Mon. 10.07.2019

Complex Variables, Series, and Field Coordinates I. (Ch. 10 of Unit 1)

1. The Story of e (A Tale of Great \$Interest\$) *How good are those power series?* Taylor-Maclaurin series, imaginary interest, and complex exponentials 2. What good are complex exponentials? What good are complex quantities? 1. Complex numbers provide "automatic trigonometry" Easy trig 2. Complex numbers add like vectors. Easy 2D vector analysis 3. Complex exponentials Ae^{-iwt} track position and velocity using Phasor Clock. *Easy oscillator phase analysis* 4. Complex products provide 2D rotation operations. Easy rotation and "dot" or "cross" products 5. Complex products provide 2D "dot"(•) and "cross"(x) products. 3. Easy 2D vector calculus *Easy 2D vector derivatives* 6. Complex derivative contains "divergence" ($\nabla \cdot F$) and "curl" ($\nabla x F$) of 2D vector field Easy 2D source-free field theory 7. Invent source-free 2D vector fields $\nabla \mathbf{F}=0$ and $\nabla \mathbf{x}\mathbf{F}=0$ *Easy 2D vector field-potential theory* 8. Complex potential ϕ contains "scalar" (F= $\nabla \Phi$) and "vector" (F= ∇xA) potentials 4. Riemann-Cauchy relations (What's analytic? What's not?) The half-n'-half results: (Riemann-Cauchy Derivative Relations) 9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field *Easy 2D curvilinear coordinate discovery* Lect. 12 10. Complex integrals / f(z)dz count 2D "circulation" ([F•dr) and "flux" ([Fxdr) *Easy 2D circulation and flux integrals* ends around here 11. Complex integrals define 2D monopole fields and potentials *Easy 2D monopole, dipole, and 2^n-pole analysis* 12. Complex derivatives give 2D dipole fields 13. More derivatives give 2D 2^N-pole fields... *Easy 2ⁿ-multipole field and potential expansion* 14. ...and 2^N-pole multipole expansions of fields and potentials... Easy stereo-projection visualization 15. ...and Laurent Series... Cauchy integrals, Laurent-Maclaurin series 16. Mapping and non-analytic source analysis.

This Lecture's Reference Link Listing

<u>Web Resources - front page</u> <u>UAF Physics UTube channel</u> Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

2017 Group Theory for QM 2018 Adv CM 2018 AMOP 2019 Advanced Mechanics

Lecture #12

Pirelli Relativity Challenge (Introduction level) - *Visualizing Waves:*

<u>Using Earth as a clock,</u> <u>Tesla's AC Phasors</u>, <u>Phasors using complex numbers</u>. <u>CM wBang Unit 1 - Chapter 10: Calculus of exponentials, logarithms, and complex fields</u>, page=131 pdf_page=135 RelaWavity Web Simulation - Unit Circle and Hyperbola (Mixed labeling)

Select, exciting, and related Research & Articles of Interest

(Many of these may be just beyond this course, but are included to lend added insight):

Clifford_Algebra_And_The_Projective_Model_Of_Homogeneous_Metric_Spaces_-_Foundations_-_Sokolov-x-2013 Geometric Algebra 3 - Complex Numbers - MacDonald-yt-2015 Biquaternion -Complexified Quaternion- Roots of -1 - Sangwine-x-2015 An_Introduction_to_Clifford_Algebras_and_Spinors_-_Vaz-Rocha-op-2016 Unified View on Complex Numbers and Quaternions- Bongardt-wcmms-2015 Complex Functions and the Cauchy-Riemann Equations - complex2 - Friedman-columbia-2019

Excerpts from the <u>Geometric Algebra- A Guided Tour through Space and Time - Reimer-www-2019</u>- Page 44-47 (Preliminary Draft)

<u>Past</u> Articles of Interest:

<u>An_sp-hybridized_Molecular_Carbon_Allotrope_cyclo-18-carbon_Kaiser-s-2019</u>
<u>An_Atomic-Scale_View_of_Cyclocarbon_Synthesis_Maier-s-2019</u>
<u>Discovery_Of_Topological_Weyl_Fermion_Lines_And_Drumhead_Surface_States_in_a_</u>
<u>Room_Temperature_Magnet_-_Belopolski-s-2019</u>
<u>"Weyl"ing_away_Time-reversal_Symmetry_-_Neto-s-2019</u>
<u>Non-Abelian_Band_Topology_in_Noninteracting_Metals_-_Wu-s-2019</u>
<u>What_Industry_Can_Teach_Academia_-_Mao-s-2019</u>
<u>Rovibrational_quantum_state_resolution_of_the_C60_fullerene_-_Changala-Ye-s-2019(Alt)</u>
<u>A Degenerate_Fermi_Gas_of_Polar_molecules_-_DeMarco-s-2019</u>

Running Reference Link Listing

Lectures #11 through #7

In reverse order

Eric J Heller Gallery:

Main portal, Consonance and Dissonance II, Bessel 21, Chladni

The Semiclassical Way to Molecular Spectroscopy - Heller-acs-1981 Quantum_dynamical_tunneling_in_bound_states_-_Davis-Hellerjcp-1981

Pendulum Web Simulation Cycloidulum Web Simulation

Links to previous lecture: <u>Page=74</u>, <u>Page=75</u>, <u>Page=79</u>

Pendulum Web Sim

Cycloidulum Web Sim

JerkIt Web Simulations: Basic/Generic: Inverted, FVPlot

CMwithBang Lecture 8, page=20

WWW.sciencenewsforstudents.org: Cassini - Saturnian polar vortex

"RelaWavity" Web Simulations:
<u>2-CW laser wave, Lagrangian vs Hamiltonian,</u> <u>Physical Terms Lagrangian L(u) vs Hamiltonian H(p)</u>
<u>Coullt Web Simulation of the Volcanoes of Io</u>
BohrIt Multi-Panel Plot:
Relativistically shifted Time-Space plots of 2 CW light waves

BoxIt Web Simulations:

<u>Generic/Default</u> <u>Most Basic A-Type</u> <u>Basic A-Type w/reference lines</u> <u>Basic A-Type A-Type with Potential energy</u> <u>A-Type with Potential energy and Stokes Plot</u> <u>A-Type w/3 time rates of change</u> <u>A-Type w/3 time rates of change with Stokes Plot</u> <u>B-Type (A=1.0, B=-0.05, C=0.0, D=1.0)</u>

RelaWavity Web Elliptical Motion Simulations:

Orbits with b/a=0.125 Orbits with b/a=0.5 Orbits with b/a=0.7 Exegesis with b/a=0.125 Exegesis with b/a=0.5 Exegesis with b/a=0.7 Contact Ellipsometry

Coullt Web Simulations: Basic/Generic

Exploding Starlet Volcanoes of Io (Color Quantized)

JerkIt Web Simulations:

<u>Basic/Generic</u> Catcher in the Eye - IHO with Linear Hooke perturbation - Force-potential-Velocity Plot

OscillatorPE Web Simulation:

Coulomb-Newton-Inverse_Square, Hooke-Isotropic Harmonic, Pendulum-Circular Constraint

AMOP Ch 0 Space-Time Symmetry - 2019 Seminar at Rochester Institute of Optics, Aux. slides-2018

NASA Astronomy Picture of the Day -<u>Io: The Prometheus Plume (Just Image)</u> <u>NASA Galileo - Io's Alien Volcanoes</u> <u>New Horizons - Volcanic Eruption Plume on Jupiter's moon IO</u> <u>NASA Galileo - A Hawaiian-Style Volcano on Io</u>

<u>Pirelli Site: Phasors animimation</u> <u>CMwithBang Lecture #6, page=70 (9.10.18)</u>

Select, exciting, and related Research & Articles of Interest:

Burning a hole in reality—design for a new laser may be powerful enough to pierce space-time - Sumner-KOS-2019 Trampoline mirror may push laser pulse through fabric of the Universe - Lee-ArsTechnica-2019 Achieving Extreme Light Intensities using Optically Curved Relativistic Plasma Mirrors - Vincenti-prl-2019 <u>A Soft Matter Computer for Soft Robots - Garrad-sr-2019</u> <u>Correlated Insulator Behaviour at Half-Filling in Magic-Angle Graphene Superlattices - cao-n-2018</u> <u>Sorting ultracold atoms in a three-dimensional optical lattice in a</u> realization of Maxwell's Demon - Kumar-n-2018 Synthetic three-dimensional atomic structures assembled atom by atom - Barredo-n-2018 Older ones: Wave-particle duality of C60 molecules - Arndt-Itn-1999 Optical Vortex Knots - One Photon _ At A Time - Tempone-Wiltshire-Sr-2018 Baryon Deceleration by Strong Chromofields in Ultrarelativistic ,

<u>Baryon_Deceleration_by_Strong_Chromofields_in_Ottrarelativistic_</u>, <u>Nuclear_Collisions - Mishustin-PhysRevC-2007</u>, <u>APS Link & Abstract</u> Hadronic Molecules - Guo-x-2017

Hidden-charm pentaquark and tetraquark states - Chen-pr-2016

Running Reference Link Listing

Lectures #6 through #1

In reverse order

RelaWavity Web Simulation: Contact EllipsometryBoxIt Web Simulation: Elliptical Motion (A-Type)CMwBang Course: Site Title PagePirelli Relativity Challenge: Describing Wave Motion With Complex PhasorsUAF Physics UTube channel

Velocity Amplification in Collision Experiments Involving Superballs - Harter, 1971 MIT OpenCourseWare: High School/Physics/Impulse and Momentum Hubble Site: Supernova - SN 1987A

BounceItIt Web Animation - Scenarios:

49:1 y vs t, 49:1 V2 vs V1, 1:500:1 - 1D Gas Model w/ faux restorative force (Cool), 1:500:1 - 1D Gas (Warm), 1:500:1 - 1D Gas Model (Cool, Zoomed in),
Farey Sequence - Wolfram Fractions - Ford-AMM-1938
Monstermash BounceItIt Animations: 1000:1 - V2 vs V1, 1000:1 with t vs x - Minkowski Plot
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-2013
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2015 Quant. Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2015 (Publ.)
Velocity Amplification in Collision Experiments Involving Superballs-Harter-1971
WaveIt Web Animation - Scenarios: Quantum Carpet, Quantum Carpet wMBars, Quantum Carpet BCar, Quantum Carpet BCar_wMBars
Wave Node Dynamics and Revival Symmetry in Quantum Rotors - Harter-JMS-2001 Wave Node Dynamics and Revival Symmetry in Ouantum Rotors - Harter-jms-2001 (Publ.)

BounceIt Web Animation - Scenarios:

Generic Scenario: <u>2-Balls dropped no Gravity (7:1) - V vs V Plot (Power=4)</u> 1-Ball dropped w/Gravity=0.5 w/Potential Plot: <u>Power=1, Power=4</u> <u>7:1 - V vs V Plot: Power=1</u> <u>3-Ball Stack (10:3:1) w/Newton plot (y vs t) - Power=4</u> <u>3-Ball Stack (10:3:1) w/Newton plot (y vs t) - Power=1 w/Gaps</u> <u>4-Ball Stack (27:9:3:1) w/Newton plot (y vs t) - Power=4</u> <u>4-Newton's Balls (1:1:1:1) w/Newtonian plot (y vs t) - Power=4</u> <u>5-Ball Totally Inelastic (1:1:1:1:1) w/Gaps: Newtonian plot (t vs x), V6 vs V5 plot</u> <u>5-Ball Totally Inelastic Pile-up w/ 5-Stationary-Balls - Minkowski plot (t vs x1) w/Gaps</u>

BounceIt Dual plots

 $m_{1}:m_{2} = 3:1$ $v_{2} vs v_{1} and V_{2} vs V_{1}, (v_{1}, v_{2}) = (1, 0.1), (v_{1}, v_{2}) = (1, 0)$ $y_{2} vs v_{1} plots: (v_{1}, v_{2}) = (1, 0.1), (v_{1}, v_{2}) = (1, 0), (v_{1}, v_{2}) = (1, -1)$ Estrangian plot $V_{2} vs V_{1}: (v_{1}, v_{2}) = (0, 1), (v_{1}, v_{2}) = (1, -1)$ $m_{1}:m_{2} = 4:1$ $v_{2} vs v_{1}, v_{2} vs v_{1}$ $m_{1}:m_{2} = 100:1, (v_{1}, v_{2}) = (1, 0): V_{2} vs V_{1} Estrangian plot, v_{2} vs v_{1} plot$ With g=0 and 70:10 mass ratio With non zero g, velocity dependent damping and mass ratio of 70:35 $M_{1}=49, M_{2}=1 with Newtonian time plot$ $M_{1}=49, M_{2}=1 with V_{2} vs V_{1} plot$ Example with friction Low force constant with drag displaying a Pass-thru, Fall-Thru, Bounce-Off $m_{1}:m_{2}= 3:1 and (v_{1}, v_{2}) = (1, 0) Comparison with Estrangian$

X2 paper: Velocity Amplification in Collision Experiments Involving Superballs - Harter, et. al. 1971 (pdf)
Car Collision Web Simulator: https://modphys.hosted.uark.edu/markup/CMMotionWeb.html
Superball Collision Web Simulator: <u>https://modphys.hosted.uark.edu/markup/BounceItWeb.html</u> ; with Scenarios: <u>1007</u>
BounceIt web simulation with $g=0$ and 70:10 mass ratio
With non zero g, velocity dependent damping and mass ratio of 70:35
Elastic Collision Dual Panel Space vs Space: Space vs Time (Newton), Time vs. Space(Minkowski)
Inelastic Collision Dual Panel Space vs Space: Space vs Time (Newton), Time vs. Space(Minkowski)
Matrix Collision Simulator: $M_1 = 49$, $M_2 = 1$ V ₂ vs V ₁ plot << Under Construction>>

More Advanced QM and classical references will *soon* be available through our: <u>Mechanics References Page</u>

(Now in Development)

<u>AJP article on superball dynamics</u> <u>AAPT Summer Reading List</u> <u>Scitation.org - AIP publications</u> HarterSoft Youtube Channel

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r\cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time t later they would pay you $p(t)=(1+r\cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r \cdot t)p(0)$. \$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r \cdot \frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1st trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3}\cdot \frac{4}{3}\cdot \frac{4}{3}\cdot 1 = \frac{64}{27} = 2.37$$

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r \cdot t)p(0)$. \$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r\cdot\frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1st trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3}\cdot\frac{4}{3}\cdot\frac{4}{3}\cdot1 = \frac{64}{27} = 2$$

So if you compound interest more and more frequently, do you approach **INFININTEREST**?

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r\cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r \cdot \frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1st trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3}\cdot \frac{4}{3}\cdot \frac{4}{3}\cdot 1 = \frac{64}{27} = 2.37$$

So if you compound interest more and more frequently, do you approach INFININTEREST

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r\cdot t)p(0)$. \$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r \cdot \frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1st trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3}\cdot\frac{4}{3}\cdot\frac{4}{3}\cdot1 = \frac{64}{27} = 2.3$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

$$p^{\frac{1}{1}}(t) = (1 + r \cdot \frac{t}{1})^{1} p(0) = \left(\frac{2}{1}\right)^{1} \cdot 1 = \frac{2}{1} = 2.00$$

$$+25\phi$$

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})^{2} p(0) = \left(\frac{3}{2}\right)^{2} \cdot 1 = \frac{9}{4} = 2.25$$

$$+12\phi$$

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})^{3} p(0) = \left(\frac{4}{3}\right)^{3} \cdot 1 = \frac{64}{27} = 2.37$$

$$+7\phi$$

$$p^{\frac{1}{4}}(t) = (1 + r \cdot \frac{t}{4})^{4} p(0) = \left(\frac{5}{4}\right)^{4} \cdot 1 = \frac{625}{256} = 2.44$$

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time t later they would pay you $p(t)=(1+r\cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r\cdot\frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1^{st} trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3}\cdot\frac{4}{3}\cdot\frac{4}{3}\cdot1 = \frac{64}{27} = 2.3$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

$$p^{\frac{1}{1}}(t) = (1 + r \cdot \frac{t}{1})^{1} p(0) = \left(\frac{2}{1}\right)^{1} \cdot 1 = \frac{2}{1} = 2.00$$

$$+25 \notin p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})^{2} p(0) = \left(\frac{3}{2}\right)^{2} \cdot 1 = \frac{9}{4} = 2.25$$

$$+12 \notin p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})^{3} p(0) = \left(\frac{4}{3}\right)^{3} \cdot 1 = \frac{64}{27} = 2.37$$

$$+7 \notin p^{\frac{1}{4}}(t) = (1 + r \cdot \frac{t}{4})^{4} p(0) = \left(\frac{5}{4}\right)^{4} \cdot 1 = \frac{625}{256} = 2.44$$

Monthly:
$$p^{\frac{1}{12}}(t) = (1 + r \cdot \frac{t}{12})^{12} p(0) = \left(\frac{13}{12}\right)^{12} \cdot 1 = 2.613$$

Weekly: $p^{\frac{1}{52}}(t) = (1 + r \cdot \frac{t}{52})^{52} p(0) = \left(\frac{53}{52}\right)^{52} \cdot 1 = 2.693$
Daily: $p^{\frac{1}{365}}(t) = (1 + r \cdot \frac{t}{365})^{365} p(0) = \left(\frac{366}{365}\right)^{365} \cdot 1 = 2.7145$
Hrly: $p^{\frac{1}{8760}}(t) = (1 + r \cdot \frac{t}{8760})^{8760} p(0) = \left(\frac{8761}{8760}\right)^{8760} \cdot 1 = 2.7181$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{=} e^{p^{1/m}(1)} = 2.718281828459.$$

$$p^{1/m}(1) = 2.718281828459.$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182804693$$

$$p^{1/m}(1) = 2.7182804693$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{=} e^{2.718281828459...} p^{1/m}(1) = 2.7181459268$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182804693$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182818149$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

Can improve computational efficiency using binomial theorem:

$$(x+y)^{n} = x^{n} + n \cdot x^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^{3} + \dots + n \cdot xy^{n-1} + y^{n}$$
$$(1 + \frac{r \cdot t}{n})^{n} = 1 + n \cdot \left(\frac{r \cdot t}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2} + \frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3} + \dots \qquad \text{Define: Factorials(!):}$$
$$(1 + \frac{r \cdot t}{n})^{n} = 1 + n \cdot \left(\frac{r \cdot t}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2} + \frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3} + \dots \qquad \text{Define: Factorials(!):}$$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{=} e^{2.718281828459..} p^{1/m}(1) = 2.7181459268$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182804693$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182818149$$

$$p^{1/m}(1) = 2.7182818149$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

Can improve computational efficiency using binomial theorem:

$$n(n-1)(n-2) \rightarrow n^3$$
, etc.

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{=} 2.718281828459..$$

$$p^{1/m}(1) = 2.7181459268$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182804693$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182818149$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

Can improve computational efficiency using binomial theorem:

$$\begin{aligned} (x+y)^{n} &= x^{n} + n \cdot x^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^{3} + \dots + n \cdot xy^{n-1} + y^{n} \\ (1+\frac{r \cdot t}{n})^{n} &= 1 + n \cdot \left(\frac{r \cdot t}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2} + \frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3} + \dots \\ e^{r \cdot t} &= 1 + r \cdot t + \frac{1}{2!}\left(r \cdot t\right)^{2} + \frac{1}{3!}\left(r \cdot t\right)^{3} + \dots \\ &= \sum_{p=0}^{o} \frac{\left(r \cdot t\right)^{p}}{p!} \end{aligned} \qquad As \ n \to \infty \ let : \\ n(n-1) \to n^{2}, \end{aligned}$$

Precision order: (o=1)-e-series = 2.00000 =1+1 $n(n-1)(n-2) \rightarrow n^3$, etc. (o=2)-e-series = 2.50000 =1+1+1/2 (o=3)-e-series = 2.66667 =1+1+1/2+1/6 (o=4)-e-series = 2.70833 =1+1+1/2+1/6+1/24 (o=5)-e-series = 2.71667 =1+1+1/2+1/6+1/24+1/120 (o=6)-e-series = 2.71805 =1+1+1/2+1/6+1/24+1/120+1/720 (o=7)-e-series = 2.71825 (o=8)-e-series = 2.71828 About 12 summed quotients for 6-figure precision (A lot better!)

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set t=0 to get $c_0 = x(0)$. $x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + d^n t^n$

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set
$$t=0$$
 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

Set
$$t=0$$
 to get $c_1 = v(0)$.

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + \frac{d}{dt}x$$

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set
$$t=0$$
 to get $c_0 = x(0)$.

Set t=0 to get $c_1 = v(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 3c_3t^2 + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + \frac{$$

Change of velocity v(t) is *acceleration* a(t).

Set
$$t=0$$
 to get $c_2 = \frac{1}{2}a(0)$.

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + \frac{d}{dt}v(t) = 0 + 2c_5t^2 + \frac{d}{dt}v(t) = 0 +$$

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set

Set
$$t=0$$
 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Set
$$t=0$$
 to get $c_1 = v(0)$.

Set t=0 to get $c_2 = \frac{1}{2}a(0)$.

Rate of change of position x(t) is velocity v(t).

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 3c_3t^2 + 4c_4t^3 + 3c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 3c_3t^2 + 3c_5t^2 +$$

Change of velocity v(t) is *acceleration* a(t).

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \dots$$

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.) $j(t) = \frac{d}{dt}a(t) = 0 + 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4 t + 3 \cdot 4 \cdot 5c_5 t^2 + \dots + n(n-1)(n-2)c_n t^{n-3} + \dots$

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set t=0 to get $c_0 = x(0)$.

Set t=0 to get

Set
$$t=0$$
 to get $c_1 = v(0)$.

Set t=0 to get $c_2 = \frac{1}{2}a(0)$.

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 3c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 3c_3t^2 + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + \frac{d}{dt}x(t$$

Change of velocity v(t) is *acceleration* a(t).

Rate of change of position x(t) is velocity v(t).

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + \frac{d}{dt}v(t) = 0 + 2c_5t^2 + \frac{d}{dt}v(t) = 0 +$$

Change of acceleration a(t) is *jerk j(t)*. (*Jerk* is NASA term.) Set t=0 to get $c_3 = \frac{1}{3!} j(0)$. $j(t) = \frac{d}{dt} a(t) = 0 + 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4 t + 3 \cdot 4 \cdot 5c_5 t^2 + ... + n(n-1)(n-2)c_n t^{n-3} + 1$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!) Set t=0 to get $c_4 = \frac{1}{4!}i(0)$.

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Set t=0 to get $c_1 = v(0)$.

Rate of change of position x(t) is velocity v(t).

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 3c_3t^2 + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + \frac{$$

Change of velocity v(t) is *acceleration* a(t).

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + \frac{d}{dt}v(t) = 0 + 2c_5t^2 + \frac{d}{dt}v(t) = 0 +$$

Change of acceleration a(t) is *jerk j(t)*. (*Jerk* is NASA term.) Set t=0 to get $c_3 = \frac{1}{3!} j(0)$. $j(t) = \frac{d}{dt} a(t) = 0 + 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4 t + 3 \cdot 4 \cdot 5c_5 t^2 + \dots + n(n-1)(n-2)c_n t^{n-3} + \frac{1}{2!} j(0) = 0$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!) Set t=0 to get $c_4 = \frac{1}{4!}i(0)$.

$$i(t) = \frac{d}{dt}j(t) = 0 + 2\cdot 3\cdot 4c_4 + 2\cdot 3\cdot 4\cdot 5c_5t + \dots + n(n-1)(n-2)(n-3)c_nt^{n-4} + \dots + n(n-1)(n-2)(n-3)c_nt^{n-4} + \dots + n(n-1)(n-2)(n-3)c_nt^{n-4} + \dots + n(n-1)(n-2)(n-3)c_nt^{n-4} + \dots + n(n-1)(n-3)c_nt^{n-4} + \dots + n(n-$$

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \dots$$

Set t=0 to get $c_2 = \frac{1}{2}a(0)$.

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set

Set
$$t=0$$
 to get $c_0 = x(0)$.

Set t=0 to get $c_1 = v(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + d_n t^n +$$

Rate of change of position x(t) is velocity v(t).

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 3c_3t^2 + 4c_4t^3 + 3c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 3c_3t^2 + 3c_5t^2 +$$

Change of velocity v(t) is *acceleration* a(t).

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + \frac{d}{dt}v(t) = 0 + 2c_5t^2 + \frac{d}{dt}v(t) = 0 +$$

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.) $j(t) = \frac{d}{dt}a(t) = 0 + 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4 t + 3 \cdot 4 \cdot 5c_5 t^2 + \dots + n(n-1)(n-2)c_n t^{n-3} + \dots + n(n-1)(n-2)c_n$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!) Set t=0 to get $c_4 = \frac{1}{4!}i(0)$.

$$i(t) = \frac{d}{dt}j(t) = 0 + 2\cdot 3\cdot 4c_4 + 2\cdot 3\cdot 4\cdot 5c_5t + \dots + n(n-1)(n-2)(n-3)c_nt^{n-4} + \dots + n(n-1)(n-2)(n-3)c_nt^{n-4} + \dots + n(n-1)(n-2)(n-3)c_nt^{n-4} + \dots + n(n-1)(n-2)(n-3)c_nt^{n-4} + \dots + n(n-1)(n-3)c_nt^{n-4} + \dots + n(n-$$

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{3!}i(0)t^{2} + \frac{1}{3!}i(0)t^{$$

Góod old UP I formula!

Set t=0 to get $c_2 = \frac{1}{2}a(0)$.

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n +$$

Rate of change of position $x(t)$ is velocity $y(t)$

Set t=0 to get $c_1 = v(0)$.

Set t=0 to get $c_2 = \frac{1}{2}a(0)$.

Rate of change of position
$$x(t)$$
 is velocity $v(t)$.

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + \frac{d}{dt}x(t)$$

Change of velocity v(t) is *acceleration* a(t).

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + \frac{d}{dt}v(t) = 0 + 2c_4t^2 + \frac{d}{dt}v(t) = 0 + 2c_5t^2 + \frac{d}{dt}v(t) = 0 +$$

Change of acceleration a(t) is *jerk j(t)*. (*Jerk* is NASA term.) Set t=0 to get $c_3 = \frac{1}{3!} j(0)$. $j(t) = \frac{d}{dt} a(t) = 0 + 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4 t + 3 \cdot 4 \cdot 5c_5 t^2 + \dots + n(n-1)(n-2)c_n t^{n-3} + \dots +$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!) Set t=0 to get $c_4 = \frac{1}{4!}i(0)$.

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{3!}x^{(n)}t^{n} + \frac{1}{3!}i(0)t^{3} + \frac{1}{4!}i(0)t^{3} + \frac{1}{5!}i(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{5!}i(0)t^{5} + \dots + \frac{1}{5!}i($$

Setting all initial values to $l = x(0) = v(0) = a(0) = j(0) = i(0) = \dots$

Góod old UP I formula!

gives exponential: $e^{t} = 1 + t + \frac{1}{2!}t^{2} + \frac{1}{3!}t^{3} + \frac{1}{4!}t^{4} + \frac{1}{5!}t^{5} + \dots + \frac{1}{n!}t^{n} + \frac{1}{2!}t^{n} + \frac{1}{$

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{3!}x^{(n)}t^{n} + \frac{1}{3$$

Setting all initial values to $1 = x(0) = v(0) = a(0) = j(0) = i(0) = \dots$

gives exponential:
$$e^{t} = 1 + t + \frac{1}{2!}t^{2} + \frac{1}{3!}t^{3} + \frac{1}{4!}t^{4} + \frac{1}{5!}t^{5} + \dots + \frac{1}{n!}t^{n} + \frac{1}{2!}t^{n} + \frac{1}{$$

How good are those power series? Taylor-Maclaurin series,

imaginary interest, and complex exponentials

Suppose the fancy bankers really went bonkers and made interest rate *r* an *imaginary number* $r=i\theta$. Imaginary number $i=\sqrt{-1}$ powers have *repeat-after-4-pattern*: $i^0=1$, $i^1=i$, $i^2=-1$, $i^3=-i$, $i^4=1$, etc... $e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \dots$ (From exponential series) $= 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \dots$ ($i = \sqrt{-1}$ imples: $i^1=i$, $i^2=-1$, $i^3=-i$, $i^4=+1$, $i^5=i$,...) $= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + \left(i\theta - i\frac{\theta^3}{3!} + i\frac{\theta^5}{5!} - \dots\right)$ Suppose the fancy bankers really went bonkers and made interest rate r an *imaginary number* $r=i\theta$. Imaginary number $i = \sqrt{-1}$ powers have repeat-after-4-pattern: $i^0=1$, $i^1=i$, $i^2=-1$, $i^3=-i$, $i^4=1$, etc... $e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \dots$ (From exponential series) $=1+i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \dots \qquad (i = \sqrt{-1} \text{ imples: } i^1 = i, i^2 = -1, i^3 = -i, i^4 = +1, i^5 = i, \dots)$ $= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + \left(i\theta - i\frac{\theta^3}{3!} + i\frac{\theta^5}{5!} - \dots\right)$ To match series for $\begin{cases} cosine : \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \\ sine : \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \end{cases}$ (a) $x(t) = \cos t$ $\cos\theta$ + $i\sin\theta$ Euler-DeMoivre Theorem -quartic 16th 12tb14th 20th 4th 10 8th 4 10th 18th quadratic 6th (parabola) Unit 1 Fig. 10.3 (b) $x(t) \neq \underline{sin t}$ 17th 1st 5th 3rd 15th -cubic-49th 13tb 11th

2. What Good Are Complex Exponentials?

Easy trig Easy 2D vector analysis Easy oscillator phase analysis Easy rotation and "dot" or "cross" products

What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is $\cos(a+b)$ or $\sin(a+b)$? Just factor $e^{i(a+b)} = e^{ia}e^{ib}$...

$$e^{i(a+b)} = e^{ia} e^{ib}$$

$$cos(a+b) + i sin(a+b) = (cos a + i sin a) (cos b + i sin b)$$

$$cos(a+b) + i sin(a+b) = [cos a cos b - sin a sin b] + i [sin a cos b + cos a sin b]$$

What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is $\cos(a+b)$ or $\sin(a+b)$? Just factor $e^{i(a+b)} = e^{ia}e^{ib}$...

2. Complex numbers add like vectors. $z_{SUM} = z + z' = (x + iy) + (x' + iy') = (x + x') + i(y + y')$ $z_{diff} = z - z' = (x + iy) - (x' + iy') = (x - x') + i(y - y')$ (a) $y' = \lim z'$ $y' = \lim z'$ $x = \operatorname{Re} z$ z' $x' = \operatorname{Re} z'$ (b) z' z'z'

What Good Are Complex Exponentials? (contd.)

3.Complex exponentials Ae^{-iwt} track position <u>and</u> velocity using Phasor Clock.

3.Complex exponentials Ae^{-iwt} track position <u>and</u> velocity using Phasor Clock.

Cartesian

$$\begin{cases}
\psi_x = \operatorname{Re}\psi(t) = x(t) = A\cos\omega t = \frac{\pi}{2}\\
\psi_y = \operatorname{Im}\psi(t) = \frac{v(t)}{\omega} = -A\sin\omega t = \frac{\psi - \psi^*}{2i}\\
\psi = re^{+i\theta} = re^{-i\omega t} = r(\cos\omega t - i\sin\omega t)\\
\psi^* = re^{-i\theta} = re^{+i\omega t} = r(\cos\omega t + i\sin\omega t)
\end{cases}$$

$$Polar \begin{cases} r = A = |\psi| = \sqrt{\psi_x^2 + \psi_y^2} = \sqrt{\psi^* \psi} \\ \theta = -\omega t = \arctan(\psi_y / \psi_x) \\ \cos \theta = \frac{1}{2} (e^{+i\theta} + e^{-i\theta}) \\ \sin \theta = \frac{1}{2i} (e^{+i\theta} - e^{-i\theta}) \\ \sin \theta = \frac{1}{2i} (e^{+i\theta} - e^{-i\theta}) \\ \sin \psi = \frac{\psi - \psi^*}{2i} \end{cases}$$

2. What Good Are Complex Exponentials?

Easy trig Easy 2D vector analysis Easy oscillator phase analysis Easy rotation and "dot" or "cross" products

4. Complex products provide 2D rotation operations.

$$e^{i\phi} \cdot z = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i \quad (x\sin\phi + y\cos\phi)$$
$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi) \hat{\mathbf{e}}_x + (x\sin\phi + y\cos\phi) \hat{\mathbf{e}}_y$$
$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi \\ x\sin\phi + y\cos\phi \end{pmatrix}$$

4. Complex products provide 2D rotation operations.

$$e^{i\phi} \cdot z = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i \quad (x\sin\phi + y\cos\phi)$$
$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi) \hat{\mathbf{e}}_x + (x\sin\phi + y\cos\phi) \hat{\mathbf{e}}_y$$
$$\begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi\\ x\sin\phi + y\cos\phi \end{pmatrix}$$

 $e^{i\phi}$ acts on this: $z = re^{i\theta}$

to give this: $e^{i\phi} e^{i\phi} z = r e^{i\phi} e^{i\theta}$

4. Complex products provide 2D rotation operations.

$$e^{i\phi \cdot z} = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i \quad (x\sin\phi + y\cos\phi)$$
$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi) \hat{\mathbf{e}}_{x} + (x\sin\phi + y\cos\phi) \hat{\mathbf{e}}_{y}$$
$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi \\ x\sin\phi + y\cos\phi \end{pmatrix}$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A = A_x + iA_y$ and $B = B_x + iB_y$ and their "star" (*)-product A *B. $A * B = (A_x + iA_y)^* (B_x + iB_y) = (A_x - iA_y)(B_x + iB_y)$ $= (A_x B_x + A_y B_y) + i(A_x B_y - A_y B_x) = \mathbf{A} \cdot \mathbf{B} + i | \mathbf{A} \times \mathbf{B} |_{Z \perp (x,y)}$ Real part is scalar or "dot"(•) product $\mathbf{A} \cdot \mathbf{B}$. Imaginary part is vector or "cross"(×) product, but just the Z-component <u>normal</u> to xy-plane.

Rewrite A * B in polar form.

$$A * B = (|A|e^{i\theta_A})^* (|B|e^{i\theta_B}) = |A|e^{-i\theta_A}|B|e^{i\theta_B} = |A||B|e^{i(\theta_B - \theta_A)}$$
$$= |A||B|\cos(\theta_B - \theta_A) + i|A||B|\sin(\theta_B - \theta_A) = \mathbf{A} \cdot \mathbf{B} + i|\mathbf{A} \times \mathbf{B}|_{Z\perp(x,y)}$$

4. Complex products provide 2D rotation operations.

$$e^{i\phi \cdot z} = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i \quad (x\sin\phi + y\cos\phi)$$
$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi) \hat{\mathbf{e}}_{x} + (x\sin\phi + y\cos\phi) \hat{\mathbf{e}}_{y}$$
$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi \\ x\sin\phi + y\cos\phi \end{pmatrix}$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A = A_x + iA_y$ and $B = B_x + iB_y$ and their "star" (*)-product A *B. $A * B = (A_x + iA_y)^* (B_x + iB_y) = (A_x - iA_y)(B_x + iB_y)$ $= (A_x B_x + A_y B_y) + i(A_x B_y - A_y B_x) = \mathbf{A} \cdot \mathbf{B} + i | \mathbf{A} \times \mathbf{B} |_{Z \perp (x,y)}$ Real part is scalar or "dot"(•) product $\mathbf{A} \cdot \mathbf{B}$. Imaginary part is vector or "cross"(×) product, but just the Z-component *normal* to *xy*-plane.

Rewrite *A***B* in polar form.

$$A * B = (|A| e^{i\theta_A})^* (|B| e^{i\theta_B}) = |A| e^{-i\theta_A} |B| e^{i\theta_B} = |A| |B| e^{i(\theta_B - \theta_A)}$$
$$= |A| |B| \cos(\theta_B - \theta_A) + i|A| |B| \sin(\theta_B - \theta_A) = \mathbf{A} \cdot \mathbf{B} + i |\mathbf{A} \times \mathbf{B}|_{Z\perp(x,y)}$$
$$\mathbf{A} \cdot \mathbf{B} = |A| |B| \cos(\theta_B - \theta_A)$$
$$= |A| \cos\theta_A |B| \cos\theta_B + |A| \sin\theta_A |B| \sin\theta_B$$
$$= |A| \cos\theta_A |B| \sin\theta_B - |A| \sin\theta_A |B| \cos\theta_B$$
$$= A_x B_x + A_y B_y$$
$$= A_x B_y - A_y B_x$$

What Good are complex variables?

Easy 2D vector calculus Easy 2D vector derivatives Easy 2D source-free field theory Easy 2D vector field-potential theory

6. Complex derivative contains "divergence"($\nabla \cdot F$) and "curl"($\nabla x F$) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Re}z,y=\operatorname{Im}z)$ defines a z-derivative $\frac{df}{dz}$ and "star" z*-derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial y} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial y} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial y} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial y$$

6. Complex derivative contains "divergence"($\nabla \cdot F$) and "curl"(∇xF) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Re}z,y=\operatorname{Im}z)$ defines a *z*-derivative $\frac{df}{dz}$ and "star" *z**-derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial y} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial y} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial y} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial y} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial y$$

 $\frac{d}{dz} = \frac{10}{20} - \frac{i0}{20} - \frac{i0}$

$$\frac{df}{dz} = \frac{d}{dz} \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} f_x + \frac{\partial}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial}{\partial x} f_y - \frac{\partial}{\partial y} f_x \right) = \frac{1}{2} \nabla \bullet \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x,y)}$$

6. Complex derivative contains "divergence"($\nabla \cdot F$) and "curl"(∇xF) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Re}z,y=\operatorname{Im}z)$ defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} = \frac{i}{2} \frac{\partial}{\partial y} = \frac{i}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} = \frac{i}{2} \frac{i}{2} \frac{\partial}{\partial y} = \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}$$

 $\frac{d}{dz} = \frac{10}{20} - \frac{i0}{20}$ Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} f_x + \frac{\partial}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial}{\partial x} f_y - \frac{\partial}{\partial y} f_x \right) = \frac{1}{2} \nabla \bullet \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x,y)}$$

7. Invent source-free 2D vector fields [$\nabla \cdot \mathbf{F} = 0$ and $\nabla \mathbf{x} \mathbf{F} = 0$]

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all *i*'s to -i) to give $f^*(z^*)$ for which $\frac{df}{dz}^* = 0$

6. Complex derivative contains "divergence"($\nabla \cdot F$) and "curl"($\nabla x F$) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Re}z,y=\operatorname{Im}z)$ defines a *z*-derivative $\frac{df}{dz}$ and "star" *z**-derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial y} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial y} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial y} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial y$$

 $\frac{d}{dz} = \frac{10}{20} - \frac{i0}{20} - \frac{i0}{20} + \frac{10}{20} + \frac{10}$

$$\frac{df}{dz} = \frac{d}{dz} \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} f_x + \frac{\partial}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial}{\partial x} f_y - \frac{\partial}{\partial y} f_x \right) = \frac{1}{2} \nabla \bullet \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x,y)}$$

7. Invent source-free 2D vector fields $[\nabla \cdot \mathbf{F} = 0 \text{ and } \nabla \mathbf{x} \mathbf{F} = 0]$

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all *i*'s to -i) to give $f^*(z^*)$ for which $\frac{df}{dz}^* = 0$

For example: if $f(z) = a \cdot z$ then $f^*(z^*) = a \cdot z^* = a(x - iy)$ is not function of z so it has zero z-derivative. $\mathbf{F} = (F_x, F_y) = (f^*_x, f^*_y) = (a \cdot x, -a \cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F} = 0$ and has zero curl: $|\nabla \times \mathbf{F}| = 0$. $\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} = \frac{\partial (ax)}{\partial x} + \frac{\partial F(-ay)}{\partial y} = 0$ $|\nabla \times \mathbf{F}|_{Z \perp (x, y)} = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (-ay)}{\partial x} - \frac{\partial F(ax)}{\partial y} = 0$ A DFL field \mathbf{F} (Divergence-Free-Laminar)

7. Invent source-free 2D vector fields [$\nabla \cdot \mathbf{F} = 0$ and $\nabla \mathbf{x} \mathbf{F} = 0$]

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all *i*'s to -i) to give $f^*(z^*)$ for which $\frac{df}{dz}^* = 0$.

For example: if $f(z) = a \cdot z$ then $f^*(z^*) = a \cdot z^* = a(x - iy)$ is not function of z so it has zero z-derivative. $\mathbf{F}=(F_x,F_y)=(f_x,f_y)=(a\cdot x,-a\cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F}=0$ and has zero curl: $|\nabla \times \mathbf{F}|=0$. $\nabla \bullet \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} = \frac{\partial (ax)}{\partial x} + \frac{\partial F(-ay)}{\partial y} = 0 \qquad \qquad |\nabla \times \mathbf{F}|_{Z \perp (x,y)} = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (-ay)}{\partial x} - \frac{\partial F(ax)}{\partial y} = 0$ precursor to Unit 1 *Fig.* 10.7

 $\mathbf{F}=(f^*_{x},f^*_{y})=(a\cdot x,-a\cdot y)$ is a *divergence-free laminar (DFL)* field.

What Good are complex variables?

Easy 2D vector calculus Easy 2D vector derivatives Easy 2D source-free field theory Easy 2D vector field-potential theory

8. Complex potential ϕ contains "scalar" ($\mathbf{F}=\nabla \Phi$) and "vector" ($\mathbf{F}=\nabla x\mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A *complex potential* $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose *z*-derivative is $f(z) = d \phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

8. Complex potential ϕ contains "scalar" ($F=\nabla \Phi$) and "vector" ($F=\nabla xA$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A *complex potential* $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose *z*-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + iA$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = A$) parts.

8. Complex potential ϕ contains "scalar" (F= $\nabla \Phi$) and "vector" (F= ∇xA) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + i A(x,y)$ exists whose z-derivative is $f(z) = d \phi/dz$. Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - i A(x,y)$ has z*-derivative $f^*(z^*) = d \phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts. $f(z) = \frac{d\phi}{dz} \Rightarrow \phi = \Phi + i \mathbf{A} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^2$

8. Complex potential ϕ contains "scalar" (F= $\nabla \Phi$) and "vector" (F= ∇xA) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$. Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z*-derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + iA$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = A$) parts.

$$f(z) = \frac{d\phi}{dz} \implies \phi = \underbrace{\phi}_{z} + i \quad A = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^{2} = \frac{1}{2} a(x + iy)^{2}$$
$$= \frac{1}{2} a(x^{2} - y^{2}) + i \quad axy$$

8. Complex potential ϕ contains "scalar" (F= $\nabla \Phi$) and "vector" (F= ∇xA) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$. Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z*-derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts. $f(z) = \frac{d\phi}{dz} \Rightarrow \phi = \Phi + i\mathbf{A} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2}az^2 = \frac{1}{2}a(x + iy)^2$

8. Complex potential ϕ contains "scalar" ($\mathbf{F}=\nabla \Phi$) and "vector" ($\mathbf{F}=\nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d \phi/dz$. Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z*-derivative $f^*(z^*) = d \phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + iA$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = A$) parts.

$$f(z) = \frac{d\phi}{dz} \implies \phi = \underbrace{\phi}_{z} + i \quad A = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^{2} = \frac{1}{2} a(x + iy)^{2}$$
$$= \frac{1}{2} a(x^{2} - y^{2}) + i \quad axy$$

BONUS! Get a free coordinate system!

The (Φ, A) grid is a GCC coordinate system*: $q^{l} = \Phi = (x^{2}-y^{2})/2 = const.$ $q^{2} = A = (xy) = const.$

*Actually it's OCC.

What Good are complex variables?

Easy 2D vector calculus Easy 2D vector derivatives Easy 2D source-free field theory Easy 2D vector field-potential theory

The half-n'-half results: (Riemann-Cauchy Derivative Relations)

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative $\frac{d\phi^*}{dz^*}$ has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times A = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix}$ of vector A (and they're equal!) $f(z) = \frac{d\phi}{dz^*} \Rightarrow$ $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - iA) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - iA) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times A$ $\frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y}$ $\frac{d}{dz^*} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y}$

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative $\frac{d\phi^*}{dz^*}$ has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times A = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix}$ of vector A (and they 're <u>equal</u>!) $f(z) = \frac{d\phi}{dz} \Rightarrow$ $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - iA) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - iA) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times A$

Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times A = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix}$ of vector A (and they're equal!)
 $f(z) = \frac{d\phi}{dz} \Rightarrow$
 $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - iA) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - iA) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times A$

Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times A = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix}$ of vector A (and they're equal!)
 $f(z) = \frac{d\phi}{dz} \Rightarrow$
 $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - iA) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - iA) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times A$

Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

Scalar *static potential lines* Φ =*const.* and vector *flux potential lines* A=*const.* define *DFL field-net.*

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative $\frac{d\phi^*}{dz^*}$ has 2D gradient $\nabla_{\Phi} = \begin{pmatrix} \frac{\partial\Phi}{\partial x} \\ \frac{\partial\Phi}{\partial y} \\ \frac{\partial\Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla_{\times A} = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix}$ of vector A (and they 're equal!) The half-n'-half result $\frac{d}{dz^*}\phi^* = \frac{d}{dz^*}(\Phi - iA) = \frac{1}{2}(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})(\Phi - iA) = \frac{1}{2}(\frac{\partial\Phi}{\partial x} + i\frac{\partial\Phi}{\partial y}) + \frac{1}{2}(\frac{\partialA}{\partial y} - i\frac{\partialA}{\partial x}) = \frac{1}{2}\nabla\Phi + \frac{1}{2}\nabla\times A$

Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

Scalar *static potential lines* Φ =*const.* and vector *flux potential lines* A=*const.* define *DFL field-net.*

The half-n'-half results are called Riemann-Cauchy Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \quad \text{is:} \quad \frac{\partial \text{Re}f(z)}{\partial x} = \quad \frac{\partial \text{Im}f(z)}{\partial y}$$
$$\frac{\partial \Phi}{\partial y} = -\frac{\partial A}{\partial x} \quad \text{is:} \quad \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x}$$

→ 4. Riemann-Cauchy conditions What's analytic? (...and what's <u>not</u>?)

Review (*z*,*z**) *to* (*x*,*y*) *transformation relations*

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right) f$$

$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^*} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z^*} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) f$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function** f(z) of z=x+iy: First, f(z) must <u>not</u> be a function of $z^*=x-iy$, that is: $\frac{df}{dz^*}=0$ This implies f(z) satisfies differential equations known as the $\frac{df}{dz^*}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)(f_x+if_y)=\frac{1}{2}\left(\frac{\partial f_x}{\partial x}-\frac{\partial f_y}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_y}{\partial x}+\frac{\partial f_x}{\partial y}\right)$ implies: $\frac{\partial f_x}{\partial x}=\frac{\partial f_y}{\partial y}$ and : $\frac{\partial f_y}{\partial x}=-\frac{\partial f_x}{\partial y}$ $\frac{df}{dz}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)(f_x+if_y)=\frac{1}{2}\left(\frac{\partial f_x}{\partial x}+\frac{\partial f_y}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_y}{\partial x}-\frac{\partial f_x}{\partial y}\right)=\frac{\partial f_x}{\partial x}+i\frac{\partial f_y}{\partial x}=\frac{\partial f_y}{\partial y}-i\frac{\partial f_x}{\partial y}=\frac{\partial}{\partial x}(f_x+if_y)=\frac{\partial}{\partial iy}(f_x+if_y)$ *Review* (*z*,*z**) *to* (*x*,*y*) *transformation relations*

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right) f$$

$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^*} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z^*} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) f$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function** f(z) of z=x+iy: First, f(z) must <u>not</u> be a function of $z^*=x-iy$, that is: $\frac{df}{dz^*}=0$ This implies f(z) satisfies differential equations known as the $\frac{df}{dz^*}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)(f_x+if_y)=\frac{1}{2}\left(\frac{\partial f_x}{\partial x}-\frac{\partial f_y}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_y}{\partial x}+\frac{\partial f_x}{\partial y}\right)$ implies: $\frac{\partial f_x}{\partial x}=\frac{\partial f_y}{\partial y}$ and : $\frac{\partial f_y}{\partial x}=-\frac{\partial f_x}{\partial y}$ $\frac{df}{dz}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)(f_x+if_y)=\frac{1}{2}\left(\frac{\partial f_x}{\partial x}+\frac{\partial f_y}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_y}{\partial x}-\frac{\partial f_x}{\partial y}\right)=\frac{\partial f_x}{\partial x}+i\frac{\partial f_y}{\partial x}=\frac{\partial f_y}{\partial y}-i\frac{\partial f_x}{\partial y}=\frac{\partial}{\partial x}(f_x+if_y)=\frac{\partial}{\partial iy}(f_x+if_y)$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function** $f(z^*)$ of $z^*=x-iy$: First, $f(z^*)$ must <u>not</u> be a function of z=x+iy, that is: $\frac{df}{dz} = 0$

This implies f(z*) satisfies differential equations we call Anti-Riemann-Cauchy conditions

$$\frac{df}{dz} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = implies : \frac{\partial f_x}{\partial x} = -\frac{\partial f_y}{\partial y} \quad and : \frac{\partial f_y}{\partial x} = \frac{\partial f_x}{\partial y}$$
$$\frac{df}{dz^*} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_x}{\partial y} \right) = \frac{\partial f_x}{\partial x} + i \frac{\partial f_y}{\partial x} = -\frac{\partial f_y}{\partial y} + i \frac{\partial f_x}{\partial y} = \frac{\partial}{\partial x} (f_x + i f_y) = -\frac{\partial}{\partial i y} (f_x + i f_y)$$

Example: Is f(x,y) = 2x + iy an analytic function of z=x+iy?

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

$$f(x,y) = 2x + i4y = 2(z+z^*)/2 + i4(-i(z-z^*)/2)$$

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2)$$
$$= z+z^* + (2z-2z^*)$$

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2)$$

= z+z^* + (2z-2z^*)
= 3z-z^*

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2)$$

= z+z^* + (2z-2z^*)
= 3z-z^*

A: NO! It's a function of $z \text{ and } z^*$ so not analytic for <u>either</u>.

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2)$$

= z+z^* + (2z-2z^*)
= 3z-z^*

A: *NO!* It's a function of z and z* so not analytic for <u>either</u>.

Example 2: Q: Is $r(x,y) = x^2 + y^2$ an analytic function of z=x+iy?

A: NO! $r(xy)=z^*z$ is a function of z and z^* so not analytic for <u>either</u>.

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2)$$

= z+z^* + (2z-2z^*)
= 3z-z^*

A: *NO!* It's a function of z and z* so not analytic for <u>either</u>.

Example 2: Q: Is $r(x,y) = x^2 + y^2$ an analytic function of z=x+iy?

A: NO! $r(xy)=z^*z$ is a function of z and z^* so not analytic for <u>either</u>.

Example 3: Q: Is $s(x,y) = x^2 - y^2 + 2ixy$ an analytic function of z = x + iy?

A: YES! $s(xy)=(x+iy)^2=z^2$ is analytic function of z. (Yay!)
4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2ⁿ-pole analysis Easy 2ⁿ-multipole field and potential expansion Easy stereo-projection visualization

9. Complex integrals f (z)dz count 2D "circulation" (**F**•dr) and "flux" (**F**xdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$ $\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z) dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[A(x_2, y_2) - A(x_1, y_1)]$ $\Delta \phi = \Delta \Phi + i \Delta A$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

9. Complex integrals f (z)dz count 2D "circulation" (**F**•dr) and "flux" (**F**xdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$ $\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z) dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[A(x_2, y_2) - A(x_1, y_1)]$

 $\Delta \phi = \Delta \Phi + i \Delta A$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

$$\int f(z) dz = \int \left(f^*(z^*) \right)^* dz = \int \left(f^*(z^*) \right)^* \left(dx + i \, dy \right) = \int \left(f_x^* + i \, f_y^* \right)^* \left(dx + i \, dy \right) = \int \left(f_x^* - i \, f_y^* \right) \left(dx + i \, dy \right)$$
$$= \int \left(f_x^* \, dx + f_y^* \, dy \right) + i \int \left(f_x^* \, dy - f_y^* \, dx \right)$$
$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \times d\mathbf{r} \cdot \hat{\mathbf{e}}_Z$$
$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$
$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{S} \quad \text{where:} \quad d\mathbf{S} = d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

9. Complex integrals f (z)dz count 2D "circulation" (**F**•dr) and "flux" (**F**xdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$ $\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z) dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[A(x_2, y_2) - A(x_1, y_1)]$ $\Delta \phi = \Delta \Phi + i \Delta A$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

$$\int f(z) dz = \int \left(f^*(z^*)\right)^* dz = \int \left(f^*(z^*)\right)^* (dx + i dy) = \int \left(f^*_x + i f^*_y\right)^* (dx + i dy) = \int \left(f^*_x - i f^*_y\right) (dx + i dy)$$

$$= \int \left(f^*_x dx + f^*_y dy\right) + i \int \left(f^*_x dy - f^*_y dx\right)$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \times d\mathbf{r} \cdot \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} \times \mathbf{F} \text{ or } \mathbf{F} \times \mathbf{F} \cdot d\mathbf{r} \times \mathbf{F} \text{ of } \mathbf{F} \times \mathbf{F} \cdot d\mathbf{r} \times \mathbf{F} \text{ or } \mathbf{F} \times \mathbf{F} \times \mathbf{F} \cdot d\mathbf{r} \times \mathbf{F} \text{ or } \mathbf{F} \times \mathbf{F} \times \mathbf{F} \times \mathbf{F} \cdot \mathbf{F} \cdot d\mathbf{r} \times \mathbf{F} \times \mathbf{F}$$

Here the scalar potential $\Phi = (x^2 - y^2)/2$ is stereo-plotted vs. (x,y)The $\Phi = (x^2 - y^2)/2 = const$. curves are topography lines The A = (xy) = const. curves are streamlines normal to topography lines

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)
 Easy 2D circulation and flux integrals
 ➤ Easy 2D curvilinear coordinate discovery
 Easy 2D monopole, dipole, and 2ⁿ-pole analysis
 Easy 2ⁿ-multipole field and potential expansion
 Easy stereo-projection visualization

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

Riemann-Cauchy Derivative Relations make coordinates orthogonal

$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x^2} (x^2 - y^2) \\ \frac{\partial}{\partial y^2} (x^2 - y^2) \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

The half-n'-half results assure

$$\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$

$$= -\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x} = 0$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

Riemann-Cauchy Derivative Relations make coordinates orthogonal

 $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x^2} (x^2 - y^2) \\ \frac{\partial}{\partial y^2} (x^2 - y^2) \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$ \mathbf{F} $\mathbf{F} = \mathbf{F}$ $\mathbf{F} = \mathbf{F}$ $\mathbf{F} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$ $= -\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x} = 0$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

Zero divergence requirement: $0 = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} = \frac{\partial}{\partial x} \frac{\partial \Phi}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \Phi}{\partial y} = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$ potential Φ obeys Laplace equation

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

$$\nabla \Phi = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x^2} (x^2 - y^2) \\ \frac{\partial}{\partial y^2} (x^2 - y^2) \\ \frac{\partial}{\partial y^2} (x^2 - y^2) \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$\mathbf{F} = -\frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$

$$\mathbf{\nabla} \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ -\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial \\$$

A. Riemann-Cauchy conditions What's analytic? (...and what's <u>not</u>?)
 Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2ⁿ-pole analysis Easy 2ⁿ-multipole field and potential expansion Easy stereo-projection visualization

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x+iy)$.

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x+iy)$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z)$$

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x+iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x+iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$

= $a\ln(r) + ia\theta$
(a) Unit Z-line-flux field $f(z)=1/z$

Lecture 12 Mon. 10.01 May end here

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + i\overline{a\theta}$$

(a) Unit Z-line-flux field f(z)=1/z

(b) Unit Z-line-vortex field f(z)=i/z

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + iA = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

A monopole field is the only power-law field whose integral (potential) depends on path of integration.

$$\Delta \phi = \oint f(z)dz = a \oint \frac{dz}{z} = a \oint_{\theta=0}^{\theta=2\pi N} \frac{d(Re^{i\theta})}{Re^{i\theta}} = a \oint_{\theta=0}^{\theta=2\pi N} \frac{d\theta}{d\theta} = a \int_{\theta=0}^{\theta=2\pi N} \frac{d\theta}{d\theta} = a \theta \Big|_{0}^{2\pi N} = 2a\pi iN$$

(b) Unit Z-line-vortex field f(z)=i/z

What Good Are Complex Exponentials? (contd.)

 $f(z) = (0.5 + i0.5)/z = e^{i\pi/4}/z\sqrt{2}$

A. Riemann-Cauchy conditions What's analytic? (...and what's <u>not</u>?)
 Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2ⁿ-pole analysis Easy 2ⁿ-multipole field and potential expansion Easy stereo-projection visualization

What Good Are Complex Exponentials? (2D monopole, dipole, and 2ⁿ-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}} \qquad \phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln(z - \frac{\Delta}{2})$$

So-called "physical dipole" has finite Δ (+)(-) separation

What Good Are Complex Exponentials? (2D monopole, dipole, and 2^{<i>n}-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}} \qquad \phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln \frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is *tiny* and is divided out we get a *point-dipole field* f^{2-pole} that is the *z*-derivative of f^{1-pole} .

$$f^{2-pole} = \frac{-a}{z^2} = \frac{df^{1-pole}}{dz} = \frac{d\phi^{2-pole}}{dz} \qquad \phi^{2-pole} = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$$

What Good Are Complex Exponentials? (2D monopole, dipole, and 2ⁿ-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}} \qquad \phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln \frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is *tiny* and is divided out we get a *point-dipole field f*^{2-pole} that is the *z*-derivative of *f*^{1-pole}.

What Good Are Complex Exponentials? (2D monopole, dipole, and 2ⁿ-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}} \qquad \phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln \frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is *tiny* and is divided out we get a *point-dipole field* f^{2-pole} that is the *z*-derivative of f^{1-pole} .

$$f^{2-pole} = \frac{-a}{z^2} = \frac{df^{1-pole}}{dz} = \frac{d\phi^{2-pole}}{dz} \qquad \qquad \phi^{2-pole} = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$$

A *point-dipole potential* ϕ^{2-pole} (whose *z*-derivative is f^{2-pole}) is a *z*-derivative of ϕ^{1-pole} .

$$\phi^{2-pole} = \frac{a}{z} = \frac{a}{x+iy} = \frac{a}{x+iy} \frac{x-iy}{x-iy} = \frac{ax}{x^2+y^2} + i\frac{-ay}{x^2+y^2} = \frac{a}{r}\cos\theta - i\frac{a}{r}\sin\theta$$
$$= \Phi^{2-pole} + i\mathbf{A}^{2-pole}$$

A *point-dipole potential* ϕ^{2-pole} (whose *z*-derivative is f^{2-pole}) is a *z*-derivative of ϕ^{1-pole} .

$$\phi^{2-pole} = \frac{a}{z} = \frac{a}{x+iy} = \frac{a}{x+iy} \frac{x-iy}{x-iy} = \frac{ax}{x^2+y^2} + i\frac{-ay}{x^2+y^2} = \frac{a}{r}\cos\theta - i\frac{a}{r}\sin\theta$$
$$= \Phi^{2-pole} + i\mathbf{A}^{2-pole}$$

2ⁿ-pole analysis (quadrupole:2²=4-pole, octapole:2³=8-pole,..., pole dancer,

What if we put a (-)copy of a 2-pole near its original?

Well, the result is *4-pole* or *quadrupole* field f^{4-pole} and potential ϕ^{4-pole} .

Each a *z*-derivative of f^{2-pole} and ϕ^{2-pole} .

$$f^{4-pole} = \frac{a}{z^3} = \frac{1}{2} \frac{df^{2-pole}}{dz} = \frac{d\phi^{4-pole}}{dz} \qquad \qquad \phi^{4-pole} = -\frac{a}{2z^2} = \frac{1}{2} \frac{d\phi^{2-pole}}{dz}$$

2ⁿ-pole analysis (quadrupole:2²=4-pole, octapole:2³=8-pole,..., pole dancer,

What if we put a (-)copy of a 2-pole near its original?

Well, the result is 4-pole or quadrupole field f^{4-pole} and potential ϕ^{4-pole} .

Each a *z*-derivative of f^{2-pole} and ϕ^{2-pole} .

A. Riemann-Cauchy conditions What's analytic? (...and what's not?)
 Easy 2D circulation and flux integrals
 Easy 2D curvilinear coordinate discovery
 Easy 2D monopole, dipole, and 2ⁿ-pole analysis
 Easy 2ⁿ-multipole field and potential expansion
 Easy stereo-projection visualization

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or *multipole expansion* of a given complex field function f(z) around z=0. $\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots \\
\dots 2^2 \text{-pole} \quad 2^1 \text{-pole} \quad 2^0 \text{-pole} \quad 2^1 \text{-pole} \quad 2^2 \text{-pole} \quad 2^3 \text{-pole} \quad 2^4 \text{-pole} \quad 2^5 \text{-pole} \quad 2^6 \text{-pole} \cdots \\
(quadrupole) \quad (dipole) \\
\text{at } z=0 \quad \text{at } z=0 \quad \text{at } z=0 \quad \text{at } z=\infty \quad \text{at } z=\infty$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m-pole. These are located at z=0 for m<0 and at $z=\infty$ for m>0.

 $\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + \frac{a_{-1} \ln z}{-1} + \frac{a_{0} z}{-1} + \frac{a_{0} z}{2} z^{2} + \frac{a_{2}}{2} z^{3} + \dots$

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or *multipole expansion* of a given complex field function f(z) around z=0.

 $\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$ $\dots 2^2 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^0 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^2 \text{-pole} \qquad 2^3 \text{-pole} \qquad 2^4 \text{-pole} \qquad 2^5 \text{-pole} \qquad 2^6 \text{-pole} \cdots$ $(auadrupole) \qquad (at z=0) \qquad (at z=0) \qquad (at z=0) \qquad (at z=0) \qquad (at z=\infty) \qquad$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m-pole. These are located at z=0 for m<0 and at $z=\infty$ for m>0.

 $\phi(z) = \dots \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$
(with $z = w^{-1}$)

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

 $\begin{array}{l} Laurent \ series \ {\rm or} \ multipole \ expansion \ {\rm of} \ {\rm a} \ {\rm given \ complex \ field \ function \ f(z) \ {\rm around \ } z=0.} \\ \hline \frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} \ + \ a_{-2}z^{-2} \ + \ a_{-1}z^{-1} \ + \ a_0 \ + \ a_1z \ + \ a_2z^2 \ + \ a_3z^3 \ + \ a_4z^4 \ + \ a_5z^5 \ + \dots \\ \hline \dots \ 2^2 \ {\rm pole} \ ({\rm audrupole}) \ {\rm at \ } z=0 \ {\rm at \ } z=0 \ {\rm at \ } z=\infty \ z=\infty \ {\rm at \ } z=\infty \ {\rm at \ } z=\infty \ {\rm$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a_{-1}}{\overline{z}}$ have potential term $a_{m-1}z^m/m$ of a 2^m -pole. These are located at z=0 for m<0 and at $z=\infty$ for m>0.

 $\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$

$$(with \ z \to w)$$

$$= \dots \frac{a_2}{3} z^{-3} + \frac{a_1}{2} z^{-2} + a_0 z^{-1} - a_{-1} \ln z + \frac{a_{-2}}{-1} z + \frac{a_{-3}}{-2} z^2 + \frac{a_{-4}}{-3} z^3 + \dots$$

$$(with \ w = z^{-1})$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

Of all 2^{*m*}-pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

Of all 2^{*m*}-pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

Of all 2^{*m*}-pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.
Of all 2^{*m*}-pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

(assume tiny circle around
$$z=a$$
)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_2 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_3 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_4 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_6 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_7 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_8$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*.

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz ,$$

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_2 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_3 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_4 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_6 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_7 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_8$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \ \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz$$

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_2 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_3 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_4 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_6 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_7 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_8$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_2 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_3 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_4 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_6 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_7 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_8$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a tiny circle around point-*a*.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_2 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_3 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_4 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_6 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_7 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_8$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

The f(a) result is called a *Cauchy integral*. Then repeated *a*-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general *Taylor-Laurent* power series expansion of function f(z) around point-*a*.

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_2 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_3 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_4 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_6 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_7 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_8$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

(assume tiny circle around
$$z=a$$
)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$\int f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated *a*-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general *Taylor-Laurent* power series expansion of function f(z) around point-*a*.

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n \qquad \text{where : } a_n = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz \left(= \frac{1}{n!} \frac{d^n f(a)}{da^n} \quad \text{for : } n \ge 0 \right)$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

(assume tiny circle around
$$z=a$$
)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$\int f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated *a*-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general *Taylor-Laurent* power series expansion of function f(z) around point-*a*.

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n \qquad \text{where : } a_n = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - a)^{n+1}} dz \left(= \frac{1}{n!} \frac{d^n f(a)}{da^n} \quad \text{for : } n \ge 0 \right)$$

 $(quadrupole)_{\emptyset} \quad (dipole)_{\emptyset} \quad (monopole) \quad (dipole)_{\infty} \quad (quadrupole)_{\infty} \quad (octapole)_{\infty} \quad (hexadecapole)_{\infty} \quad \dots \\ f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_{0} + a_{1}z + a_{2}z^{2} + a_{3}z^{3} + a_{4}z^{4} + a_{5}z^{5} + \dots \\ monopole \quad moment \quad m$

