Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates (GCC)

(Ch. 12 of Unit 1 and Ch. 1-5 of Unit 2 and Ch. 1-5 of Unit 3)
Quick Review of Lagrange Relations in Lectures 9-11
Using differential chain-rules for coordinate transformations
Polar coordinate example of Generalized Curvilinear Coordinates (GCC)
Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1
Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2
How to say Newton's "F=ma" in Generalized Curvilinear Coords.
Use Cartesian KE quadratic form $K E=T=1 / 2 \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ and $\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$ to get GCC force Lagrange GCC trickery gives Lagrange force equations
Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)
GCC Cells, base vectors, and metric tensors
Polar coordinate examples: Covariant \mathbf{E}_{m} vs. Contravariant \mathbf{E}^{m}
Covariant $g_{m n}$ vs. Invariant $\delta_{m}{ }^{n}$ vs. Contravariant gmn
Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity
GCC Lagrangian definition
GCC "canonical" momentum p_{m} definition
GCC "canonical" force F_{m} definition
Coriolis "fictitious" forces (... and weather effects)

Quick Review of Lagrange Relations in Lectures 9-10
$\longrightarrow 0^{\text {th }}$ and $1^{s t}$ equations of Lagrange and Hamilton

Quick Review of Lagrange Relations in Lectures 9-10

$0^{\text {th }}$ and $1^{\text {st }}$ equations of Lagrange and Hamilton
Starts out with simple demands for explicit-dependence, "loyalty" or "fealty to the colors"

Lagrangian and Estrangian have no explicit dependence on momentum \mathbf{p}

$$
\frac{\partial L}{\partial p_{k}} \equiv 0 \equiv \frac{\partial E}{\partial p_{k}}
$$

Hamiltonian and Estrangian have no explicit dependence on velocity \mathbf{v}

$$
\frac{\partial H}{\partial v_{k}} \equiv 0 \equiv \frac{\partial E}{\partial v_{k}}
$$

Lagrangian and Hamiltonian have no explicit dependence on speedinum \mathbf{V}

$$
\frac{\partial L}{\partial V_{k}} \equiv 0 \equiv \frac{\partial H}{\partial V_{k}}
$$

Such non-dependencies hold in spite of "under-the-table" matrix and partial-differential connections

$$
\nabla_{v} L=\frac{\partial L}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}} \frac{\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}}{2}
$$

$$
\nabla_{p} H=\mathbf{v}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\partial}{\partial \mathbf{p}} \frac{\mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}}{2}
$$

$$
=\mathbf{M}^{-1} \cdot \mathbf{p}=\mathbf{v}
$$

$$
\binom{\frac{\partial L}{\partial v_{1}}}{\frac{\partial L}{\partial v_{2}}}=\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{p_{1}}{p_{2}}
$$

Lagrange's $1^{\text {st }}$ equation(s)
$\frac{\partial L}{\partial v_{k}}=p_{k} \quad$ or: $\quad \frac{\partial L}{\partial \mathbf{v}}=\mathbf{p}$
(Forget Estrangian for now)
p. 60 of

Lecture 9

Unit 1
Fig. 12.2
p. 61 of

Lecture 9
(a) $\begin{aligned} & \text { Lagrangian plot } \\ & L(\mathbf{v})=\text { const. }=\mathbf{v} \bullet \mathbf{M} \bullet \mathbf{v} / 2\end{aligned}$

(b) $\begin{aligned} & \text { plot } \\ & H(\mathrm{p})=\text { cont. }=~\end{aligned} \mathbf{M}^{-1} \bullet / 2 \quad p_{2}=m_{2} v_{2}$

(c) Overlapping plots

Lagrangian tangent at velocity \mathbf{v} is normal to momentum \mathbf{p}
(d) Less mass

Unit 1
Fig. 12.2
p. 61 of

Lecture 9
(a) $\begin{aligned} & \text { Lagrangian plot } \\ & L(\mathbf{v})=\text { const. }=\mathbf{v} \cdot \mathbf{M} \bullet \mathbf{v} / 2\end{aligned}$
(b)
plot

(c) Overlapping plots

Lagrangian tangent at velocity \mathbf{v} $1{ }^{\text {st }}$ equation of Lagrange

Using differential chain-rules for coordinate transformations
\longrightarrow Polar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1 Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

Using differential chain-rules' for coordinate transformations

A pair of 2-variable functions $f(x, y)$ and $g(x, y)$ can define a coordinate system on (x, y)-space

$$
\begin{array}{lll}
d f(x, y)=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y & \begin{array}{c}
\text { for example: } \\
r^{2}(x, y)=x^{2}+y^{2} \text { and } \theta(x, y)=\operatorname{atan} 2(y, x)
\end{array} & d r(x, y)=\frac{\partial r}{\partial x} d x+\frac{\partial r}{\partial y} d y \\
d g(x, y)=\frac{\partial g}{\partial x} d x+\frac{\partial g}{\partial y} d y & \text { (Not in text. Recall Lecture 10 } p .57-73)^{\dagger} & d \theta(x, y)=\frac{\partial \theta}{\partial x} d x+\frac{\partial \theta}{\partial y} d y
\end{array}
$$

Using differential chain-rules ${ }^{\dagger}$ for coordinate transformations

A pair of 2-variable functions $f(x, y)$ and $g(x, y)$ can define a coordinate system on (x, y)-space

$$
\begin{array}{lll}
d f(x, y)=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y & \begin{array}{r}
r^{2}(x, y)=x^{2}+y^{2} \text { and } \theta(x, y)=\operatorname{atan} 2(y, x)
\end{array} & d r(x, y)=\frac{\partial r}{\partial x} d x+\frac{\partial r}{\partial y} d y \\
d g(x, y)=\frac{\partial g}{\partial x} d x+\frac{\partial g}{\partial y} d y & \text { (Not in text. Recall Lecture 10 } p .57-73)^{\dagger} & d \theta(x, y)=\frac{\partial \theta}{\partial x} d x+\frac{\partial \theta}{\partial y} d y
\end{array}
$$

Easy to invert differential chain relations (even if functions are not easily inverted)

$$
\begin{array}{ll}
d x=\frac{\partial x}{\partial f} d f+\frac{\partial y}{\partial g} d g & x=r \cos \theta \\
d y=\frac{\partial y}{\partial f} d f+\frac{\partial y}{\partial g} d g & y=r \sin \theta
\end{array}
$$

$$
d x=\frac{\partial x}{\partial r} d r+\frac{\partial x}{\partial \theta} d \theta
$$

$$
d y=\frac{\partial y}{\partial r} d r+\frac{\partial y}{\partial \theta} d \theta
$$

$$
\binom{d x}{d y}=\left(\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right)\binom{d r}{d \theta}=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)\binom{d r}{d \theta}
$$

Using differential chain-rules' for coordinate transformations

A pair of 2-variable functions $f(x, y)$ and $g(x, y)$ can define a coordinate system on (x, y)-space

$$
\left.\begin{array}{lll}
d f(x, y)=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y & \text { for example: } & r^{2}(x, y)=x^{2}+y^{2} \text { and } \theta(x, y)=\operatorname{atan} 2(y, x)
\end{array} d r(x, y)=\frac{\partial r}{\partial x} d x+\frac{\partial r}{\partial y} d y\right)
$$

Easy to invert differential chain relations (even if functions are not easily inverted)

$$
\begin{array}{ll}
d x=\frac{\partial x}{\partial f} d f+\frac{\partial y}{\partial g} d g & \begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array} \\
d y=\frac{\partial y}{\partial f} d f+\frac{\partial y}{\partial g} d g & d x=\frac{\partial x}{\partial r} d r+\frac{\partial x}{\partial \theta} d \theta \\
d y=\frac{\partial y}{\partial r} d r+\frac{\partial y}{\partial \theta} d \theta \\
& \binom{d x}{d y}=\left(\begin{array}{cc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right)\binom{d r}{d \theta}=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)\binom{d r}{d \theta}
\end{array}
$$

Notation for differential GCC (Generalized Curvilinear Coordinates $\left.\left\{q^{1}, q^{2}, q^{3}, \ldots\right\}\right)$

$$
d x^{j}=\frac{\partial x^{j}}{\partial q^{m}} d q^{m}\left(\equiv \sum_{m=1}^{N} \frac{\partial x^{j}}{\partial q^{m}} d q^{m}\left\{\begin{array}{l}
\text { Defining a shorthand } \\
\text { dummy-index } m \text {-sum }
\end{array}\right\}\right)
$$

What does " q " stand for? One guess: "Queer" And they do get pretty queer!

These x^{j} are plain old CC (Cartesian Coordinates $\left\{d x^{l}=d x, d x^{2}=d y, d x^{3}=d x, d x^{4}=d t\right\}$)

Using differential chain-rules' for coordinate transformations

A pair of 2-variable functions $f(x, y)$ and $g(x, y)$ can define a coordinate system on (x, y)-space

$$
\begin{array}{lll}
d f(x, y)=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y & r^{2}(x, y)=x^{2}+y^{2} \text { and } \theta(x, y)=\operatorname{atan} 2(y, x) & d r(x, y)=\frac{\partial r}{\partial x} d x+\frac{\partial r}{\partial y} d y \\
d g(x, y)=\frac{\partial g}{\partial x} d x+\frac{\partial g}{\partial y} d y & (\text { Not in text. Recall Lecture 10 p. 57-73) } & d \theta(x, y)=\frac{\partial \theta}{\partial x} d x+\frac{\partial \theta}{\partial y} d y
\end{array}
$$

Easy to invert differential chain relations (even if functions are not easily inverted)

$$
\begin{array}{ll}
d x=\frac{\partial x}{\partial f} d f+\frac{\partial y}{\partial g} d g & \begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array} \\
d y=\frac{\partial y}{\partial f} d f+\frac{\partial y}{\partial g} d g & d x=\frac{\partial x}{\partial r} d r+\frac{\partial x}{\partial \theta} d \theta \\
d y=\frac{\partial y}{\partial r} d r+\frac{\partial y}{\partial \theta} d \theta \\
& \binom{d x}{d y}=\left(\begin{array}{cc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right)\binom{d r}{d \theta}=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)\binom{d r}{d \theta}
\end{array}
$$

Notation for differential GCC (Generalized Curvilinear Coordinates $\left.\left\{q^{1}, q^{2}, q^{3}, \ldots\right\}\right)$

$$
\left.d x^{j}=\frac{\partial x^{j}}{\partial q^{m}} d q q^{m}\left(\equiv \sum_{m=1}^{N} \frac{\partial x^{j}}{\partial q^{m}} d q^{m} \quad \begin{array}{l}
\text { Defining a shorthand } \\
\text { dummy-index } m \text {-sum }
\end{array}\right\}\right) \quad \begin{aligned}
& \begin{array}{l}
\text { What does "q" stand for? } \\
\text { One gevess } \\
\text { And they } \\
\text { And geer pretty queer! }
\end{array}
\end{aligned}
$$

These x^{j} are plain old CC (Cartesian Coordinates $\left\{d x^{1}=d x, d x^{2}=d y, d x^{3}=d x, d x^{4}=d t\right\}$)

Using differential chain-rules for coordinate transformations

 Polar coordinate example of Generalized Curvilinear Coordinates (GCC)\longrightarrow Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1 Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

Getting the GCC ready for mechanics: Generalized velocity relation follows from GCC chain rule $\quad d x^{j}=\frac{\partial x^{j}}{\partial q^{m}} d q^{m}$
Same kind of linear relation exists between CC velocity $v^{j} \equiv \dot{x}^{j} \equiv \frac{d x^{j}}{d t}$ and GCC velocity $v^{m} \equiv \dot{q}^{m} \equiv \frac{d q^{m}}{d t}$

$$
\dot{x}^{j}=\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m}
$$

Getting the GCC ready for mechanics: Generalized velocity relation follows from GCC chain rule

$$
d x^{j}=\frac{\partial x^{j}}{\partial q^{m}} d q^{m}
$$

Same kind of linear relation exists between CC velocity $v^{j} \equiv \dot{x}^{j} \equiv \frac{d x^{j}}{d t}$ and GCC velocity $v^{m} \equiv \dot{q}^{m} \equiv \frac{d q^{m}}{d t}$
This is a key "lemma-1" for setting up mechanics:

$$
\dot{x}^{j}=\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m}
$$

$$
\frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}}=\frac{\partial x^{j}}{\partial q^{m}} \text { lemma-1 }
$$

Getting the GCC ready for mechanics:

Generalized velocity relation follows from GCC chain rule

Same kind of linear relation exists between CC velocity $v^{j} \equiv \dot{\dot{x}}^{j} \equiv \frac{d x^{j}}{d t}$ and GCC velocity $v^{m} \equiv \dot{q}^{m} \equiv \frac{d q^{m}}{d t}$

$$
\dot{x}^{j}=\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m} \quad \text { or: } \quad \left\lvert\, \frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}}={\frac{\partial x^{j}}{\partial q^{m}}}^{\text {lemma-l }}\right.
$$

This is a key "lemma-1" for setting up mechanics:

$$
d x^{j}=\frac{\partial x^{j}}{\partial q^{m}} d q^{m}
$$

Jacobian $J_{m^{j}}{ }^{j}$ matrix gives each CCC differential $d x^{j}$ or velocity \dot{x}^{j} in terms of GCC $d q^{m}$ or \dot{q}^{m}.

$$
J_{m}^{j} \equiv \frac{\partial x^{j}}{\partial q^{m}}=\frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}} \quad\left\{\begin{array}{l}
\text { Defining Jacobian } \\
\text { matrix component }
\end{array}\right\}
$$

[^0]
Getting the GCC ready for mechanics:

Generalized velocity relation follows from GCC chain rule $d x^{j}=\frac{\partial x^{j}}{\partial q^{m}} d q^{m}$
Same kind of linear relation exists between CC velocity $v^{j} \equiv \dot{x^{j}} \equiv \frac{d x^{j}}{d t}$ and GCC velocity $v^{m} \equiv \dot{q}^{m} \equiv \frac{d q^{m}}{d t}$

$$
\dot{x}^{j}=\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m} \quad \text { or: }\left|\frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}}={\frac{\partial x^{j}}{\partial q^{m}}}^{\text {lemma- }}\right|
$$

This is a key "lemma-1" for setting up mechanics:
\dot{x}^{j} in terms of GCC $d q^{m}$ or \dot{q}^{m}.

$$
J_{m}^{j} \equiv \frac{\partial x^{j}}{\partial q^{m}}=\frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}}\left\{\begin{array}{l}
\text { Defining Jacobian } \\
\text { matrix component }
\end{array}\right\} \quad \begin{aligned}
& \text { Recall polar coordinate } \\
& \text { transformation matrix: }
\end{aligned}\binom{\frac{\partial x}{\partial r} \frac{\partial x}{\partial \theta}}{\frac{\partial y}{\partial r} \frac{\partial y}{\partial \theta}}=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)
$$

Inverse (so-called) Kajobian K_{j}^{m} matrix is flipped partial derivatives of $J_{m}{ }^{j}$.

$$
K_{j}^{m} \equiv \frac{\partial q^{m}}{\partial x^{j}}=\frac{\partial \dot{q}^{m}}{\partial \dot{x}^{j}} \quad\left\{\begin{array}{l}
\text { Defining "Kajobian" } \\
\text { (inverse to Jacobian) }
\end{array}\right\}
$$

Polar coordinate inverse $\left(\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right)^{-1}=\left(\begin{array}{ll}\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}\end{array}\right)$ transformation matrix:

$$
=\frac{\left(\begin{array}{c}
r \cos \theta \\
-\sin \theta \\
-\sin \theta \\
\cos \theta
\end{array}\right)}{\operatorname{detet} J=r)}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta \\
-\frac{\sin \theta}{}-\frac{\cos \theta}{r}
\end{array}\right)
$$

Defining 2×2 matrix inverse:

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\frac{\left(\begin{array}{cc}
D & -B \\
-C & A
\end{array}\right)}{A D-B C}
$$

Getting the GCC ready for mechanics:

Generalized velocity relation follows from GCC chain rule $d x^{j}=\frac{\partial x^{j}}{\partial q^{m}} d q^{m}$
Same kind of linear relation exists between CC velocity $v^{j} \equiv \dot{x^{j}} \equiv \frac{d x^{j}}{d t}$ and GCC velocity $v^{m} \equiv \dot{q}^{m} \equiv \frac{d q^{m}}{d t}$

$$
\dot{x}^{j}=\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m} \quad \text { or: }\left|\frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}}={\frac{\partial x^{j}}{\partial q^{m}}}^{\text {lenma-1 }}\right|
$$

This is a key "lemma-1" for setting up mechanics:
-

Getting the GCC ready for mechanics:

Generalized velocity relation follows from GCC chain rule $d x^{j}=\frac{\partial x^{j}}{\partial q^{m}} d q^{m}$
Same kind of linear relation exists between CC velocity $v^{j} \equiv \dot{x}^{j} \equiv \frac{d x^{j}}{d t}$ and GCC velocity $v^{m} \equiv \dot{q}^{m} \equiv \frac{d q^{m}}{d t}$

$$
\dot{x}^{j}=\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m} \quad \text { or: } \frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}}=\frac{\partial x^{j}}{\partial q^{m}} \text { lemma-1 }
$$

This is a key "lemma-1" for setting up mechanics:

Recall polar coordinate
transformation matrix:
Recall polar coordinate
transformation matrix:
$=\left(\begin{array}{cc}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right)$

$$
J_{m}^{j} \equiv \frac{\partial x^{j}}{\partial q^{m}}=\frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}} \quad\left\{\begin{array}{l}
\text { Defining Jacobian } \\
\text { matrix component }
\end{array}\right\}
$$

Inverse (so-called) Kajobian K_{j}^{m} matrix is flipped partial derivatives of $J_{m^{j}}$.

$$
K_{j}^{m} \equiv \frac{\partial q^{m}}{\partial x^{j}}=\frac{\partial \dot{q}^{m}}{\partial \dot{x}^{j}} \quad\left\{\begin{array}{l}
\text { Defining "Kajobian" } \\
\text { (inverse to Jacobian) }
\end{array}\right\}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{array}\right) \\
& =\frac{\left(\begin{array}{cc}
r \cos \theta & r \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)}{(\operatorname{det} J=r)}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\frac{\sin \theta}{r} & \frac{\cos \theta}{r}
\end{array}\right)
\end{aligned}
$$

Product of matrix $J_{m}{ }^{j}$ and K_{j}^{m} is a unit matrix by definition of partial derivatives.

$$
\begin{aligned}
& K_{j}^{m} \cdot J_{n}^{j} \equiv \frac{\partial q^{m}}{\partial x^{j}} \cdot \frac{\partial x^{j}}{\partial q^{n}}=\frac{\partial q^{m}}{\partial q^{n}}=\delta_{n}^{m}= \begin{cases}1 & \text { if } m=n \\
0 & \text { if } m \neq n\end{cases} \\
& \left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\frac{\sin \theta}{r} & \frac{\cos \theta}{r}
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Using differential chain-rules for coordinate transformations Polar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1 Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

Getting the GCC ready for mechanics (2 $2^{\text {nd }}$ part)

Generalized acceleration relations are a little more complicated (It's curved coords, after all!)

First apply $\frac{d}{d t}$ to velocity \dot{x}^{j} and use product rule: $\frac{d}{d t}(u \cdot v)=\frac{d u}{d t} \cdot v+u \cdot \frac{d v}{d t}$

$$
\ddot{x}^{j} \equiv \frac{d}{d t} \dot{x}^{j}=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m}\right)=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \dot{q}^{m}+\frac{\partial x^{j}}{\partial q^{m}} \ddot{q}^{m}
$$

Getting the GCC ready for mechanics (2 $2^{\text {nd }}$ part)

Generalized acceleration relations are a little more complicated (It's curved coords, after all!)

First apply $\frac{d}{d t}$ to velocity \dot{x}^{j} and use product rule: $\frac{d}{d t}(u \cdot v)=\frac{d u}{d t} \cdot v+u \cdot \frac{d v}{d t}$

$$
\ddot{x}^{j} \equiv \frac{d}{d t} \dot{x}^{j}=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m}\right)=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \dot{q}^{m}+\frac{\partial x^{j}}{\partial q^{m}} \ddot{q}^{m}
$$

Apply derivative chain sum to Jacobian.

$$
\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right)=\frac{\partial}{\partial q^{n}}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \frac{d q^{n}}{d t}=\left(\frac{\partial^{2} x^{j}}{\partial q^{n} \partial q^{m}}\right) \frac{d q^{n}}{d t}
$$

Getting the GCC ready for mechanics (2nd part)

Generalized acceleration relations are a little more complicated (It's curved coords, after all!)

First apply $\frac{d}{d t}$ to velocity \dot{x}^{j} and use product rule: $\frac{d}{d t}(u \cdot v)=\frac{d u}{d t} \cdot v+u \cdot \frac{d v}{d t}$

$$
\ddot{x}^{j} \equiv \frac{d}{d t} \dot{x}^{j}=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m}\right)=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \dot{q}^{m}+\frac{\partial x^{j}}{\partial q^{m}} \ddot{q}^{m}
$$

(Not in text. Recall Lecture 10 p. 57-73) ${ }^{\dagger}$
Apply derivative chain sum to Jacobian. Partial derivatives are reversible. $\partial_{m} \partial_{n}=\partial_{n} \partial_{m}$

$$
\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right)=\frac{\partial}{\partial q^{n}}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \frac{d q^{n}}{d t}=\left(\frac{\partial^{2} x^{j}}{\partial q^{n} \partial q^{m}}\right) \frac{d q^{n}}{d t}=\left(\frac{\partial^{2} x^{j}}{\partial q^{m} \partial q^{n}}\right) \frac{d q^{n}}{d t}=\frac{\partial}{\partial q^{m}}\left(\frac{\partial x^{j}}{\partial q^{n}} \frac{d q^{n}}{d t}\right)
$$

Getting the GCC ready for mechanics (2 $2^{\text {nd }}$ part)

Generalized acceleration relations are a little more complicated (It's curved coords, after all!)

First apply $\frac{d}{d t}$ to velocity \dot{x}^{j} and use product rule: $\frac{d}{d t}(u \cdot v)=\frac{d u}{d t} \cdot v+u \cdot \frac{d v}{d t}$

$$
\ddot{x}^{j} \equiv \frac{d}{d t} \dot{x}^{j}=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m}\right)=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \dot{q}^{m}+\frac{\partial x^{j}}{\partial q^{m}} \ddot{q}^{m}
$$

(Not in text. Recall Lecture 10 p. 57-73) ${ }^{\dagger}$
Apply derivative chain sum to Jacobian. Partial derivatives are reversible. $\partial_{m} \partial_{n}=\partial_{n} \partial_{m}$

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right)=\frac{\partial}{\partial q^{n}}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \frac{d q^{n}}{d t} & =\left(\frac{\partial^{2} x^{j}}{\partial q^{n} \partial q^{m}}\right) \frac{d q^{n}}{d t}=\left(\frac{\partial^{2} x^{j}}{\partial q^{m} \partial q^{n}}\right) \frac{d q^{n}}{d t}
\end{aligned}=\frac{\partial}{\partial q^{m}}\left(\frac{\partial x^{j}}{\partial q^{n}} \frac{d q^{n}}{d t}\right) .
$$

Getting the GCC ready for mechanics (2 $2^{\text {nd }}$ part)

Generalized acceleration relations are a little more complicated (It's curved coords, after all!)

First apply $\frac{d}{d t}$ to velocity \dot{x}^{j} and use product rule: $\frac{d}{d t}(u \cdot v)=\frac{d u}{d t} \cdot v+u \cdot \frac{d v}{d t}$

$$
\ddot{x}^{j} \equiv \frac{d}{d t} \dot{x}^{j}=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m}\right)=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \dot{q}^{m}+\frac{\partial x^{j}}{\partial q^{m}} \ddot{q}^{m}
$$

(Not in text. Recall Lecture 10 p. 57-73) ${ }^{\dagger}$
Apply derivative chain sum to Jacobian. Partial derivatives are reversible. $\partial_{m} \partial_{n}=\partial_{n} \partial_{m}$

$$
\left.\begin{array}{rl}
\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right)=\frac{\partial}{\partial q^{n}}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \frac{d q^{n}}{d t} & =\left(\frac{\partial^{2} x^{j}}{\partial q^{n} \partial q^{m}}\right) \frac{d q^{n}}{d t}=\left(\frac{\partial^{2} x^{j}}{\partial q^{m} \partial q^{n}}\right) \frac{d q^{n}}{d t}
\end{array}=\frac{\partial}{\partial q^{m}}\left(\frac{\partial x^{j}}{\partial q^{n}} \frac{d q^{n}}{d t}\right)\right)
$$

This is the key "lemma-2" for setting up Lagrangian mechanics .

$$
\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right)=\frac{\partial \dot{x}^{j}}{\partial q^{m}}{ }_{\text {lemna }}
$$

Getting the GCC ready for mechanics (2 $2^{\text {nd }}$ part)

Generalized acceleration relations are a little more complicated (It's curved coords, after all!)

First apply $\frac{d}{d t}$ to velocity \dot{x}^{j} and use product rule: $\frac{d}{d t}(u \cdot v)=\frac{d u}{d t} \cdot v+u \cdot \frac{d v}{d t}$

$$
\ddot{x}^{j} \equiv \frac{d}{d t} \dot{x}^{j}=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}} \dot{q}^{m}\right)=\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \dot{q}^{m}+\frac{\partial x^{j}}{\partial q^{m}} \ddot{q}^{m}
$$

(Not in text. Recall Lecture 10 p. $57-73)^{\dagger}$
Apply derivative chain sum to Jacobian. Partial derivatives are reversible. $\partial_{m} \partial_{n}=\partial_{n} \partial_{m}$

$$
\left.\begin{array}{rl}
\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right)=\frac{\partial}{\partial q^{n}}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \frac{d q^{n}}{d t} & =\left(\frac{\partial^{2} x^{j}}{\partial q^{n} \partial q^{m}}\right) \frac{d q^{n}}{d t}=\left(\frac{\partial^{2} x^{j}}{\partial q^{m} \partial q^{n}}\right) \frac{d q^{n}}{d t}
\end{array}=\frac{\partial}{\partial q^{m}}\left(\frac{\partial x^{j}}{\partial q^{n}} \frac{d q^{n}}{d t}\right)\right)
$$

The "lemma-1" was in the GCC velocity analysis just before this one for acceleration.

$$
\frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}}=\frac{\partial x^{j}}{\partial q^{m}} \quad \underset{l}{\text { lemma }}
$$

This is the key "lemma-2" for setting up Lagrangian mechanics .

$$
\frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right)=\frac{\partial \dot{x}^{j}}{\partial q^{m}} \underset{2}{\text { lemma }}
$$

How to say Newton's " $F=m a$ " in Generalized Curvilinear Coords.

\longrightarrow Use Cartesian KE quadratic form $K E=T=1 / 2 \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ and $\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$ to get GCC force Lagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II

 Start with stuff we know...(sort of) Multidimensional CC version of kinetic energy $\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$$$
T=\frac{1}{2} M_{j k} v^{j_{v}{ }^{k}}=\frac{1}{2} M_{j k} \dot{x}^{j} \dot{x}^{k} \quad \text { where: } M_{j k} \text { are CC inertia constants }
$$

Multidimensional CC version of Newt-II ($\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$) using $M_{j k}$

$$
f_{j}=M_{j k} a^{k}=M_{j k} \ddot{x}^{k}
$$

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II

 Start with stuff we know...(sort of) Multidimensional CC version of kinetic energy $\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$Multidimensional CC version of Newt-II ($\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$) using $M_{j k}$
$f_{j}=M_{j k} a^{k}=M_{j k} \ddot{x}^{k}$
Multidimensional CC version of work-energy differential ($d W=\mathbf{F} \cdot d \mathbf{x}$). Insert GCC differentials $d q^{m}$

$$
d W=f_{j} d x^{j}=f_{j}\left(\frac{\partial x^{j}}{\partial q^{m}} d q^{m}\right)=M_{j k} \ddot{x}^{k}\left(\frac{\partial x^{j}}{\partial q^{m}} d q^{m}\right)
$$

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II

 Start with stuff we know...(sort of) Multidimensional CC version of kinetic energy $\frac{1}{2} \mathbf{V} \cdot \mathbf{M} \cdot \mathbf{V}$$$
T=\frac{1}{2} M_{j k} v^{j} v^{k}=\frac{1}{2} M_{j k} \dot{x}_{\dot{x}} \dot{x}^{k} \quad \text { where: } M_{j k} \text { are inertia constants that are symmetric: } M_{j k}=M_{k j}
$$

Multidimensional CC version of Newt-II ($\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$) using $M_{j k}$

$$
f_{j_{1}}=M_{j k} a^{k}=M_{j k} \ddot{x}^{k}
$$

Multidimensional CC version of work-energy differential ($d W=\mathbf{F} \cdot d \mathbf{x}$). Insert GCC differentials $d q^{m}$

$$
d W=f_{j} d x^{j}=f_{j}\left(\frac{\partial x^{j}}{\partial q^{m}} d q^{m}\right)=M_{j k} \ddot{x}^{k}\left(\frac{\partial x^{j}}{\partial q^{m}} d q^{m}\right)
$$

$d q^{m}$ are independent so $d q^{m}$-sum is true term-by-term. (Still holds if all $d q^{m}$ are zero but one.)

$$
d W=f_{j} d x^{j}=F_{m} d q^{m}=f_{j} \frac{\partial x^{j}}{\partial q^{m}} d q^{m}=M_{j k} \ddot{x}^{k} \frac{\partial x^{j}}{\partial q^{m}} d q^{m}
$$

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II

 Start with stuff we know...(sort of) Multidimensional CC version of kinetic energy $\frac{1}{2} \mathbf{V} \cdot \mathbf{M} \cdot \mathbf{V}$$$
T=\frac{1}{2} M_{j k} v^{j} v^{k}=\frac{1}{2} M_{j k} \dot{x}^{j} \dot{x}^{k} \quad \text { where: } M_{j k} \text { are inertia constants }
$$

Multidimensional CC version of Newt-II ($\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$) using $M_{j k}$

$$
f_{j}=M_{j k} a^{k}=M_{j k} \ddot{x}^{k}
$$

Multidimensional CC version of work-energy differential ($d W=\mathbf{F} \cdot d \mathbf{x}$). Insert GCC differentials $d q^{m}$

$$
d W=f_{j} d x^{j}=f_{j}\left(\frac{\partial x^{j}}{\partial q^{m}} d q^{m}\right)=M_{j k} \ddot{x}^{k}\left(\frac{\partial x^{j}}{\partial q^{m}} d q^{m}\right)
$$

(It's time to bring in the queer q^{m} !)
$d q^{m}$ are independent so $d q^{m}$-sum is true term-by-term. (Still holds if all $d q^{m}$ are zero but one.)

$$
d W=f_{j} d x^{j}=F_{m} d q^{m}=f_{j} \frac{\partial x^{j}}{\partial q^{m}} d q^{m}=M_{j k} \ddot{x}^{k} \frac{\partial x^{j}}{\partial q^{m}} d q^{m}
$$

Here generalized GCC force component F_{m} is defined:

$$
\text { where: } \quad F_{m}=f_{j} \frac{\partial x^{j}}{\partial q^{m}}=M_{j k} \ddot{x}^{k} \frac{\partial x^{j}}{\partial q^{m}}
$$

How to say Newton's " $F=m a$ " in Generalized Curvilinear Coords.

Use Cartesian $K E$ quadratic form $K E=T=1 / 2 \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ and $\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$ to get GCC force
\longrightarrow Lagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

Now Lagrange GCC trickery begins

Obvious stuff...(sort of, if you've looked at it for a century!)
Lagrange's clever end game: First set $A=M_{j k} \ddot{x}^{k}$ and $B=\frac{\partial x^{j}}{\partial q^{m}}$ with calc. formula: $\left[\ddot{A} B=\frac{d}{d t}(\dot{A} B)-\dot{A} \dot{B}\right]$

$$
F_{m}=f_{j} \frac{\partial x^{j}}{\partial q^{m}}=M_{j k}{ }_{\ddot{x}^{k}}^{\stackrel{\ddot{A}}{ } \partial^{\prime} x^{j}} \frac{d}{\partial q^{m}}=\frac{d}{d t}\left(M_{j k} \dot{x}^{k} \frac{(\dot{A} B)}{\partial q^{m}}\right)-M_{j k} \dot{x}^{\dot{x}^{k}} \frac{\dot{A} \dot{d}}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right)
$$

Now Lagrange GCC trickery begins

Obvious stuff...(sort of, if you've looked at it for a century!)
Lagrange's clever end game: First set $A=M_{j k} \ddot{x}^{k}$ and $B=\frac{\partial x^{j}}{\partial q^{m}}$ with calc. formula: $\left[\ddot{A} B=\frac{d}{d t}(\dot{A} B)-\dot{A} \dot{B}\right]$

Cartesian $M_{j k}$
must be constant
for this to work
(Bye, Bye relativistic mechanics or QM!)

Now Lagrange GCC trickery begins

Obvious stuff...(sort of, if you've looked at it for a century!)
Lagrange's clever end game: First set $A=M_{j k} \ddot{x}^{k}$ and $B=\frac{\partial x^{j}}{\partial q^{m}}$ with calc. formula: $\left[\ddot{A} B=\frac{d}{d t}(\dot{A} B)-\dot{A} \dot{B}\right]$

Cartesian $M_{j k}$
 must be constant
for this to work
(Bye, Bye relativistic mechanics or QM!)

$$
F_{m}=\frac{d}{d t}\left(M_{j k} \dot{x}^{k} \frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}}\right)-M_{j k} \dot{x}^{k}\left(\frac{\partial \dot{x}^{j}}{\partial q^{m}}\right)
$$

Now Lagrange GCC trickery begins

Obvious stuff...(sort of, if you've looked at it for a century!)
Lagrange's clever end game: First set $A=M_{j k} \ddot{x}^{k}$ and $B=\frac{\partial x^{j}}{\partial q^{m}}$ with calc. formula: $\left[\ddot{A} B=\frac{d}{d t}(\dot{A} B)-\dot{A} \dot{B}\right]$

Cartesian $M_{j k}$ must be constant for this to work

$$
\begin{array}{r}
F_{m}=f_{j} \frac{\partial x^{j}}{\partial q^{m}}=M_{j k} \swarrow_{\dot{x}}^{k} \frac{\ddot{A} B}{\partial q^{m}}=\frac{d}{d t}\left(M_{j k} \frac{(\dot{A} B)}{\dot{x}^{k}} \frac{\partial x^{\dot{j}}}{\partial q^{m}}\right)-M_{j k} \dot{x}^{\dot{k}} \frac{\dot{d}}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \\
\text { Then convert } \partial x^{j} \text { to } \partial \dot{x}^{j} \text { by Lemma } \downarrow_{i} \text { and Lemma } 2 \text { on 2 }{ }^{\text {nd }} \text { term. }
\end{array}
$$

(Bye, Bye relativistic mechanics or QM!)

$$
F_{m}=\frac{d}{d t}\left(M_{j k} \dot{x}^{k} \frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}}\right)-M_{j k} \dot{x}^{k}\left(\frac{\partial \dot{x}^{j}}{\partial q^{m}}\right)
$$

Simplify using: $\left[M_{i j} v^{i} \frac{\partial v^{j}}{\partial q}=M_{i j} \frac{\partial}{\partial q} \frac{v^{i} v^{j}}{2}\right]$

$$
F_{m}=\frac{d}{d t} \frac{\partial}{\partial \dot{q}^{m}}\left(\frac{M_{j k^{k}} \dot{k}^{j} \dot{x}^{j}}{2}\right)-\frac{\partial}{\partial q^{m}}\left(\frac{M_{j k} \dot{x}^{k} \dot{x}^{j}}{2}\right)
$$

Now Lagrange GCC trickery begins
Obvious stuff...(sort of, if you've looked at it for a century!)
Lagrange's clever end game: First set $A=M_{j k} \ddot{x}^{k}$ and $B=\frac{\partial x^{j}}{\partial q^{m}}$ with calc. formula: $\left[\ddot{A} B=\frac{d}{d t}(\dot{A} B)-\dot{A} \dot{B}\right]$

$$
\begin{array}{r}
F_{m}=f_{j} \frac{\partial x^{j}}{\partial q^{m}}=M_{j k} \ddot{x}^{k} \frac{\ddot{A} B}{\partial q^{m}}=\frac{d}{d t}\left(M_{j k} \frac{\dot{x}}{k} \frac{(\dot{A} B)}{\partial q^{m}}\right)-M_{j k} \dot{x}^{\prime k} \frac{d}{d t}\left(\frac{\partial x^{j}}{\partial q^{m}}\right) \\
\text { Then convert } \partial x^{j} \text { to } \partial \dot{x}^{j} \text { by Lemmal1 and Lemmal } 2 \text { on } 2^{\text {nd }} \text { term. } \\
F_{m}=\frac{d}{d t}\left(M_{j k} \dot{x}^{k} \frac{\partial \dot{x}^{j}}{\partial \dot{q}^{m}}\right)-M_{j k} \dot{x}^{k}\left(\frac{\partial \dot{x}^{j}}{\partial q^{m}}\right)
\end{array}
$$

Simplify using: $\left[M_{i j} v^{i} \frac{\partial v^{j}}{\partial q}=M_{i j} \frac{\partial}{\partial q} \frac{v^{i} v^{j}}{2}\right]$

$$
F_{m}=\frac{d}{d t} \frac{\partial}{\partial \dot{q}^{m}}\left(\frac{M_{j k} \dot{x}^{k} \dot{x}^{j}}{2}\right)-\frac{\partial}{\partial q^{m}}\left(\frac{\left.M_{j k^{x^{k}} \dot{x}^{j}}^{2}\right) .}{2}\right)
$$

The result is Lagrange's GCC force equation in terms of kinetic energy $\quad T=\frac{1}{2} M_{j k} \dot{x}^{j} \dot{x}^{k}$

$$
F_{m}=\frac{d}{d t} \frac{\partial T}{\partial \dot{q}^{m}}-\frac{\partial T}{\partial q^{m}} \quad \text { or: } \quad \mathbf{F}=\frac{d}{d t} \frac{\partial T}{\partial \mathbf{v}}-\frac{\partial T}{\partial \mathbf{r}}
$$

How to say Newton's " $F=m a$ " in Generalized Curvilinear Coords.

Use Cartesian KE quadratic form $K E=T=1 / 2 \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$ and $\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$ to get GCC force Lagrange GCC trickery gives Lagrange force equations
\longrightarrow Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

But, Lagrange GCC trickery is not yet done...

(Still another trick-up-the-sleeve!)
If the force is conservative it's a gradient $\mathbf{F}=-\nabla U$
In GCC: $\quad F_{m}=-\frac{\partial U}{\partial q^{m}}$

$$
F_{m}=-\frac{\partial U}{\partial q^{m}}=\frac{d}{d t} \frac{\partial T}{\partial \dot{q}^{m}}-\frac{\partial T}{\partial q^{m}}
$$

But, Lagrange GCC trickery is not yet done...
(Still another trick-up-the-sleeve!)
If the force is conservative it's a gradient $\mathbf{F}=-\nabla U$
In GCC: $\quad F_{m}=-\frac{\partial U}{\partial q^{m}}$

$$
F_{m}=-\frac{\partial U}{\partial q^{m}}=\frac{d}{d t} \frac{\partial T}{\partial \dot{q}^{m}}-\frac{\partial T}{\partial q^{m}}
$$

Becomes Lagrange's GCC potential equation with a new definition for the Lagrangian: $L=T-U$.

$$
\begin{array}{lc}
0=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{m}}-\frac{\partial L}{\partial q^{m}} & L\left(\dot{q}^{m}, q\right. \\
\text { This trick requires: } \frac{\partial U}{\partial \dot{q}^{m}} \equiv 0 & \begin{array}{c}
U(r) \text { has } \\
\text { velocity } \\
\text { dependence! }
\end{array}
\end{array}
$$

$$
L\left(\dot{q}^{m}, q^{m}\right)=T\left(\dot{q}^{m}, q^{m}\right)-U\left(q^{m}\right)
$$

But, Lagrange GCC trickery is not yet done... (Still another trick-up-the-sleeve!)
If the force is conservative it's a gradient $\mathbf{F}=-\nabla U$
In GCC: $\quad F_{m}=-\frac{\partial U}{\partial q^{m}}$

$$
F_{m}=-\frac{\partial U}{\partial q^{m}}=\frac{d}{d t} \frac{\partial T}{\partial \dot{q}^{m}}-\frac{\partial T}{\partial q^{m}}
$$

Becomes Lagrange's GCC potential equation with a new definition for the Lagrangian: $L=T-U$.

$$
\begin{array}{lc}
0=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{m}}-\frac{\partial L}{\partial q^{m}} & L\left(\dot{q}^{m}, q\right. \\
\text { This trick requires: } \frac{\partial U}{\partial \dot{q}^{m}} \equiv 0 & \begin{array}{c}
U(r) \text { has } \\
\text { NO explicit } \\
\text { velocity }
\end{array} \\
\text { dependence! }
\end{array}
$$

$$
L\left(\dot{q}^{m}, q^{m}\right)=T\left(\dot{q}^{m}, q^{m}\right)-U\left(q^{m}\right)
$$

Lagrange's $1^{s t}$ GCC equation (Defining GCC momentum) $p_{m}=\frac{\partial L}{\partial \dot{q}^{m}}$	$\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{m}}=\frac{\partial L}{\partial q^{m}}$ Recall: $\mathbf{p}=\frac{\partial}{\partial v} L$	Lagrange's $2^{\text {nd }} G C C$ equation (Change of GCC momentum) $\frac{d p_{m}}{d t} \equiv \dot{p}_{m}=\frac{\partial L}{\partial q^{m}}$

GCC Cells, base vectors, and metric tensors

\longrightarrow Polar coordinate examples: Covariant \mathbf{E}_{m} vs. Contravariant \mathbf{E}^{m} Covariant $g_{m n}$ vs. Invariant $\boldsymbol{\delta}_{m}{ }^{n}$ vs. Contravariant $g^{m n}$

A dual set of quasi-unit vectors show up in Jacobian J and Kajobian K.

$$
\left.\begin{array}{rl}
\langle J\rangle= & \left(\begin{array}{ll}
\frac{\partial x^{1}}{\partial q^{1}} & \frac{\partial x^{1}}{\partial q^{2}} \\
\frac{\partial x^{2}}{\partial q^{1}} & \frac{\partial x^{2}}{\partial q^{2}}
\end{array}\right)= \\
\uparrow \mathbf{E}_{1} \uparrow \mathbf{E}_{2} & \uparrow \mathbf{E}_{r} \\
\frac{\partial x}{\partial r}=\cos \phi & \frac{\partial x}{\partial \phi}=-r \sin \phi \\
\frac{\partial y}{\partial r}=\sin \phi & \frac{\partial y}{\partial \phi}=r \cos \phi
\end{array}\right)
$$

Derived from polar definition: $x=r \cos \phi$ and $y=r \sin \phi$
$\langle K\rangle=\left\langle J^{-1}\right\rangle=\left(\begin{array}{cc}\frac{\partial r}{\partial x}=\cos \phi & \frac{\partial r}{\partial y}=\sin \phi \\ \frac{\partial \phi}{\partial x}=\frac{-\sin \phi}{r} & \frac{\partial \phi}{\partial y}=\frac{\cos \phi}{r}\end{array}\right) \leftarrow \mathbb{E}^{r}=\mathbf{E}^{1}=\mathbf{E}^{2}$
Inverse polar definition:
$r^{2}=x^{2}+y^{2}$ and $\phi=\operatorname{atan} 2(y, x)$
(a) Polar coordinate bases

Unit 1
Fig. 12.10

A dual set of quasi-unit vectors show up in Jacobian J and Kajobian K. J-Columns are covariant vectors $\left\{\mathbf{E}_{1}=\mathbf{E}_{r} \mathbf{E}_{2}=\mathbf{E}_{\phi}\right\} \quad$ K-Rows are contravariant vectors $\left\{\mathbf{E}^{1}=\mathbf{E}^{r} \mathbf{E}^{2}=\mathbf{E}^{\phi}\right\}$

$$
\left.\begin{array}{rl}
\langle J\rangle= & \left(\begin{array}{ll}
\frac{\partial x^{1}}{\partial q^{1}} & \frac{\partial x^{1}}{\partial q^{2}} \\
\frac{\partial x^{2}}{\partial q^{1}} & \frac{\partial x^{2}}{\partial q^{2}}
\end{array}\right)= \\
\uparrow \mathbf{E}_{1} \uparrow \mathbf{E}_{2} & \uparrow \mathbf{E}_{r}
\end{array}\right\rangle\left(\begin{array}{ll}
\frac{\partial x}{\partial r}=\cos \phi & \frac{\partial x}{\partial \phi}=-r \sin \phi \\
\frac{\partial y}{\partial r}=\sin \phi & \frac{\partial y}{\partial \phi}=r \cos \phi
\end{array}\right)
$$

Derived from polar definition: $x=r \cos \phi$ and $y=r \sin \phi$
$\langle K\rangle=\left\langle J^{-1}\right\rangle=\left(\begin{array}{cc}\frac{\partial r}{\partial x}=\cos \phi & \frac{\partial r}{\partial y}=\sin \phi \\ \frac{\partial \phi}{\partial x}=\frac{-\sin \phi}{r} & \frac{\partial \phi}{\partial y}=\frac{\cos \phi}{r}\end{array}\right) \leftarrow \mathbf{E}^{r}=\mathbf{E}^{1}=\mathbf{E}^{2}$
Inverse polar definition:
$r^{2}=x^{2}+y^{2}$ and $\phi=\operatorname{atan} 2(y, x)$
(a) Polar coordinate bases

(b) Covariant bases $\left\{\mathbf{E}_{1} \mathbf{E}_{2}\right\}$

Unit 1
Fig. 12.10

Comparison: Covariant $\mathbf{E}_{m}=\frac{\partial \mathbf{r}}{\partial q^{m}} \quad$ vs. Contravariant $\mathbf{E}^{m}=\frac{\partial q^{m}}{\partial \mathbf{r}}=\nabla q^{m}$

geometric unit

Covariant bases $\left\{\mathbf{E}_{1} \mathbf{E}_{2}\right\}$ match,cell walls

Comparison: Covariant $\mathbf{E}_{m}=\frac{\partial \mathbf{r}}{\partial q^{m}} \quad$ vs. Contravariant $\mathbf{E}^{m}=\frac{\partial q^{m}}{\partial \mathbf{r}}=\nabla q^{m}$

geometric unit

Covariant bases $\left\{\mathbf{E}_{1} \mathbf{E}_{2}\right\}$ match cell walls

Comparison: Covariant $\mathbf{E}_{m}=\frac{\partial \mathbf{r}}{\partial q^{m}} \quad$ vs. \quad Contravariant $\mathrm{E}^{m}=\frac{\partial q^{m}}{\partial \mathbf{r}}=\nabla q^{m}$
geometric unit
Covariant bases $\left\{\mathbf{E}_{1} \mathbf{E}_{2}\right\}$ match cell walls

is based on chain rule: $d \mathbf{r}=\frac{\partial \mathbf{r}}{\partial q^{1}} d q^{1}+\frac{\partial \mathbf{r}}{\partial q^{2}} d q^{2}=\mathbf{E}_{1} d q^{1}+\mathbf{E}_{2} d q^{2}$
\mathbf{E}_{1} follows tangent to $q^{2}=$ const. ... since only q^{1} varies in $\frac{\partial \mathbf{r}}{\partial q^{1}}$ while q^{2}, q^{3}, \ldots remain constant
\mathbf{E}_{m} are convenient bases for extensive quantities like distance and velocity.

$$
\mathbf{V}=V^{1} \mathbf{E}_{1}+V^{2} \mathbf{E}_{2}=V^{1} \frac{\partial \mathbf{r}}{\partial q^{1}}+V^{2} \frac{\partial \mathbf{r}}{\partial q^{2}}
$$

Comparison: Covariant $\mathbf{E}_{m}=\frac{\partial \mathbf{r}}{\partial q^{m}} \quad$ vs. Contravariant $\mathbf{E}^{m}=\frac{\partial q^{m}}{\partial \mathbf{r}}=\nabla q^{m}$

geometric unit

Covariant bases $\left\{\mathbf{E}_{1} \mathbf{E}_{2}\right\}$ match cell walls

\mathbf{E}_{m} are convenient bases for extensive quantities like distance and velocity.

$$
\mathbf{V}=V^{1} \mathbf{E}_{1}+V^{2} \mathbf{E}_{2}=V^{1} \frac{\partial \mathbf{r}}{\partial q^{1}}+V^{2} \frac{\partial \mathbf{r}}{\partial q^{2}}
$$

Contravariant $\left\{\mathbf{E}^{1} \mathbf{E}^{2}\right\}$ match reciprocal cells
(Normal)

$\left.\begin{array}{l}\mathbf{E}^{1} \text { is normal to } q^{1}=\text { const. since } \\ \text { gradient of } q^{1} \text { is vector sum } \nabla q^{1}=\left(\begin{array}{c}\frac{\partial q^{1}}{\partial x} \\ \text { of all its partial derivatives }\end{array}\right. \\ \frac{\partial q^{1}}{\partial y}\end{array}\right)$

Comparison: Covariant $\mathbf{E}_{m}=\frac{\partial \mathbf{r}}{\partial q^{m}} \quad$ vs. Contravariant $\mathbf{E}^{m}=\frac{\partial q^{m}}{\partial \mathbf{r}}=\nabla q^{m}$

> geometric unit

Covariant bases $\left\{\mathbf{E}_{1} \mathbf{E}_{2}\right\}$ match cell walls

\mathbf{E}_{m} are convenient bases for extensive quantities like distance and velocity.

$$
\mathbf{V}=V^{1} \mathbf{E}_{1}+V^{2} \mathbf{E}_{2}=V^{1} \frac{\partial \mathbf{r}}{\partial q^{1}}+V^{2} \frac{\partial \mathbf{r}}{\partial q^{2}}
$$

Contravariant $\left\{\mathbf{E}^{1} \mathbf{E}^{2}\right\}$ match reciprocal cells

(Normal)

$$
\frac{\partial q^{2}}{\partial \mathbf{r}}=\nabla q^{2}=\mathbf{E}^{2}
$$

\mathbf{E}^{1} is normal to $q^{1}=$ const. since
gradient of q^{1} is vector sum ∇q^{1}
of all its partial derivatives

\mathbf{E}^{m} are convenient bases for intensive quantities like force and momentum.

$$
\mathbf{F}=F_{1} \mathbf{E}^{1}+F_{2} \mathbf{E}^{2}=F_{1} \frac{\partial q^{1}}{\partial \mathbf{r}}+F_{2} \frac{\partial q^{2}}{\partial \mathbf{r}}=F_{1} \nabla q^{1}+F_{2} \nabla q^{2}
$$

Comparison: Covariant $\mathbf{E}_{n}=\frac{\partial \mathrm{r}}{\partial q^{\prime \prime}}$ vs. Contravariant $\mathrm{E}^{\prime \prime}=\frac{\partial q^{\prime \prime}}{\partial \mathrm{r}}=\nabla q^{\prime \prime}$

geometric unit

Covariant bases $\left\{\mathbf{E}_{1} \mathbf{E}_{2}\right\}$ match cell walls

\mathbf{E}_{m} are convenient bases for extensive quantities like distance and velocity.

$$
\mathbf{V}=V^{1} \mathbf{E}_{1}+V^{2} \mathbf{E}_{2}=V^{1} \frac{\partial \mathbf{r}}{\partial q^{1}}+V^{2} \frac{\partial \mathbf{r}}{\partial q^{2}}
$$

Contravariant $\left\{\mathbf{E}^{1} \mathbf{E}^{2}\right\}$ match reciprocal cells
(Normal)
$\frac{\partial q^{2}}{\partial \mathbf{r}}=\nabla q^{2}=\mathbf{E}^{2}$ $\left.\begin{array}{l}\mathbf{E}^{1} \text { is normal to } q^{1}=\text { const. since } \\ \text { gradient of } q^{1} \text { is vector sum } \nabla q^{1}=\binom{\frac{\partial q^{1}}{\partial x}}{\text { of all its partial derivatives }} \\ \frac{\partial q^{1}}{\partial y}\end{array}\right)$
\mathbf{E}^{m} are convenient bases for intensive quantities like force and momentum.

$$
\mathbf{F}=F_{1} \mathbf{E}^{1}+F_{2} \mathbf{E}^{2}=F_{1} \frac{\partial q^{1}}{\partial \mathbf{r}}+F_{2} \frac{\partial q^{2}}{\partial \mathbf{r}}=F_{1} \nabla q^{1}+F_{2} \nabla q^{2}
$$

GCC Cells, base vectors, and metric tensors

 Polar coordinate examples: Covariant \mathbf{E}_{m} vs. Contravariant \mathbf{E}^{m} \longrightarrow Covariant $g_{m n}$ vs. ́ㅡvariant $\boldsymbol{\delta}_{m}{ }^{n}$ vs. Contravariant gmnCovariant $g_{m n} \quad$ vs. $\quad \underline{\operatorname{In}}$ variant $\delta_{m}{ }^{n} \quad$ vs. Contravariant $g^{m n}$
$\mathbf{E}_{m} \cdot \mathbf{E}_{n}=\frac{\partial \mathbf{r}}{\partial q^{m}} \cdot \frac{\partial \mathbf{r}}{\partial q^{n}} \equiv g_{m n}$
Covariant
metric tensor
$g_{m n}$
$\mathbf{E}_{m} \cdot \mathbf{E}^{n}=\frac{\partial \mathbf{r}}{\partial q^{m}} \cdot \frac{\partial q^{n}}{\partial \mathbf{r}}=\delta_{m}^{n}$
Invariant
Kroneker unit tensor
$\delta_{m}^{n} \equiv \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}$
$\mathbf{E}^{m} \cdot \mathbf{E}^{n}=\frac{\partial q^{m}}{\partial \mathbf{r}} \cdot \frac{\partial q^{n}}{\partial \mathbf{r}} \equiv g^{m n}$
Contravariant
metric tensor
$g^{m n}$

Covariant $g_{m n} \quad$ vs. $\underline{\text { Invariant }} \delta_{m}{ }^{n} \quad$ vs. Contravariant $g^{m n}$

$$
\mathbf{E}_{m} \cdot \mathbf{E}_{n}=\frac{\partial \mathbf{r}}{\partial q^{m}} \cdot \frac{\partial \mathbf{r}}{\partial q^{n}} \equiv g_{m n}
$$

Covariant
metric tensor
$g_{m n}$

$$
\mathbf{E}_{m} \cdot \mathbf{E}^{n}=\frac{\partial \mathbf{r}}{\partial q^{m}} \cdot \frac{\partial q^{n}}{\partial \mathbf{r}}=\boldsymbol{\delta}_{m}^{n}
$$

Invariant
Kroneker unit tensor

$$
\delta_{m}^{n} \equiv \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

$\mathbf{E}^{m} \cdot \mathbf{E}^{n}=\frac{\partial q^{m}}{\partial \mathbf{r}} \cdot \frac{\partial q^{n}}{\partial \mathbf{r}} \equiv g^{m n}$
Contravariant
metric tensor
$g^{m n}$

Polar coordinate examples (again):

$$
\begin{aligned}
&\langle J\rangle=\left(\begin{array}{ll}
\frac{\partial x^{1}}{\partial q^{1}} & \frac{\partial x^{1}}{\partial q^{2}} \\
\frac{\partial x^{2}}{\partial q^{1}} & \frac{\partial x^{2}}{\partial q^{2}}
\end{array}\right)=\left(\begin{array}{ll}
\frac{\partial x}{\partial r}=\cos \phi & \frac{\partial x}{\partial \phi}=-r \sin \phi \\
\frac{\partial y}{\partial r}=\sin \phi & \frac{\partial y}{\partial \phi}=r \cos \phi
\end{array}\right) \\
& \uparrow \mathbf{E}_{1} \uparrow \mathbf{E}_{2} \uparrow \mathbf{E}_{r} \\
& \uparrow \mathbf{E}_{\phi}
\end{aligned}
$$

$$
\langle K\rangle=\left\langle J^{-1}\right\rangle=\left(\begin{array}{cc}
\frac{\partial r}{\partial x}=\cos \phi & \frac{\partial r}{\partial y}=\sin \phi \\
\frac{\partial \phi}{\partial x}=\frac{-\sin \phi}{r} & \frac{\partial \phi}{\partial y}=\frac{\cos \phi}{r}
\end{array}\right) \leftarrow \mathbb{E}^{r}=\mathbb{E}^{1}=\mathbb{E}^{2}
$$

Covariant $g_{m n} \quad$ vs. $\underline{\text { Invariant }} \delta_{m}{ }^{n} \quad$ vs. Contravariant $g^{m n}$

$$
\mathbf{E}_{m} \cdot \mathbf{E}_{n}=\frac{\partial \mathbf{r}}{\partial q^{m}} \cdot \frac{\partial \mathbf{r}}{\partial q^{n}} \equiv g_{m n}
$$

Covariant
metric tensor
$g_{m n}$
$\mathbf{E}_{m} \cdot \mathbf{E}^{n}=\frac{\partial \mathbf{r}}{\partial q^{m}} \cdot \frac{\partial q^{n}}{\partial \mathbf{r}}=\delta_{m}^{n}$
Invariant
Kroneker unit tensor

$$
\delta_{m}^{n} \equiv \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

$\mathbf{E}^{m} \cdot \mathbf{E}^{n}=\frac{\partial q^{m}}{\partial \mathbf{r}} \cdot \frac{\partial q^{n}}{\partial \mathbf{r}} \equiv g^{m n}$
Contravariant
metric tensor
$g^{m n}$

Polar coordinate examples (again):

$$
\begin{aligned}
&\langle J\rangle=\left(\begin{array}{ll}
\frac{\partial x^{1}}{\partial q^{1}} & \frac{\partial x^{1}}{\partial q^{2}} \\
\frac{\partial x^{2}}{\partial q^{1}} & \frac{\partial x^{2}}{\partial q^{2}}
\end{array}\right)=\left(\begin{array}{ll}
\frac{\partial x}{\partial r}=\cos \phi & \frac{\partial x}{\partial \phi}=-r \sin \phi \\
\frac{\partial y}{\partial r}=\sin \phi & \frac{\partial y}{\partial \phi}=r \cos \phi
\end{array}\right) \\
& \uparrow \mathbf{E}_{1} \uparrow \mathbf{E}_{2} \uparrow \mathbf{E}_{r} \\
& \uparrow \mathbf{E}_{\phi}
\end{aligned}
$$

$$
\langle K\rangle=\left\langle J^{-1}\right\rangle=\left(\begin{array}{cc}
\frac{\partial r}{\partial x}=\cos \phi & \frac{\partial r}{\partial y}=\sin \phi \\
\frac{\partial \phi}{\partial x}=\frac{-\sin \phi}{r} & \frac{\partial \phi}{\partial y}=\frac{\cos \phi}{r}
\end{array}\right) \leftarrow \mathbb{E}^{r}=\mathbb{E}^{1}=\mathbb{E}^{2}
$$

Covariant $g_{m n}$
Invariant δ_{m}^{n}
Contravariant $g^{m n}$

$$
\begin{aligned}
\left(\begin{array}{ll}
g^{\prime r} & g^{\prime \phi} \\
g^{\phi r} & g^{\phi \phi}
\end{array}\right) & =\left(\begin{array}{ll}
\mathbf{E}^{r} \cdot \mathbf{E}^{r} & \mathbf{E}^{r} \cdot \mathbf{E}^{\phi} \\
\mathbf{E}^{\phi} \cdot \mathbf{E}^{r} & \mathbf{E}^{\phi} \cdot \mathbf{E}^{\phi}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / r^{2}
\end{array}\right)
\end{aligned}
$$

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity \dot{q}^{m}
\longrightarrow GCC Lagrangian definition GCC "canonical" momentum p_{m} definition
GCC "canonical" force F_{m} definition
Coriolis "fictitious" forces (... and weather effects)

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity
Lagrangian $L=K E-U$ is supposed to be explicit function of velocity.
$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity
Lagrangian KE-U is supposed to be explicit function of velocity.
$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \bullet \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$
Use polar coordinate Covariant $\boldsymbol{g}_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{r} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian $K E-U$ is supposed to be explicit function of velocity.
$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$
Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\mathbf{E}} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$

This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Copdinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity \dot{q}^{m}

 GCC Lagrangian definition\longrightarrow GCC "canonical" momentum p_{m} definition
GCC "canonical" force F_{m} definition
Coriolis "fictitious" forces (... and weather effects)

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian $K E-U$ is supposed to be explicit function of velocity.
$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$
Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{r} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$

This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Copdinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

(From preceding page)

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian $K E-U$ is supposed to be explicit function of velocity.
$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$
Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\bullet} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$

This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :

$$
p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{r r} \dot{r}=M \dot{r} \quad \begin{aligned}
& \text { Nothing too surprising; } \\
& \text { radial momentum } p_{p} \text { has the } \\
& \text { usual linear } M \cdot v \text { form }
\end{aligned}
$$

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian $K E-U$ is supposed to be explicit function of velocity.
$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$
Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\bullet} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$
This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :
$p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{r r} \dot{r}=M \dot{r}$

Nothing too surprising;
radial momentum p_{r} has the usual linear $M \cdot v$ form

$$
p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=M g_{\phi \phi \phi} \dot{\phi}=M r^{2} \dot{\phi}
$$

Wow! $g_{\phi \phi}$ gives moment-of-inertia factor $M r^{2}$ automatically for the angular momentum $p_{\phi}=M r^{2} \omega$.

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity \dot{q}^{m}

GCC Lagrangian definition GCC "canonical" momentum p_{m} definition
\longrightarrow GCC "canonical" force F_{m} definition
Coriolis "fictitious" forces (... and weather effects)

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian KE-U is supposed to be explicit function of velocity.
$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \bullet \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$
Use polar coordinate Covariant gmn metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{lll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\bullet} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$
This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :

$$
p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{t r} \dot{r}=M \dot{r}
$$

Nothing too surprising;
radial momentum p_{r} has the usual linear $M \cdot v$ form

$$
p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=M g_{\phi \phi} \dot{\phi}=M r^{2} \dot{\phi}
$$

Wow! $g_{\phi \phi}$ gives moment-of-inertia factor $M r^{2}$ automatically for the angular momentum $p_{\phi}=M r^{2} \omega$.
(From preceding page)

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian KE-U is supposed to be explicit function of velocity.
$L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \bullet \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})$
Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\bullet} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$
This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Cogrdinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :

$$
p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{r r} \dot{r}=M \dot{r} \quad \begin{aligned}
& \text { Nothing too surprising; } \\
& \text { radial momentum } p_{r} \text { has the } \\
& \text { usual linear } M \cdot v \text { form }
\end{aligned} \quad p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=M g_{\phi \phi} \dot{\phi}=M r^{2} \dot{\phi}
$$

Wow! $g_{\phi \phi}$ gives moment-of-inertia factor $M r^{2}$ automatically for the angular momentum $p_{\phi}=M r^{2} \omega$.
$2^{\text {nd }} L$-equation involves total time derivative \dot{p}_{m} for each momentum p_{m} :

$$
\dot{p}_{r}=\frac{\partial L}{\partial r}=\frac{M}{2} \frac{\partial g_{\phi \phi}}{\partial r} \dot{\phi}^{2}-\frac{\partial U}{\partial r}=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \quad \begin{aligned}
& \text { Centrifugal } \\
& \text { force Mr } \omega^{2}
\end{aligned} \quad \dot{p}_{\phi}=\frac{\partial L}{\partial \phi}=0-\frac{\partial U}{\partial \phi} \quad \begin{aligned}
& \text { Angular momentum } p_{\phi} \text { is conserved if } \\
& \text { potential } U \text { has no explicit } \phi-\text { dependence }
\end{aligned}
$$

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian KE-U is supposed to be explicit function of velocity.

$$
L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})
$$

Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{lll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\mathbf{E}} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$
This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :

$$
p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{r r} \dot{r}=M \dot{r} \quad \begin{aligned}
& \text { Nothing too surprising; } \\
& \text { radial momentum pr thas the } \\
& \text { usual linear } M \cdot v \text { form }
\end{aligned} \quad p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=M g_{\phi \phi \phi} \dot{\phi}=M r^{2} \dot{\phi}
$$

Wow! $g_{\phi \phi}$ gives moment-of-inertia factor $M r^{2}$ automatically for the angular momentum $p_{\phi}=M r^{2} \omega$.
$2^{\text {nd }} L$-equation involves total time derivative \dot{p}_{m} for each momentum p_{m} :

$$
\dot{p}_{r}=\frac{\partial L}{\partial r}=\frac{M}{2} \frac{\partial g_{\phi \phi}}{\partial r} \dot{\phi}^{2}-\frac{\partial U}{\partial r}=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \quad \begin{aligned}
& \text { Centrifugal } \\
& \text { force Mr } \omega^{2}
\end{aligned} \quad \dot{p}_{\phi}=\frac{\partial L}{\partial \phi}=0-\frac{\partial U}{\partial \phi} \quad \begin{aligned}
& \text { Angular momentum } p_{\phi} \text { is conserved if } \\
& \text { potential } U \text { has no explicit } \phi-\text { dependence }
\end{aligned}
$$

Find \dot{p}_{m} directly from $1^{s t}$ L-equation: $\dot{p}_{m} \equiv \frac{d p_{m}}{d t}=\frac{d}{d t} M\left(g_{m n} \dot{q}^{n}\right)=M\left(\dot{g}_{m n} \dot{q}^{n}+g_{m m} \ddot{q}^{n}\right)$ Equate it to \dot{p}_{m} in $2^{\text {nd }}$ L-equation:

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity \dot{q}^{m}

GCC Lagrangian definition GCC "canonical" momentum p_{m} definition
\longrightarrow GCC "canonical" force F_{m} definition
Coriolis "fictitious" forces (... and weather effects)

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian KE-U is supposed to be explicit function of velocity.

$$
L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})
$$

Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{lll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\mathbf{E}} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$
This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :

$$
p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{r r} \dot{r}=M \dot{r} \quad \begin{aligned}
& \text { Nothing too surprising; } \\
& \text { radial momentum } p_{r} \text { has the } \\
& \text { usual linear } M \cdot v \text { form }
\end{aligned} \quad p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=M g_{\phi \phi} \dot{\phi}=M r^{2} \dot{\phi}
$$

Wow! $g_{\phi \phi}$ gives moment-of-inertia factor $M r^{2}$ automatically for the angular momentum $p_{\phi}=M r^{2} \omega$.
$2^{\text {nd }} L$-equation involves total time derivative \dot{p}_{m} for each momentum p_{m} :

$$
\dot{p}_{r}=\frac{\partial L}{\partial r}=\frac{M}{2} \frac{\partial g_{\phi \phi}}{\partial r} \dot{\phi}^{2}-\frac{\partial U}{\partial r}=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \quad \begin{aligned}
& \text { Centrifugal } \\
& \text { force Mr } \omega^{2}
\end{aligned} \quad \dot{p}_{\phi}=\frac{\partial L}{\partial \phi}=0-\frac{\partial U}{\partial \phi} \quad \begin{aligned}
& \text { Angular momentum } p_{\phi} \text { is conserved if } \\
& \text { potential } U \text { has no explicit } \phi-\text { dependence }
\end{aligned}
$$

Find \dot{p}_{m} directly from $1^{s t}$ L-equation: $\dot{p}_{m} \equiv \frac{d p_{m}}{d t}=\frac{d}{d t} M\left(g_{m n} \dot{q}^{n}\right)=M\left(\dot{g}_{m n} \dot{q}^{n}+g_{m m} \ddot{q}^{n}\right)$ Equate it to \dot{p}_{m} in $2^{\text {nd }}$ L-equation:
(From preceding page)

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian KE-U is supposed to be explicit function of velocity.

$$
L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})
$$

Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{lll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\mathbf{E}} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$
This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :

$$
p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{r r} \dot{r}=M / \dot{r} \quad \begin{aligned}
& \text { Nothing too surprising; } \\
& \text { radial momentum } p_{r} \text { has the } \\
& \text { usual linear } M \cdot v \text { form }
\end{aligned} \quad p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=M g_{\phi \phi} \dot{\phi}=M r^{2} \dot{\phi}
$$

Wow! $g_{\phi \phi}$ gives moment-of-inertia factor $M r^{2}$ automatically for the angular momentum $p_{\phi}=M r^{2} \omega$. $2^{\text {nd }} L$-equation invplves total time derivative \dot{p}_{m} for each momentum p_{m} :

$$
\dot{p}_{r}=\frac{\partial L}{\partial r}=\frac{M}{2} \frac{\partial g_{\phi \phi}}{\partial r} / \dot{\phi}^{2}-\frac{\partial U}{\partial r}=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \quad \begin{gathered}
\text { Centrifugal } \\
\text { force Mr } \omega^{2}
\end{gathered} \quad \dot{p}_{\phi}=\frac{\partial L}{\partial \phi}=0-\frac{\partial U}{\partial \phi} \quad \begin{aligned}
& \text { Angular momentum } p_{\phi} \text { is conserved if } \\
& \text { potential } U \text { has no explicit } \phi \text {-dependence }
\end{aligned}
$$

Find \dot{p}_{m} directly from $1^{\text {st }}$ fequation: $\dot{p}_{m} \equiv \frac{d p_{m}}{d t}=\frac{d}{d t} M\left(g_{m n} \dot{q}^{n}\right)=M\left(\dot{g}_{m n} \dot{q}^{n}+g_{m n} \ddot{q}^{n}\right)$ Equate it to \dot{p}_{m} in $^{n d}$ L-equation:

$$
\begin{array}{rlr}
\dot{p}_{r} & \equiv \frac{d p_{r}}{d t}=M \ddot{r} & \text { Centrifugal (center-fleeing) force } \\
\text { equals total } \\
& =M r \dot{\phi}^{2}-\frac{\partial U}{\partial r} & \text { Centripetal (center-pulling) force }
\end{array}
$$

Lagrange prefers Covariant $g_{m n}$ with Contravariant velocity

Lagrangian KE-U is supposed to be explicit function of velocity.

$$
L(\mathbf{v})=\frac{1}{2} M \mathbf{v} \cdot \mathbf{v}-U=\frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}-U=\frac{1}{2} M\left(\mathbf{E}_{m} \dot{q}^{m}\right) \cdot\left(\mathbf{E}_{n} \dot{q}^{n}\right)-U=\frac{1}{2} M\left(g_{m n} \dot{q}^{m} \dot{q}^{n}\right)-U=L(\dot{q})
$$

Use polar coordinate Covariant $g_{m n}$ metric (1-page back) $\left(\begin{array}{ll}g_{r r} & g_{r \phi} \\ g_{\phi r} & g_{\phi \phi}\end{array}\right)=\left(\begin{array}{lll}\mathbf{E}_{r} \cdot \mathbf{E}_{r} & \mathbf{E}_{\mathbf{E}} \cdot \mathbf{E}_{\phi} \\ \mathbf{E}_{\phi} \cdot \mathbf{E}_{r} & \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$
This gives polar GCC form (Actually it's an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi})=\frac{1}{2} M\left(g_{r r} \dot{r}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)-U(r, \phi)=\frac{1}{2} M\left(1 \cdot \dot{r}^{2}+r^{2} \cdot \dot{\phi}^{2}\right)-U(r, \phi)
$$

GCC Lagrange equations follow. $1^{\text {st }}$ L-equation is momentum p_{m} definition for each coordinate q^{m} :

$$
p_{r}=\frac{\partial L}{\partial \dot{r}}=M g_{r r} \dot{r}=M \dot{r}
$$

Nothing too surprising; radial momentum p_{r} has the usual linear $M \cdot v$ form

$$
p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=M g_{\phi \phi} \dot{\phi}=M r^{2} \dot{\phi}
$$

Wow! $g_{\phi \phi}$ gives moment-of-inertia factor $M r^{2}$ automatically for the angular momentum $p_{\phi}=M r^{2} \omega$. $2^{\text {nd }} L$-equation invplves total time derivative \dot{p}_{m} for each momentum p_{m} :

$$
\dot{p}_{r}=\frac{\partial L}{\partial r}=\frac{M}{2} \frac{\partial g_{\phi \phi}}{\partial r} / \dot{\phi}^{2}-\frac{\partial U}{\partial r}=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \quad \begin{aligned}
& \text { Centrifugal } \\
& \text { force Mr } \omega^{2}
\end{aligned} \quad \dot{p}_{\phi}=\frac{\partial L}{\partial \phi}=0-\frac{\partial U}{\partial \phi}
$$

$$
\begin{aligned}
& \text { Angular momentum } p_{\phi} \text { is conserved if } \\
& \text { potential U has no explicit } \phi \text {-dependence }
\end{aligned}
$$

$$
\text { Find } \dot{p}_{m} \text { directl from 1st Ifequation: } \dot{p}_{m} \equiv \frac{d p_{m}}{d t}=\frac{d}{d t} M\left(g_{m n} \dot{q}^{n}\right)=M\left(\dot{g}_{m n} \dot{q}^{n}+g_{m n} \ddot{q}^{n}\right) \text { Equate it to } \dot{p}_{m} \text { in } 2^{n d} \text { L-equation: }
$$

$$
\dot{p}_{r} \equiv \frac{d p_{r}}{d t}=M \ddot{r} \quad \text { Centrifugal (center-fleeing) force }
$$

$$
=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r} \quad \text { Centripetal (center-pulling) force }
$$

$$
\begin{aligned}
& \dot{p}_{\phi} \stackrel{d p_{\phi}}{\partial t}=2 M r \dot{r} \dot{\phi}+M r^{2} \ddot{\phi} \quad \begin{array}{l}
\text { Torque relates to two distinct parts: } \\
\text { Coriolis and angular acceleration }
\end{array} \\
&=0-\frac{\partial U}{\partial \phi} \quad \begin{array}{l}
\text { Angular momentum } p_{\phi} \text { is conserved if } \\
\text { potential } U \text { has no explicit } \phi \text {-dependence }
\end{array}
\end{aligned}
$$

Rewriting GCC Lagrange equations :

$$
\begin{array}{rlrl}
\dot{p}_{r} & \equiv \frac{d p_{r}}{d t}=M \ddot{r} & & \text { Centrifugal (center-fleeing) force } \\
\text { equals total }
\end{array}
$$

$$
\begin{aligned}
\dot{p}_{\phi} & \stackrel{d p_{\phi}}{d t}=2 M r \dot{r} \dot{\phi}+M r^{2} \ddot{\phi} \quad \begin{array}{l}
\text { Torque relates to two distinct parts: } \\
\text { Coriolis and angular: acceleration }
\end{array} \\
& =0-\frac{\partial U}{\partial \phi} \quad \begin{array}{l}
\text { Angular momentum } p_{\phi} \text { is conserved if } \\
\text { potential } U \text { has no explicit } \phi \text {-dependence }
\end{array}
\end{aligned}
$$

Conventional forms
radial force: $M \ddot{r}=M r \dot{\phi}^{2}-\frac{\partial U}{\partial r}$ angular force or torque: $M r^{2} \ddot{\phi}=-2 M r \dot{\phi} \dot{\phi}-\frac{\partial U}{\partial \phi}$
Field-free ($U=0$)
radial acceleration: $\quad \ddot{r}=r \dot{\phi}^{2}$
angular acceleration: $\ddot{\boldsymbol{\phi}}=-2 \frac{\dot{r} \dot{\phi}}{r}$

[^0]: Recall polar coordinate
 transformation matrix:
 $\left.\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right)=\left(\begin{array}{cc}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right)$

