
Lecture  12 
Thur. 9.29.2016

 Complex Variables, Series, and Field Coordinates I.
(Ch. 10 of Unit 1)

1. The Story of e (A Tale of Great $Interest$)
         How good are those power series?

Taylor-Maclaurin series, imaginary interest, and complex exponentials 
2. What good are complex exponentials?
      Easy trig
       Easy 2D vector analysis
         Easy oscillator phase analysis

Easy rotation and “dot” or “cross” products
3. Easy 2D vector calculus

 Easy 2D vector derivatives 
        Easy 2D source-free field theory
           Easy 2D vector field-potential theory
4. Riemann-Cauchy relations (What’s analytic? What’s not?)
      Easy 2D curvilinear coordinate discovery
       Easy 2D circulation and flux integrals

Easy 2D monopole, dipole, and 2n-pole analysis
 Easy 2n-multipole field and potential expansion
   Easy stereo-projection visualization
    Cauchy integrals, Laurent-Maclaurin series 

5. Mapping and Non-analytic 2D source field analysis

 

The half-nʼ-half results: (Riemann-Cauchy Derivative Relations)

1. Complex numbers provide "automatic  trigonometry"

2. Complex numbers add like vectors.

3. Complex exponentials Ae-iωt track position and velocity using Phasor Clock.
4. Complex products provide 2D rotation operations.
5. Complex products provide 2D “dot”(•) and “cross”(x) products.

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

7. Invent source-free 2D vector fields [∇•F=0 and ∇xF=0]

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials

9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
10. Complex integrals ∫  f(z)dz  count 2D “circulation”(  ∫F•dr) and “flux”( ∫Fxdr) 
11. Complex integrals define 2D monopole fields and potentials
12. Complex derivatives give 2D dipole fields
13. More derivatives give 2D 2N-pole fields…
14. ...and 2N-pole multipole expansions of fields and potentials...
15. ...and Laurent Series...
16. ...and non-analytic source analysis.

Lecture  14 Tue. 10.15
starts here

Lecture  15 Thur. 10.17
starts here
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Simple interest at some rate r  based on a 1 year period. 

You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). 

$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=1year.

The Story of e (A Tale of Great $Interest$)
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Semester compounded interest gives                            at the half-period       and then 
use        during the last half to figure final payment. Now $1.00 at rate r=1 earns $2.25.

 

Simple interest at some rate r  based on a 1 year period. 

You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). 

$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=1year.

p(2
t ) = (1+ r·2

t )p(0) 2
t

p(2
t )

p 2
1
(t) = (1+ r·2

t )p(2
t ) = (1+ r·2

t )·(1+ r·2
t )p(0) =2

3·2
3·1=4

9= 2.25

The Story of e (A Tale of Great $Interest$)
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Semester compounded interest gives                            at the half-period       and then 
use        during the last half to figure final payment. Now $1.00 at rate r=1 earns $2.25.

 

Simple interest at some rate r  based on a 1 year period. 

You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). 

$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=1year.
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p(2
t )

p 2
1
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t )p(2
t ) = (1+ r·2

t )·(1+ r·2
t )p(0) =2

3·2
3·1=4

9= 2.25

p(3
t ) = (1+ r·3

t )p(0) 3
tTrimester compounded interest gives                           at the 1/3rd-period       or 1st trimester and    

then use that to figure the 2nd trimester and so on. Now $1.00 at rate r=1 earns $2.37.

p 3
1
(t) = (1+ r·3

t )p(23
t ) = (1+ r·3

t )·(1+ r·3
t )p(3

t ) = (1+ r·3
t )·(1+ r·3

t )·(1+ r·3
t )p(0) =3

4 ·3
4 ·3
4 ·1=27

64= 2.37

The Story of e (A Tale of Great $Interest$)
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p 3
1
(t) = (1+ r·3

t )p(23
t ) = (1+ r·3

t )·(1+ r·3
t )p(3

t ) = (1+ r·3
t )·(1+ r·3

t )·(1+ r·3
t )p(0) =3

4 ·3
4 ·3
4 ·1=27

64= 2.37

The Story of e (A Tale of Great $Interest$)

So if you compound interest more and more frequently, do you approach INFININTEREST? ∞∞
$

$ $
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The Story of e (A Tale of Great $Interest$)

So if you compound interest more and more frequently, do you approach INFININTEREST? ∞∞
$

¢
NOT!!
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Semester compounded interest gives                            at the half-period       and then 
use        during the last half to figure final payment. Now $1.00 at rate r=1 earns $2.25.

 

Simple interest at some rate r  based on a 1 year period. 

You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). 

$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=1year.

p(2
t ) = (1+ r·2

t )p(0) 2
t

p(2
t )

p 2
1
(t) = (1+ r·2

t )p(2
t ) = (1+ r·2

t )·(1+ r·2
t )p(0) =2

3·2
3·1=4

9= 2.25

p(3
t ) = (1+ r·3

t )p(0) 3
tTrimester compounded interest gives                           at the 1/3rd-period       or 1st trimester and    

then use that to figure the 2nd trimester and so on. Now $1.00 at rate r=1 earns $2.37.

p 3
1
(t) = (1+ r·3

t )p(23
t ) = (1+ r·3

t )·(1+ r·3
t )p(3

t ) = (1+ r·3
t )·(1+ r·3

t )·(1+ r·3
t )p(0) =3

4 ·3
4 ·3
4 ·1=27

64= 2.37

p1
1
(t) = (1+ r·1

t )1 p(0) = 1
2( )1·1= 12= 2.00

p 2
1
(t) = (1+ r·2

t )2 p(0) = 2
3( )2 ·1=49= 2.25

p 3
1
(t) = (1+ r·3

t )3 p(0) = 3
4( )3·1=2764= 2.37

p 4
1
(t) = (1+ r·4

t )4 p(0) = 4
5( )4 ·1=256625= 2.44

The Story of e (A Tale of Great $Interest$)

So if you compound interest more and more frequently, do you approach INFININTEREST? ∞∞
$

¢
NOT!!

+25¢

+12¢

+7¢
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Semester compounded interest gives                            at the half-period       and then 
use        during the last half to figure final payment. Now $1.00 at rate r=1 earns $2.25.

 

Simple interest at some rate r  based on a 1 year period. 

You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). 

$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=1year.

p(2
t ) = (1+ r·2

t )p(0) 2
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p(2
t )

p 2
1
(t) = (1+ r·2

t )p(2
t ) = (1+ r·2

t )·(1+ r·2
t )p(0) =2

3·2
3·1=4

9= 2.25

p(3
t ) = (1+ r·3

t )p(0) 3
t

p 3
1
(t) = (1+ r·3

t )p(23
t ) = (1+ r·3

t )·(1+ r·3
t )p(3

t ) = (1+ r·3
t )·(1+ r·3

t )·(1+ r·3
t )p(0) =3

4 ·3
4 ·3
4 ·1=27

64= 2.37

p1
1
(t) = (1+ r·1

t )1 p(0) = 1
2( )1·1= 12= 2.00

p 2
1
(t) = (1+ r·2

t )2 p(0) = 2
3( )2 ·1=49= 2.25

p 3
1
(t) = (1+ r·3

t )3 p(0) = 3
4( )3·1=2764= 2.37

p 4
1
(t) = (1+ r·4

t )4 p(0) = 4
5( )4 ·1=256625= 2.44

 Monthly:       p12
1

(t) = (1+ r·12
t )12 p(0) = 12

13( )12
·1= 2.613 

 Weekly:        p 52
1

(t) = (1+ r·52
t )52 p(0) = 52

53( )52
·1= 2.693

 Daily:      p 365
1

(t) = (1+ r·365
t )365 p(0) = 365

366( )365
·1= 2.7145

 Hrly:  p 8760
1

(t) = (1+ r·8760
t )8760 p(0) = 8760

8761( )8760
·1= 2.7181

The Story of e (A Tale of Great $Interest$)

So if you compound interest more and more frequently, do you approach INFININTEREST? ∞∞
$

¢
NOT!!

+25¢

+12¢

+7¢

Trimester compounded interest gives                           at the 1/3rd-period       or 1st trimester and    
then use that to figure the 2nd trimester and so on. Now $1.00 at rate r=1 earns $2.37.
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p1/m (1) = (1+m
1 )m m→∞⎯ →⎯⎯

            p1/m(1) = 2.7169239322       for m = 1,000
  p1/m(1) = 2.7181459268  for m = 10,000
  p1/m(1) = 2.7182682372  for m = 100,000
  p1/m(1) = 2.7182804693  for m = 1,000,000    
  p1/m(1) = 2.7182816925  for m = 10,000,000
  p1/m(1) = 2.7182818149  for m = 100,000,000
  p1/m(1) = 2.7182818271  for m = 1,000,000,000

(1+m
1 )m⋅r⋅t m→∞⎯ →⎯⎯ er·t

(1+n
r·t )n n→∞⎯ →⎯⎯ er·t

Let:  m·r·t=n
or:  1/m= r·t/n

Interest product formula is really inefficient: 106 products for 6-figures! .. .109 products for 9  ...

2.718281828459..
=e
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p1/m (1) = (1+m
1 )m m→∞⎯ →⎯⎯

            p1/m(1) = 2.7169239322       for m = 1,000
  p1/m(1) = 2.7181459268  for m = 10,000
  p1/m(1) = 2.7182682372  for m = 100,000
  p1/m(1) = 2.7182804693  for m = 1,000,000    
  p1/m(1) = 2.7182816925  for m = 10,000,000
  p1/m(1) = 2.7182818149  for m = 100,000,000
  p1/m(1) = 2.7182818271  for m = 1,000,000,000

(x + y)n = xn + n ⋅ xn−1y + n(n −1)
2!

xn−2y2 + n(n −1)(n − 2)
3!

xn−3y3 + ...+ n ⋅ xyn−1 + yn

(1+ r ⋅ t
n
)n = 1+ n ⋅ r ⋅ t

n
⎛
⎝⎜

⎞
⎠⎟
+
n(n −1)
2!

r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟
2
+
n(n −1)(n − 2)

3!
r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟
3
+ ...

(1+m
1 )m⋅r⋅t m→∞⎯ →⎯⎯ er·t

(1+n
r·t )n n→∞⎯ →⎯⎯ er·t

Let:  m·r·t=n
or:  1/m= r·t/n

Interest product formula is really inefficient: 106 products for 6-figures! .. .109 products for 9  ...

Can improve computational efficiency using binomial theorem:

Define: Factorials(!): 
0!=1=1!, 2!=1·2, 3!=1·2·3, ...

2.718281828459..
=e
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p1/m (1) = (1+m
1 )m m→∞⎯ →⎯⎯
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2!
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)n = 1+ n ⋅ r ⋅ t

n
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⎞
⎠⎟
+
n(n −1)
2!

r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟
2
+
n(n −1)(n − 2)

3!
r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟
3
+ ...

er ⋅t = 1+ r ⋅ t + 1
2!

r ⋅ t( )2 + 13! r ⋅ t( )3 + ... = r ⋅ t( )p
p!p=0

o
∑

(1+m
1 )m⋅r⋅t m→∞⎯ →⎯⎯ er·t

(1+n
r·t )n n→∞⎯ →⎯⎯ er·t

Let:  m·r·t=n
or:  1/m= r·t/n

Interest product formula is really inefficient: 106 products for 6-figures! .. .109 products for 9  ...

As n → ∞ let :

n(n − 1)→ n2 ,

n(n − 1)(n − 2)→ n3 , etc.

Define: Factorials(!): 
0!=1=1!, 2!=1·2, 3!=1·2·3, ...

2.718281828459..
=e

Can improve computational efficiency using binomial theorem:
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p1/m (1) = (1+m
1 )m m→∞⎯ →⎯⎯
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(x + y)n = xn + n ⋅ xn−1y + n(n −1)
2!

xn−2y2 + n(n −1)(n − 2)
3!

xn−3y3 + ...+ n ⋅ xyn−1 + yn

(1+ r ⋅ t
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)n = 1+ n ⋅ r ⋅ t

n
⎛
⎝⎜

⎞
⎠⎟
+
n(n −1)
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r ⋅ t
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⎛
⎝⎜

⎞
⎠⎟
2
+
n(n −1)(n − 2)

3!
r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟
3
+ ...

er ⋅t = 1+ r ⋅ t + 1
2!

r ⋅ t( )2 + 13! r ⋅ t( )3 + ... = r ⋅ t( )p
p!p=0

o
∑

Precision order:     (o=1)-e-series = 2.00000 =1+1
     (o=2)-e-series = 2.50000  =1+1+1/2
     (o=3)-e-series = 2.66667  =1+1+1/2+1/6
     (o=4)-e-series = 2.70833  =1+1+1/2+1/6+1/24
     (o=5)-e-series = 2.71667  =1+1+1/2+1/6+1/24+1/120     
     (o=6)-e-series = 2.71805  =1+1+1/2+1/6+1/24+1/120+1/720
     (o=7)-e-series = 2.71825
     (o=8)-e-series = 2.71828

(1+m
1 )m⋅r⋅t m→∞⎯ →⎯⎯ er·t

(1+n
r·t )n n→∞⎯ →⎯⎯ er·t

Let:  m·r·t=n
or:  1/m= r·t/n

Interest product formula is really inefficient: 106 products for 6-figures! .. .109 products for 9  ...

As n → ∞ let :

n(n − 1)→ n2 ,

n(n − 1)(n − 2)→ n3 , etc.

Define: Factorials(!): 
0!=1=1!, 2!=1·2, 3!=1·2·3, ...

About 12 summed quotients
for 6-figure precision (A lot better!)

2.718281828459..
=e

Can improve computational efficiency using binomial theorem:
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 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).
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 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).

Rate of change of position x(t) is velocity v(t).                                              Set t=0 to get c1 = v(0).

v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +
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Change of velocity v(t) is acceleration a(t).                                                  Set t=0 to get c2 =  a(0).

 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).

Rate of change of position x(t) is velocity v(t).                                              Set t=0 to get c1 = v(0).

v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +

2
1

a(t) = d
dt
v(t) = 0 + 2c2 + 2·3c3t + 3·4c4t

2 + 4·5c5t
3 + ...+ n(n −1)cnt

n−2 +
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Change of velocity v(t) is acceleration a(t).                                                  Set t=0 to get c2 =  a(0).

 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).

Rate of change of position x(t) is velocity v(t).                                              Set t=0 to get c1 = v(0).

v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +

2
1

j(t) = d
dt
a(t) = 0 + 2·3c3 + 2·3·4c4t + 3·4·5c5t

2 + ...+ n(n −1)(n − 2)cnt
n−3 +

a(t) = d
dt
v(t) = 0 + 2c2 + 2·3c3t + 3·4c4t

2 + 4·5c5t
3 + ...+ n(n −1)cnt

n−2 +

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)                      Set t=0 to get c3 =     j(0).3!
1
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Change of velocity v(t) is acceleration a(t).                                                  Set t=0 to get c2 =  a(0).

 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).

Rate of change of position x(t) is velocity v(t).                                              Set t=0 to get c1 = v(0).

v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +

2
1

j(t) = d
dt
a(t) = 0 + 2·3c3 + 2·3·4c4t + 3·4·5c5t

2 + ...+ n(n −1)(n − 2)cnt
n−3 +

a(t) = d
dt
v(t) = 0 + 2c2 + 2·3c3t + 3·4c4t

2 + 4·5c5t
3 + ...+ n(n −1)cnt

n−2 +

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)                      Set t=0 to get c3 =     j(0).3!
1

4!
1Change of jerk j(t) is inauguration i(t). (Be silly like NASA!)                     Set t=0 to get c4 =   i(0).

i(t) = d
dt
j(t) = 0 + 2·3·4c4 + 2·3·4·5c5t + ...+ n(n −1)(n − 2)(n − 3)cnt

n−4 +
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Change of velocity v(t) is acceleration a(t).                                                  Set t=0 to get c2 =  a(0).

 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).

Rate of change of position x(t) is velocity v(t).                                              Set t=0 to get c1 = v(0).

v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +

2
1

j(t) = d
dt
a(t) = 0 + 2·3c3 + 2·3·4c4t + 3·4·5c5t

2 + ...+ n(n −1)(n − 2)cnt
n−3 +

a(t) = d
dt
v(t) = 0 + 2c2 + 2·3c3t + 3·4c4t

2 + 4·5c5t
3 + ...+ n(n −1)cnt

n−2 +

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)                      Set t=0 to get c3 =     j(0).3!
1

4!
1Change of jerk j(t) is inauguration i(t). (Be silly like NASA!)                     Set t=0 to get c4 =   i(0).

x(t) = x(0)+ v(0)t +2!
1 a(0)t2 +3!

1 j(0)t3 +4!
1 i(0)t4 +5!

1 r(0)t5 + ...+n!
1 x(n)tn +

i(t) = d
dt
j(t) = 0 + 2·3·4c4 + 2·3·4·5c5t + ...+ n(n −1)(n − 2)(n − 3)cnt

n−4 +

Gives Maclaurin (or Taylor) power series
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Gives Maclaurin (or Taylor) power series

Good old UP I formula!
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1
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1Change of jerk j(t) is inauguration i(t). (Be silly like NASA!)                     Set t=0 to get c4 =   i(0).

x(t) = x(0)+ v(0)t +2!
1 a(0)t2 +3!
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i(t) = d
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j(t) = 0 + 2·3·4c4 + 2·3·4·5c5t + ...+ n(n −1)(n − 2)(n − 3)cnt

n−4 +

Gives Maclaurin (or Taylor) power series

Setting all initial values to 1= x(0) = v(0) = a(0) = j(0) = i(0) = ....

gives exponential: et = 1+ t +2!
1 t2 +3!

1 t 3 +4!
1 t 4 +5!

1 t5 + ...+n!
1 t n +

Good old UP I formula!
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quadratic
(parabola)

cubic

quartic
x(t)=et

line
constant

Unit 1
Fig. 10.2 

x(t) = x(0)+ v(0)t +2!
1 a(0)t2 +3!

1 j(0)t3 +4!
1 i(0)t4 +5!

1 r(0)t5 + ...+n!
1 x(n)tn +

Gives Maclaurin (or Taylor) power series

Setting all initial values to 1= x(0) = v(0) = a(0) = j(0) = i(0) = ....

gives exponential: et = 1+ t +2!
1 t2 +3!

1 t 3 +4!
1 t 4 +5!

1 t5 + ...+n!
1 t n +

But, how good are power series?
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cubic

1st
5th

3rd

7th
9th 13th

15th

11th

17th
(b) x(t) =sin t

quadratic
(parabola)

2nd 4th

6th

8th 10th

12th

14th

16th

18th

20th

(a) x(t)=cos t

quartic

How good are power series?  Depends...
x(t) = cos t = 1+ 0 − t

2

2!
+ 0 + t

4

4!
+ 0 − t

6

6!
+ 0 + t

8

8!
...

x(t) = sin t = 0 + t + 0 − t
3

3!
+ 0 + t

5

5!
+ 0 − t

7

7!
+ 0 + t

9

9!
...

Unit 1
Fig. 10.3 
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1. The Story of e (A Tale of Great $Interest$)
         How good are those power series?

Taylor-Maclaurin series, 
imaginary interest, and complex exponentials
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Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number r=iθ. 
Imaginary number          powers have repeat-after-4-pattern: i0=1, i1=i, i2=-1, i3=-i, i4=1,etc... i = −1

eiθ = 1+ iθ +
(iθ )2

2!
+

(iθ )3

3!
+

(iθ )4

4!
+

(iθ )5

5!
+ ...        (From exponential series)

      = 1+ iθ −
θ2

2!
  − iθ

3

3!
  + θ

4

4!
   + iθ

5

5!
 − ...        (i = -1 imples: i1=i, i2 =-1, i3=-i, i4 =+1, i5 =i,...)

      = 1− θ
2

2!
+
θ 4

4!
− ...

⎛

⎝
⎜

⎞

⎠
⎟ + iθ − iθ

3

3!
+ iθ

5

5!
− ...

⎛

⎝
⎜

⎞

⎠
⎟    
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Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number r=iθ. 
Imaginary number          powers have repeat-after-4-pattern: i0=1, i1=i, i2=-1, i3=-i, i4=1,etc... i = −1

 

eiθ = 1+ iθ +
(iθ )2
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+

(iθ )3
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+

(iθ )4
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+

(iθ )5

5!
+ ...        (From exponential series)

      = 1+ iθ −
θ2

2!
  − iθ

3

3!
  + θ

4

4!
   + iθ

5

5!
 − ...        (i = -1 imples: i1=i, i2 =-1, i3=-i, i4 =+1, i5 =i,...)

      = 1− θ
2

2!
+
θ 4

4!
− ...

⎛

⎝
⎜

⎞

⎠
⎟ + iθ − iθ

3

3!
+ iθ

5

5!
− ...

⎛

⎝
⎜

⎞

⎠
⎟     To match series for 

cosine : cos x = 1− x2

2!
+

x4

4!
−

x6

6!
+

sine : sin x = x − x3

3!
+

x5

5!
−

x7

7!
+

⎧

⎨
⎪⎪

⎩
⎪
⎪

eiθ   =         cosθ            +        i sinθ           

cubic

1st
5th

3rd

7th
9th 13th

15th

11th

17th
(b) x(t) =sin t

quadratic
(parabola)

2nd 4th

6th

8th 10th

12th

14th

16th

18th

20th

(a) x(t)=cos t

quartic

Unit 1
Fig. 10.3 

Euler-DeMoivre Theorem
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⎪
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cubic

1st
5th

3rd

7th
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quadratic
(parabola)

2nd 4th

6th

8th 10th

12th

14th

16th

18th

20th

(a) x(t)=cos t

quartic

Unit 1
Fig. 10.3 z = reiθ = x + iy

x = r cosθ

reiθ =  r cosθ +  i sinθ   

y = r sinθ   

Imaginary axis
 i axis( )

Real  axis
 1axis( )

r
θ   

Euler-DeMoivre Theorem
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2. What Good Are Complex Exponentials?
Easy trig
    Easy 2D vector analysis
         Easy oscillator phase analysis

Easy rotation and “dot” or “cross” products
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What Good Are Complex Exponentials?

1. Complex numbers provide "automatic  trigonometry"

Can't remember is cos(a+b) or sin(a+b)? Just factor ei(a+b) = eiaeib...

              ei(a+b)              =               eia                            eib

cos(a+b) + i sin(a+b) = (cos a + i sin a) (cos b + i sin b)
cos(a+b) + i sin(a+b) = [cos a cos b - sin a sin b]+i[sin a cos b + cos a sin b] 
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What Good Are Complex Exponentials?

1. Complex numbers provide "automatic  trigonometry"

Can't remember is cos(a+b) or sin(a+b)? Just factor ei(a+b) = eiaeib...

              ei(a+b)              =               eia                            eib

cos(a+b) + i sin(a+b) = (cos a + i sin a) (cos b + i sin b)
cos(a+b) + i sin(a+b) = [cos a cos b - sin a sin b]+i[sin a cos b + cos a sin b] 

2. Complex numbers add like vectors. zsum = z + z' = (x + iy) + (x' + iy') = (x + x') + i(y + y')
zdiff  = z − z' = (x + iy) − (x' + iy') = (x − x') + i(y − y')

x=Re z

y=Im z φr

(a)

z

(b) z z+z
φ

z

(c) z

z•z
φ

φ+φ

z
z z−z

Sum
Differenceand

Productφ z
z

x=Re z

y=Im z

φ φ

� 

zSUM = z + ′ z ( )* z + ′ z ( ) = reiφ + ′ r ei ′ φ ( )*
reiφ + ′ r ei ′ φ ( ) = re−iφ + ′ r e− i ′ φ ( ) reiφ + ′ r ei ′ φ ( )

           = r2 + ′ r 2 + r ′ r ei φ − ′ φ ( ) + e−i φ − ′ φ ( )( ) = r2 + ′ r 2 + 2r ′ r cos φ − ′ φ ( )

Unit 1
Fig. 10.6 

(quick derivation of Cosine Law)
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3.Complex exponentials Ae-iωt track position and velocity using Phasor Clock.

eiθ=x+iy

x=
θ

y=sin θ
e±iπ=-1

e+iπ/2=+i

e-iπ/2=-i

e+iπ/4=(1+i)/√2

e+i5π/4=e-i3π/4

= -(1+i)/√2

imaginary
axis

real
axis

imaginary
axis

real
axis

Magnitude or Modulus
A = |ψ | = √ ψ*ψ

A
−ω t

Phase angle or Argument
θ=−ω t = ATAN[v(t)/ωx(t)]

x(t)

Re ψ
x(t) = Acosω t

Im ψ
y(t)=v(t)/ω= -Asinω t

Re ψ

Im ψ (The “Gonna’be”)

(b) Quantum Phasor Clock ψ = Ae-iωt = Acosω t−i Asinω t=x+iy

Ψ

(The “Is”)v(t)
ω

(a) Complex plane and unit vectors

POLAR

COMPONENTS

CARTESIAN

COMPONENTS

e-iπ/4=(1-i)/√2

1

cos θ

Ae-iωt

Unit 1
Fig. 10.5 

What Good Are Complex Exponentials? (contd.)
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(x, y) form
Cartesian

ψ x = Reψ (t)  = x(t) =   Acosω t = ψ +ψ *
2

ψ y = Imψ (t) = v(t)
ω

= −Asinω t = ψ −ψ *
2i

⎧

⎨
⎪⎪

⎩
⎪
⎪   

(r ,θ )
form

Polar r = A =|ψ |= ψ x
2 +ψ y

2 = ψ *ψ

θ = −ω t=arctan(ψ y /ψ x )

⎧
⎨
⎪

⎩⎪

  

ψ = re+iθ = re−iω t = r(cosω t − i sinω t)

ψ * = re−iθ = re+iω t = r(cosω t + i sinω t)
  

cosθ=2
1(e+iθ + e−iθ ) Reψ =ψ +ψ ∗

2

sinθ=2i
1 (e+iθ − e−iθ ) Imψ =ψ −ψ ∗

2i

3.Complex exponentials Ae-iωt track position and velocity using Phasor Clock.

eiθ=x+iy

x=
θ

y=sin θ
e±iπ=-1
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(The “Is”)v(t)
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(a) Complex plane and unit vectors

POLAR
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COMPONENTS

e-iπ/4=(1-i)/√2

1

cos θ

Ae-iωt

Unit 1
Fig. 10.5 

What Good Are Complex Exponentials? (contd.)

Some Rect-vs-Polar relations worth remembering
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2. What Good Are Complex Exponentials?
Easy trig
    Easy 2D vector analysis
         Easy oscillator phase analysis

Easy rotation and “dot” or “cross” products
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eiφ·z = (cosφ + i sinφ)·(x + iy)=  x cosφ − y sinφ                   + i   (x sinφ + y cosφ )

4. Complex products provide 2D rotation operations.

 
R+φ ir = (x cosφ − ysinφ)êx + (x sinφ + ycosφ)ê y

 

cosφ − sinφ
sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
i
x
y

⎛
⎝⎜

⎞
⎠⎟
=               

x cosφ − ysinφ
x sinφ + ycosφ

⎛
⎝⎜

⎞
⎠⎟

What Good Are Complex Exponentials? (contd.)
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eiφ·z = (cosφ + i sinφ)·(x + iy)=  x cosφ − y sinφ                   + i   (x sinφ + y cosφ )

4. Complex products provide 2D rotation operations.

 
R+φ ir = (x cosφ − ysinφ)êx + (x sinφ + ycosφ)ê y

 

cosφ − sinφ
sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
i
x
y

⎛
⎝⎜

⎞
⎠⎟
=               

x cosφ − ysinφ
x sinφ + ycosφ

⎛
⎝⎜

⎞
⎠⎟

What Good Are Complex Exponentials? (contd.)

z = reiθ = x + iy

x = r cosθ

y = r sinθ   

Imaginary axis
 i axis( )

Real  axis
 1axis( )

r
θ   

eiφ acts on this:

z = reiθ = x + iy

x = r cosθ

y = r sinθ   

Imaginary axis
 i axis( )

Real  axis
 1axis( )

r
θ   

to give this: eiφ 

eiφz = reiφeiθ = rei(φ+θ ) = x + iy

rφ

z = reiθ eiφz = reiφeiθ
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eiφ·z = (cosφ + i sinφ)·(x + iy)=  x cosφ − y sinφ                   + i   (x sinφ + y cosφ )

4. Complex products provide 2D rotation operations.

 
R+φ ir = (x cosφ − ysinφ)êx + (x sinφ + ycosφ)ê y

5. Complex products provide 2D “dot”(•) and “cross”(x) products.

 

cosφ − sinφ
sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
i
x
y

⎛
⎝⎜

⎞
⎠⎟
=               

x cosφ − ysinφ
x sinφ + ycosφ

⎛
⎝⎜

⎞
⎠⎟

What Good Are Complex Exponentials? (contd.)

Two complex numbers A=Ax+iAy and B=Bx+iBy and their “star” (*)-product A*B.
A*B = (Ax + iAy )*(Bx + iBy ) = (Ax − iAy )(Bx + iBy )
         = (AxBx + AyBy )+ i(AxBy − AyBx ) = A •B + i |A ×B |Z⊥(x,y)

Real part is scalar or “dot”(•) product A•B. 
Imaginary part is vector or “cross”(×) product, but just the Z-component normal to xy-plane.

A*B = ( A eiθA )*( B eiθB ) = A e−iθA B eiθB = A B ei(θB −θA )

         = A B cos(θB −θA )+ i A B sin(θB −θA ) = A •B + i |A ×B |Z⊥(x,y)

Rewrite A*B in polar form.
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eiφ·z = (cosφ + i sinφ)·(x + iy)=  x cosφ − y sinφ                   + i   (x sinφ + y cosφ )

4. Complex products provide 2D rotation operations.

 
R+φ ir = (x cosφ − ysinφ)êx + (x sinφ + ycosφ)ê y

5. Complex products provide 2D “dot”(•) and “cross”(x) products.

 

cosφ − sinφ
sinφ cosφ
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i
x
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x cosφ − ysinφ
x sinφ + ycosφ
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What Good Are Complex Exponentials? (contd.)

Two complex numbers A=Ax+iAy and B=Bx+iBy and their “star” (*)-product A*B.
A*B = (Ax + iAy )*(Bx + iBy ) = (Ax − iAy )(Bx + iBy )
         = (AxBx + AyBy )+ i(AxBy − AyBx ) = A •B + i |A ×B |Z⊥(x,y)

Real part is scalar or “dot”(•) product A•B. 
Imaginary part is vector or “cross”(×) product, but just the Z-component normal to xy-plane.

A*B = ( A eiθA )*( B eiθB ) = A e−iθA B eiθB = A B ei(θB −θA )

         = A B cos(θB −θA )+ i A B sin(θB −θA ) = A •B + i |A ×B |Z⊥(x,y)

Rewrite A*B in polar form.

 A •B = A B cos(θB −θA )
= A cosθA B cosθB + A sinθA B sinθB
=          AxBx              +       AyBy

|A ×B | = A B sin(θB −θA )
= A cosθA B sinθB − A sinθA B cosθB
=          AxBy            −       AyBx
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What Good are complex variables?
Easy 2D vector calculus

 Easy 2D vector derivatives 
        Easy 2D source-free field theory
           Easy 2D vector field-potential theory
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What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative      and “star” z*-derivative.  dz
df

dz*
df

z = x + iy

z* = x − iy
x =2

1 (z + z∗)

y =2i
1 (z − z∗)

dz
df =   ∂z

∂x
∂x
∂f +∂z

∂y
∂y
∂f  =2

1
∂x
∂f −2

i
∂y
∂f

dz*
df =∂z*

∂x
∂x
∂f +∂z*

∂y
∂y
∂f =2

1
∂x
∂f +2

i
∂y
∂f

Applying
chain-rule

dz
d =2

1
∂x
∂ −2

i
∂y
∂

dz*
d =2

1
∂x
∂ +2

i
∂y
∂

38Thursday, September 29, 2016



Derivative chain-rule shows real part of       has 2D divergence ∇•f and imaginary part has curl ∇× f.

What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative      and “star” z*-derivative.  dz
df

dz*
df

z = x + iy

z* = x − iy
x =2

1 (z + z∗)

y =2i
1 (z − z∗)

dz
df =   ∂z

∂x
∂x
∂f +∂z

∂y
∂y
∂f  =2

1
∂x
∂f −2

i
∂y
∂f

dz*
df =∂z*

∂x
∂x
∂f +∂z*

∂y
∂y
∂f =2

1
∂x
∂f +2

i
∂y
∂f

dz
df

dz
d =2

1
∂x
∂ −2

i
∂y
∂

dz*
d =2

1
∂x
∂ +2

i
∂y
∂

dz
d =2

1
∂x
∂ −2

i
∂y
∂

dz
df =dz

d ( fx+ i fy ) =2
1 (∂x

∂ −i∂y
∂ )( fx+ i fy ) =2

1 (∂x
∂ fx + ∂y

∂ fy )+2
i (∂x

∂ fy − ∂y
∂ fx ) =2

1∇•f +2
i |∇×f |Z⊥(x,y)
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We can invent source-free 2D vector fields that are both zero-divergence and zero-curl. 
Take any function f(z), conjugate it (change all i’s to –i) to give f*(z*) for which            . 

Derivative chain-rule shows real part of       has 2D divergence ∇•f and imaginary part has curl ∇× f.

What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative      and “star” z*-derivative.  dz
df

dz*
df

z = x + iy

z* = x − iy
x =2

1 (z + z∗)

y =2i
1 (z − z∗)

dz
df =   ∂z

∂x
∂x
∂f +∂z

∂y
∂y
∂f  =2

1
∂x
∂f −2

i
∂y
∂f

dz*
df =∂z*

∂x
∂x
∂f +∂z*

∂y
∂y
∂f =2

1
∂x
∂f +2

i
∂y
∂f

dz
df

dz
df =dz

d ( fx+ i fy ) =2
1 (∂x

∂ −i∂y
∂ )( fx+ i fy ) =2

1 (∂x
∂ fx + ∂y

∂ fy )+2
i (∂x

∂ fy − ∂y
∂ fx ) =2

1∇•f +2
i |∇×f |Z⊥(x,y)

dz
df * = 0

7. Invent source-free 2D vector fields [∇•F=0 and ∇xF=0]

dz
d =2

1
∂x
∂ −2

i
∂y
∂

dz*
d =2

1
∂x
∂ +2

i
∂y
∂

dz
d =2

1
∂x
∂ −2

i
∂y
∂
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We can invent source-free 2D vector fields that are both zero-divergence and zero-curl. 
Take any function f(z), conjugate it (change all i’s to –i) to give f*(z*) for which            . 

Derivative chain-rule shows real part of       has 2D divergence ∇•f and imaginary part has curl ∇× f.

What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative      and “star” z*-derivative.  dz
df

dz*
df

z = x + iy

z* = x − iy
x =2

1 (z + z∗)

y =2i
1 (z − z∗)

dz
df =   ∂z

∂x
∂x
∂f +∂z

∂y
∂y
∂f  =2

1
∂x
∂f −2

i
∂y
∂f

dz*
df =∂z*

∂x
∂x
∂f +∂z*

∂y
∂y
∂f =2

1
∂x
∂f +2

i
∂y
∂f

dz
df

dz
df * = 0

7. Invent source-free 2D vector fields [∇•F=0 and ∇xF=0]

For example: if f(z)=a·z then f*(z*)=a·z*=a(x-iy) is not function of z so it has zero z-derivative.
 F=(Fx,Fy)=(f*x,f*y)=(a·x,-a·y) has zero divergence:  ∇•F=0 and has zero curl: |∇×F|=0.  

∇•F =
∂Fx
∂x

+
∂Fy
∂y

=
∂(ax)
∂x

+
∂F(−ay)

∂y
= 0 |∇×F|Z⊥ (x,y)=

∂Fy
∂x

−
∂Fx
∂y

=
∂(−ay)
∂x

−
∂F(ax)
∂y

= 0

A DFL field F (Divergence-Free-Laminar) 

dz
d =2

1
∂x
∂ −2

i
∂y
∂

dz*
d =2

1
∂x
∂ +2

i
∂y
∂

dz
d =2

1
∂x
∂ −2

i
∂y
∂

dz
df =dz

d ( fx+ i fy ) =2
1 (∂x

∂ −i∂y
∂ )( fx+ i fy ) =2

1 (∂x
∂ fx + ∂y

∂ fy )+2
i (∂x

∂ fy − ∂y
∂ fx ) =2

1∇•f +2
i |∇×f |Z⊥(x,y)
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What Good Are Complex Exponentials? (contd.)

 F=(f*x,f*y) =(a·x,-a·y) is a divergence-free laminar (DFL) field.

precursor to
Unit 1

Fig. 10.7 

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl. 
Take any function f(z), conjugate it (change all i’s to –i) to give f*(z*) for which            . 

7. Invent source-free 2D vector fields [∇•F=0 and ∇xF=0]

For example: if f(z)=a·z then f*(z*)=a·z*=a(x-iy) is not function of z so it has zero z-derivative.
 F=(Fx,Fy)=(f*x,f*y)=(a·x,-a·y) has zero divergence:  ∇•F=0 and has zero curl: |∇×F|=0.  

∇•F =
∂Fx
∂x

+
∂Fy
∂y

=
∂(ax)
∂x

+
∂F(−ay)

∂y
= 0 |∇×F|Z⊥ (x,y)=

∂Fy
∂x

−
∂Fx
∂y

=
∂(−ay)
∂x

−
∂F(ax)
∂y

= 0
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What Good are complex variables?
Easy 2D vector calculus

 Easy 2D vector derivatives 
        Easy 2D source-free field theory
           Easy 2D vector field-potential theory
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What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	
	
 	
 	
 F= ∇×A 	
 	
 	
 	
 	


A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.
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What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	
	
 	
 	
 F= ∇×A 	
 	
 	
 	
 	


A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.

To find φ=Φ+iA integrate f(z)=a·z to get φ and isolate real (Re φ =Φ) and imaginary (Im φ =A) parts.
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What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	
	
 	
 	
 F= ∇×A 	
 	
 	
 	
 	


A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.

φ =          Φ        + i  A = f ⋅dz∫ = az ⋅dz∫ =2
1 az2

To find φ=Φ+iA integrate f(z)=a·z to get φ and isolate real (Re φ =Φ) and imaginary (Im φ =A) parts.
f (z) = dz

dφ ⇒
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What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	
	
 	
 	
 F= ∇×A 	
 	
 	
 	
 	


A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.

φ =          Φ        + i  A = f ⋅dz∫ = az ⋅dz∫ =2
1 az2 =2

1 a(x + iy)2

  =2
1 a(x2 − y2) + i  axy

To find φ=Φ+iA integrate f(z)=a·z to get φ and isolate real (Re φ =Φ) and imaginary (Im φ =A) parts.
f (z) = dz

dφ ⇒
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z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	
	
 	
 	
 F= ∇×A 	
 	
 	
 	
 	


f (z) = dz
dφ

A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.

φ =          Φ        + i  A = f ⋅dz∫ = az ⋅dz∫ =2
1 az2 =2

1 a(x + iy)2

  =2
1 a(x2 − y2) + i  axy

To find φ=Φ+iA integrate f(z)=a·z to get φ and isolate real (Re φ =Φ) and imaginary (Im φ =A) parts.

Unit 1
Fig. 10.7 

f (z) = dz
dφ ⇒
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z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	
	
 	
 	
 F= ∇×A 	
 	
 	
 	
 	


f (z) = dz
dφ

A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.

φ =          Φ        + i  A = f ⋅dz∫ = az ⋅dz∫ =2
1 az2 =2

1 a(x + iy)2

  =2
1 a(x2 − y2) + i  axy

To find φ=Φ+iA integrate f(z)=a·z to get φ and isolate real (Re φ =Φ) and imaginary (Im φ =A) parts.

Unit 1
Fig. 10.7 

The (Φ,A) grid is a GCC  
coordinate system*:
q1= Φ =(x2-y2)/2 = const.

q2= A = (xy) = const.

*Actually it’s OCC.

BONUS!
Get a free 
coordinate 

system!

f (z) = dz
dφ ⇒
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What Good are complex variables?
Easy 2D vector calculus

 Easy 2D vector derivatives 
        Easy 2D source-free field theory
           Easy 2D vector field-potential theory

The half-nʼ-half results: (Riemann-Cauchy Derivative Relations)

50Thursday, September 29, 2016



Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A

f (z) = dz
dφ ⇒

dz
d =2

1
∂x
∂ −2

i
∂y
∂

dz*
d =2

1
∂x
∂ +2

i
∂y
∂

∇×A= ∂y
∂A

−∂x
∂A

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A

Note, mathematician definition of force field F=+∇Φ replaces usual physicist’s definition F=-∇Φ 

f (z) = dz
dφ ⇒

∇×A= ∂y
∂A

−∂x
∂A

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A

Note, mathematician definition of force field F=+∇Φ replaces usual physicist’s definition F=-∇Φ 

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂y

∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

φ =          Φ        + i  A

  =2
1 a(x2 − y2 ) + i  axy

Given φ: The half-nʼ-half result

find: or find:

f (z) = dz
dφ ⇒

∇×A= ∂y
∂A

−∂x
∂A

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.) 
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A

Note, mathematician definition of force field F=+∇Φ replaces usual physicist’s definition F=-∇Φ 

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂y

∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

Scalar static potential lines Φ=const. and vector flux potential lines A=const. define DFL field-net.

φ =          Φ        + i  A

  =2
1 a(x2 − y2 ) + i  axy

Given φ: The half-nʼ-half result

find: or find:

f (z) = dz
dφ ⇒

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

∇×A= ∂y
∂A

−∂x
∂A

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

54Thursday, September 29, 2016



Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∇×A= ∂y
∂A

−∂x
∂A

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A

Note, mathematician definition of force field F=+∇Φ replaces usual physicist’s definition F=-∇Φ 

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂y

∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

Scalar static potential lines Φ=const. and vector flux potential lines A=const. define DFL field-net.

φ =          Φ        + i  A

  =2
1 a(x2 − y2 ) + i  axy

Given φ: The half-nʼ-half result

find: or find:

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

The half-nʼ-half results
are called

Riemann-Cauchy
Derivative Relations

∂x
∂Φ= ∂y

∂A    is:  ∂x
∂Re f(z)= ∂y

∂Im f(z)

∂y
∂Φ=−∂x

∂A is:  ∂y
∂Re f(z)= − ∂x

∂Im f(z)

The half-nʼ-half result
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4. Riemann-Cauchy conditions What’s analytic? (...and what’s not?)
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z = x + iy

z* = x − iy

x =2
1 (z + z∗)

y =2i
1 (z − z∗)

Criteria for a field function f = fx(x,y) +i fy(x,y) to be an analytic function f(z) of  z=x+iy:
First, f(z) must not be a function of z*=x-iy, that is:              

     This implies f(z) satisfies differential equations known as the Riemann-Cauchy conditions

df
dz *

= 0

df
dz

= ∂x
∂z

∂ f
∂x

+ ∂y
∂z

∂ f
∂y

= 1
2
∂ f
∂x

+ 1
2i

∂ f
∂y

= 1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
f

df
dz∗

= ∂x
∂z∗

∂ f
∂x

+ ∂y
∂z∗

∂ f
∂y

= 1
2
∂ f
∂x

− 1
2i

∂ f
∂y

= 1
2

∂
∂x

+ i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
f

Review (z,z*) to (x,y) transformation relations

df
dz *

= 0 =
1
2

∂
∂x

+ i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+ i fy ) =
1
2

∂fx
∂x

−
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

+
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟

 implies :  ∂fx
∂x

=
∂fy
∂y

     and :   
∂fy
∂x

= −
∂fx
∂y

df
dz

=
1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+ i fy ) =
1
2

∂fx
∂x

+
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

−
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟
=
∂fx
∂x

+ i
∂fy
∂x

=
∂fy
∂y

− i ∂fx
∂y

=
∂
∂x

( fx+ i fy ) =
∂
∂iy

( fx+ i fy )
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z = x + iy

z* = x − iy

x =2
1 (z + z∗)

y =2i
1 (z − z∗)

Criteria for a field function f = fx(x,y) +i fy(x,y) to be an analytic function f(z) of  z=x+iy:
First, f(z) must not be a function of z*=x-iy, that is:              

     This implies f(z) satisfies differential equations known as the Riemann-Cauchy conditions

df
dz *

= 0

Review (z,z*) to (x,y) transformation relations

df
dz *

= 0 =
1
2

∂
∂x

+ i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+ i fy ) =
1
2

∂fx
∂x

−
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

+
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟

 implies :  ∂fx
∂x

=
∂fy
∂y

     and :   
∂fy
∂x

= −
∂fx
∂y

df
dz

=
1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+ i fy ) =
1
2

∂fx
∂x

+
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

−
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟
=
∂fx
∂x

+ i
∂fy
∂x

=
∂fy
∂y

− i ∂fx
∂y

=
∂
∂x

( fx+ i fy ) =
∂
∂iy

( fx+ i fy )

Criteria for a field function f = fx(x,y) +i fy(x,y) to be an analytic function f(z*) of  z*=x-iy:
First, f(z*) must not be a function of z=x+iy, that is:              

     This implies f(z*) satisfies differential equations we call Anti-Riemann-Cauchy conditions

df
dz

= 0

 df
dz

= 0 =
1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+ i fy ) =
1
2

∂fx
∂x

+
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

−
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟
= implies :  ∂fx

∂x
= −

∂fy
∂y

     and :   
∂fy
∂x

=
∂fx
∂y

df
dz *

=
1
2

∂
∂x

+ i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

( fx+i fy ) =
1
2

∂fx
∂x

−
∂fy
∂y

⎛
⎝⎜

⎞
⎠⎟
+
i
2

∂fy
∂x

+
∂fx
∂y

⎛
⎝⎜

⎞
⎠⎟
=
∂fx
∂x

+i
∂fy
∂x

= −
∂fy
∂y

+i ∂fx
∂y

=
∂
∂x

( fx+i fy ) = −
∂
∂iy

( fx+i fy )

df
dz

= ∂x
∂z

∂ f
∂x

+ ∂y
∂z

∂ f
∂y

= 1
2
∂ f
∂x

+ 1
2i

∂ f
∂y

= 1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
f

df
dz∗

= ∂x
∂z∗

∂ f
∂x

+ ∂y
∂z∗

∂ f
∂y

= 1
2
∂ f
∂x

− 1
2i

∂ f
∂y

= 1
2

∂
∂x

+ i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
f
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What’s analytic? (...and what’s not?)

Example: Is f(x,y) = 2x + iy an analytic function of z=x+iy?
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2           and:      y =-i(z-z*)/2
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2           and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2           and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
                           =     z+z*     +   (2z-2z*) 
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2           and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
                           =     z+z*     +   (2z-2z*) 
                           =     3z-z*       
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2           and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
                           =     z+z*     +   (2z-2z*) 
                           =     3z-z*       

A:    NO!   It’s a function of z and z* so not analytic for either.
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2           and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
                           =     z+z*     +   (2z-2z*) 
                           =     3z-z*       

A:    NO!   It’s a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x2 + y2 an analytic function of z=x+iy?

A:    NO!   r(xy)=z*z is a function of z and z* so not analytic for either.
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What’s analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:   z = x + iy                and:      z* = x - iy
                                           or:   x = (z+z*)/2           and:      y =-i(z-z*)/2

f(x,y) = 2x + i4y =2 (z+z*)/2 +i4(-i(z-z*)/2)
                           =     z+z*     +   (2z-2z*) 
                           =     3z-z*       

A:    NO!   It’s a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x2 + y2 an analytic function of z=x+iy?

A:    NO!   r(xy)=z*z is a function of z and z* so not analytic for either.

Example 3: Q: Is s(x,y) = x2-y2 + 2ixy an analytic function of z=x+iy?

A:    YES!   s(xy)=(x+iy)2 =z2 is analytic function of z. (Yay!) 
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4. Riemann-Cauchy conditions What’s analytic? (...and what’s not?)
Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery
       Easy 2D monopole, dipole, and 2n-pole analysis

 Easy 2n-multipole field and potential expansion
   Easy stereo-projection visualization
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9. Complex integrals ∫  f(z)dz  count 2D “circulation”(  ∫F•dr) and “flux”( ∫Fxdr)  

What Good Are Complex Exponentials? (contd.)

Integral of f(z)  between point z1 and point z2 is potential difference Δφ =φ(z2)- φ(z1)

In DFL-field F, Δφ is independent of the integration path z(t) connecting z1 and z2.
   

Δφ = φ(z2 ) −φ(z1) = f (z)dz
z1

z2
∫ = Φ(x2 , y2 ) − Φ(x1, y1) + i[A(x2 , y2 ) − A(x1, y1)]

                                             Δφ =               ΔΦ             + i            ΔA
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9. Complex integrals ∫  f(z)dz  count 2D “circulation”(  ∫F•dr) and “flux”( ∫Fxdr)  

What Good Are Complex Exponentials? (contd.)

    

f (z)dz∫ = f ∗(z∗)( )∗ dz∫ = f ∗(z∗)( )∗ dx + i dy( )∫ = fx
∗ + i f y

∗( )∗ dx + i dy( )∫ = fx
∗ − i f y

∗( ) dx + i dy( )∫

             = ( fx
∗dx + f y

∗dy) +∫ i ( fx
∗dy − f y

∗dx)∫

             =         Fidr       ∫ + i F × driêZ∫

             =         Fidr       ∫ + i Fidr × êZ∫

             =         Fidr       ∫ + i FidS∫                  where:      dS = dr × êZ

Integral of f(z)  between point z1 and point z2 is potential difference Δφ =φ(z2)- φ(z1)

In DFL-field F, Δφ is independent of the integration path z(t) connecting z1 and z2.
   

Δφ = φ(z2 ) −φ(z1) = f (z)dz
z1

z2
∫ = Φ(x2 , y2 ) − Φ(x1, y1) + i[A(x2 , y2 ) − A(x1, y1)]

                                             Δφ =               ΔΦ             + i            ΔA
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9. Complex integrals ∫  f(z)dz  count 2D “circulation”(  ∫F•dr) and “flux”( ∫Fxdr)  

What Good Are Complex Exponentials? (contd.)

    

f (z)dz∫ = f ∗(z∗)( )∗ dz∫ = f ∗(z∗)( )∗ dx + i dy( )∫ = fx
∗ + i f y

∗( )∗ dx + i dy( )∫ = fx
∗ − i f y

∗( ) dx + i dy( )∫

             = ( fx
∗dx + f y

∗dy) +∫ i ( fx
∗dy − f y

∗dx)∫

             =         Fidr       ∫ + i F × driêZ∫

             =         Fidr       ∫ + i Fidr × êZ∫

             =         Fidr       ∫ + i FidS∫                  where:      dS = dr × êZ

Real part            
sums F projections along path 
dr that is, circulation on path
to get ΔΦ .           

Imaginary part            
sums F projection across path dr 
that is, flux thru surface 
elements dS=dr×eZ normal to dr 
to get ΔA.

    Fidr1
2∫ = ΔΦ     FidS1

2∫ = ΔA

  drF   dr F

Big F•dr 

Big F•dS 

  dS

Integral of f(z)  between point z1 and point z2 is potential difference Δφ =φ(z2)- φ(z1)

In DFL-field F, Δφ is independent of the integration path z(t) connecting z1 and z2.
   

Δφ = φ(z2 ) −φ(z1) = f (z)dz
z1

z2
∫ = Φ(x2 , y2 ) − Φ(x1, y1) + i[A(x2 , y2 ) − A(x1, y1)]

                                             Δφ =               ΔΦ             + i            ΔA
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z2

z1 z1

z2

Here the scalar potential Φ=(x2-y2)/2 is stereo-plotted vs. (x,y)
The Φ=(x2-y2)/2=const. curves are topography lines
The A=(xy)=const. curves are streamlines normal to topography lines
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4. Riemann-Cauchy conditions What’s analytic? (...and what’s not?)
Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery
       Easy 2D monopole, dipole, and 2n-pole analysis

 Easy 2n-multipole field and potential expansion
   Easy stereo-projection visualization
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Jacobian =

∂x
∂q1

∂x
∂q2

∂y
∂q1

∂y
∂q2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂x
∂Φ

∂x
∂A

∂y
∂Φ

∂y
∂A

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
1
r2

x y
−y x

⎛
⎝⎜

⎞
⎠⎟Kajobian =

∂q1

∂x
∂q1

∂y
∂q2

∂x
∂q2

∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂Φ
∂x

∂Φ
∂y

∂A
∂x

∂A
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
x −y
y x

⎛
⎝⎜

⎞
⎠⎟
← EΦ

← EA

What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field 

The (Φ,A) grid is a GCC  
coordinate system*:
q1= Φ =(x2-y2)/2 = const.

q2= A = (xy) = const.

*Actually it’s OCC.

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

↑ ↑
EΦ EA

↑ ↑
EΦ EA

 
Metrictensor =

gΦΦ gΦA
gAΦ gAA

⎛
⎝⎜

⎞
⎠⎟
=
EΦ iEΦ EΦ iEA

EA iEΦ EA iEA

⎛
⎝⎜

⎞
⎠⎟
=

r2 0
0 r2

⎛
⎝⎜

⎞
⎠⎟

 where: r2=x2+y2
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Jacobian =

∂x
∂q1

∂x
∂q2

∂y
∂q1

∂y
∂q2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂x
∂Φ

∂x
∂A

∂y
∂Φ

∂y
∂A

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
1
r2

x y
−y x

⎛
⎝⎜

⎞
⎠⎟Kajobian =

∂q1

∂x
∂q1

∂y
∂q2

∂x
∂q2

∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂Φ
∂x

∂Φ
∂y

∂A
∂x

∂A
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
x −y
y x

⎛
⎝⎜

⎞
⎠⎟
← EΦ

← EA

What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field 

The (Φ,A) grid is a GCC  
coordinate system*:
q1= Φ =(x2-y2)/2 = const.

q2= A = (xy) = const.

*Actually it’s OCC.

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

↑ ↑
EΦ EA

↑ ↑
EΦ EA

 
Metrictensor =

gΦΦ gΦA
gAΦ gAA

⎛
⎝⎜

⎞
⎠⎟
=
EΦ iEΦ EΦ iEA

EA iEΦ EA iEA

⎛
⎝⎜

⎞
⎠⎟
=

r2 0
0 r2

⎛
⎝⎜

⎞
⎠⎟

 where: r2=x2+y2

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂y

∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

The half-nʼ-half results assure

Riemann-Cauchy Derivative Relations make coordinates orthogonal

 

EΦ iEA =
∂Φ
∂x

∂A
∂x

+
∂Φ
∂y

∂A
∂y

= −
∂Φ
∂x

∂Φ
∂y

+
∂Φ
∂y

∂Φ
∂x

= 0
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Jacobian =

∂x
∂q1

∂x
∂q2

∂y
∂q1

∂y
∂q2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂x
∂Φ

∂x
∂A

∂y
∂Φ

∂y
∂A

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
1
r2

x y
−y x

⎛
⎝⎜

⎞
⎠⎟Kajobian =

∂q1

∂x
∂q1

∂y
∂q2

∂x
∂q2

∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂Φ
∂x

∂Φ
∂y

∂A
∂x

∂A
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
x −y
y x

⎛
⎝⎜

⎞
⎠⎟
← EΦ

← EA

What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field 

The (Φ,A) grid is a GCC  
coordinate system*:
q1= Φ =(x2-y2)/2 = const.

q2= A = (xy) = const.

*Actually it’s OCC.

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

↑ ↑
EΦ EA

↑ ↑
EΦ EA

 
Metrictensor =

gΦΦ gΦA
gAΦ gAA

⎛
⎝⎜

⎞
⎠⎟
=
EΦ iEΦ EΦ iEA

EA iEΦ EA iEA

⎛
⎝⎜

⎞
⎠⎟
=

r2 0
0 r2

⎛
⎝⎜

⎞
⎠⎟

 where: r2=x2+y2

Zero divergence requirement:                                                     potential Φ obeys Laplace equation      0 = ∂fx
∂x

+
∂fy
∂y

=
∂
∂x

∂Φ
∂x

+
∂
∂y

∂Φ
∂y

=
∂2Φ
∂x2

+
∂2Φ
∂y2

= 0

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂y

∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

The half-nʼ-half results assure

Riemann-Cauchy Derivative Relations make coordinates orthogonal

 

EΦ iEA =
∂Φ
∂x

∂A
∂x

+
∂Φ
∂y

∂A
∂y

= −
∂Φ
∂x

∂Φ
∂y

+
∂Φ
∂y

∂Φ
∂x

= 0
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Jacobian =

∂x
∂q1

∂x
∂q2

∂y
∂q1

∂y
∂q2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂x
∂Φ

∂x
∂A

∂y
∂Φ

∂y
∂A

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
1
r2

x y
−y x

⎛
⎝⎜

⎞
⎠⎟Kajobian =

∂q1

∂x
∂q1

∂y
∂q2

∂x
∂q2

∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂Φ
∂x

∂Φ
∂y

∂A
∂x

∂A
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
x −y
y x

⎛
⎝⎜

⎞
⎠⎟
← EΦ

← EA

What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field 

The (Φ,A) grid is a GCC  
coordinate system*:
q1= Φ =(x2-y2)/2 = const.

q2= A = (xy) = const.

*Actually it’s OCC.

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

↑ ↑
EΦ EA

↑ ↑
EΦ EA

 
Metrictensor =

gΦΦ gΦA
gAΦ gAA

⎛
⎝⎜

⎞
⎠⎟
=
EΦ iEΦ EΦ iEA

EA iEΦ EA iEA

⎛
⎝⎜

⎞
⎠⎟
=

r2 0
0 r2

⎛
⎝⎜

⎞
⎠⎟

 where: r2=x2+y2

Zero divergence requirement:                                                     potential Φ obeys Laplace equation      0 = ∂fx
∂x

+
∂fy
∂y

=
∂
∂x

∂Φ
∂x

+
∂
∂y

∂Φ
∂y

=
∂2Φ
∂x2

+
∂2Φ
∂y2

= 0

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂y

∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

The half-nʼ-half results assure

Riemann-Cauchy Derivative Relations make coordinates orthogonal

 

EΦ iEA =
∂Φ
∂x

∂A
∂x

+
∂Φ
∂y

∂A
∂y

= −
∂Φ
∂x

∂Φ
∂y

+
∂Φ
∂y

∂Φ
∂x

= 0

or Riemann-Cauchy and so does A
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4. Riemann-Cauchy conditions What’s analytic? (...and what’s not?)
Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery
       Easy 2D monopole, dipole, and 2n-pole analysis

 Easy 2n-multipole field and potential expansion
   Easy stereo-projection visualization
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). 

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

11. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). 

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(z)

11. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). Note: ln(a·b)=ln(a)+ln(b), ln(eiθ)=iθ, and z=reiθ.

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

11. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(z) = a ln(reiθ )

= a ln(r) + i aθ
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). Note: ln(a·b)=ln(a)+ln(b), ln(eiθ)=iθ, and z=reiθ.

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(z) = a ln(reiθ )

= a ln(r) + i aθ

11. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1

Field:
f*(z*)=1/z*=eiθ/r
F(x,y)=(x,y)/r2
Potential:
φ(z)=ln z
=ln r+iθ
= Φ +i A

Field:
f*(z*)=-i/z*=-ieiθ/r
F(x,y)=(y,-x)/r2
Potential:
φ(z)=i ln z
= θ +i ln r
= Φ +i A

(b) Unit Z-line-vortex field f(z)=i/z(a) Unit Z-line-flux field f(z)=1/z
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). Note: ln(a·b)=ln(a)+ln(b), ln(eiθ)=iθ, and z=reiθ.

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(z) = a ln(reiθ )

= a ln(r) + i aθ

11. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1

Field:
f*(z*)=1/z*=eiθ/r
F(x,y)=(x,y)/r2
Potential:
φ(z)=ln z
=ln r+iθ
= Φ +i A

Field:
f*(z*)=-i/z*=-ieiθ/r
F(x,y)=(y,-x)/r2
Potential:
φ(z)=i ln z
= θ +i ln r
= Φ +i A

(b) Unit Z-line-vortex field f(z)=i/z(a) Unit Z-line-flux field f(z)=1/z
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Of all power-law fields f(z)=azn one lacks a power-law potential                          . It is the n = -1 case. 

It has a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). Note: ln(a·b)=ln(a)+ln(b), ln(eiθ)=iθ, and z=reiθ.

What Good Are Complex Exponentials? (contd.)

  φ(z)= n+1
  a zn+1

  f (z)= z
a= az−1  Source-a monopole

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(z) = a ln(reiθ )

= a ln(r) + i aθ

11. Complex integrals define 2D monopole fields and potentials

  Unit monopole field: f (z)= z
1= z−1

 
Δφ = f (z)dz∫ = a dz

z∫
= a d(Reiθ )

Reiθθ=0

θ=2πN
∫ = a idθ

θ=0

θ=2πN
∫ = aiθ 0

2πN = 2aπiN

A monopole field is the only power-law field whose integral (potential) depends on path of integration. 

path that goes N times
around  origin (r=0) at
constant r = R.

z = Reiθ
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Field:
f*(z*)=1/z*=eiθ/r
F(x,y)=(x,y)/r2
Potential:
φ(z)=ln z
=ln r+iθ
= Φ +i A

(a) Unit Z-line-flux field f(z)=1/z

Φ(x,y) Φ(x,y)
1-pole(flux) 1-pole(flux)

A(x,y) A(x,y)1-pole(flux) 1-pole(flux)

Each turn around origin
adds 2πi to vector potential iA 

2π

φ(z) = Φ  + iA = f (z)dz∫ = z
a dz∫ = a ln(reiθ )

= ln(r) + iθ
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Field:
f*(z*)=1/z*=eiθ/r
F(x,y)=(x,y)/r2
Potential:
φ(z)=ln z
=ln r+iθ
= Φ +i A

(a) Unit Z-line-flux field f(z)=1/z

Φ(x,y) Φ(x,y)
1-pole(flux) 1-pole(flux)

A(x,y) A(x,y)1-pole(flux) 1-pole(flux)

Field:
f*(z*)=-i/z*=-ieiθ/r
F(x,y)=(y,-x)/r2
Potential:
φ(z)=i ln z
= θ +i ln r
= Φ +i A

(b) Unit Z-line-vortex field f(z)=i/z

Φ(x,y) Φ(x,y)
1-pole(vortex) 1-pole(vortex)

A(x,y) A(x,y)1-pole(vortex) 1-pole(vortex)

85Thursday, September 29, 2016



φ = Φ+ i |A |

Φ = A ln(r)− Bθ[ ] = const.

|A |= Aθ + B ln(r)[ ] = const. φ = f (z)dz∫ = (A + iB) / zdz∫ = (A + iB)ln(z) = (A + iB)(ln(r)+ iθ ) = A ln(r)− Bθ[ ]+ i Aθ + B ln(r)[ ]

 “Vortex”        “Hurricane”

What Good Are Complex Exponentials? (contd.)

f(z) =(0.5 +i0.5)/z=eiπ/4/z√2 f(z) =(0.75 +i0.25)/z=ei18°/z√n
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4. Riemann-Cauchy conditions What’s analytic? (...and what’s not?)
Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery
       Easy 2D monopole, dipole, and 2n-pole analysis

 Easy 2n-multipole field and potential expansion
   Easy stereo-projection visualization
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Now let these two line-sources of equal but opposite source constants +a and –a be located at z=±Δ/2 
separated by a small interval Δ. This sum (actually difference) of f1-pole-fields is called a dipole field. 

Start with f(z)=az-1: 2D line monopole field and is its monopole potential              of source strength a.

12. Complex derivatives give 2D dipole fields
φ(z)= a ln z

f 1- pole (z)= a
z
=
dφ1- pole

dz
φ1- pole (z)= a ln z

f dipole (z)= a
z + 2

Δ
−

a
z − 2

Δ
=

−a ⋅ Δ

z2 − 4
Δ2

φdipole (z)= a ln(z − 2
Δ )− a ln(z + 2

Δ ) = a ln
z − 2

Δ

z + 2
Δ

What Good Are Complex Exponentials? (2D monopole, dipole, and 2n-pole analysis)

So-called
“physical dipole”

has finite Δ 

(+)(-) separation
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Now let these two line-sources of equal but opposite source constants +a and –a be located at z=±Δ/2 
separated by a small interval Δ. This sum (actually difference) of f1-pole-fields is called a dipole field. 

Start with f(z)=az-1: 2D line monopole field and is its monopole potential              of source strength a.

12. Complex derivatives give 2D dipole fields
φ(z)= a ln z

f 1- pole (z)= a
z
=
dφ1- pole

dz
φ1- pole (z)= a ln z

f dipole (z)= a
z + 2

Δ
−

a
z − 2

Δ
=

−a ⋅ Δ

z2 − 4
Δ2

φdipole (z)= a ln(z − 2
Δ )− a ln(z + 2

Δ ) = a ln
z − 2

Δ

z + 2
Δ

f 2- pole = −a
z2

=
df 1- pole

dz
=
dφ2- pole

dz
φ2- pole = a

z
=
dφ1- pole

dz

If interval Δ is tiny and is divided out we get a point-dipole field f 2-pole that is the z-derivative of f 1-pole.

What Good Are Complex Exponentials? (2D monopole, dipole, and 2n-pole analysis)
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Now let these two line-sources of equal but opposite source constants +a and –a be located at z=±Δ/2 
separated by a small interval Δ. This sum (actually difference) of f1-pole-fields is called a dipole field. 

Start with f(z)=az-1: 2D line monopole field and is its monopole potential              of source strength a.

12. Complex derivatives give 2D dipole fields
φ(z)= a ln z

f 1- pole (z)= a
z
=
dφ1- pole

dz
φ1- pole (z)= a ln z

f dipole (z)= a
z + 2

Δ
−

a
z − 2

Δ
=

−a ⋅ Δ

z2 − 4
Δ2

φdipole (z)= a ln(z − 2
Δ )− a ln(z + 2

Δ ) = a ln
z − 2

Δ

z + 2
Δ

f 2- pole = −a
z2

=
df 1- pole

dz
=
dφ2- pole

dz
φ2- pole = a

z
=
dφ1- pole

dz

If interval Δ is tiny and is divided out we get a point-dipole field f 2-pole that is the z-derivative of f 1-pole.

What Good Are Complex Exponentials? (2D monopole, dipole, and 2n-pole analysis)

Φ(x,y) Φ(x,y)
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Now let these two line-sources of equal but opposite source constants +a and –a be located at z=±Δ/2 
separated by a small interval Δ. This sum (actually difference) of f1-pole-fields is called a dipole field. 

Start with f(z)=az-1: 2D line monopole field and is its monopole potential              of source strength a.

12. Complex derivatives give 2D dipole fields
φ(z)= a ln z

f 1- pole (z)= a
z
=
dφ1- pole

dz
φ1- pole (z)= a ln z

f dipole (z)= a
z + 2

Δ
−

a
z − 2

Δ
=

−a ⋅ Δ

z2 − 4
Δ2

φdipole (z)= a ln(z − 2
Δ )− a ln(z + 2

Δ ) = a ln
z − 2

Δ

z + 2
Δ

f 2- pole = −a
z2

=
df 1- pole

dz
=
dφ2- pole

dz
φ2- pole = a

z
=
dφ1- pole

dz

If interval Δ is tiny and is divided out we get a point-dipole field f 2-pole that is the z-derivative of f 1-pole.

A point-dipole potential φ2-pole (whose z-derivative is f 2-pole) is a z-derivative of φ1-pole. 

φ2- pole =
a
z
=

a
x + iy

=
a

x + iy
x − iy
x − iy

= ax
x2+y2

+ i −ay
x2+y2

=
a
r

cosθ − i a
r

sinθ

                                                     = Φ2- pole + i A2- pole

What Good Are Complex Exponentials? (2D monopole, dipole, and 2n-pole analysis)
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Scalar potentials
Φ=(a/r)cos θ=const.

a/Φ
θ

Vector potentials
A=(a/r)sin θ=const.

a/A

r

r=(a/Φ)cos θ

r=(a/A)sin θ

r

Field:
f*(z*)=1/z2*=ei2θ/r2

F(x,y)=(cos2θ,sin2θ)/r2
Potential:
φ(z)=1/ z
=(cosθ)/r+i(sinθ)/r
= Φ +i A

A point-dipole potential φ2-pole (whose z-derivative is f2-pole) is a z-derivative of φ1-pole. 

φ2- pole =
a
z
=

a
x + iy

=
a

x + iy
x − iy
x − iy

= ax
x2+y2

+ i −ay
x2+y2

=
a
r

cosθ − i a
r

sinθ

                                                     = Φ2- pole + i A2- pole
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f 4- pole = a
z3

=
1
2
df 2- pole

dz
=
dφ4- pole

dz
φ4- pole = −

a
2z2

=
1
2
dφ2- pole

dz

What if we put a (-)copy of a 2-pole near its original? 

Well, the result is 4-pole or quadrupole field f 4-pole and potential φ4-pole. 

Each a z-derivative of f 2-pole and φ2-pole.

2n-pole analysis (quadrupole:22=4-pole, octapole:23=8-pole,…, pole dancer,
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f 4- pole = a
z3

=
1
2
df 2- pole

dz
=
dφ4- pole

dz
φ4- pole = −

a
2z2

=
1
2
dφ2- pole

dz

What if we put a (-)copy of a 2-pole near its original? 

Well, the result is 4-pole or quadrupole field f 4-pole and potential φ4-pole. 

Each a z-derivative of f 2-pole and φ2-pole.

2n-pole analysis (quadrupole:22=4-pole, octapole:23=8-pole,…, pole dancer,

X X

Φ(x,y) Φ(x,y)
4-pole 4-pole

Field:
f*(z*)=1/z3*=ei3θ/r3

F(x,y)=(cos3θ,sin3θ)/r3
Potential:
-2φ(z)=1/z2

=(cos2θ)/r2+i(sin2θ)/r2

= Φ +i A
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4. Riemann-Cauchy conditions What’s analytic? (...and what’s not?)
Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery
       Easy 2D monopole, dipole, and 2n-pole analysis

 Easy 2n-multipole field and potential expansion
   Easy stereo-projection visualization
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Laurent series or multipole expansion of a given complex field function f(z) around z=0. 

All field terms am-1zm-1 except 1-pole      have potential term am-1zm/m of a 2m-pole. 

These are located at z=0 for m<0 and at z=∞  for m>0.
 z
a-1

 

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...

         22-pole      21-pole       20-pole      21-pole     22-pole     23-pole     24 -pole    25-pole    26-pole   
              at z=0        at z=0          at z=0        at z=∞     at z=∞      at z=∞      at z=∞     at z=∞     at z=∞   

φ(z) = ...a−3
−2

z−2 +  a−2
−1

z−1 +   a−1 ln z +     a0z  +    a1
2
z2   +  a2

3
z3   +   a3

4
z4   +  a4

5
z5 +  a5

6
z6  + ...

φ(z) = ...a−4
−3

z−3  + a−3
−2

z−2  +  a−2
−1

z−1  +   a−1 ln z  +     a0z   +    a1
2
z2    +  a2

3
z3    + ...

2n-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

dφ
dz

=

f dz∫ =
(quadrupole)    (dipole)           (monopole)       (dipole)       (quadrupole)  (octapole)    (hexadecapole)  

      (octapole)0      (quadrupole)0    (dipole)0           (monopole)       (dipole)∞       (quadrupole)∞  (octapole)∞    

96Thursday, September 29, 2016



Laurent series or multipole expansion of a given complex field function f(z) around z=0. 

All field terms am-1zm-1 except 1-pole      have potential term am-1zm/m of a 2m-pole. 

These are located at z=0 for m<0 and at z=∞  for m>0.
 z
a-1

 

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...

         22-pole      21-pole       20-pole      21-pole     22-pole     23-pole     24 -pole    25-pole    26-pole   
              at z=0        at z=0          at z=0        at z=∞     at z=∞      at z=∞      at z=∞     at z=∞     at z=∞   

φ(z) = ...a−3
−2

z−2 +  a−2
−1

z−1 +   a−1 ln z +     a0z  +    a1
2
z2   +  a2

3
z3   +   a3

4
z4   +  a4

5
z5 +  a5

6
z6  + ...

φ(z) = ...
a−3
−2

z−2  +
a−3
−2

z−2  +  
a−2
−1

z−1  +   a−1 ln z   +     a0z    +    
a1
2
z2    +  

a2
3
z3    + ...

φ(w) = ...a−4
−3

w−3 + a−3
−2

w−2 +  a−2
−1

w−1 +   a−1 lnw +     a0w  +    a1
2
w2   +  a2

3
w3   + ...

(with z=w-1)

2n-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

dφ
dz

=

f dz∫ =
(quadrupole)    (dipole)           (monopole)       (dipole)       (quadrupole)  (octapole)    (hexadecapole)  

      (octapole)0      (quadrupole)0    (dipole)0           (monopole)       (dipole)∞       (quadrupole)∞  (octapole)∞    
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Laurent series or multipole expansion of a given complex field function f(z) around z=0. 

All field terms am-1zm-1 except 1-pole      have potential term am-1zm/m of a 2m-pole. 

These are located at z=0 for m<0 and at z=∞  for m>0.
 z
a-1

 

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z    +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...

          22-pole      21-pole       20 -pole      21-pole     22-pole     23-pole     24 -pole    25-pole    26-pole    
              at z=0        at z=0          at z=0        at z=∞     at z=∞      at z=∞      at z=∞     at z=∞     at z=∞   

φ(z) = ...
a−3
−2

z−2 +  
a−2
−1

z−1 +   a−1 ln z  +     a0z   +    
a1
2
z2   +  

a2
3
z3   +   

a3
4
z4   +  

a4
5
z5 +  

a5
6
z6  + ...

φ(z) = ...a−4
−3

z−3  + a−3
−2

z−2  +  a−2
−1

z−1  +   a−1 ln z  +     a0z   +    a1
2
z2    +  a2

3
z3    + ...

φ(w) = ...a−4
−3

w−3 + a−3
−2

w−2 +  a−2
−1

w−1 +   a−1 lnw +     a0w  +    a1
2
w2   +  a2

3
w3   + ...

        = ...a2
3
z−3    + a1

2
z−2     +     a0z

−1 −   a−1 ln z +    a−2
−1

z +    a−3
−2

z2  +  a−4
−3

z3  + ...

(with z→w)

(with w=z-1)

2n-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

dφ
dz

=

f dz∫ =
(quadrupole)    (dipole)           (monopole)       (dipole)       (quadrupole)  (octapole)    (hexadecapole)  

      (octapole)0      (quadrupole)0    (dipole)0           (monopole)       (dipole)∞       (quadrupole)∞  (octapole)∞    
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z=x+iy
=1/w

w=u+iv
=1/z

1

N

S

z-plane

w-plane

|w|=cot θ/2=|z|-1

|z|=tan θ/2=|w|-1

1
2

1
2

θ/2

θ/2

θ/2

cos θ/2

sin θ/2

θ

N

S

sin2 θ/2

cos2 θ/2

(+) monopole field
at North Pole

is (-) monopole field
near SouthPole

N

S

dipole field centered
at North Pole

is constant field
near SouthPole

N

S

(a) (b)

φ(z) = ...a−4
−3

z−3  + a−3
−2

z−2  +  a−2
−1

z−1  +   a−1 ln z  +     a0z   +    a1
2
z2    +  a2

3
z3    + ...

φ(w) = ...a−4
−3

w−3 + a−3
−2

w−2 +  a−2
−1

w−1 +   a−1 lnw +     a0w  +    a1
2
w2   +  a2

3
w3   + ...

        = ...a2
3
z−2    + a1

2
z−2     +     a0z

−1 −   a−1 ln z +    a−2
−1

z +    a−3
−2

z2  +  a−4
−3

z3  + ...
(with w=z-1)

φ(z) = a−2
-1

z−1 

φ(w) = a0w
f (w) = a0

f (z) = a−2z
−2

φ(z) = a−3
-2

z−2  

φ(w) = a0w
2

f (w) = a1w

f (z) = a−3z
−3

(with z→w)

quadrupole field centered
at North Pole

is quadratic field
near South Pole

      (octapole)0      (quadrupole)0    (dipole)0           (monopole)       (dipole)∞       (quadrupole)∞  (octapole)∞    
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Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       
 f (z)dz∫ = a−1z

−1dz∫ = 2πia−1  a−1 =2π i
 1 f (z)dz∫

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...
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Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.
 f (z)dz∫ = a−1z

−1dz∫ = 2πia−1  a−1 =2π i
 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...
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Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

Source analysis starts with 1-pole loop integrals                  or, with origin shifted                         . 

       
   z−1dz∫ = 2π i    (z − a)−1dz∫ = 2π i

 f (z)dz∫ = a−1z
−1dz∫ = 2πia−1  a−1 =2π i

 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...
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Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

Source analysis starts with 1-pole loop integrals                  or, with origin shifted                         . 

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.           

 

   z−1dz∫ = 2π i    (z − a)−1dz∫ = 2π i

 

f (z)
z − a

dz∫ =
f (a)
z − a

dz∫ = f (a) 1
z − a

dz∫ = 2πif (a)

 f (z)dz∫ = a−1z
−1dz∫ = 2πia−1  a−1 =2π i

 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

(assume tiny circle around z=a)

(but any contour that doesn’t “touch a gives same answer)

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...

103Thursday, September 29, 2016



The f(a) result is called a Cauchy integral. 

  

Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

Source analysis starts with 1-pole loop integrals                  or, with origin shifted                         . 

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.           

 

   z−1dz∫ = 2π i    (z − a)−1dz∫ = 2π i

 

f (z)
z − a

dz∫ =
f (a)
z − a

dz∫ = f (a) 1
z − a

dz∫ = 2πif (a)
 
f (a) = 1

2πi
f (z)
z − a

dz∫

 f (z)dz∫ = a−1z
−1dz∫ = 2πia−1  a−1 =2π i

 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

(assume tiny circle around z=a)

(but any contour that doesn’t “touch a gives same answer)

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...
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The f(a) result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

  

Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

Source analysis starts with 1-pole loop integrals                  or, with origin shifted                         . 

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.           

 

   z−1dz∫ = 2π i    (z − a)−1dz∫ = 2π i

 

f (z)
z − a

dz∫ =
f (a)
z − a

dz∫ = f (a) 1
z − a

dz∫ = 2πif (a)
 
f (a) = 1

2πi
f (z)
z − a

dz∫

 f (z)dz∫ = a−1z
−1dz∫ = 2πia−1  a−1 =2π i

 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

   

df (a)
da

= 1
2π i

f (z)
(z − a)2 dz∫  , 

(assume tiny circle around z=a)

(but any contour that doesn’t “touch a gives same answer)

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...
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The f(a) result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

  

Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

Source analysis starts with 1-pole loop integrals                  or, with origin shifted                         . 

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.           

 

   z−1dz∫ = 2π i    (z − a)−1dz∫ = 2π i

 

f (z)
z − a

dz∫ =
f (a)
z − a

dz∫ = f (a) 1
z − a

dz∫ = 2πif (a)
 
f (a) = 1

2πi
f (z)
z − a

dz∫

 f (z)dz∫ = a−1z
−1dz∫ = 2πia−1  a−1 =2π i

 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

   

df (a)
da

= 1
2π i

f (z)
(z − a)2 dz∫  , d2 f (a)

da2 = 2
2π i

f (z)
(z − a)3 dz∫  , 

(assume tiny circle around z=a)

(but any contour that doesn’t “touch a gives same answer)

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...

106Thursday, September 29, 2016



The f(a) result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

  

Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

Source analysis starts with 1-pole loop integrals                  or, with origin shifted                         . 

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.           

 

   z−1dz∫ = 2π i    (z − a)−1dz∫ = 2π i

 

f (z)
z − a

dz∫ =
f (a)
z − a

dz∫ = f (a) 1
z − a

dz∫ = 2πif (a)
 
f (a) = 1

2πi
f (z)
z − a

dz∫

 f (z)dz∫ = a−1z
−1dz∫ = 2πia−1  a−1 =2π i

 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

   

df (a)
da

= 1
2π i

f (z)
(z − a)2 dz∫  , d2 f (a)

da2 = 2
2π i

f (z)
(z − a)3 dz∫  ,  d3 f (a)

da3 = 3!
2π i

f (z)
(z − a)4 dz∫

(assume tiny circle around z=a)

(but any contour that doesn’t “touch a gives same answer)

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...
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The f(a) result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

  

Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

Source analysis starts with 1-pole loop integrals                  or, with origin shifted                         . 

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.           

 

   z−1dz∫ = 2π i    (z − a)−1dz∫ = 2π i

 

f (z)
z − a

dz∫ =
f (a)
z − a

dz∫ = f (a) 1
z − a

dz∫ = 2πif (a)
 
f (a) = 1

2πi
f (z)
z − a

dz∫

 f (z)dz∫ = a−1z
−1dz∫ = 2πia−1  a−1 =2π i

 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

   

df (a)
da

= 1
2π i

f (z)
(z − a)2 dz∫  , d2 f (a)

da2 = 2
2π i

f (z)
(z − a)3 dz∫  ,  d3 f (a)

da3 = 3!
2π i

f (z)
(z − a)4 dz∫ , , d n f (a)

dan = n!
2π i

f (z)
(z − a)n+1 dz∫

(assume tiny circle around z=a)

(but any contour that doesn’t “touch a gives same answer)

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...
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The f(a) result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a. 

  

Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

Source analysis starts with 1-pole loop integrals                  or, with origin shifted                         . 

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.           

 

   z−1dz∫ = 2π i    (z − a)−1dz∫ = 2π i

 

f (z)
z − a

dz∫ =
f (a)
z − a

dz∫ = f (a) 1
z − a

dz∫ = 2πif (a)
 
f (a) = 1

2πi
f (z)
z − a

dz∫

 f (z)dz∫ = a−1z
−1dz∫ = 2πia−1  a−1 =2π i

 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

   

df (a)
da

= 1
2π i

f (z)
(z − a)2 dz∫  , d2 f (a)

da2 = 2
2π i

f (z)
(z − a)3 dz∫  ,  d3 f (a)

da3 = 3!
2π i

f (z)
(z − a)4 dz∫ , , d n f (a)

dan = n!
2π i

f (z)
(z − a)n+1 dz∫

(assume tiny circle around z=a)

(but any contour that doesn’t “touch a gives same answer)

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...
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The f(a) result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a. 

  

Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

Source analysis starts with 1-pole loop integrals                  or, with origin shifted                         . 

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.           

 

   z−1dz∫ = 2π i    (z − a)−1dz∫ = 2π i

 

f (z)
z − a

dz∫ =
f (a)
z − a

dz∫ = f (a) 1
z − a

dz∫ = 2πif (a)
 
f (a) = 1

2πi
f (z)
z − a

dz∫

 f (z)dz∫ = a−1z
−1dz∫ = 2πia−1  a−1 =2π i

 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

   

df (a)
da

= 1
2π i

f (z)
(z − a)2

dz∫  , d2 f (a)
da2

= 2
2π i

f (z)
(z − a)3

dz∫  ,  d3 f (a)
da3

= 3!
2π i

f (z)
(z − a)4

dz∫ , , d n f (a)
dan

= n!
2π i

f (z)
(z − a)n+1

dz∫

 

f (z) = an
n=−∞

∞
∑ (z − a)n           where :  an =

1
2πi

f (z)
(z − a)n+1

dz∫ =
1
n!

dn f (a)
dan

    for :  n ≥ 0
⎛

⎝
⎜

⎞

⎠
⎟

(assume tiny circle around z=a)

(but any contour that doesn’t “touch a gives same answer)

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...
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The f(a) result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a. 

  

Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

       

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

Source analysis starts with 1-pole loop integrals                  or, with origin shifted                         . 

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.           

 

   z−1dz∫ = 2π i    (z − a)−1dz∫ = 2π i

 

f (z)
z − a

dz∫ =
f (a)
z − a

dz∫ = f (a) 1
z − a

dz∫ = 2πif (a)
 
f (a) = 1

2πi
f (z)
z − a

dz∫

 f (z)dz∫ = a−1z
−1dz∫ = 2πia−1  a−1 =2π i

 1 f (z)dz∫

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   

   

df (a)
da

= 1
2π i

f (z)
(z − a)2

dz∫  , d2 f (a)
da2

= 2
2π i

f (z)
(z − a)3

dz∫  ,  d3 f (a)
da3

= 3!
2π i

f (z)
(z − a)4

dz∫ , , d n f (a)
dan

= n!
2π i

f (z)
(z − a)n+1

dz∫

 

f (z) = an
n=−∞

∞
∑ (z − a)n           where :  an =

1
2πi

f (z)
(z − a)n+1

dz∫ =
1
n!

dn f (a)
dan

    for :  n ≥ 0
⎛

⎝
⎜

⎞

⎠
⎟

(assume tiny circle around z=a)

(but any contour that doesn’t “touch a gives same answer)

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z   +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...

(quadrupole)0    (dipole)0           (monopole)    (dipole)∞  (quadrupole)∞ (octapole)∞  (hexadecapole)∞   ...   

monopole
moment

dipole
moment
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5. Mapping and Non-analytic 2D source field analysis
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RC applies to analytic potential                                  and analytic field                                 and any analytic function  

The half-nʼ-half results
are called

Riemann-Cauchy
Derivative Relations

∂x
∂Φ= ∂y

∂A   is:  ∂x
∂Reφ(z)= ∂y

∂Imφ(z)  or:  ∂x
∂Re f(z)= ∂y

∂Im f(z)  is:  ∂x
∂ fx (z)= ∂y

∂ fy (z)

∂y
∂Φ=−∂x

∂A is:  ∂y
∂Reφ(z)= − ∂x

∂Imφ(z)   or:  ∂y
∂Re f(z)= − ∂x

∂Im f(z)   is:   ∂y
∂ fx (z)= − ∂x

∂ fy (z) 

φ(z) = Φ+ iA f(z) = fx + ify
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The half-nʼ-half results
are called

Riemann-Cauchy
Derivative Relations

∂x
∂Φ= ∂y

∂A   is:  ∂x
∂Reφ(z)= ∂y

∂Imφ(z)  or:  ∂x
∂Re f(z)= ∂y

∂Im f(z)  is:  ∂x
∂ fx (z)= ∂y

∂ fy (z)

∂y
∂Φ=−∂x

∂A is:  ∂y
∂Reφ(z)= − ∂x

∂Imφ(z)   or:  ∂y
∂Re f(z)= − ∂x

∂Im f(z)   is:   ∂y
∂ fx (z)= − ∂x

∂ fy (z) 

φ(z) = Φ+ iA
w(z) = u + iv

f(z) = fx + ify
Common notation for mapping:

x

y z=x+i y
space

u

v w= u +i v
space

w(z)
z(w)

RC applies to analytic potential                                  and analytic field                                 and any analytic function  
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The half-nʼ-half results
are called

Riemann-Cauchy
Derivative Relations

∂x
∂Φ= ∂y

∂A   is:  ∂x
∂Reφ(z)= ∂y

∂Imφ(z)  or:  ∂x
∂Re f(z)= ∂y

∂Im f(z)  is:  ∂x
∂ fx (z)= ∂y

∂ fy (z)

∂y
∂Φ=−∂x

∂A is:  ∂y
∂Reφ(z)= − ∂x

∂Imφ(z)   or:  ∂y
∂Re f(z)= − ∂x

∂Im f(z)   is:   ∂y
∂ fx (z)= − ∂x

∂ fy (z) 

φ(z) = Φ+ iA
w(z) = u + iv

f(z) = fx + ify
Common notation for mapping:

x

y z=x+i y
space

u

v w= u +i v
space

w(z)
z(w)

Jacobian for mapping:
dw
dz

= 1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
u + iv( ) = 1

2
∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
+ i
2

∂v
∂x

− ∂u
∂y

⎛
⎝⎜

⎞
⎠⎟

du = ∂u
∂x
dx + ∂u

∂y
dy

dv = ∂v
∂x
dx + ∂v

∂y
dy

du
dv

⎛
⎝⎜

⎞
⎠⎟
=

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟

Complex derivative for mapping:

RC applies to analytic potential                                  and analytic field                                 and any analytic function  
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The half-nʼ-half results
are called

Riemann-Cauchy
Derivative Relations

∂x
∂Φ= ∂y

∂A   is:  ∂x
∂Reφ(z)= ∂y

∂Imφ(z)  or:  ∂x
∂Re f(z)= ∂y

∂Im f(z)  is:  ∂x
∂ fx (z)= ∂y

∂ fy (z)

∂y
∂Φ=−∂x

∂A is:  ∂y
∂Reφ(z)= − ∂x

∂Imφ(z)   or:  ∂y
∂Re f(z)= − ∂x

∂Im f(z)   is:   ∂y
∂ fx (z)= − ∂x

∂ fy (z) 

φ(z) = Φ+ iA
w(z) = u + iv

f(z) = fx + ify
Common notation for mapping:

x

y z=x+i y
space

u

v w= u +i v
space

w(z)
z(w)

Jacobian for mapping:

dw
dz

= 1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
u + iv( ) = 1

2
∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
+ i
2

∂v
∂x

− ∂u
∂y

⎛
⎝⎜

⎞
⎠⎟

= ∂u
∂x

− i ∂u
∂y

= ∂v
∂y

+ i ∂v
∂x

du = ∂u
∂x
dx + ∂u

∂y
dy

dv = ∂v
∂x
dx + ∂v

∂y
dy

du
dv

⎛
⎝⎜

⎞
⎠⎟
=

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟

=

∂u
∂x

∂u
∂y

− ∂u
∂y

∂u
∂x

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟ =

∂v
∂y

− ∂v
∂x

∂v
∂x

∂v
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟

Complex derivative for mapping:

Complex derivative abs-square:
dw
dz

2
= ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟
2
+ ∂u

∂y
⎛
⎝⎜

⎞
⎠⎟
2

= ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
2

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟
2

RC applies to analytic potential                                  and analytic field                                 and any analytic function  
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The half-nʼ-half results
are called

Riemann-Cauchy
Derivative Relations

∂x
∂Φ= ∂y

∂A   is:  ∂x
∂Reφ(z)= ∂y

∂Imφ(z)  or:  ∂x
∂Re f(z)= ∂y

∂Im f(z)  is:  ∂x
∂ fx (z)= ∂y

∂ fy (z)

∂y
∂Φ=−∂x

∂A is:  ∂y
∂Reφ(z)= − ∂x

∂Imφ(z)   or:  ∂y
∂Re f(z)= − ∂x

∂Im f(z)   is:   ∂y
∂ fx (z)= − ∂x

∂ fy (z) 

φ(z) = Φ+ iA
w(z) = u + iv

f(z) = fx + ify
Common notation for mapping:

x

y z=x+i y
space

u

v w= u +i v
space

w(z)
z(w)

Jacobian for mapping:

dw
dz

= 1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
u + iv( ) = 1

2
∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
+ i
2

∂v
∂x

− ∂u
∂y

⎛
⎝⎜

⎞
⎠⎟

= ∂u
∂x

− i ∂u
∂y

= ∂v
∂y

+ i ∂v
∂x

du = ∂u
∂x
dx + ∂u

∂y
dy

dv = ∂v
∂x
dx + ∂v

∂y
dy

du
dv

⎛
⎝⎜

⎞
⎠⎟
=

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟

=

∂u
∂x

∂u
∂y

− ∂u
∂y

∂u
∂x

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟ =

∂v
∂y

− ∂v
∂x

∂v
∂x

∂v
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟

Complex derivative for mapping:

Complex derivative abs-square:
dw
dz

2
= ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟
2
+ ∂u

∂y
⎛
⎝⎜

⎞
⎠⎟
2

= ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
2

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟
2
= det J

...equals Jacobian Determinant

RC applies to analytic potential                                  and analytic field                                 and any analytic function  
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The half-nʼ-half results
are called

Riemann-Cauchy
Derivative Relations

∂x
∂Φ= ∂y

∂A   is:  ∂x
∂Reφ(z)= ∂y

∂Imφ(z)  or:  ∂x
∂Re f(z)= ∂y

∂Im f(z)  is:  ∂x
∂ fx (z)= ∂y

∂ fy (z)

∂y
∂Φ=−∂x

∂A is:  ∂y
∂Reφ(z)= − ∂x

∂Imφ(z)   or:  ∂y
∂Re f(z)= − ∂x

∂Im f(z)   is:   ∂y
∂ fx (z)= − ∂x

∂ fy (z) 

φ(z) = Φ+ iA
w(z) = u + iv

f(z) = fx + ify
Common notation for mapping:

x

y z=x+i y
space

u

v w= u +i v
space

w(z)
z(w)

Jacobian for mapping is scaled rotation:

dw
dz

= 1
2

∂
∂x

− i ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
u + iv( ) = 1

2
∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
+ i
2

∂v
∂x

− ∂u
∂y

⎛
⎝⎜

⎞
⎠⎟

= ∂u
∂x

− i ∂u
∂y

= ∂v
∂y

+ i ∂v
∂x

du = ∂u
∂x
dx + ∂u

∂y
dy

dv = ∂v
∂x
dx + ∂v

∂y
dy

du
dv

⎛
⎝⎜

⎞
⎠⎟
=

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟ = det J cosθ −sinθ

sinθ cosθ
⎛

⎝⎜
⎞

⎠⎟
dx
dy

⎛

⎝
⎜

⎞

⎠
⎟

=

∂u
∂x

∂u
∂y

− ∂u
∂y

∂u
∂x

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟ =

∂v
∂y

− ∂v
∂x

∂v
∂x

∂v
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟

Complex derivative for mapping:

Complex derivative abs-square:
dw
dz

2
= ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟
2
+ ∂u

∂y
⎛
⎝⎜

⎞
⎠⎟
2

= ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
2

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟
2
= det J

...equals Jacobian Determinant

Important result:

 is scaled rotation of dz.
dw = J ⋅eiθ ⋅ dz

RC applies to analytic potential                                  and analytic field                                 and any analytic function  
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w(z) = z2   gives parabolic OCC
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w(z) = z2   gives parabolic OCC

 Inverse: z(w) = w1/2   gives hyperbolic OCC
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w(z) = z2   gives parabolic OCC

 Inverse: z(w) = w1/2   gives hyperbolic OCC

   

w = (u + iv) = z 2 = (x + iy)2  is analytic function of z and w

Expansion:                   u = x 2 −y 2   and v = 2xy   may be solved using |w |=| z 2 |=| z |2

Expansion: |w |= u2 + v 2 = x 2 + y 2 =| z |2      

Solution:  x 2 =
u + u2 + v 2

2
   y 2 =

−u + u2 + v 2

2

    

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=
Eu

Ev

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

=
2x −2y

+2y 2x

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

    

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

= E
u

E
v( ) =

2x +2y
−2y 2x

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

4 x 2 + y 2( )
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Two parts: gradient of scalar potential called the longitudinal field        and curl of a vector potential called the transverse field     .

A general 2D complex field may have: 
1. non-analytic potential field function φ(z,z*)=Φ(x,y)+iA(x,y), 
2. non-analytic force field function f(z,z*) = fx(x,y) + ify(x,y) , 
3. non-analytic source distribution function s(z,z*) = ρ(x,y) + i I(x,y). 

Non-analytic potential, force, and source field functions

Source definitions are made to generalize the f* field equations (10.33) based on relations (10.31) and (10.32).

  
2 df ∗

dz
= s∗(z,z∗)

  
2 df

dz∗
= s(z,z∗)

  
2 dφ

dz
= f (z,z∗)

  
2 dφ∗

dz∗
= f ∗(z,z∗)

Field equations for the potentials are like (10.33) with an extra factor of 2.

Source equations (10.46) expand like (10.32) into a real and imaginary parts of divergence and curl terms.

  
s∗(z,z∗) = 2 df ∗

dz
= ∂

∂ x
− i ∂

∂ y
⎡

⎣
⎢

⎤

⎦
⎥ fx

*(x, y)+ if y
*(x, y)⎡

⎣
⎤
⎦ = ρ − i I  ,     where: fx

*= fx ,  and: f y
*= − f y

   

=
∂ fx

*

∂ x
+
∂ f y

*

∂ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ i

∂ f y
*

∂ x
−
∂ fx

*

∂ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ∇• f *⎡
⎣

⎤
⎦ + i ∇× f *⎡

⎣
⎤
⎦Z

  ∇ • f * = ρ    ∇× f * = − I
Real part: Poisson scalar source equation (charge density ρ).     Imaginary part: Biot-Savart vector source equation(current density I)

  
f *(z,z*) = 2 dφ*

dz* = ∂
∂ x

+ i ∂
∂ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Φ− iA( ) = fx

* + if y
*

  
= ∂Φ

∂ x
+ i ∂Φ

∂ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ ∂ A

∂ y
− i ∂ A

∂ x

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ∇Φ⎡⎣ ⎤⎦ + ∇× AZ⎡⎣ ⎤⎦

Field equations (10.47) expand into Re and Im parts; x and y components of grad Φ and curlΑZ from potential φ = Φ + iA or φ*= Φ - iA.   

 fL
*

 fT
*

 fL
* = ∇Φ  fT

* = ∇× A f
* = fL

* + fT
*

(For source-free analytic functions these two fields are identical.)
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Potential, force, and source field equations        vs.       position, velocity, and acceleration equations

Field equations Newton equations
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The longitudinal field         is quite different from the transverse field      . 

Example 1
Consider a non-analytic field f(z) = (z*)2 or f*(z) = z2.

  

s*(z,z*) = 2 df *

dz
= 4z = 4x + i4y,

or :     ρ = 4x,      and :    I = -4y.

The non-analytic potential function follows by integrating

  

φ(z,z*) = 1
2

f (z)dz∫ = 1
2

(z*)2 dz∫ = z(z*)2

2
= (x + iy)(x2 − y2 − i2xy)

2
,

or : Φ = x3 + xy2

2
, and : A = − y3 − yx2

2
.

 fL
*

 fT
*

   

fL
* = ∇Φ = ∇ x3 + xy2

2

⎛

⎝
⎜

⎞

⎠
⎟ =

3x2 + y2

2
xy

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,     fT
* = ∇× A = ∇× − y3 − yx2

2
ez

⎛

⎝
⎜

⎞

⎠
⎟ =

∂A
∂y

− ∂A
∂x

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
−3y2 − x2

2
xy

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.

    

f* = fL
*+ fT

* =
3x2 + y2

2
xy

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+

−3y2 − x2

2
xy

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= x2 − y2

2xy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,     ∇if*=∇ifL
*=4x=ρ,     ∇×f*=∇×fT

*=4y=- I .

 fL
*

 fT
*

 fL
*+ fT

*

The longitudinal field       has no curl and the transverse field          has no divergence. The sum field has both making a violent storm, indeed, as shown by a plot of in Fig. 10.17.
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