Lecture 13 Thur. 10.4.2012

Poincare, Lagrange, Hamiltonian, and Jacobi mechanics

(Unit 1 Ch. 12, Unit 2 Ch. 2-7, Unit 3 Ch. 1-3)

Review of Lecture 12 relations:

Examples of Hamiltonian mechanics in phase plots 1D Pendulum and phase plot (Simulation) 1D-HO phase-space control (Simulation of "Catcher in the Eye")

Exploring phase space and Lagrangian mechanics more deeply A weird "derivation" of Lagrange's equations Poincare identity and Action, Jacobi-Hamilton equations How Classicists might have "derived" quantum equations Huygen's contact transformations enforce minimum action How to do quantum mechanics if you only know classical mechanics

Examples of Hamiltonian mechanics in phase plots

1D Pendulum and phase plot (Simulation) 1D-HO phase-space control (Simulation of "Catcher in the Eye")

Hamiltonian function H = KE + PE = T + U where potential energy is $U(\theta) = -MgR\cos\theta$

$$H(p_{\theta},\theta) = \frac{1}{2I} p_{\theta}^{2} + U(\theta) = \frac{1}{2I} p_{\theta}^{2} - MgR\cos\theta = E = const.$$

Hamiltonian function H = KE + PE = T + U where potential energy is $U(\theta) = -MgR\cos\theta$

$$H(p_{\theta},\theta) = \frac{1}{2I} p_{\theta}^{2} + U(\theta) = \frac{1}{2I} p_{\theta}^{2} - MgR\cos\theta = E = const.$$

implies: $p_{\theta} = \sqrt{2I(E + MgR\cos\theta)}$

Example of plot of Hamilton for 1D-solid pendulum in its Phase Space (\theta,p_{\theta})

$$H(p_{\theta},\theta) = E = \frac{1}{2I} p_{\theta}^2 - MgR\cos\theta , \text{ or: } p_{\theta} = \sqrt{2I(E + MgR\cos\theta)}$$

Example of plot of Hamilton for 1D-solid pendulum in its Phase Space (\theta,p_{\theta})

$$H(p_{\theta},\theta) = E = \frac{1}{2I} p_{\theta}^2 - MgR\cos\theta, \text{ or: } p_{\theta} = \sqrt{2I(E + MgR\cos\theta)}$$

Funny way to look at Hamilton's equations: $\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} \partial_p H \\ -\partial_q H \end{pmatrix} = \mathbf{e}_{\mathbf{H}} \times (-\nabla H) = (\text{H-axis}) \times (\text{fall line}), \text{ where:} \begin{cases} (\text{H-axis}) = \mathbf{e}_{\mathbf{H}} = \mathbf{e}_{\mathbf{q}} \times \mathbf{e}_{\mathbf{p}} \\ (\text{fall line}) = -\nabla H \end{cases}$

Examples of Hamiltonian dynamics and phase plots 1D Pendulum and phase plot (Simulation) Phase control (Simulation of "Catcher in the Eye"))

F(Y) = -kY - Mg

 $U(Y) = (1/2)kY^2 + MgY$

Simulation of atomic classical (or semi-classical) dynamics using varying phase control

Exploring phase space and Lagrangian mechanics more deeply A weird "derivation" of Lagrange's equations Poincare identity and Action, Jacobi-Hamilton equations How Classicists might have "derived" quantum equations Huygen's contact transformations enforce minimum action How to do quantum mechanics if you only know classical mechanics

A strange "derivation" of Lagrange's equations by Calculus of Variation Variational calculus finds extreme (minimum or maximum) values to entire integrals

Minimize (or maximize): $S(q) = \int dt L(q(t), \dot{q}(t), t)$.

An arbitrary but small variation function $\delta q(t)$ is allowed at every point *t* in the figure along the curve except at the end points t_0 and t_1 . There we demand it not vary at all.(1)

 $\delta q(t_0) = 0 = \delta q(t_1) \quad (1)$ $Ist order L(q + \delta q) approximate:$ $S(q + \delta q) = \int_{t_0}^{t_1} dt \left[L(q, \dot{q}, t) + \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right] \text{ where: } \delta \dot{q} = \frac{d}{dt} \delta q$

Variational calculus finds extreme (minimum or maximum) values to entire integrals

Ist order
$$L(q + \delta q)$$
 approximate:

$$\delta q(t_0) = 0 = \delta q(t_1) \quad (1)$$

$$u \cdot \frac{dv}{dt} = \frac{d}{dt}(uv) - \frac{du}{dt}v$$

$$S(q + \delta q) = \int_{t_0}^{t_1} dt \left[L(q, \dot{q}, t) + \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right] \text{ where: } \delta \dot{q} = \frac{d}{dt} \delta q \quad \text{Replace } \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \quad \text{with } \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \delta q - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q \right)$$

Variational calculus finds extreme (minimum or maximum) values to entire integrals

Ist order
$$L(q+\delta q)$$
 approximate: $\delta q(t_0) = 0 = \delta q(t_1)$ (1)
 $S(q+\delta q) = \int_{t_0}^{t_1} dt \left[L(q,\dot{q},t) + \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right]$ where: $\delta \dot{q} = \frac{d}{dt} \delta q$ Replace $\frac{\partial L}{\partial \dot{q}} \delta \dot{q}$ with $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q$
 $S(q+\delta q) = \int_{t_0}^{t_1} dt \left[L(q,\dot{q},t) + \frac{\partial L}{\partial q} \delta q - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q \right] + \int_{t_0}^{t_1} dt \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right)$

Variational calculus finds extreme (minimum or maximum) values to entire integrals

Ist order
$$L(q+\delta q)$$
 approximate: $\delta q(t_0) = 0 = \delta q(t_1)$ (1)
 $S(q+\delta q) = \int_{t_0}^{t_1} dt \left[L(q,\dot{q},t) + \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right]$ where: $\delta \dot{q} = \frac{d}{dt} \delta q$ Replace $\frac{\partial L}{\partial \dot{q}} \delta \dot{q}$ with $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q$
 $S(q+\delta q) = \int_{t_0}^{t_1} dt \left[L(q,\dot{q},t) + \frac{\partial L}{\partial q} \delta q - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q \right] + \int_{t_0}^{t_1} dt \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right)$
 $= \int_{t_0}^{t_1} dt L(q,\dot{q},t) + \int_{t_0}^{t_1} dt \left[\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \right] \delta q + \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) \Big|_{t_0}^{t_1}$

Variational calculus finds extreme (minimum or maximum) values to entire integrals

Ist order
$$L(q+\delta q)$$
 approximate:
 $\delta q(t_0) = 0 = \delta q(t_1)$ (1)
 $S(q+\delta q) = \int_{t_0}^{t_1} dt \left[L(q,\dot{q},t) + \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right]$ where: $\delta \dot{q} = \frac{d}{dt} \delta q$ Replace $\frac{\partial L}{\partial \dot{q}} \delta \dot{q}$ with $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q$
 $S(q+\delta q) = \int_{t_0}^{t_1} dt \left[L(q,\dot{q},t) + \frac{\partial L}{\partial q} \delta q - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q \right] + \int_{t_0}^{t_1} dt \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right)$
 $= \int_{t_0}^{t_1} dt L(q,\dot{q},t) + \int_{t_0}^{t_0} dt \left[\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \right] \delta q + \left(\frac{\partial L}{\partial q} \delta q \right) \int_{t_0}^{t_1} dt \int_{t_0}^{t_1} dt \left[\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \right] \delta q + \left(\frac{\partial L}{\partial q} \delta q \right) \int_{t_0}^{t_1} dt \int_{t_0}^$

$$\delta S = 0 \Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0 \qquad Euler-Lagrange \ equation(s)$$

Variational calculus finds extreme (minimum or maximum) values to entire integrals

An arbitrary but small variation function $\delta q(t)$ is allowed at every point *t* in the figure along the curve except at the end points t_0 and t_1 . There we demand it not vary at all.(1)

Ist order
$$L(q+\delta q)$$
 approximate: $\delta q(t_0) = 0 = \delta q(t_1)$ (1)
 $S(q+\delta q) = \int_{t_0}^{t_1} dt \left[L(q,\dot{q},t) + \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right]$ where: $\delta \dot{q} = \frac{d}{dt} \delta q$ Replace $\frac{\partial L}{\partial \dot{q}} \delta \dot{q}$ with $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q$
 $S(q+\delta q) = \int_{t_0}^{t_1} dt \left[L(q,\dot{q},t) + \frac{\partial L}{\partial q} \delta q - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q \right] + \int_{t_0}^{t_1} dt \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right)$
 $= \int_{t_0}^{t_1} dt L(q,\dot{q},t) + \int_{t_0}^{t_1} dt \left[\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \right] \delta q + \left(\frac{\partial L}{\partial q} \delta q \right) \int_{t_0}^{t_1} dt \int_$

$$\delta S = 0 \Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0 \qquad Euler-Lagrange \ equation(s)$$

But, WHY is nature so inclined to fly JUST SO as to minimize the Lagrangian L = T - U???

Exploring phase space and Lagrangian mechanics more deeply

A weird "derivation" of Lagrange's equations **Poincare identity and Action, Jacobi-Hamilton** equations How Classicists might have "derived" quantum equations Huygen's contact transformations enforce minimum action How to do quantum mechanics if you only know classical mechanics

Legendre transform $L(\mathbf{v}) = \mathbf{p} \cdot \mathbf{v} - H(\mathbf{p})$ becomes *Poincare's invariant differential* if *dt* is cleared.

$$L \cdot dt = \mathbf{p} \cdot \mathbf{v} \cdot dt - H \cdot dt = \mathbf{p} \cdot d\mathbf{r} - H \cdot dt \qquad \left(\mathbf{v} = \frac{d\mathbf{r}}{dt} \text{ implies: } \mathbf{v} \cdot dt = d\mathbf{r}\right)$$

Legendre transform $L(\mathbf{v}) = \mathbf{p} \cdot \mathbf{v} - H(\mathbf{p})$ becomes *Poincare's invariant differential* if *dt* is cleared.

$$\mathbf{L} \cdot dt = \mathbf{p} \cdot \mathbf{v} \cdot dt - \mathbf{H} \cdot dt = \mathbf{p} \cdot d\mathbf{r} - \mathbf{H} \cdot dt \qquad \left(\mathbf{v} = \frac{d\mathbf{r}}{dt} \text{ implies: } \mathbf{v} \cdot dt = d\mathbf{r}\right)$$

1

$$dS = L \cdot dt = \mathbf{p} \cdot d\mathbf{r} - H \cdot dt$$
 where: $L = \frac{dS}{dt}$

Legendre transform $L(\mathbf{v}) = \mathbf{p} \cdot \mathbf{v} - H(\mathbf{p})$ becomes *Poincare's invariant differential* if *dt* is cleared.

$$\mathbf{L} \cdot dt = \mathbf{p} \cdot \mathbf{v} \cdot dt - \mathbf{H} \cdot dt = \mathbf{p} \cdot d\mathbf{r} - \mathbf{H} \cdot dt \qquad \mathbf{v} = \frac{d\mathbf{r}}{dt}$$

$$dS = L \cdot dt = \mathbf{p} \cdot d\mathbf{r} - H \cdot dt \quad \text{where:} \quad L = \frac{dS}{dt}$$

Unit 8 shows DeBroglie law $\mathbf{p} = \hbar \mathbf{k}$ and Planck law $H = \hbar \omega$ make quantum plane wave phase Φ :
$$\Phi = S/\hbar = \int L \cdot dt/\hbar$$

Legendre transform $L(\mathbf{v}) = \mathbf{p} \cdot \mathbf{v} - H(\mathbf{p})$ becomes *Poincare's invariant differential* if *dt* is cleared.

$$\mathbf{L} \cdot dt = \mathbf{p} \cdot \mathbf{v} \cdot dt - \mathbf{H} \cdot dt = \mathbf{p} \cdot d\mathbf{r} - \mathbf{H} \cdot dt \qquad \mathbf{v} = \frac{d\mathbf{r}}{dt}$$

$$dS = L \cdot dt = \mathbf{p} \cdot d\mathbf{r} - H \cdot dt \quad \text{where:} \quad L = \frac{dS}{dt}$$
Unit 2 shows *DeBroglie law* $\mathbf{p} = \hbar \mathbf{k}$ and *Planck law* $H = \hbar \omega$ make *quantum plane wave phase* Φ :

$$\Psi(\mathbf{r}, t) = e^{iS/\hbar} = e^{i(\mathbf{p} \cdot \mathbf{r} - H \cdot t)/\hbar} = e^{i(\mathbf{k} \cdot \mathbf{r} - \omega \cdot t)}$$

Legendre transform $L(\mathbf{v}) = \mathbf{p} \cdot \mathbf{v} - H(\mathbf{p})$ becomes *Poincare's invariant differential* if *dt* is cleared.

$$\mathbf{L} \cdot dt = \mathbf{p} \cdot \mathbf{v} \cdot dt - \mathbf{H} \cdot dt = \mathbf{p} \cdot d\mathbf{r} - \mathbf{H} \cdot dt \qquad \mathbf{v} = \frac{d\mathbf{r}}{dt}$$

This is the time differential dS of action $S = \int L dt$ whose time derivative is rate L of quantum phase.

$$dS = L \cdot dt = \mathbf{p} \cdot d\mathbf{r} - H \cdot dt \quad \text{where:} \quad L = \frac{dS}{dt}$$
Unit 2 shows *DeBroglie law* $\mathbf{p} = \hbar \mathbf{k}$ and *Planck law* $H = \hbar \omega$ make *quantum plane wave phase* Φ :

$$\Psi(\mathbf{r}, t) = e^{iS/\hbar} = e^{i(\mathbf{p} \cdot \mathbf{r} - H \cdot t)/\hbar} = e^{i(\mathbf{k} \cdot \mathbf{r} - \omega \cdot t)}$$

Q:When is the *Action*-differential *dS* integrable? A: A differential $dW = f_x(x,y)dx + f_y(x,y)dy$ is *integrable* to a W(x,y) if: $f_x = \frac{\partial W}{\partial x}$ and: $f_y = \frac{\partial W}{\partial y}$

Legendre transform $L(\mathbf{v}) = \mathbf{p} \cdot \mathbf{v} - H(\mathbf{p})$ becomes *Poincare's invariant differential* if *dt* is cleared.

$$\mathbf{L} \cdot dt = \mathbf{p} \cdot \mathbf{v} \cdot dt - \mathbf{H} \cdot dt = \mathbf{p} \cdot d\mathbf{r} - \mathbf{H} \cdot dt \qquad \mathbf{v} = \frac{d\mathbf{r}}{dt}$$

Legendre transform $L(\mathbf{v}) = \mathbf{p} \cdot \mathbf{v} - H(\mathbf{p})$ becomes *Poincare's invariant differential* if *dt* is cleared.

$$\mathbf{L} \cdot dt = \mathbf{p} \cdot \mathbf{v} \cdot dt - \mathbf{H} \cdot dt = \mathbf{p} \cdot d\mathbf{r} - \mathbf{H} \cdot dt \qquad \mathbf{v} =_{dt}^{\underline{d\mathbf{r}}}$$

This is the time differential dS of *action* $S = \int L dt$ whose time derivative is rate L of *quantum phase*.

Thursday, October 4, 2012

Exploring phase space and Lagrangian mechanics more deeply

A weird "derivation" of Lagrange's equations Poincare identity and Action, Jacobi-Hamilton equations

How Classicists might have "derived" quantum equations

Huygen's contact transformations enforce minimum action How to do quantum mechanics if you only know classical mechanics How Jacobi-Hamilton could have "derived" Schrodinger equations

(Given "quantum wave")

$$\Psi(\mathbf{r},t) = e^{iS/\hbar} = e^{i(\mathbf{p}\cdot\mathbf{r}-H\cdot t)/\hbar} = e^{i(\mathbf{k}\cdot\mathbf{r}-\boldsymbol{\omega}\cdot t)}$$

dS is integrable if:
$$\frac{\partial S}{\partial \mathbf{r}} = \mathbf{p}$$
 and: $\frac{\partial S}{\partial t} = -H$

These conditions are known as Jacobi-Hamilton equations

How Jacobi-Hamilton could have "derived" Schrodinger equations

(Given "quantum wave")

$$\Psi(\mathbf{r},t) = e^{iS/\hbar} = e^{i(\mathbf{p}\cdot\mathbf{r}-H\cdot t)/\hbar} = e^{i(\mathbf{k}\cdot\mathbf{r}-\boldsymbol{\omega}\cdot t)}$$

dS is integrable if:
$$\left(\frac{\partial S}{\partial \mathbf{r}} = \mathbf{p}\right)$$
 and: $\left(\frac{\partial S}{\partial t} = -H\right)$

These conditions are known as Jacobi-Hamilton equations

Try 1st **r***-derivative of wave* ψ

$$\frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r},t) = \frac{\partial}{\partial \mathbf{r}} e^{iS/\hbar} = \frac{\partial (iS/\hbar)}{\partial \mathbf{r}} e^{iS/\hbar} = (i/\hbar) \frac{\partial S}{\partial \mathbf{r}} \psi(\mathbf{r},t)$$
$$\frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r},t) = (i/\hbar) \mathbf{p} \psi(\mathbf{r},t) \text{ or: } \frac{\hbar}{i} \frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r},t) = \mathbf{p} \psi(\mathbf{r},t)$$

How Jacobi-Hamilton could have "derived" Schrodinger equations

(Given "quantum wave")

$$\Psi(\mathbf{r},t) = e^{iS/\hbar} = e^{i(\mathbf{p}\cdot\mathbf{r}-H\cdot t)/\hbar} = e^{i(\mathbf{k}\cdot\mathbf{r}-\boldsymbol{\omega}\cdot t)}$$

dS is integrable if:
$$\frac{\partial S}{\partial \mathbf{r}} = \mathbf{p}$$
 and: $\frac{\partial S}{\partial t} = -H$

These conditions are known as Jacobi-Hamilton equations

Try 1st **r***-derivative of wave* ψ

$$\frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r},t) = \frac{\partial}{\partial \mathbf{r}} e^{iS/\hbar} = \frac{\partial (iS/\hbar)}{\partial \mathbf{r}} e^{iS/\hbar} = (i/\hbar) \frac{\partial S}{\partial \mathbf{r}} \psi(\mathbf{r},t)$$
$$\frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r},t) = (i/\hbar) \mathbf{p} \psi(\mathbf{r},t) \text{ or: } \frac{\hbar}{i} \frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r},t) = \mathbf{p} \psi(\mathbf{r},t)$$

Try 1st t-derivative of wave ψ

$$\frac{\partial}{\partial t}\psi(\mathbf{r},t) = \frac{\partial}{\partial t}e^{iS/\hbar} = \frac{\partial(iS/\hbar)}{\partial t}e^{iS/\hbar} = (i/\hbar)\frac{\partial S}{\partial t}\psi(\mathbf{r},t)$$
$$= (i/\hbar)(-H)\psi(\mathbf{r},t) \text{ or: } i\hbar\frac{\partial}{\partial t}\psi(\mathbf{r},t) = H\psi(\mathbf{r},t)$$

Exploring phase space and Lagrangian mechanics more deeply

A weird "derivation" of Lagrange's equations Poincare identity and Action, Jacobi-Hamilton equations How Classicists might have "derived" quantum equations

Huygen's contact transformations enforce minimum action

How to do quantum mechanics if you only know classical mechanics

Huygen's contact transformations enforce minimum action

Each point \mathbf{r}_k on a wavefront "broadcasts" in all directions. Only **minimum action** path interferes constructively

Huygen's contact transformations enforce minimum action

Each point \mathbf{r}_k on a wavefront "broadcasts" in all directions. Only **minimum action** path interferes constructively

Exploring phase space and Lagrangian mechanics more deeply

A weird "derivation" of Lagrange's equations Poincare identity and Action, Jacobi-Hamilton equations How Classicists might have "derived" quantum equations Huygen's contact transformations enforce minimum action **How to do quantum mechanics if you only know classical mechanics** How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S_H/\hbar in amplitude to be an integral multiple *n* of 2π after a closed loop integral $S_H(\mathbf{r}_0:\mathbf{r}_0) = \int_{\mathbf{r}_0}^{\mathbf{r}_0} \mathbf{p} \cdot d\mathbf{r}$. The integer *n* (*n* = 0, 1, 2,...) is a *quantum number*.

$$l = \left\langle \mathbf{r}_0 \left| \mathbf{r}_0 \right\rangle = e^{i S_H \left(\mathbf{r}_0 : \mathbf{r}_0 \right) / \hbar} = e^{i \Sigma_H / \hbar} = 1 \text{ for: } \Sigma_H = 2\pi \hbar n = hn$$

Numerically integrate Hamilton's equations and Lagrangian *L*. Color the trajectory according to the current accumulated value of action $S_H(\mathbf{0} : \mathbf{r})/\hbar$. Adjust energy to quantized pattern (if closed system*)

$$S_{H}(\mathbf{0}:\mathbf{r}) = S_{p}(\mathbf{0}, 0:\mathbf{r}, t) + Ht = \int_{0}^{t} L \, dt + Ht$$

How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S_H/\hbar in amplitude to be an integral multiple *n* of 2π after a closed loop integral $S_H(\mathbf{r}_0:\mathbf{r}_0) = \int_{r_0}^{r_0} \mathbf{p} \cdot d\mathbf{r}$. The integer *n* (*n* = 0, 1, 2,...) is a *quantum number*.

$$l = \left\langle \mathbf{r}_0 \left| \mathbf{r}_0 \right\rangle = e^{i S_H \left(\mathbf{r}_0 : \mathbf{r}_0 \right) / \hbar} = e^{i \Sigma_H / \hbar} = 1 \text{ for: } \Sigma_H = 2\pi \hbar n = hn$$

Numerically integrate Hamilton's equations and Lagrangian *L*. Color the trajectory according to the current accumulated value of action $S_H(\mathbf{0} : \mathbf{r})/\hbar$. Adjust energy to quantized pattern (if closed system*)

$$S_{H}(\mathbf{0}:\mathbf{r}) = S_{p}(\mathbf{0}, 0:\mathbf{r}, t) + Ht = \int_{0}^{t} L dt + Ht$$

The hue should represent the phase angle $S_H(\mathbf{0} : \mathbf{r})/\hbar$ modulo 2π as, for example, 0 = red, $\pi/4 = orange$, $\pi/2 = yellow$, $3\pi/4 = green$, $\pi = cyan$ (opposite of red), $5\pi/4 = indigo$, $3\pi/2 = blue$, $7\pi/4 = purple$, and $2\pi = red$ (full color circle). Interpolating action on a palette of 32 colors is enough precision for low quanta.

How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S_H/\hbar in amplitude to be an integral multiple *n* of 2π after a closed loop integral $S_H(\mathbf{r}_0:\mathbf{r}_0) = \int_{r_0}^{r_0} \mathbf{p} \cdot d\mathbf{r}$. The integer *n* (*n* = 0, 1, 2,...) is a *quantum number*.

$$l = \left\langle \mathbf{r}_0 \left| \mathbf{r}_0 \right\rangle = e^{i S_H \left(\mathbf{r}_0 : \mathbf{r}_0 \right) / \hbar} = e^{i \Sigma_H / \hbar} = 1 \text{ for: } \Sigma_H = 2\pi \hbar n = hn$$

Numerically integrate Hamilton's equations and Lagrangian *L*. Color the trajectory according to the current accumulated value of action $S_H(\mathbf{0} : \mathbf{r})/\hbar$. Adjust energy to quantized pattern (if closed system*)

$$S_{H}(\mathbf{0}:\mathbf{r}) = S_{p}(\mathbf{0}, 0:\mathbf{r}, t) + Ht = \int_{0}^{t} L dt + Ht$$

The hue should represent the phase angle $S_H(\mathbf{0} : \mathbf{r})/\hbar$ modulo 2π as, for example, 0=red, $\pi/4=orange$, $\pi/2=yellow$, $3\pi/4=green$, $\pi=cyan$ (opposite of red), $5\pi/4=indigo$, $3\pi/2=blue$, $7\pi/4=purple$, and $2\pi=red$ (full color circle). Interpolating action on a palette of 32 colors is enough precision for low quanta.

Thursday, October 4, 2012

A moving wave has a *quantum phase velocity* found by setting S=const. or $dS(0,0:r,t)=0=\mathbf{p}\cdot d\mathbf{r}-Hdt$. $\mathbf{V}_{phase} = \frac{d\mathbf{r}}{dt} = \frac{H}{\mathbf{p}} = \frac{\omega}{\mathbf{k}}$

A moving wave has a *quantum phase velocity* found by setting S = const. or $dS(0, 0:r, t) = 0 = \mathbf{p} \cdot d\mathbf{r} - Hdt$.

 $\mathbf{V}_{phase} = \frac{d\mathbf{r}}{dt} = \frac{H}{\mathbf{p}} = \frac{\omega}{\mathbf{k}}$

This is quite the opposite of classical particle velocity which is *quantum group velocity*.

A moving wave has a *quantum phase velocity* found by setting S = const. or $dS(0, 0:r, t) = 0 = \mathbf{p} \cdot d\mathbf{r} - Hdt$.

 $\mathbf{V}_{phase} = \frac{d\mathbf{r}}{dt} = \frac{H}{\mathbf{p}} = \frac{\omega}{\mathbf{k}}$

This is quite the opposite of classical particle velocity which is *quantum group velocity*.

A moving wave has a *quantum phase velocity* found by setting S=const. or $dS(0,0:r,t)=0=\mathbf{p}\cdot d\mathbf{r}-Hdt$. $\mathbf{V}_{phase} = \frac{d\mathbf{r}}{dt} = \frac{H}{\mathbf{p}} = \frac{\omega}{\mathbf{k}}$

This is quite the opposite of classical particle velocity which is *quantum group velocity*.

