
Lecture  13 
Thur. 10.4.2012

Poincare, Lagrange,  Hamiltonian, and Jacobi 
mechanics

(Unit 1 Ch. 12, Unit 2 Ch. 2-7, Unit 3 Ch. 1-3)
Review of Lecture 12 relations: 
    

Examples of Hamiltonian mechanics in phase plots
         1D Pendulum and phase plot (Simulation)

1D-HO phase-space control (Simulation of “Catcher in the Eye”)    

Exploring phase space and Lagrangian mechanics more deeply
         A weird “derivation” of Lagrange’s equations
         Poincare identity and Action, Jacobi-Hamilton equations
        How Classicists might have “derived” quantum equations

Huygen’s contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
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Examples of Hamiltonian mechanics in phase plots
         1D Pendulum and phase plot (Simulation)

1D-HO phase-space control (Simulation of “Catcher in the Eye”)    
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R
R

x
h

x2=h(2R-h) ~ 2hR
(Euclid mean)

1/2(Mg/R)x
2

~ Mgh

h

(b) Energy geometry

θR

x=R sinθ ~Rθ

(a) Force geometry

θ

θ- MgR sin θ=Fθ
=-Mg x

Mg

θ
R

(c) Time geometry

ε=θ/2

PE:
V=MgY
=-MgRcosθ

ε

M

1D Pendulum and phase plot 

Lagrangian function L= KE - PE = T - U where potential energy is U(θ) =

   
L( θ ,θ) = 1

2
I θ2 −U (θ) = 1

2
I θ2 + MgRcosθ  

  −MgRcosθ  

NOTE:   Very common
loci of ± sign blunders
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H ( pθ ,θ) = 1

2I
pθ

2 +U (θ) = 1
2I

pθ
2 − MgRcosθ  = E

1D Pendulum and phase plot 

Lagrangian function L= KE - PE = T - U where potential energy is U(θ) =

   
L( θ ,θ) = 1

2
I θ2 −U (θ) = 1

2
I θ2 + MgRcosθ  

  −MgRcosθ  

Hamiltonian function H= KE + PE = T +U where potential energy is U(θ) =   −MgRcosθ  

=const.

NOTE:   Very common
loci of ± sign blunders
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ε

M

  
H ( pθ ,θ) = 1

2I
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2 +U (θ) = 1
2I

pθ
2 − MgRcosθ  = E

1D Pendulum and phase plot 

Lagrangian function L= KE - PE = T - U where potential energy is U(θ) =

   
L( θ ,θ) = 1

2
I θ2 −U (θ) = 1

2
I θ2 + MgRcosθ  

  −MgRcosθ  

Hamiltonian function H= KE + PE = T +U where potential energy is U(θ) =   −MgRcosθ  

=const.

  pθ = 2I E + MgRcosθ( )implies:

NOTE:   Very common
loci of ± sign blunders
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H ( pθ ,θ) = E = 1

2I
pθ

2 − MgRcosθ  ,   or:   pθ = 2I E + MgRcosθ( )
Example of plot of Hamilton for 1D-solid pendulum in its Phase Space (θ,pθ)

(unstable
“balancing”

point)
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H ( pθ ,θ) = E = 1

2I
pθ

2 − MgRcosθ  ,   or:   pθ = 2I E + MgRcosθ( )
Example of plot of Hamilton for 1D-solid pendulum in its Phase Space (θ,pθ)

 

q
p

⎛
⎝⎜

⎞
⎠⎟
=

∂ pH
−∂qH

⎛
⎝⎜

⎞
⎠⎟
= eH × −∇H( )=(H-axis) × (fall line), where:

(H-axis)=eH=eq × ep
(fall line)=-∇H

⎧
⎨
⎩

 

(unstable
“balancing”

point)

Funny way to look at Hamilton’s equations:
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 Examples of Hamiltonian dynamics and phase plots
         1D Pendulum and phase plot (Simulation)

Phase control (Simulation of “Catcher in the Eye”))
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(e) Geometry of Linear Force with Constant Mg and Quadratic Potential

u(y)= (1/4)y2 +y

F(Y)=-kY-Mg

Ushift= -(Mg)2 /2k

Yshift= -Mg /k

y=1 y=2 y=3y=-3 y=-2 y=-1y=-6 y=-5 y=-4

u=3

u=2

u=1

U(Y)=(1/2)kY2+Mg Y

f(y)= -(1/2)y -1 u(y)= y

Simulation of atomic classical (or semi-classical) dynamics using varying phase control

Unit 1
Fig. 7.4 
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 Exploring phase space and Lagrangian mechanics more deeply
         A weird “derivation” of Lagrange’s equations
         Poincare identity and Action, Jacobi-Hamilton equations
        How Classicists might have “derived” quantum equations

Huygen’s contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
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An arbitrary but small variation function        is allowed at every point t in the figure along the 
curve except at the end points t0 and t1. There we demand it not vary at all. 

 
S q( ) = dt

t0

t1

∫ L q t( ), q t( ),t( ).

q(t)

t0 t1

q(t)+δq(t)

t0 t1

q(t)

δq(t)
..varied to:

Variational calculus finds extreme (minimum or maximum) values to entire integrals
A strange “derivation” of Lagrange’s equations by Calculus of Variation

δq(t)

δq(t0 ) = 0 = δq(t1)

 
S q + δq( ) = dt

t0

t1

∫ L q, q,t( ) + ∂L
∂q

δq + ∂L
∂ q

δ q⎡

⎣
⎢

⎤

⎦
⎥   where: δ q = d

dt
δq

(1)

Minimize (or maximize):

(1)

1st order L(q+δq) approximate:
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An arbitrary but small variation function        is allowed at every point t in the figure along the 
curve except at the end points t0 and t1. There we demand it not vary at all. 
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∂ q

δ q⎡

⎣
⎢

⎤

⎦
⎥   where: δ q = d

dt
δq

 

∂L
∂ q

δ q
 

d
dt

∂L
∂ q

δq
⎛
⎝⎜

⎞
⎠⎟
−
d
dt

∂L
∂ q

⎛
⎝⎜

⎞
⎠⎟
δq

(1)

(1)

1st order L(q+δq) approximate:
u ⋅ dv
dt

=
d
dt

uv( ) − du
dt
v
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Third term vanishes by (1). This leaves first order variation:
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dt
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But, WHY is nature so inclined to fly JUST SO as to minimize the Lagrangian L = T - U???
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 Exploring phase space and Lagrangian mechanics more deeply
         A weird “derivation” of Lagrange’s equations
         Poincare identity and Action, Jacobi-Hamilton equations
         How Classicists might have “derived” quantum equations

Huygen’s contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
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v= dr
dt
implies: v⋅dt=dr⎛

⎝⎜
⎞
⎠⎟

Legendre transform                                      becomes Poincare’s invariant differential if dt is cleared.

 L·dt = piv⋅dt − H⋅dt = pidr − H⋅dt

 L(v) = piv − H (p)

Legendre-Poincare identity and Action
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This is the time differential dS of action                      whose time derivative is rate L of quantum phase.S = L·dt∫

 
dS = L·dt = pidr − H⋅dt     where:   L =

dS
dt

v= dr
dt
implies: v⋅dt=dr⎛

⎝⎜
⎞
⎠⎟

Legendre transform                                      becomes Poincare’s invariant differential if dt is cleared.

 L·dt = piv⋅dt − H⋅dt = pidr − H⋅dt

 L(v) = piv − H (p)

Legendre-Poincare identity and Action
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Unit 8 shows DeBroglie law              and Planck law               make quantum plane wave phase Φ: p=k  H=ω

This is the time differential dS of action                      whose time derivative is rate L of quantum phase.

v =dt
dr

Legendre transform                                      becomes Poincare’s invariant differential if dt is cleared.

 L·dt = piv ⋅dt − H ⋅dt = pidr − H ⋅dt

 L(v) = piv − H (p)

S = L·dt∫

 
dS = L·dt = pidr − H ⋅dt     where:   L =

dS
dt

 
Φ = S/ = L·dt/∫

Legendre-Poincare identity and Action
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Unit 2 shows DeBroglie law              and Planck law               make quantum plane wave phase Φ: p=k  H=ω

 ψ (r,t) = e
iS / = ei(pir−H ⋅t )/ = ei(kir−ω ⋅t )

This is the time differential dS of action                      whose time derivative is rate L of quantum phase.

v =dt
dr

Legendre transform                                      becomes Poincare’s invariant differential if dt is cleared.

 L·dt = piv ⋅dt − H ⋅dt = pidr − H ⋅dt

 L(v) = piv − H (p)

S = L·dt∫

 
dS = L·dt = pidr − H ⋅dt     where:   L =

dS
dt

 
Φ = S/ = L·dt/∫

Legendre-Poincare identity and Action
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Unit 2 shows DeBroglie law              and Planck law               make quantum plane wave phase Φ: p=k  H=ω

 ψ (r,t) = e
iS / = ei(pir−H ⋅t )/ = ei(kir−ω ⋅t )

This is the time differential dS of action                      whose time derivative is rate L of quantum phase.

v =dt
dr

Legendre transform                                      becomes Poincare’s invariant differential if dt is cleared.

 L·dt = piv ⋅dt − H ⋅dt = pidr − H ⋅dt

 L(v) = piv − H (p)

S = L·dt∫

 
dS = L·dt = pidr − H ⋅dt     where:   L =

dS
dt

 
Φ = S/ = L·dt/∫

Legendre-Poincare identity and Action

Q:When is the Action-differential dS integrable? 
A: A differential dW=fx(x,y)dx+fy(x,y)dy is integrable to a W(x,y) if:            and:                fx =

∂W
∂x

fy =
∂W
∂y
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Unit 2 shows DeBroglie law              and Planck law               make quantum plane wave phase Φ: p=k  H=ω

 ψ (r,t) = e
iS / = ei(pir−H ⋅t )/ = ei(kir−ω ⋅t )

This is the time differential dS of action                      whose time derivative is rate L of quantum phase.
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 L·dt = piv ⋅dt − H ⋅dt = pidr − H ⋅dt

 L(v) = piv − H (p)

S = L·dt∫

 
dS = L·dt = pidr − H ⋅dt     where:   L =

dS
dt

 
Φ = S/ = L·dt/∫

Legendre-Poincare identity and Action

Q:When is the Action-differential dS integrable? 
A: Differential dW=fx(x,y)dx+fy(x,y)dy is integrable to a W(x,y) if:            and:                fx =

∂W
∂x

fy =
∂W
∂y

Similar to conditions 
for integrating work 
differential dW=f•dr 
to get potential W(r).
That condition is no 
curl allowed:           
or ∂-symmetry of W:

∇×f=0

∂fx
∂y

=
∂2W
∂y∂x

=
∂2W
∂x∂y

=
∂fy
∂x
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Unit 2 shows DeBroglie law              and Planck law               make quantum plane wave phase Φ: p=k  H=ω

 ψ (r,t) = e
iS / = ei(pir−H ⋅t )/ = ei(kir−ω ⋅t )

This is the time differential dS of action                      whose time derivative is rate L of quantum phase.

v =dt
dr

Legendre transform                                      becomes Poincare’s invariant differential if dt is cleared.

 L·dt = piv ⋅dt − H ⋅dt = pidr − H ⋅dt
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dS = L·dt = pidr − H ⋅dt     where:   L =
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Φ = S/ = L·dt/∫

Legendre-Poincare identity and Action

Q: When is the Action-differential dS integrable? 
A: Differential dW=fx(x,y)dx+fy(x,y)dy is integrable to a W(x,y) if:            and:                fx =

∂W
∂x

fy =
∂W
∂y

Similar to conditions 
for integrating work 
differential dW=f•dr 
to get potential W(r).
That condition is no 
curl allowed:           
or ∂-symmetry of W:

∇×f=0

∂fx
∂y

=
∂2W
∂y∂x

=
∂2W
∂x∂y

=
∂fy
∂x

dS is integrable if:                    and: 
∂S
∂r

= p ∂S
∂t

= −H

These conditions are known as Jacobi-Hamilton equations
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 Exploring phase space and Lagrangian mechanics more deeply
         A weird “derivation” of Lagrange’s equations
         Poincare identity and Action, Jacobi-Hamilton equations
         How Classicists might have “derived” quantum equations

Huygen’s contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
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 ψ (r,t) = e
iS / = ei(pir−H ⋅t )/ = ei(kir−ω ⋅t )

dS is integrable if:                    and: 
∂S
∂r

= p ∂S
∂t

= −H

These conditions are known as Jacobi-Hamilton equations

How Jacobi-Hamilton could have “derived” Schrodinger equations
(Given “quantum wave”)

26Thursday, October 4, 2012



 ψ (r,t) = e
iS / = ei(pir−H ⋅t )/ = ei(kir−ω ⋅t )

dS is integrable if:                    and: 
∂S
∂r

= p ∂S
∂t

= −H

These conditions are known as Jacobi-Hamilton equations

How Jacobi-Hamilton could have “derived” Schrodinger equations

 

∂
∂r

ψ (r,t) = ∂
∂r
eiS / =

∂ iS / ( )
∂r

eiS / = i / ( ) ∂S
∂r

ψ (r,t)

∂
∂r

ψ (r,t) = i / ( )pψ (r,t)  or:   
i

∂
∂r

ψ (r,t) = pψ (r,t)

Try 1st r-derivative of wave ψ

(Given “quantum wave”)
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eiS / =
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eiS / = i / ( ) ∂S
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i

∂
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ψ (r,t) = pψ (r,t)

Try 1st r-derivative of wave ψ

 

∂
∂t
ψ (r,t) = ∂

∂t
eiS / =

∂ iS / ( )
∂t

eiS / = i / ( ) ∂S
∂t

ψ (r,t)

= i / ( ) −H( )ψ (r,t)  or:   i ∂
∂t
ψ (r,t) = Hψ (r,t)

Try 1st t-derivative of wave ψ

(Given “quantum wave”)
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 Exploring phase space and Lagrangian mechanics more deeply
         A weird “derivation” of Lagrange’s equations
         Poincare identity and Action, Jacobi-Hamilton equations
         How Classicists might have “derived” quantum equations

Huygen’s contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
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r0

r´10 r´20 r´30

r10
r20 r30

S
H
(r
0
:r)=30

r
0

S
H
(r
0
:r)=20

S
H
(r
0
:r)=10

S
H
(r´10:r)=10

S
H
(r´10:r)=20

Non-optimal path r0 to r20
accumulates 30

Optimal path r0 to r20
accumulates 20

(Least action possible)

Unit 1
Fig. 12.12 

Huygen’s contact transformations enforce minimum action
Each point rk on a wavefront “broadcasts” in all directions. 

Only minimum action path interferes constructively

 
SH = pidr

r0

r1

∫Time-independent action
(Hamilton’s reduced action) 
is a purely spatial integral .  

Sp = pidr − H ⋅dt( )
r0 t0

r1t1

∫Time-dependent action
(Hamilton’s principle action) 
is space-time integral .
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(Least action possible)
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Huygen’s contact transformations enforce minimum action
Each point rk on a wavefront “broadcasts” in all directions. 

Only minimum action path interferes constructively

 
SH = pidr

r0

r1

∫Time-independent action
(Hamilton’s reduced action) 
is a purely spatial integral .

    
r1,t1 r0,t0 = ei S r0 ,t0:r1,t1( )/

 
Sp = pidr − H ⋅dt( )

r0 t0

r1t1

∫Time-dependent action
(Hamilton’s principle action) 
is space-time integral .

    
r1 r0 = ei SH r0:r1( )/

    
r1 ′r

′r
∑ ′r r0 ≅ e

i SH r0: ′r( )+SH ′r :r1( )( )/
′r
∑ = ei SH r0:r1( )/ = r1 r0

Feynman’s path-sum closure relation

...because action is
         quantum wave phase
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 Exploring phase space and Lagrangian mechanics more deeply
         A weird “derivation” of Lagrange’s equations
         Poincare identity and Action, Jacobi-Hamilton equations
         How Classicists might have “derived” quantum equations

Huygen’s contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics
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Bohr quantization requires quantum phase        in amplitude to be an integral multiple n of 2π after a 
closed loop integral                              . The integer n (n = 0, 1, 2,...) is a quantum number.

 SH /

 
SH r0 :r0( ) = pidr

r0

r0∫

    
1 = r0 r0 = ei SH r0:r0( )/ = eiΣH /=1  for: ΣH = 2π n = hn

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the 
current accumulated value of action SH(0 : r)/. Adjust energy to quantized pattern (if closed system*)

 SH(0 : r) = Sp(0, 0 : r, t ) + Ht =               + Ht .  L dt0
t∫

How to do quantum mechanics if you only know classical mechanics
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The hue should represent the phase angle SH(0 : r)/ modulo 2π as, for example,
 0=red, π/4=orange, π/2=yellow, 3π/4=green, π=cyan (opposite of red), 5π/4=indigo, 3π/2=blue,7π/4=purple, and 2π=red (full color circle). 
Interpolating action on a palette of 32 colors is enough precision for low quanta.

Bohr quantization requires quantum phase        in amplitude to be an integral multiple n of 2π after a 
closed loop integral                              . The integer n (n = 0, 1, 2,...) is a quantum number.

 SH /

 
SH r0 :r0( ) = pidr

r0

r0∫

    
1 = r0 r0 = ei SH r0:r0( )/ = eiΣH /=1  for: ΣH = 2π n = hn

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the 
current accumulated value of action SH(0 : r)/. Adjust energy to quantized pattern (if closed system*)

 SH(0 : r) = Sp(0, 0 : r, t ) + Ht =               + Ht .  L dt0
t∫

How to do quantum mechanics if you only know classical mechanics

Unit 1
Fig.

12.13 
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The hue should represent the phase angle SH(0 : r)/ modulo 2π as, for example,
 0=red, π/4=orange, π/2=yellow, 3π/4=green, π=cyan (opposite of red), 5π/4=indigo, 3π/2=blue,7π/4=purple, and 2π=red (full color circle). 
Interpolating action on a palette of 32 colors is enough precision for low quanta.

Bohr quantization requires quantum phase        in amplitude to be an integral multiple n of 2π after a 
closed loop integral                              . The integer n (n = 0, 1, 2,...) is a quantum number.

 SH /

 
SH r0 :r0( ) = pidr

r0

r0∫

    
1 = r0 r0 = ei SH r0:r0( )/ = eiΣH /=1  for: ΣH = 2π n = hn

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the 
current accumulated value of action SH(0 : r)/. Adjust energy to quantized pattern (if closed system*)

 SH(0 : r) = Sp(0, 0 : r, t ) + Ht =               + Ht .  L dt0
t∫

How to do quantum mechanics if you only know classical mechanics

*open system has continuous energy

Unit 1
Fig.

12.13 

Unit 1
Fig.

12.14 
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(a) SH=0.3 (b) SH=0.35 (c) SH=0.4

(d) SH=0.9

∇SH=p

∇SH=p

A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=p•dr-Hdt .

  
Vphase = dr

dt
= H

p
= ω

k

Unit 1
Fig. 12.15 quantum phase velocity

Quantum “phase wavefronts”

wavefront
“cat ears” 
scoot outward..
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(a) SH=0.3 (b) SH=0.35 (c) SH=0.4

(d) SH=0.9

∇SH=p

∇SH=p

A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=p•dr-Hdt .

  
Vphase = dr

dt
= H

p
= ω

k
This is quite the opposite of classical particle velocity which is quantum group velocity.

   
Vgroup = dr

dt
= r = ∂H

∂p
= ∂ω
∂k

Note: This is Hamilton’s 1st Equation

Unit 1
Fig. 12.15 quantum phase velocity

Quantum “phase wavefronts”

After a while …
nothing left but a smile!

wavefront
“cat ears” 
scoot outward..
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(a) SH=0.3 (b) SH=0.35 (c) SH=0.4

(d) SH=0.9

∇SH=p

∇SH=p

A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=p•dr-Hdt .

  
Vphase = dr

dt
= H

p
= ω

k
This is quite the opposite of classical particle velocity which is quantum group velocity.

   
Vgroup = dr

dt
= r = ∂H

∂p
= ∂ω
∂k

Note: This is Hamilton’s 1st Equation

Unit 1
Fig. 12.15 quantum phase velocity

Quantum “phase wavefronts”

After a while …
nothing left but a smile!

wavefront
“cat ears” 
scoot outward..

 From Alice’s Adventures in Wonderland by Lewis Carrol (1865)

16th Century carving on St. Wifred’s in Grappenhall  ...on St. Nicolas
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(a) SH=0.3 (b) SH=0.35 (c) SH=0.4

(d) SH=0.9

∇SH=p

∇SH=p

A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=p•dr-Hdt .

  
Vphase = dr

dt
= H

p
= ω

k
This is quite the opposite of classical particle velocity which is quantum group velocity.

   
Vgroup = dr

dt
= r = ∂H

∂p
= ∂ω
∂k

Note: This is Hamilton’s 1st Equation

Unit 1
Fig. 12.15 

(a) T=0.4 (b) T=1.0

(c) T=2.3

quantum phase velocity

...not to be confused with...

...quantum group velocity...
that is classical particle velocity

Classical “blast wavefronts”

Quantum “phase wavefronts”

lower Vgroup up here

higher Vgroup down here

higher Vphase up here

lower Vphase down here
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Lecture  13 ends here 
Thur. 10.4.2012
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