}^{2}+g^{\phi \phi} p_{\phi}{ }^{2}\right)+k \cdot r^{2} / 2=\frac{1}{2 M}\left(p_{r}{ }^{2}+\frac{1}{r^{2}} \cdot p_{\phi}{ }^{2}\right)+\frac{k \cdot r^{2}}{2}=E=$ const .
H is not explicit function of ϕ, and so Hamilton's 2nd says: $\quad \dot{p}_{\phi}=-\frac{\partial H}{\partial \phi}=0$
Thus momentum p_{ϕ} is conserved constant: $p_{\phi}=\ell=$ const .
$\frac{p_{r}^{2}}{2 M}+\frac{\dot{p}_{\phi}^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=\frac{p_{r}^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+\frac{k \cdot r^{2}}{2}=E=$ const .
Solving for momentum : $p_{r}^{2}=2 M E-\frac{\ell^{2}}{r^{2}}-M k \cdot r^{2}$
Same applies to any radial potential $U(r)$

$$
E=\frac{p_{r}{ }^{2}}{2 M}+\frac{\ell^{2}}{2 M r^{2}}+U(r)
$$

"centifugal-barrier" PE

$$
p_{r}=M \dot{r}=\sqrt{2 M E-\frac{\ell^{2}}{r^{2}}-M k \cdot r^{2}}=\sqrt{2 M} \sqrt{E-\frac{\ell^{2}}{2 M r^{2}}-\frac{k}{2} \cdot r^{2}}
$$

Radial KE is: $\quad \frac{M \dot{r}^{2}}{2}=E-\frac{\ell^{2}}{2 M r^{2}}-\frac{k}{2} \cdot r^{2}$
Radial velocity:
$\dot{r}=\frac{d r}{d t}=\sqrt{\frac{2 E}{M}-\frac{\ell^{2}}{M^{2} r^{2}}-\frac{k}{M} \cdot r^{2}}$
Time vs $r: t=\int_{r<}^{r>} \frac{d r}{\sqrt{\frac{2 E}{M}-\frac{\ell^{2}}{M^{2} r^{2}}-\frac{k}{M} \cdot r^{2}}}$
Called the "quadrature" or 1/4-cycle solution if
$r<=0$ and $r_{>}=$max amplitude
Time vs r for any radial $U(r)$:

$$
t=\int_{r<}^{r>} \frac{d r}{\sqrt{\frac{2 E}{M}-\frac{\ell^{2}}{M^{2} r^{2}}-\frac{2 U(r)}{M}}}
$$

Examples of Hamiltonian mechanics in effective potentials

$I_{\text {soroppic }} H_{\text {armonic }} O_{\text {scillator }}$ in polar coordinates and effective potential (Simulation) Coulomb orbits in polar coordinates and effective potential (Simulation)

Parabolic and 2D-IHO elliptic orbital envelopes

 Some clues for future assignment (Simulation)
Exploding-starlet elliptical envelope and contacting elliptical trajectories

Focus of envelope

Focus of $\alpha=30^{\circ}$ orbit
Line to contact point of $\alpha=30^{\circ}$ orbit with envelope

Examples of Hamiltonian mechanics in phase plots

1D Pendulum and phase plot (Simulation)
1D-HO phase-space control (Simulation)

1D Pendulum and phase plot
(a) Force geometry (b) Energy geometry (c) Time geometry

Lagrangian function $L=K E-P E=T$ - U where potential energy is $U(\theta)=-M g R \cos \theta$

$$
L(\dot{\theta}, \theta)=\frac{1}{2} I \dot{\theta}^{2}-U(\theta)=\frac{1}{2} I \dot{\theta}^{2}+M g R \cos \theta
$$

1D Pendulum and phase plot (a) Force geometry
(b) Energy geometry
(c) Time geometry

(c) Time geometry

Lagrangian function $L=K E-P E=T$ - U where potential energy is $U(\theta)=-M g R \cos \theta$

$$
L(\dot{\theta}, \theta)=\frac{1}{2} I \dot{\theta}^{2}-U(\theta)=\frac{1}{2} I \dot{\theta}^{2}+\overparen{M g R \cos \theta}
$$

Hamiltonian function $H=K E+P E=T+U$ where potential energy is $U(\theta)=-M g R \cos \theta$

$$
H\left(p_{\theta}, \theta\right)=\frac{1}{2 I} p_{\theta}^{2}+U(\theta)=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta=E=\text { const. }
$$

1D Pendulum and phase plot (a) Force geometry
(b) Energy geometry
(c) Time geometry

(c) Time geometry

Lagrangian function $L=K E-P E=T$ - U where potential energy is $U(\theta)=-M g R \cos \theta$

$$
L(\dot{\theta}, \theta)=\frac{1}{2} I \dot{\theta}^{2}-U(\theta)=\frac{1}{2} I \dot{\theta}^{2}+M g R \cos \theta
$$

Hamiltonian function $H=K E+P E=T+U$ where potential energy is $U(\theta)=-M g R \cos \theta$

$$
H\left(p_{\theta}, \theta\right)=\frac{1}{2 I} p_{\theta}^{2}+U(\theta)=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta=E=\text { const. }
$$

implies: $p_{\theta}=\sqrt{2 I(E+M g R \cos \theta)}$

Example of plot of Hamilton for 1D-solid pendulum in its Phase Space $\left(\theta, p_{\theta}\right)$

$$
H\left(p_{\theta}, \theta\right)=E=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta, \text { or: } p_{\theta}=\sqrt{2 I(E+M g R \cos \theta)}
$$

Example of plot of Hamilton for 1D-solid pendulum in its Phase Space $\left(\theta, p_{\theta}\right)$

$$
H\left(p_{\theta}, \theta\right)=E=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta, \text { or: } p_{\theta}=\sqrt{2 I(E+M g R \cos \theta)}
$$

Funny way to look at Hamilton's equations:
$\binom{\dot{q}}{\dot{p}}=\binom{\partial_{p} H}{-\partial_{q} H}=\mathbf{e}_{\mathbf{H}} \times(-\nabla H)=(\mathrm{H}$-axis $) \times($ fall line $)$, where: $\left\{\begin{array}{c}(\mathrm{H}-\text { axis })=\mathbf{e}_{\mathbf{H}}=\mathbf{e}_{\mathbf{q}} \times \mathbf{e}_{\mathbf{p}} \\ \text { (fall line) })=-\nabla H\end{array}\right.$
2. Examples of Hamiltonian dynamics and phase plots 1D Pendulum and phase plot (Simulation)
\longrightarrow Phase control (Simulation)

Unit 1
Fig. 7.4

Simulation of atomic classical (or semi-classical) dynamics using varying phase control

