Lecture 12 Tue. 10.03.2017

Complex Variables, Series, and Field Coordinates I.

(Ch. 10 of Unit 1)

- 1. The Story of e (A Tale of Great \$Interest\$)
 - How good are those power series?

Taylor-Maclaurin series, imaginary interest, and complex exponentials

Lecture 14 Tue. 10.1.

- 2. What good are complex exponentials?
 - Easy trig
 - Easy 2D vector analysis
 - Easy oscillator phase analysis
 - Easy rotation and "dot" or "cross" products
- 3. Easy 2D vector calculus
 - Easy 2D vector derivatives
 - Easy 2D source-free field theory
 - Easy 2D vector field-potential theory
- 4. Riemann-Cauchy relations (What's analytic? What's not?)
 - Easy 2D curvilinear coordinate discovery Lect. 12

 Easy 2D circulation and flux integrals ends here
 - Easy 2D circulation and flux integrals ends here Easy 2D monopole, dipole, and 2ⁿ-pole analysis
 - Easy 2n-multipole field and potential expansion
 - Easy stereo-projection visualization
 - Cauchy integrals, Laurent-Maclaurin series

- 1. Complex numbers provide "automatic trigonometry"
- 2. Complex numbers add like vectors.
- 3. Complex exponentials Ae^{-iωt} track position and velocity using Phasor Clock.
- 4. Complex products provide 2D rotation operations.
- 5. Complex products provide 2D "dot"(•) and "cross"(x) products.
- 6. Complex derivative contains "divergence" $(\nabla \cdot \mathbf{F})$ and "curl" $(\nabla \mathbf{x} \mathbf{F})$ of 2D vector field
- 7. Invent source-free 2D vector fields $[\nabla \cdot \mathbf{F} = 0 \text{ and } \nabla \mathbf{x} \mathbf{F} = 0]$
- 8. Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials The half-n'-half results: (Riemann-Cauchy Derivative Relations)
- 9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
- 10. Complex integrals ∫ f(z)dz count 2D "circulation"(∫F•dr) and "flux"(∫Fxdr)
- 11. Complex integrals define 2D monopole fields and potentials
- 12. Complex derivatives give 2D dipole fields Lecture 15 Thur 10.1
- 13. More derivatives give 2D 2N-pole fields...
- 14. ...and 2^N-pole multipole expansions of fields and potentials...
- 15. ...and Laurent Series...
- 16. Mapping and non-analytic source analysis.

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time t later they would pay you $p(t) = (1+r \cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time t later they would pay you $p(t) = (1+r \cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r = 1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time t later they would pay you $p(t) = (1+r \cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r = 1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1^{st} trimester and then use that to figure the 2^{nd} trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1 = \frac{64}{27} = 2.37$$

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time t later they would pay you $p(t)=(1+r\cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r = 1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r\cdot\frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1^{st} trimester and then use that to figure the 2^{nd} trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1 = \frac{64}{27} = 2.37$$

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time t later they would pay you $p(t)=(1+r\cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r = 1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r\cdot\frac{t}{3})p(0)$ at the 1/3rd-period $\frac{t}{3}$ or 1st trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1 = \frac{64}{27} = 2.37$$

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time t later they would pay you $p(t)=(1+r\cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r = 1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r\cdot\frac{t}{3})p(0)$ at the 1/3rd-period $\frac{t}{3}$ or 1st trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1 = \frac{64}{27} = 2.37$$

$$p^{\frac{1}{1}}(t) = (1 + r \cdot \frac{t}{1})^{1} p(0) = \left(\frac{2}{1}\right)^{1} \cdot 1 = \frac{2}{1} = 2.00$$

$$+25\phi$$

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})^{2} p(0) = \left(\frac{3}{2}\right)^{2} \cdot 1 = \frac{9}{4} = 2.25$$

$$+12\phi$$

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})^{3} p(0) = \left(\frac{4}{3}\right)^{3} \cdot 1 = \frac{64}{27} = 2.37$$

$$+7\phi$$

$$p^{\frac{1}{4}}(t) = (1 + r \cdot \frac{t}{4})^{4} p(0) = \left(\frac{5}{4}\right)^{4} \cdot 1 = \frac{625}{256} = 2.44$$

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time t later they would pay you $p(t)=(1+r\cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r = 1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1st trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3}) \cdot (1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1 = \frac{64}{27} = 2.37$$

$$p^{\frac{1}{1}}(t) = (1 + r \cdot \frac{t}{1})^{1} p(0) = \left(\frac{2}{1}\right)^{1} \cdot 1 = \frac{2}{1} = 2.00$$

$$+25 \phi$$

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})^{2} p(0) = \left(\frac{3}{2}\right)^{2} \cdot 1 = \frac{9}{4} = 2.25$$

$$+12 \phi$$

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})^{3} p(0) = \left(\frac{4}{3}\right)^{3} \cdot 1 = \frac{64}{27} = 2.37$$

$$+7 \phi$$

$$p^{\frac{1}{4}}(t) = (1 + r \cdot \frac{t}{4})^{4} p(0) = \left(\frac{5}{4}\right)^{4} \cdot 1 = \frac{625}{256} = 2.44$$

Monthly:
$$p^{\frac{1}{12}}(t) = (1 + r \cdot \frac{t}{12})^{12} p(0) = \left(\frac{13}{12}\right)^{12} \cdot 1 = 2.613$$

Weekly:
$$p^{\frac{1}{52}}(t) = (1 + r \cdot \frac{t}{52})^{52} p(0) = \left(\frac{53}{52}\right)^{52} \cdot 1 = 2.693$$

Daily:
$$p^{\frac{1}{365}}(t) = (1 + r \cdot \frac{t}{365})^{365} p(0) = \left(\frac{366}{365}\right)^{365} \cdot 1 = 2.7145$$

Hrly:
$$p^{\frac{1}{8760}}(t) = (1 + r \cdot \frac{t}{8760})^{8760} p(0) = \left(\frac{8761}{8760}\right)^{8760} \cdot 1 = 2.7181$$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{} 2.718281828459.$$

$$p^{1/m}(1) = 2.718281828459.$$

$$p^{1/m}(1) = 2.718281828459.$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.718281828459.$$

$$p^{1/m}(1) = 2.718281828459.$$

$$p^{1/m}(1) = 2.718281828459.$$

$$p^{1/m}(1) = 2.718281828459.$$

$$p^{1/m}(1) = 2.718281849$$

$$p^{1/m}(1) = 2.7182818149$$

$$p^{1/m}(1) = 2.7182818149$$

$$p^{1/m}(1) = 2.7182818149$$

$$p^{1/m}(1) = 2.7182818149$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{} \underbrace{2.718281828459.} p^{1/m}(1) = 2.718281828459.$$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{} \underbrace{2.718281828459.} p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182804693$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182818149$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

$$p^{1/m}(1) = 2.7182818271$$

Can improve computational efficiency using binomial theorem:

$$(x+y)^n = x^n + n \cdot x^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^2 + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^3 + \dots + n \cdot xy^{n-1} + y^n$$

$$(1+\frac{r \cdot t}{n})^n = 1 + n \cdot \left(\frac{r \cdot t}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^2 + \frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^3 + \dots \qquad \text{Define: Factorials(!):}$$

$$0! = 1 = 1!, \quad 2! = 1 \cdot 2, \quad 3! = 1 \cdot 2 \cdot 3, \dots$$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{} 2.718281828459.$$

$$p^{1/m}(1) = 2.7181459268$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182682372$$
for $m = 1,000$
for $m = 100,000$
for $m = 1,000,000$

$$p^{1/m}(1) = 2.7182804693$$
for $m = 1,000,000$

$$p^{1/m}(1) = 2.7182816925$$
for $m = 1,000,000$

$$p^{1/m}(1) = 2.7182818149$$
for $m = 100,000,000$

$$p^{1/m}(1) = 2.7182818149$$

$$p^{1/m}(1) = 2.7182818271$$
for $m = 1,000,000,000$
for $m = 1,000,000,000$
for $m = 1,000,000,000$

Can improve computational efficiency using binomial theorem:

$$(x+y)^{n} = x^{n} + n \cdot x^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^{3} + \dots + n \cdot xy^{n-1} + y^{n}$$

$$(1 + \frac{r \cdot t}{n})^{n} = 1 + n \cdot \left(\frac{r \cdot t}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2} + \frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3} + \dots \quad \text{Define: Factorials(!):}$$

$$(1 + \frac{r \cdot t}{n})^{n} = 1 + n \cdot \left(\frac{r \cdot t}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2} + \frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3} + \dots \quad \text{Define: Factorials(!):}$$

$$0! = 1 = 1!, \quad 2! = 1 \cdot 2, \quad 3! = 1 \cdot 23, \dots$$

$$As \quad n \to \infty \quad let :$$

$$n(n-1) \to n^{2},$$

$$n(n-1)(n-2) \to n^{3}, etc.$$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{2.718281828459}.$$

$$p^{1/m}(1) = 2.7181459268$$

$$p^{1/m}(1) = 2.7181459268$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182682372$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182816925$$

$$p^{1/m}(1) = 2.7182818149$$

Can improve computational efficiency using binomial theorem:

$$(x+y)^n = x^n + n \cdot x^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^2 + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^3 + \dots + n \cdot xy^{n-1} + y^n$$

$$(1+\frac{r\cdot t}{n})^n = 1 + n \cdot \left(\frac{r\cdot t}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{r\cdot t}{n}\right)^2 + \frac{n(n-1)(n-2)}{3!}\left(\frac{r\cdot t}{n}\right)^3 + \dots \quad \text{Define: Factorials(!):}$$

$$e^{r\cdot t} = 1 + r \cdot t + \frac{1}{2!}\left(r \cdot t\right)^2 + \frac{1}{3!}\left(r \cdot t\right)^3 + \dots = \sum_{p=0}^{o} \frac{\left(r \cdot t\right)^p}{p!}$$

$$Precision order: \quad (o=1)-e-series = 2.00000 = 1 + 1 \qquad n(n-1)(n-2) \to n^3, etc.$$

$$(o=2)-e-series = 2.50000 = 1 + 1 + 1/2$$

$$(o=3)-e-series = 2.66667 = 1 + 1 + 1/2 + 1/6$$

$$(o=4)-e-series = 2.70833 = 1 + 1 + 1/2 + 1/6 + 1/24$$

$$(o=5)-e-series = 2.71805 = 1 + 1 + 1/2 + 1/6 + 1/24 + 1/120$$

$$(o=6)-e-series = 2.71825$$

$$(o=8)-e-series = 2.71828$$
About 12 summed quotients for 6-figure precision (A lot better!)

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set
$$t=0$$
 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is *velocity* v(t).

Set
$$t=0$$
 to get $c_1 = v(0)$.

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + 1$$

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

Set t=0 to get $c_1 = v(0)$.

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + 1$$

Change of velocity v(t) is acceleration a(t).

Set t=0 to get $c_2 = \frac{1}{2}a(0)$.

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot3c_3t + 3\cdot4c_4t^2 + 4\cdot5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \dots$$

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is *velocity* v(t).

Set
$$t=0$$
 to get $c_1 = v(0)$.

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + 1$$

Change of velocity v(t) is acceleration a(t).

Set
$$t=0$$
 to get $c_2 = \frac{1}{2}a(0)$.

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot3c_3t + 3\cdot4c_4t^2 + 4\cdot5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \dots$$

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)

Set
$$t=0$$
 to get $c_3 = \frac{1}{3!}j(0)$.

$$j(t) = \frac{d}{dt}a(t) = 0 + 2\cdot3c_3 + 2\cdot3\cdot4c_4t + 3\cdot4\cdot5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \dots$$

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

Set t=0 to get $c_1 = v(0)$.

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + 1$$

Change of velocity v(t) is acceleration a(t).

Set t=0 to get $c_2 = \frac{1}{2}a(0)$.

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot3c_3t + 3\cdot4c_4t^2 + 4\cdot5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \dots$$

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)

Set t=0 to get $c_3 = \frac{1}{3!}j(0)$.

$$j(t) = \frac{d}{dt}a(t) = 0 + 2\cdot3c_3 + 2\cdot3\cdot4c_4t + 3\cdot4\cdot5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \dots$$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!)

Set t=0 to get $c_4 = \frac{1}{4!} i(0)$.

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

Set t=0 to get $c_1 = v(0)$.

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + 1$$

Change of velocity v(t) is acceleration a(t).

Set t=0 to get $c_2 = \frac{1}{2}a(0)$.

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot3c_3t + 3\cdot4c_4t^2 + 4\cdot5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \dots$$

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)

Set t=0 to get $c_3 = \frac{1}{3!}j(0)$.

$$j(t) = \frac{d}{dt}a(t) = 0 + 2\cdot3c_3 + 2\cdot3\cdot4c_4t + 3\cdot4\cdot5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \dots + n(n-1)(n-2)c_nt^{n-$$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!)

Set t=0 to get $c_4 = \frac{1}{4!}i(0)$.

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \dots$$

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is *velocity* v(t).

Set t=0 to get $c_1 = v(0)$.

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + 1$$

Change of velocity v(t) is acceleration a(t).

Set t=0 to get $c_2 = \frac{1}{2}a(0)$.

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot3c_3t + 3\cdot4c_4t^2 + 4\cdot5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \dots$$

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)

Set t=0 to get $c_3 = \frac{1}{3!}j(0)$.

$$j(t) = \frac{d}{dt}a(t) = 0 + 2\cdot3c_3 + 2\cdot3\cdot4c_4t + 3\cdot4\cdot5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \dots + n(n-1)(n-2)c_nt^{n-$$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!)

Set t=0 to get $c_4 = \frac{1}{4!}i(0)$.

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \dots$$

Góod old UP I formula!

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

Set t=0 to get $c_1 = v(0)$.

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + 1$$

Change of velocity v(t) is acceleration a(t).

Set t=0 to get $c_2 = \frac{1}{2}a(0)$.

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot3c_3t + 3\cdot4c_4t^2 + 4\cdot5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \dots$$

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)

Set t=0 to get $c_3 = \frac{1}{3!} i(0)$.

$$j(t) = \frac{d}{dt}a(t) = 0 + 2\cdot3c_3 + 2\cdot3\cdot4c_4t + 3\cdot4\cdot5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \dots$$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!)

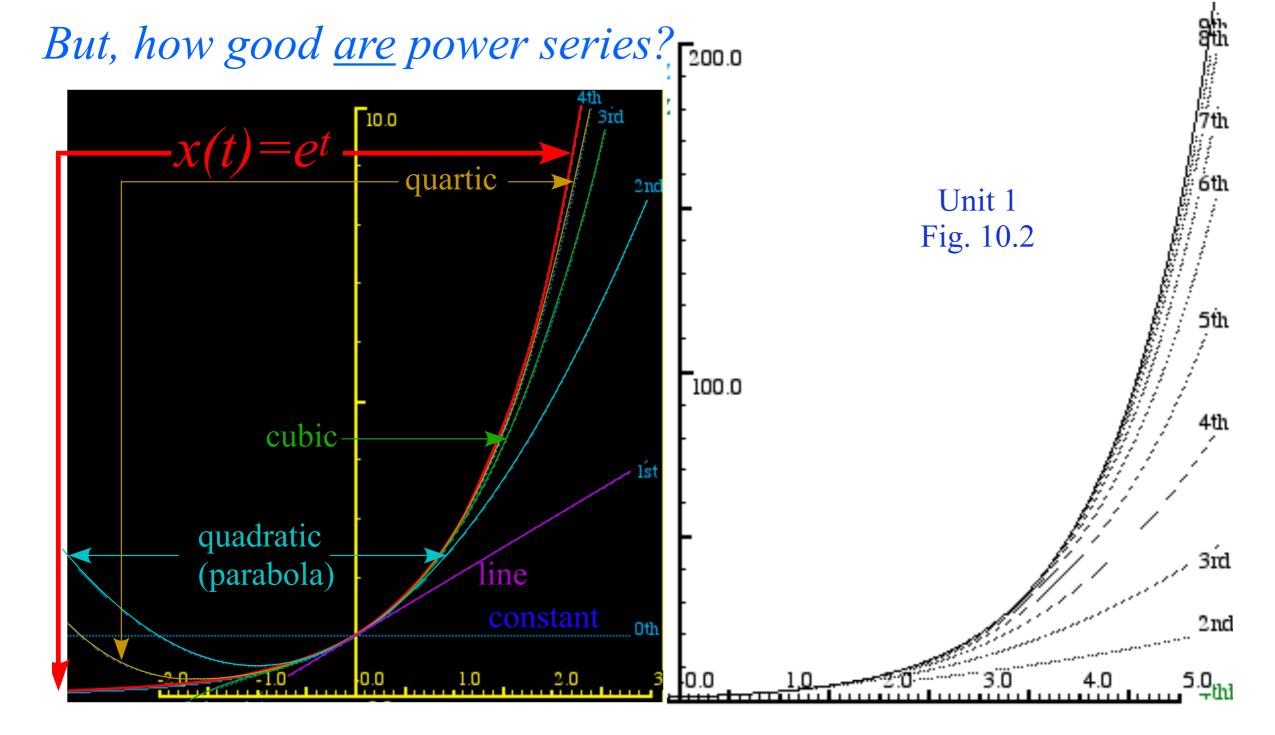
Set t=0 to get $c_4 = \frac{1}{4!} i(0)$.

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \dots$$

Setting all initial values to $l = x(0) = v(0) = a(0) = j(0) = i(0) = \dots$

gives exponential:
$$e^t = 1 + t + \frac{1}{2}, t^2 + \frac{1}{3}, t^3 + \frac{1}{4}, t^4 + \frac{1}{5}, t^5 + \dots + \frac{1}{n}, t^n + \frac{1}{n}$$



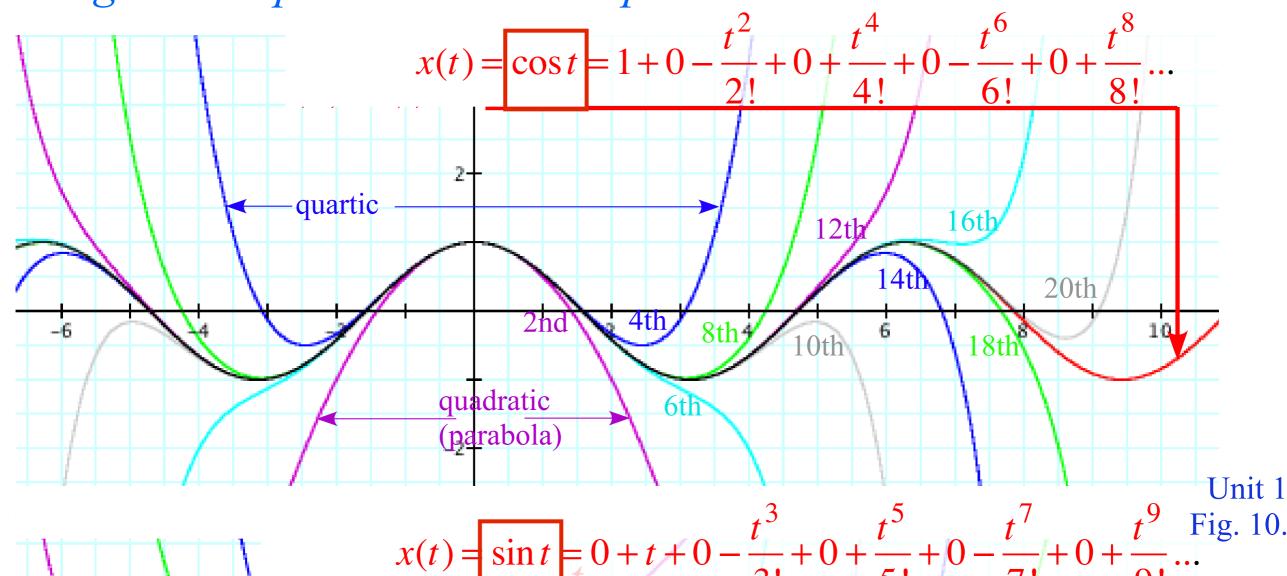
Gives Maclaurin (or Taylor) power series

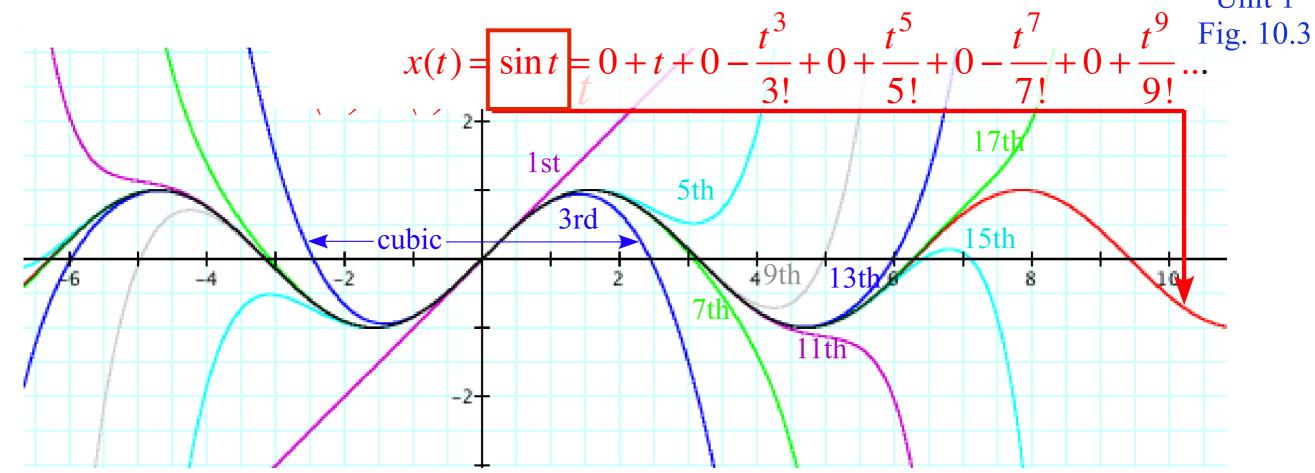
$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \dots + \frac{1}{n!}x^{(n)}t^{n}$$

Setting all initial values to $1 = x(0) = v(0) = a(0) = j(0) = i(0) = \dots$

gives exponential:
$$e^t = 1 + t + \frac{1}{2!} t^2 + \frac{1}{3!} t^3 + \frac{1}{4!} t^4 + \frac{1}{5!} t^5 + \dots + \frac{1}{n!} t^n + \dots$$

How good are power series? Depends...





How good are those power series? Taylor-Maclaurin series,

imaginary interest, and complex exponentials

Suppose the fancy bankers really went bonkers and made interest rate r an *imaginary number* $r=i\theta$. Imaginary number $i=\sqrt{-1}$ powers have *repeat-after-4-pattern*: $i^0=1$, $i^1=i$, $i^2=-1$, $i^3=-i$, $i^4=1$, etc...

$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \dots$$
 (From exponential series)
$$= 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \dots$$
 ($i = \sqrt{-1}$ imples: $i^1 = i, i^2 = -1, i^3 = -i, i^4 = +1, i^5 = i, \dots$)
$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + \left(i\theta - i\frac{\theta^3}{3!} + i\frac{\theta^5}{5!} - \dots\right)$$

Suppose the fancy bankers really went bonkers and made interest rate r an *imaginary number* $r=i\theta$.

Imaginary number $i = \sqrt{-1}$ powers have repeat-after-4-pattern: $i^0 = 1$, $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, etc...

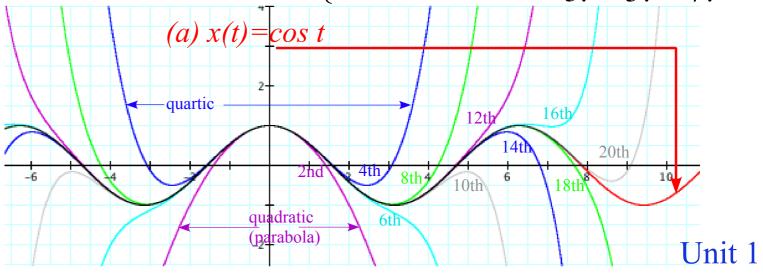
$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \dots$$
 (From exponential series)
$$= 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \dots$$
 (i = $\sqrt{-1}$ imples: $i^1 = i, i^2 = -1, i^3 = -i, i^4 = +1, i^5 = i, \dots$)

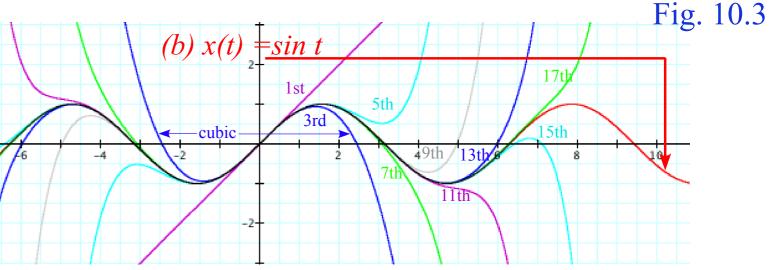
$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + \left(i\theta - i\frac{\theta^3}{3!} + i\frac{\theta^5}{5!} - \dots\right)$$
 To match series for
$$\begin{cases} cosine : cos \ x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \\ sine : sin \ x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \end{cases}$$

$$\begin{cases} cosine : cos x = 1 - \frac{x}{2!} + \frac{x}{4!} - \frac{x}{6!} + \cdots \\ sine : sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \end{cases}$$

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Euler-DeMoivre Theorem





Suppose the fancy bankers really went bonkers and made interest rate r an *imaginary number* $r=i\theta$.

Imaginary number $i = \sqrt{-1}$ powers have repeat-after-4-pattern: $i^0 = 1$, $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, etc...

$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \dots$$
 (From exponential series)
$$= 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \dots$$
 (i = $\sqrt{-1}$ imples: $i^1 = i, i^2 = -1, i^3 = -i, i^4 = +1, i^5 = i, \dots$)

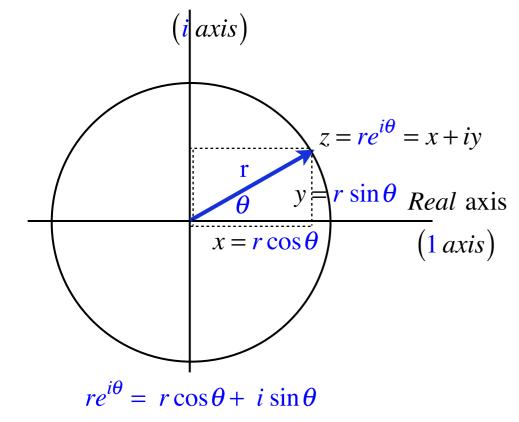
$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + \left(i\theta - i\frac{\theta^3}{3!} + i\frac{\theta^5}{5!} - \dots\right)$$

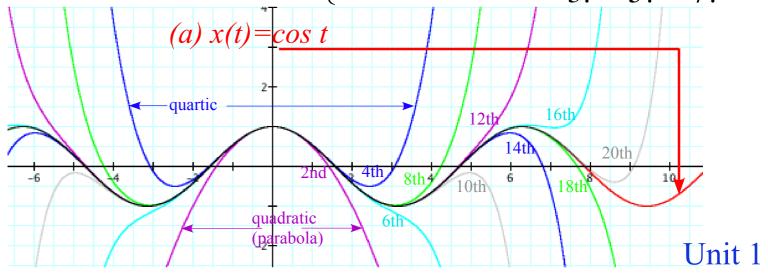
$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + \left(i\theta - i\frac{\theta^3}{3!} + i\frac{\theta^5}{5!} - \dots\right)$$
 To match series for
$$\begin{cases} cosine : \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \\ sine : \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \end{cases}$$

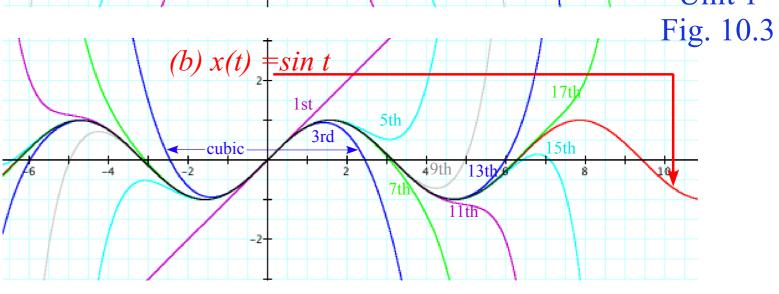
$$e^{i\theta} = \cos\theta + i\sin\theta$$

Euler-DeMoivre Theorem

Imaginary axis







2. What Good Are Complex Exponentials?

Easy trig

Easy 2D vector analysis

Easy oscillator phase analysis

Easy rotation and "dot" or "cross" products

What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is $\cos(a+b)$ or $\sin(a+b)$? Just factor $e^{i(a+b)} = e^{ia}e^{ib}...$

$$e^{i(a+b)} = e^{ia} \qquad e^{ib}$$

$$\cos(a+b) + i\sin(a+b) = (\cos a + i\sin a) (\cos b + i\sin b)$$

$$\cos(a+b) + i\sin(a+b) = [\cos a\cos b - \sin a\sin b] + i[\sin a\cos b + \cos a\sin b]$$

What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

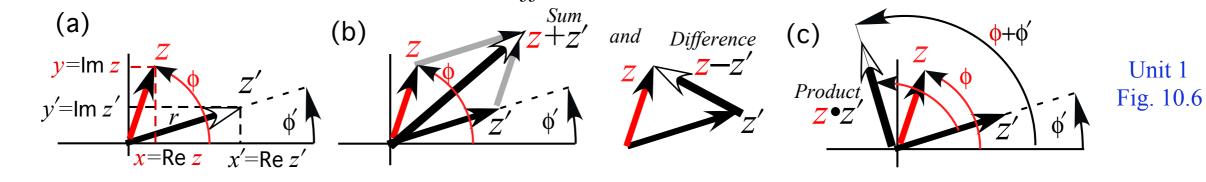
Can't remember is $\cos(a+b)$ or $\sin(a+b)$? Just factor $e^{i(a+b)} = e^{ia}e^{ib}...$

$$e^{i(a+b)} = e^{ia} \qquad e^{ib}$$

$$\cos(a+b) + i\sin(a+b) = (\cos a + i\sin a) (\cos b + i\sin b)$$

$$\cos(a+b) + i\sin(a+b) = [\cos a\cos b - \sin a\sin b] + i[\sin a\cos b + \cos a\sin b]$$

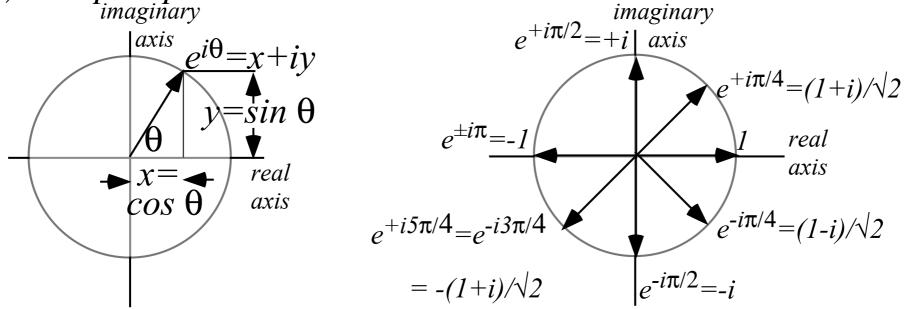
2. Complex numbers add like vectors. $z_{Sum} = z + z' = (x + iy) + (x' + iy') = (x + x') + i(y + y')$ $z_{diff} = z - z' = (x + iy) - (x' + iy') = (x - x') + i(y - y')$



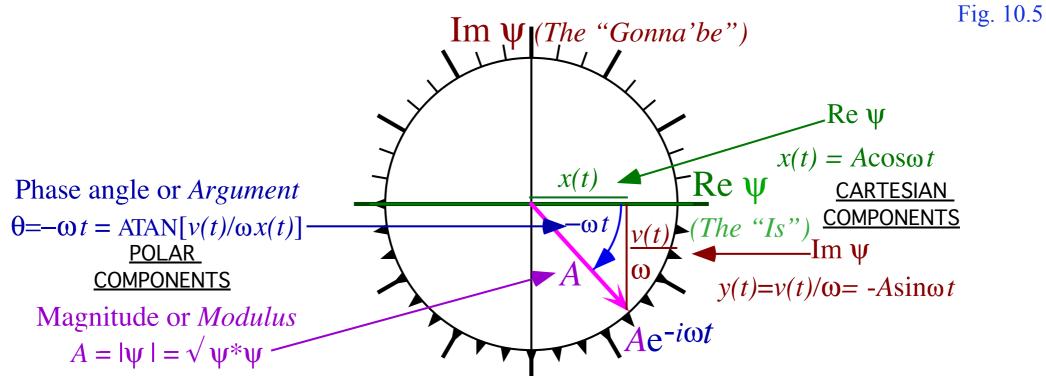
$$|z_{SUM}| = \sqrt{(z+z')^*(z+z')} = \sqrt{(re^{i\phi} + r'e^{i\phi'})^*(re^{i\phi} + r'e^{i\phi'})} = \sqrt{(re^{-i\phi} + r'e^{-i\phi'})(re^{i\phi} + r'e^{i\phi'})}$$

$$= \sqrt{r^2 + r'^2 + rr'(e^{i(\phi-\phi')} + e^{-i(\phi-\phi')})} = \sqrt{r^2 + r'^2 + 2rr'\cos(\phi - \phi')} \qquad (quick \ derivation \ of \ Cosine \ Law)$$

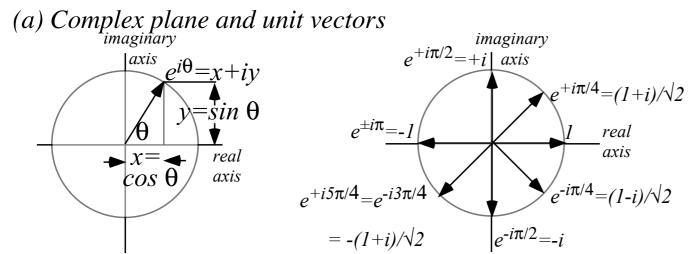
- 3.Complex exponentials Ae-iot track position and velocity using Phasor Clock.
 - (a) Complex plane and unit vectors



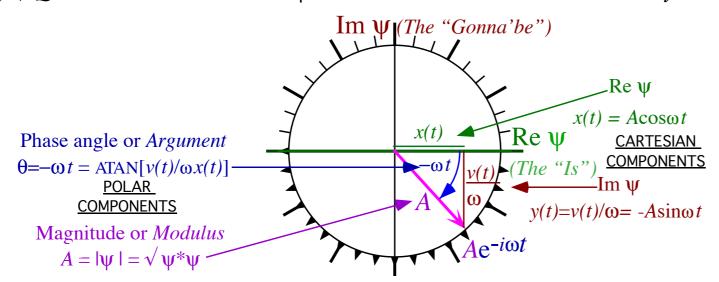
(b) Quantum Phasor Clock $\psi = Ae^{-i\omega t} = A\cos\omega t - i A\sin\omega t = x + iy$ Unit 1



3.Complex exponentials Ae-iot track position and velocity using Phasor Clock.



(b) Quantum Phasor Clock $\psi = Ae^{-i\omega t} = A\cos\omega t - i A\sin\omega t = x + iy$



Unit 1 Fig. 10.5

Some Rect-vs-Polar relations worth remembering

Cartesian
$$\begin{cases} \psi_x = \operatorname{Re} \psi(t) = x(t) = A \cos \omega t = \frac{\psi + \psi^*}{2} \\ \psi_y = \operatorname{Im} \psi(t) = \frac{v(t)}{\omega} = -A \sin \omega t = \frac{\psi - \psi^*}{2i} \end{cases}$$

$$\psi = re^{+i\theta} = re^{-i\omega t} = r(\cos \omega t - i \sin \omega t)$$

$$\psi^* = re^{-i\theta} = re^{+i\omega t} = r(\cos \omega t + i \sin \omega t)$$

$$r = A = |\psi| = \sqrt{\psi_x^2 + \psi_y^2} = \sqrt{\psi^* \psi}$$

$$form \begin{cases} \theta = -\omega t = \arctan(\psi_y/\psi_x) \\ \cos \theta = \frac{1}{2}(e^{+i\theta} + e^{-i\theta}) \end{cases}$$

$$Re\psi = \frac{\psi + \psi^*}{2}$$

$$\sin \theta = \frac{1}{2i}(e^{+i\theta} - e^{-i\theta})$$

$$Im\psi = \frac{\psi - \psi^*}{2i}$$

2. What Good Are Complex Exponentials?

Easy trig

Easy 2D vector analysis

Easy oscillator phase analysis

Easy rotation and "dot" or "cross" products

4. Complex products provide 2D rotation operations.

$$e^{i\phi} \cdot z = (\cos\phi + i\sin\phi) \cdot (x + iy) = x \cos\phi - y \sin\phi + i (x \sin\phi + y \cos\phi)$$

$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x \cos\phi - y \sin\phi) \hat{\mathbf{e}}_x + (x \sin\phi + y \cos\phi) \hat{\mathbf{e}}_y$$

$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \cos\phi - y \sin\phi \\ x \sin\phi + y \cos\phi \end{pmatrix}$$

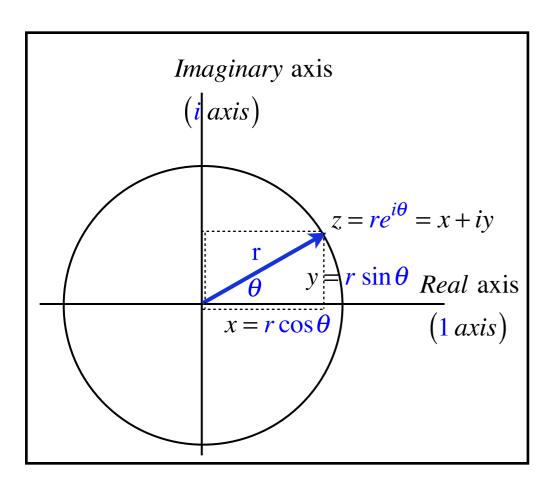
4. Complex products provide 2D rotation operations.

$$e^{i\phi} \cdot z = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i (x\sin\phi + y\cos\phi)$$

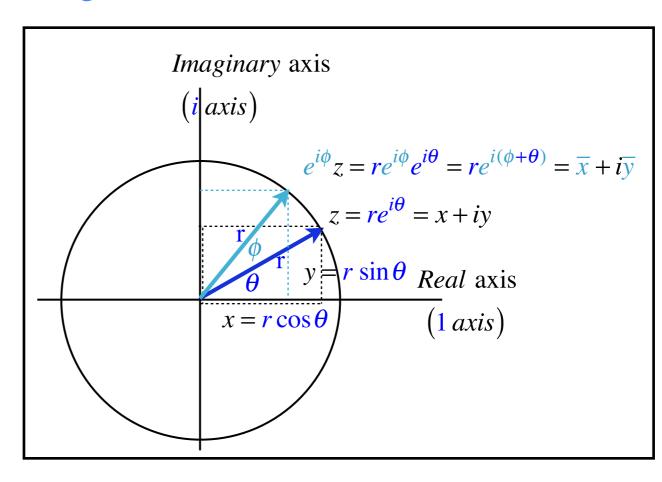
$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi) \hat{\mathbf{e}}_x + (x\sin\phi + y\cos\phi) \hat{\mathbf{e}}_y$$

$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi \\ x\sin\phi + y\cos\phi \end{pmatrix}$$

 $e^{i\phi}$ acts on this: $z = re^{i\theta}$



to give this: $e^{i\phi} e^{i\phi} z = re^{i\phi} e^{i\theta}$



4. Complex products provide 2D rotation operations.

$$e^{i\phi \cdot z} = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i(x\sin\phi + y\cos\phi)$$

$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi)\mathbf{\hat{e}}_x + (x\sin\phi + y\cos\phi)\mathbf{\hat{e}}_y$$

$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi \\ x\sin\phi + y\cos\phi \end{pmatrix}$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A = A_x + iA_y$ and $B = B_x + iB_y$ and their "star" (*)-product A *B.

$$A * B = (A_x + iA_y)^* (B_x + iB_y) = (A_x - iA_y)(B_x + iB_y)$$

= $(A_x B_x + A_y B_y) + i(A_x B_y - A_y B_x) = \mathbf{A} \cdot \mathbf{B} + i \mid \mathbf{A} \times \mathbf{B} \mid_{Z \perp (x,y)}$

Real part is scalar or "dot" (•) product A•B.

Imaginary part is vector or "cross"(\times) product, but just the Z-component <u>normal</u> to xy-plane.

Rewrite A*B in polar form.

$$A * B = (|A|e^{i\theta_A})^* (|B|e^{i\theta_B}) = |A|e^{-i\theta_A} |B|e^{i\theta_B} = |A||B|e^{i(\theta_B - \theta_A)}$$
$$= |A||B|\cos(\theta_B - \theta_A) + i|A||B|\sin(\theta_B - \theta_A) = \mathbf{A} \cdot \mathbf{B} + i|\mathbf{A} \times \mathbf{B}|_{Z\perp(x,y)}$$

4. Complex products provide 2D rotation operations.

$$e^{i\phi \cdot z} = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i(x\sin\phi + y\cos\phi)$$

$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi)\mathbf{\hat{e}}_x + (x\sin\phi + y\cos\phi)\mathbf{\hat{e}}_y$$

$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi \\ x\sin\phi + y\cos\phi \end{pmatrix}$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A = A_x + iA_y$ and $B = B_x + iB_y$ and their "star" (*)-product A *B.

$$A * B = (A_x + iA_y)^* (B_x + iB_y) = (A_x - iA_y)(B_x + iB_y)$$

= $(A_x B_x + A_y B_y) + i(A_x B_y - A_y B_x) = \mathbf{A} \cdot \mathbf{B} + i | \mathbf{A} \times \mathbf{B} |_{Z \perp (x,y)}$

Real part is scalar or "dot" (•) product A•B.

Imaginary part is vector or "cross"(\times) product, but just the Z-component <u>normal</u> to xy-plane.

Rewrite A*B in polar form.

$$A * B = (|A|e^{i\theta_A})^* (|B|e^{i\theta_B}) = |A|e^{-i\theta_A} |B|e^{i\theta_B} = |A||B|e^{i(\theta_B - \theta_A)}$$

$$= |A||B|\cos(\theta_B - \theta_A) + i|A||B|\sin(\theta_B - \theta_A) = \mathbf{A} \cdot \mathbf{B} + i|\mathbf{A} \times \mathbf{B}|_{Z\perp(x,y)}$$

$$\mathbf{A} \cdot \mathbf{B} = |A||B|\cos(\theta_B - \theta_A)$$

$$= |A|\cos\theta_A |B|\cos\theta_B + |A|\sin\theta_A |B|\sin\theta_B$$

$$= |A|\cos\theta_A |B|\sin\theta_B - |A|\sin\theta_A |B|\cos\theta_B$$

$$= |A|xB_x + A_yB_y$$

$$= |A_xB_x - A_yB_x$$

What Good are complex variables?

Easy 2D vector calculus

Easy 2D vector derivatives

Easy 2D source-free field theory

Easy 2D vector field-potential theory

6. Complex derivative contains "divergence" $(\nabla \cdot \mathbf{F})$ and "curl" $(\nabla \mathbf{x} \mathbf{F})$ of 2D vector field

Relation of (z,z^*) to (x=Rez,y=Imz) defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2}(z + z^*) \qquad \underset{dz}{df} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \qquad \underset{dz}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y$$

6. Complex derivative contains "divergence" $(\nabla \cdot \mathbf{F})$ and "curl" $(\nabla \mathbf{x} \mathbf{F})$ of 2D vector field

Relation of (z,z^*) to (x=Rez,y=Imz) defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y} + \frac{i$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} (f_x + if_y) = \frac{1}{2} (\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})(f_x + if_y) = \frac{1}{2} (\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y}) + \frac{i}{2} (\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}) = \frac{1}{2} \nabla \cdot \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x,y)}$$

6. Complex derivative contains "divergence" $(\nabla \cdot \mathbf{F})$ and "curl" $(\nabla \times \mathbf{F})$ of 2D vector field

Relation of (z,z^*) to (x=Rez,y=Imz) defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2}(z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z}\frac{\partial f}{\partial x} + \frac{\partial y}{\partial z}\frac{\partial f}{\partial y} = \frac{1}{2}\frac{\partial f}{\partial x} - \frac{i}{2}\frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2}\frac{\partial}{\partial x} - \frac{i}{2}\frac{\partial}{\partial y}$$

$$z^* = x - iy \qquad y = \frac{1}{2}i(z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z}\frac{\partial f}{\partial x} + \frac{\partial y}{\partial z}\frac{\partial f}{\partial y} = \frac{1}{2}\frac{\partial f}{\partial x} + \frac{i}{2}\frac{\partial f}{\partial y} \qquad \frac{d}{dz^*} = \frac{1}{2}\frac{\partial}{\partial x} + \frac{i}{2}\frac{\partial}{\partial y}$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} (f_x + if_y) = \frac{1}{2} (\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})(f_x + if_y) = \frac{1}{2} (\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y}) + \frac{i}{2} (\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}) = \frac{1}{2} \nabla \cdot \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x,y)}$$

7. Invent source-free 2D vector fields [$\nabla \cdot \mathbf{F} = 0$ and $\nabla \mathbf{x} \mathbf{F} = 0$]

 $\frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y}$

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all i's to -i) to give $f^*(z^*)$ for which $\frac{df}{dz}^* = 0$

6. Complex derivative contains "divergence" $(\nabla \cdot \mathbf{F})$ and "curl" $(\nabla \times \mathbf{F})$ of 2D vector field

Relation of (z,z^*) to (x=Rez,y=Imz) defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2}(z + z^*)$$

$$\frac{df}{dz} = \frac{\partial x}{\partial z}\frac{\partial f}{\partial x} + \frac{\partial y}{\partial z}\frac{\partial f}{\partial y} = \frac{1}{2}\frac{\partial f}{\partial x} - \frac{i}{2}\frac{\partial f}{\partial y}$$

$$z^* = x - iy$$

$$y = \frac{1}{2}i(z - z^*)$$

$$\frac{df}{dz} = \frac{\partial x}{\partial z}\frac{\partial f}{\partial x} + \frac{\partial y}{\partial z}\frac{\partial f}{\partial y} = \frac{1}{2}\frac{\partial f}{\partial x} + \frac{i}{2}\frac{\partial f}{\partial y}$$

$$\frac{d}{dz} = \frac{1}{2}\frac{\partial f}{\partial x} + \frac{i}{2}\frac{\partial f}{\partial y}$$

$$\frac{d}{dz} = \frac{1}{2}\frac{\partial f}{\partial x} + \frac{i}{2}\frac{\partial f}{\partial y}$$

$$\frac{d}{dz} = \frac{1}{2}\frac{\partial f}{\partial x} + \frac{i}{2}\frac{\partial f}{\partial y}$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} (f_x + if_y) = \frac{1}{2} (\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})(f_x + if_y) = \frac{1}{2} (\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y}) + \frac{i}{2} (\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}) = \frac{1}{2} \nabla \cdot \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x, y)}$$

7. Invent source-free 2D vector fields [$\nabla \cdot \mathbf{F} = 0$ and $\nabla \mathbf{x} \mathbf{F} = 0$]

 $\frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y}$

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all i's to -i) to give $f^*(z^*)$ for which $\frac{df}{dz}^* = 0$

For example: if $f(z)=a\cdot z$ then $f^*(z^*)=a\cdot z^*=a(x-iy)$ is not function of z so it has zero z-derivative.

 $\mathbf{F}=(F_x,F_y)=(f_x^*,f_y^*)=(a\cdot x,-a\cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F}=0$ and has zero curl: $|\nabla \times \mathbf{F}|=0$.

$$\nabla \bullet \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} = \frac{\partial (ax)}{\partial x} + \frac{\partial F(-ay)}{\partial y} = 0$$

$$\nabla \times \mathbf{F}|_{Z\perp(x,y)} = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (-ay)}{\partial x} - \frac{\partial F(ax)}{\partial y} = 0$$

$$A \ DFL \ \text{field } \mathbf{F} \ (Divergence-Free-Laminar)$$

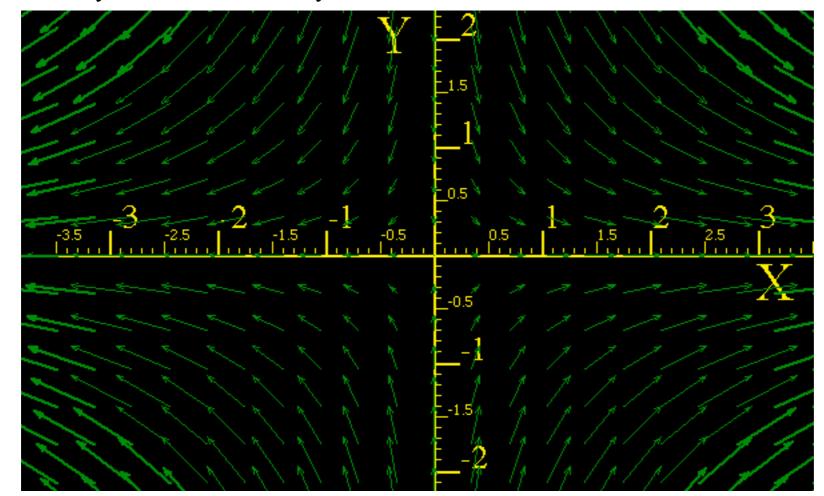
7. Invent source-free 2D vector fields $[\nabla \cdot \mathbf{F} = 0 \text{ and } \nabla \mathbf{x} \mathbf{F} = 0]$

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all i's to -i) to give $f^*(z^*)$ for which

For example: if $f(z)=a\cdot z$ then $f^*(z^*)=a\cdot z^*=a(x-iy)$ is not function of z so it has zero z-derivative.

 $\mathbf{F}=(F_x,F_y)=(f_x^*,f_y^*)=(a\cdot x,-a\cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F}=0$ and has zero curl: $|\nabla \times \mathbf{F}|=0$.

$$\nabla \bullet \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} = \frac{\partial (ax)}{\partial x} + \frac{\partial F(-ay)}{\partial y} = 0 \qquad |\nabla \times \mathbf{F}|_{Z \perp (x,y)} = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (-ay)}{\partial x} - \frac{\partial F(ax)}{\partial y} = 0$$



 $\mathbf{F} = (f^*_{x}, f^*_{y}) = (a \cdot x, -a \cdot y)$ is a divergence-free laminar (DFL) field.

precursor to
Unit 1
Fig. 10.7

What Good are complex variables?

Easy 2D vector calculus

Easy 2D vector derivatives

Easy 2D source-free field theory

Easy 2D vector field-potential theory

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a scalar potential field Φ or a curl of a vector potential field **A**. $\mathbf{F} = \nabla \Phi$ $\mathbf{F} = \nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving DFL field F.

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a scalar potential field Φ or a curl of a vector potential field **A**. $\mathbf{F} = \nabla \Phi$ $\mathbf{F} = \nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts.

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field $\mathbf{\Phi}$ or a curl of a vector potential field \mathbf{A} .

$$\mathbf{F} = \nabla \mathbf{\Phi}$$
 $\mathbf{F} = \nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts.

$$f(z) = \frac{d\phi}{dz}$$
 \Rightarrow $\phi =$ $+i$ $A = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^2$

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A} .

$$\mathbf{F} = \nabla \mathbf{\Phi}$$
 $\mathbf{F} = \nabla \times \mathbf{A}$

A *complex potential* $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts.

$$f(z) = \frac{d\phi}{dz} \implies \phi = \underbrace{\Phi}_{=\frac{1}{2}} + i \underbrace{A}_{=\frac{1}{2}} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^2 = \frac{1}{2} a(x + iy)^2$$

$$= \underbrace{\frac{1}{2} a(x^2 - y^2)}_{=\frac{1}{2}} + i \underbrace{axy}_{=\frac{1}{2}}$$

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field $\mathbf{\Phi}$ or a curl of a vector potential field \mathbf{A} .

$$\mathbf{F} = \nabla \mathbf{\Phi}$$
 $\mathbf{F} = \nabla \times \mathbf{A}$

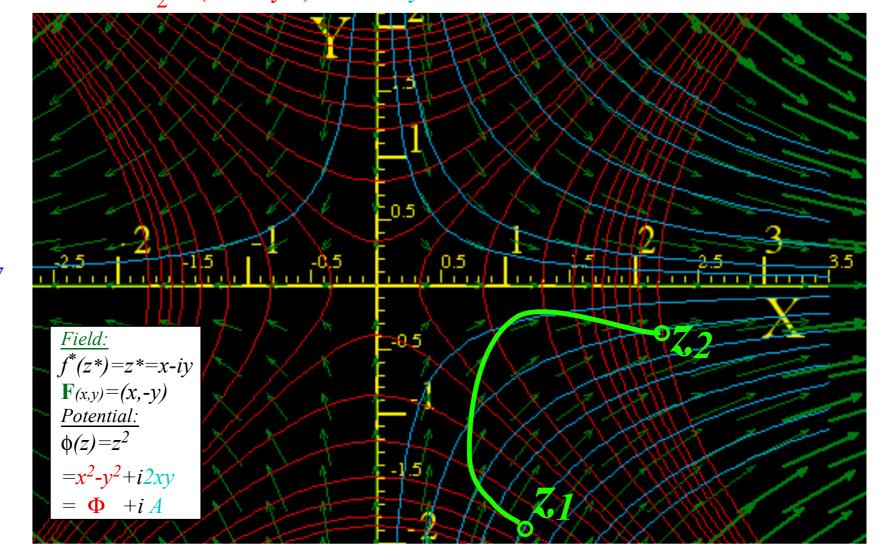
A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + iA$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = A$) parts.

$$f(z) = \frac{d\phi}{dz} \implies \phi = \underbrace{\Phi}_{=\frac{1}{2}} + i \underbrace{A}_{=\frac{1}{2}} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^2 = \frac{1}{2} a(x + iy)^2$$

$$= \underbrace{\frac{1}{2} a(x^2 - y^2)}_{=\frac{1}{2}} + i \underbrace{axy}_{=\frac{1}{2}}$$



Unit 1 Fig. 10.7

8. Complex potential ϕ contains "scalar" ($\mathbf{F} = \nabla \Phi$) and "vector" ($\mathbf{F} = \nabla x \mathbf{A}$) potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A} .

$$\mathbf{F} = \nabla \mathbf{\Phi}$$
 $\mathbf{F} = \nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts.

$$f(z) = \frac{d\phi}{dz} \implies \phi = \underbrace{\Phi}_{=\frac{1}{2}} + i \underbrace{A}_{=\frac{1}{2}} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^2 = \frac{1}{2} a(x+iy)^2$$

$$= \underbrace{\frac{1}{2} a(x^2 - y^2)}_{=\frac{1}{2}} + i \underbrace{axy}_{=\frac{1}{2}}$$

BONUS!
Get a free
coordinate
system!

The (Φ, A) grid is a GCC coordinate system*:

$$q^{1} = \Phi = (x^{2}-y^{2})/2 = const.$$

$$q^{2} = A = (xy) = const.$$

*Actually it's OCC.

Unit 1 Fig. 10.7

Field:

 $f^*(z^*) = z^* = x - iy$

 $\mathbf{F}(x,y)=(x,-y)$

 $\frac{Potential:}{\phi(z)=z^2}$

What Good are complex variables?

Easy 2D vector calculus

Easy 2D vector derivatives

Easy 2D source-free field theory

Easy 2D vector field-potential theory

The half-n'-half results: (Riemann-Cauchy Derivative Relations)

8. (contd.) Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix}$ of vector \mathbf{A} (and they're equal!)
$$f(z) = \frac{d\phi}{dz} \Rightarrow \frac{d}{dz^*} \Phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})(\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial\Phi}{\partial x} + i\frac{\partial\Phi}{\partial y}) + \frac{1}{2} (\frac{\partial\mathbf{A}}{\partial y} - i\frac{\partial\mathbf{A}}{\partial x}) = \frac{1}{2} \nabla\Phi + \frac{1}{2} \nabla \times \mathbf{A}$$

$$\frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y}$$

$$\frac{d}{dz^*} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial x}$$

8. (contd.) Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla_{\Phi} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla_{A} = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix}$ of vector \mathbf{A} (and they're equal!)
$$\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})(\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla_{\Phi} + \frac{1}{2} \nabla_{A} + \frac{1}{2} \nabla_{A}$$

Note, mathematician definition of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

8. (contd.) Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla_{\Phi} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix}$ of vector \mathbf{A} (and they're equal!)
$$\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})(\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial \mathbf{A}}{\partial y} - i\frac{\partial \mathbf{A}}{\partial x}) = \frac{1}{2} \nabla_{\Phi} + \frac{1}{2} \nabla_{\Phi} \times \mathbf{A}$$

Note, mathematician definition of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

8. (contd.) Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla_{\Phi} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix}$ of vector \mathbf{A} (and they're equal!)
$$\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})(\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial \mathbf{A}}{\partial y} - i\frac{\partial \mathbf{A}}{\partial x}) = \frac{1}{2} \nabla_{\Phi} + \frac{1}{2} \nabla_{\Phi} \times \mathbf{A}$$

Note, mathematician definition of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

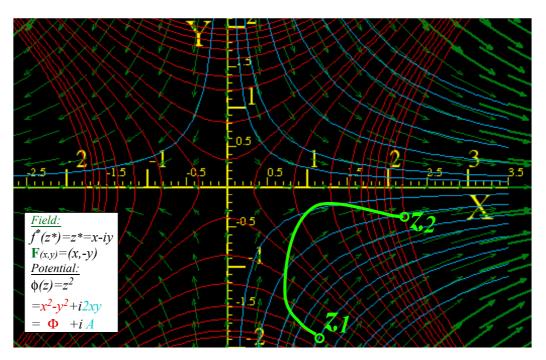
Given
$$\phi$$
:
$$\phi = \Phi + i A$$

$$= \frac{1}{2} a(x^2 - y^2) + i axy$$

$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial A}{\partial y^2} (x^2 - y^2) \\ \frac{\partial A}{\partial y^2} (x^2 - y^2) \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial A}{\partial y} axy \\ -\frac{\partial A}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

Scalar static potential lines Φ =const. and vector flux potential lines \mathbf{A} =const. define DFL field-net.

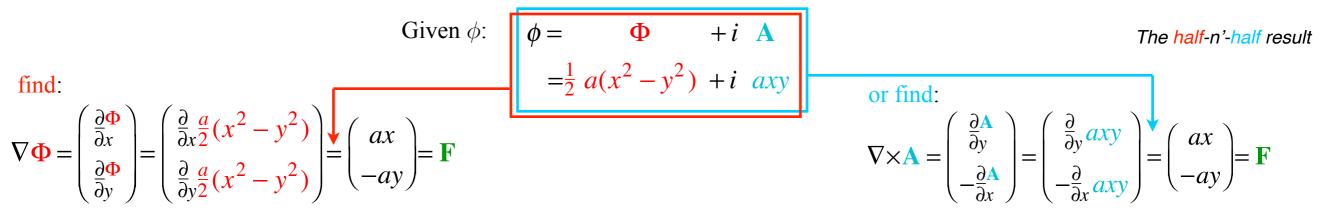


8. (contd.) Complex potential ϕ contains "scalar"($\mathbf{F} = \nabla \Phi$) and "vector"($\mathbf{F} = \nabla x \mathbf{A}$) potentials ...and either one (or half-n'-half!) works just as well.

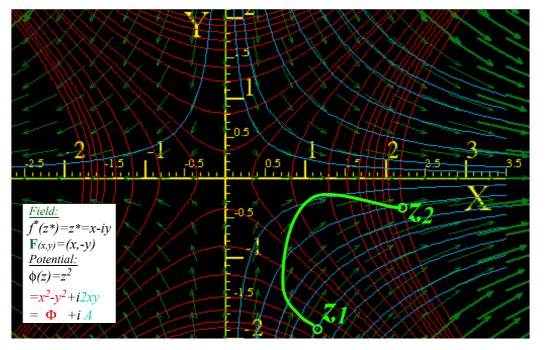
Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix}$ of vector \mathbf{A} (and they're equal!)

The half-n'-half result
$$\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial \mathbf{A}}{\partial y} - i\frac{\partial \mathbf{A}}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times \mathbf{A}$$

Note, mathematician definition of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$



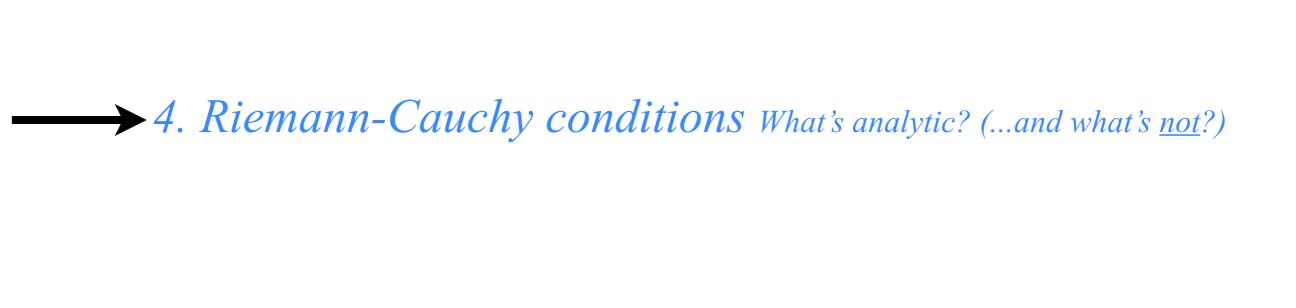
Scalar static potential lines Φ =const. and vector flux potential lines \mathbf{A} =const. define DFL field-net.



The half-n'-half results are called Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial \mathbf{A}}{\partial y} \quad \text{is:} \quad \frac{\partial \mathbf{Re}f(z)}{\partial x} = \quad \frac{\partial \mathbf{Im}f(z)}{\partial y}$$
$$\frac{\partial \Phi}{\partial y} = -\frac{\partial \mathbf{A}}{\partial x} \quad \text{is:} \quad \frac{\partial \mathbf{Re}f(z)}{\partial y} = -\frac{\partial \mathbf{Im}f(z)}{\partial x}$$



Review (z,z^*) to (x,y) transformation relations

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) f$$

$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^*} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z^*} \frac{\partial f}{\partial y} = \frac{1}{2i} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function f(z)** of z = x + iy:

First, f(z) must <u>not</u> be a function of $z^*=x-iy$, that is: $\frac{df}{dz^*}=0$

This implies f(z) satisfies differential equations known as the Riemann-Cauchy conditions

$$\frac{df}{dz^*} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_x}{\partial y} \right) implies : \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) = \frac{\partial f_y}{\partial x} = -\frac{\partial f_x}{\partial y}$$

$$\frac{df}{dz} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = \frac{\partial f_x}{\partial x} + i \frac{\partial f_y}{\partial x} = \frac{\partial f_y}{\partial y} - i \frac{\partial f_x}{\partial y} = \frac{\partial}{\partial x} (f_x + i f_y) = \frac{\partial}{\partial i y} (f_x + i f_y)$$

Review (z,z^*) to (x,y) transformation relations

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) f$$

$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^*} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z^*} \frac{\partial f}{\partial y} = \frac{1}{2i} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function f(z)** of z = x + iy:

First, f(z) must <u>not</u> be a function of $z^*=x-iy$, that is: $\frac{df}{dz^*}=0$

This implies f(z) satisfies differential equations known as the Riemann-Cauchy conditions

$$\frac{df}{dz^*} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_x}{\partial y} \right) implies : \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) = \frac{\partial f_y}{\partial x} = -\frac{\partial f_y}{\partial y}$$
 and
$$\frac{\partial f_y}{\partial x} = -\frac{\partial f_x}{\partial y}$$

$$\frac{df}{dz} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = \frac{\partial f_x}{\partial x} + i \frac{\partial f_y}{\partial x} = \frac{\partial f_y}{\partial y} - i \frac{\partial f_x}{\partial y} = \frac{\partial}{\partial x} (f_x + i f_y) = \frac{\partial}{\partial i y} (f_x + i f_y)$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function f(z^*)** of $z^* = x - iy$:

First, $f(z^*)$ must <u>not</u> be a function of z=x+iy, that is: $\frac{df}{dz}=0$

This implies f(z*) satisfies differential equations we call Anti-Riemann-Cauchy conditions

$$\frac{df}{dz} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = implies : \frac{\partial f_x}{\partial x} = -\frac{\partial f_y}{\partial y} \quad and : \frac{\partial f_y}{\partial x} = \frac{\partial f_x}{\partial y}$$

$$\frac{df}{dz^*} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_x}{\partial y} \right) = \frac{\partial f_x}{\partial x} + i \frac{\partial f_y}{\partial x} = -\frac{\partial f_y}{\partial y} + i \frac{\partial f_x}{\partial y} = \frac{\partial}{\partial x} (f_x + i f_y) = -\frac{\partial}{\partial i y} (f_x + i f_y)$$

Example: Is f(x,y) = 2x + iy an analytic function of z=x+iy?

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

$$f(x,y) = 2x + i4y = 2 (z+z*)/2 + i4(-i(z-z*)/2)$$

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

$$f(x,y) = 2x + i4y = 2 (z+z*)/2 + i4(-i(z-z*)/2)$$

= z+z* + (2z-2z*)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

$$f(x,y) = 2x + i4y = 2 \frac{(z+z^*)}{2} + i4(-i(z-z^*)/2)$$

$$= z+z^* + (2z-2z^*)$$

$$= 3z-z^*$$

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 \frac{(z+z^*)}{2} + i4(-i(z-z^*)/2)$$

$$= z+z^* + (2z-2z^*)$$

$$= 3z-z^*$$

A: NO! It's a function of z and z* so not analytic for either.

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 \frac{(z+z^*)}{2} + i4(-i(z-z^*)/2)$$

$$= z+z^* + (2z-2z^*)$$

$$= 3z-z^*$$

A: NO! It's a function of z and z^* so not analytic for either.

Example 2: Q: Is $r(x,y) = x^2 + y^2$ an analytic function of z=x+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions:
$$z = x + iy$$
 and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 \frac{(z+z^*)}{2} + i4(-i(z-z^*)/2)$$

$$= z+z^* + (2z-2z^*)$$

$$= 3z-z^*$$

A: NO! It's a function of z and z^* so not analytic for either.

Example 2: Q: Is $r(x,y) = x^2 + y^2$ an analytic function of z=x+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.

Example 3: Q: Is $s(x,y) = x^2-y^2 + 2ixy$ an analytic function of z=x+iy?

A: YES! $s(xy)=(x+iy)^2=z^2$ is analytic function of z. (Yay!)

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery

Easy 2D monopole, dipole, and 2ⁿ-pole analysis

Easy 2ⁿ-multipole field and potential expansion

Easy stereo-projection visualization

9. Complex integrals ∫ f(z)dz count 2D "circulation"(∫F•dr) and "flux"(∫Fxdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$

$$\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z)dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[A(x_2, y_2) - A(x_1, y_1)]$$

$$\Delta \phi = \Delta \Phi + i \Delta A$$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

9. Complex integrals ∫ f(z)dz count 2D "circulation"(∫F•dr) and "flux"(∫Fxdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$

$$\Delta \phi = \phi(z_{2}) - \phi(z_{1}) = \int_{z_{1}}^{z_{2}} f(z)dz = \Phi(x_{2}, y_{2}) - \Phi(x_{1}, y_{1}) + i[\mathbf{A}(x_{2}, y_{2}) - \mathbf{A}(x_{1}, y_{1})]$$

$$\Delta \phi = \Delta \Phi + i \Delta \mathbf{A}$$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

$$\int f(z)dz = \int (f^*(z^*))^* dz = \int (f^*(z^*))^* (dx + i dy) = \int (f_x^* + i f_y^*)^* (dx + i dy) = \int (f_x^* - i f_y^*) (dx + i dy)$$

$$= \int (f_x^* dx + f_y^* dy) + i \int (f_x^* dy - f_y^* dx)$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \times d\mathbf{r} \cdot \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{S} \quad \text{where:} \quad d\mathbf{S} = d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

9. Complex integrals ∫ f(z)dz count 2D "circulation"(∫F•dr) and "flux"(∫Fxdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$

$$\Delta \phi = \phi(z_{2}) - \phi(z_{1}) = \int_{z_{1}}^{z_{2}} f(z)dz = \Phi(x_{2}, y_{2}) - \Phi(x_{1}, y_{1}) + i[\mathbf{A}(x_{2}, y_{2}) - \mathbf{A}(x_{1}, y_{1})]$$

$$\Delta \phi = \Delta \Phi + i \Delta \mathbf{A}$$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

$$\int f(z)dz = \int (f^*(z^*))^* dz = \int (f^*(z^*))^* (dx + i dy) = \int (f_x^* + i f_y^*)^* (dx + i dy) = \int (f_x^* - i f_y^*) (dx + i dy)$$

$$= \int (f_x^* dx + f_y^* dy) + i \int (f_x^* dy - f_y^* dx)$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \times d\mathbf{r} \cdot \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{S} \quad \text{where:} \quad d\mathbf{S} = d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$d\mathbf{S} = d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

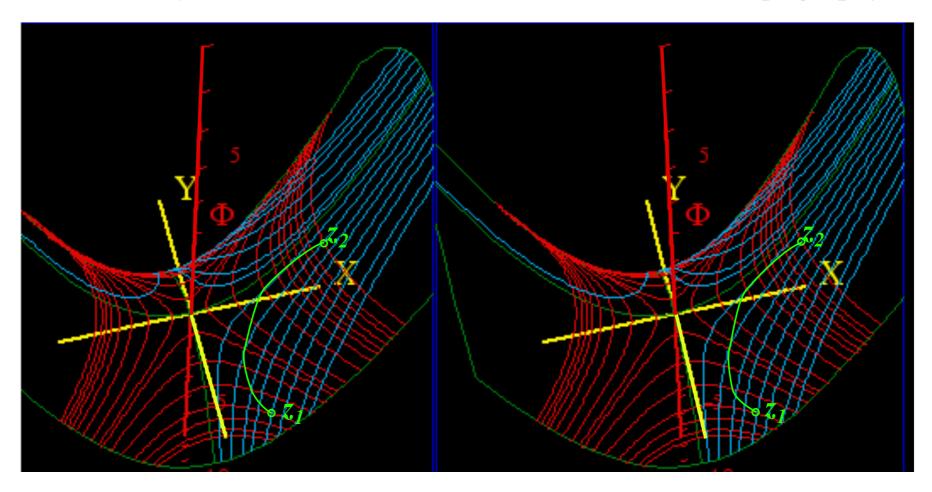
$$d\mathbf{S} = d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$d\mathbf{S} = d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

Real part $\int_1^2 \mathbf{F} \cdot d\mathbf{r} = \Delta \Phi$ sums \mathbf{F} projections *along* path $d\mathbf{r}$ that is, *circulation* on path to get $\Delta \Phi$.

Imaginary part $\int_{1}^{2} \mathbf{F} \cdot d\mathbf{S} = \Delta \mathbf{A}$ sums \mathbf{F} projection *across* path $d\mathbf{r}$ that is, *flux* thru surface elements $d\mathbf{S} = d\mathbf{r} \times \mathbf{e}_{\mathbf{Z}}$ normal to $d\mathbf{r}$ to get $\Delta \mathbf{A}$.

Here the scalar potential $\Phi=(x^2-y^2)/2$ is stereo-plotted vs. (x,y)The $\Phi=(x^2-y^2)/2=const.$ curves are topography lines The A=(xy)=const. curves are streamlines normal to topography lines



4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
 ➤ Easy 2D curvilinear coordinate discovery
 Easy 2D monopole, dipole, and 2ⁿ-pole analysis
 Easy 2ⁿ-multipole field and potential expansion
 Easy stereo-projection visualization

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, A) grid is a GCC coordinate system*:

$$q^{1} = \Phi = (x^{2}-y^{2})/2 = const.$$

$$q^{2} = A = (xy) = const.$$

*Actually it's OCC.

Field:

$$f'(z^*) = z^* = x - iy$$

 $F(x,y) = (x,-y)$
Potential:
 $\phi(z) = z^2$
 $= x^2 - y^2 + i2xy$
 $= \Phi + iA$

$$Kajobian = \begin{pmatrix} \frac{\partial q^{1}}{\partial x} & \frac{\partial q^{1}}{\partial y} \\ \frac{\partial q^{2}}{\partial x} & \frac{\partial q^{2}}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y} \end{pmatrix} = \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \leftarrow \mathbf{E}^{\Phi}$$

$$Jacobian = \begin{pmatrix} \frac{\partial x}{\partial q^{1}} & \frac{\partial x}{\partial q^{2}} \\ \frac{\partial y}{\partial q^{1}} & \frac{\partial y}{\partial q^{2}} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial \Phi} & \frac{\partial x}{\partial A} \\ \frac{\partial y}{\partial \Phi} & \frac{\partial y}{\partial A} \end{pmatrix} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$$

$$Metric tensor = \begin{pmatrix} g_{\Phi\Phi} & g_{\Phi A} \\ g_{A\Phi} & g_{AA} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A} \end{pmatrix} = \begin{pmatrix} r^{2} & 0 \\ 0 & r^{2} \end{pmatrix} \text{ where: } r^{2} = x^{2} + y^{2}$$

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, A) grid is a GCC coordinate system*:

$$q^{1} = \Phi = (x^{2}-y^{2})/2 = const.$$

$$q^{2} = A = (xy) = const.$$

*Actually it's OCC.

Field:
$$f^*(z^*) = z^* = x - iy$$

$$F(x,y) = (x,-y)$$
Potential:
$$\phi(z) = z^2$$

$$= x^2 - y^2 + i2xy$$

$$= \Phi + iA$$

$$Metric tensor = \begin{pmatrix} g_{\Phi\Phi} & g_{\Phi A} \\ g_{A\Phi} & g_{AA} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A} \end{pmatrix} = \begin{pmatrix} r^{2} & 0 \\ 0 & r^{2} \end{pmatrix} \text{ where: } r^{2} = x^{2} + y^{2}$$

Riemann-Cauchy Derivative Relations make coordinates orthogonal

$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial \Phi}{\partial x} & axy \\ \frac{\partial \Phi}{\partial y} & axy \\ \frac{\partial \Phi}{\partial y} & axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$\mathbf{F} \qquad \mathbf{F} \qquad \mathbf{$$

$$\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$
$$= -\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x} = 0$$

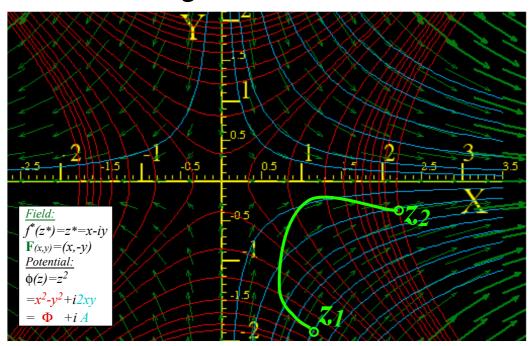
$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{I}$$

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, A) grid is a GCC coordinate system*:

$$q^{1} = \Phi = (x^{2} - y^{2})/2 = const.$$

$$q^2 = \mathbf{A} = (xy) = const.$$



$$Metric tensor = \begin{pmatrix} g_{\Phi\Phi} & g_{\Phi A} \\ g_{A\Phi} & g_{AA} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A} \end{pmatrix} = \begin{pmatrix} r^{2} & 0 \\ 0 & r^{2} \end{pmatrix} \text{ where: } r^{2} = x^{2} + y^{2}$$

Riemann-Cauchy Derivative Relations make coordinates orthogonal

$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} \frac{a}{2} (x^2 - y^2) \\ \frac{\partial}{\partial y} \frac{a}{2} (x^2 - y^2) \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$\mathbf{F}$$

$$\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$
$$= -\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x} = 0$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{I}$$

Zero divergence requirement: $0 = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} = \frac{\partial}{\partial x} \frac{\partial \Phi}{\partial y} + \frac{\partial}{\partial y} \frac{\partial \Phi}{\partial y} = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$ potential Φ obeys Laplace equation

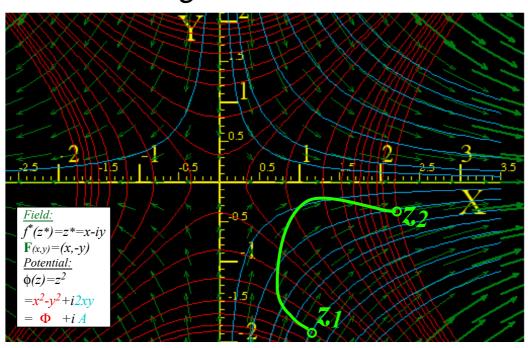
^{*}Actually it's OCC.

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, A) grid is a GCC coordinate system*:

$$q^{1} = \Phi = (x^{2} - y^{2})/2 = const.$$

 $q^2 = A = (xy) = const.$



$$Metric tensor = \begin{pmatrix} g_{\Phi\Phi} & g_{\Phi A} \\ g_{A\Phi} & g_{AA} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A} \end{pmatrix} = \begin{pmatrix} r^{2} & 0 \\ 0 & r^{2} \end{pmatrix} \text{ where: } r^{2} = x^{2} + y^{2}$$

Riemann-Cauchy Derivative Relations make coordinates orthogonal

$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} \frac{a}{2} (x^2 - y^2) \\ \frac{\partial}{\partial y} \frac{a}{2} (x^2 - y^2) \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$The half-n'-half results assure$$

$$\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -\frac{\partial}{\partial y} axy \end{pmatrix} = \mathbf{F}$$

$$\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$
$$= -\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x} = 0$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

or Riemann-Cauchy

Zero divergence requirement: $0 = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} = \frac{\partial}{\partial x} \frac{\partial \Phi}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \Phi}{\partial y} = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$ potential Φ obeys Laplace equation

and so does A

^{*}Actually it's OCC.

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery

Easy 2D monopole, dipole, and 2ⁿ-pole analysis

Easy 2ⁿ-multipole field and potential expansion

Easy stereo-projection visualization

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$

$$f(z) = \frac{a}{z} = az^{-1}$$
 Source-a monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$.

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$
 $f(z) = \frac{a}{z} = az^{-1}$ Source-a monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$.

$$\phi(z) = \Phi + iA = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z)$$

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$
 $f(z) = \frac{a}{z} = az^{-1}$ Source-a monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$

$$f(z) = \frac{a}{z} = az^{-1}$$
 Source-a monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + iA = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$

$$= a\ln(r) + ia\theta$$
(a) Unit Z-line-flux field $f(z)=1/z$

 $f^*(z^*) = 1/z^* = e^{i\theta}/r$

 $=ln r+i\theta$

 $=\Phi +iA$

 $\mathbf{F}_{(x,y)} = (x,y)/r^2$

Potential:

 $\phi(z)=\ln z$

Lecture 12 Tue. 10.03 May end here

11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$

$$f(z) = \frac{a}{z} = az^{-1}$$
 Source-a monopole

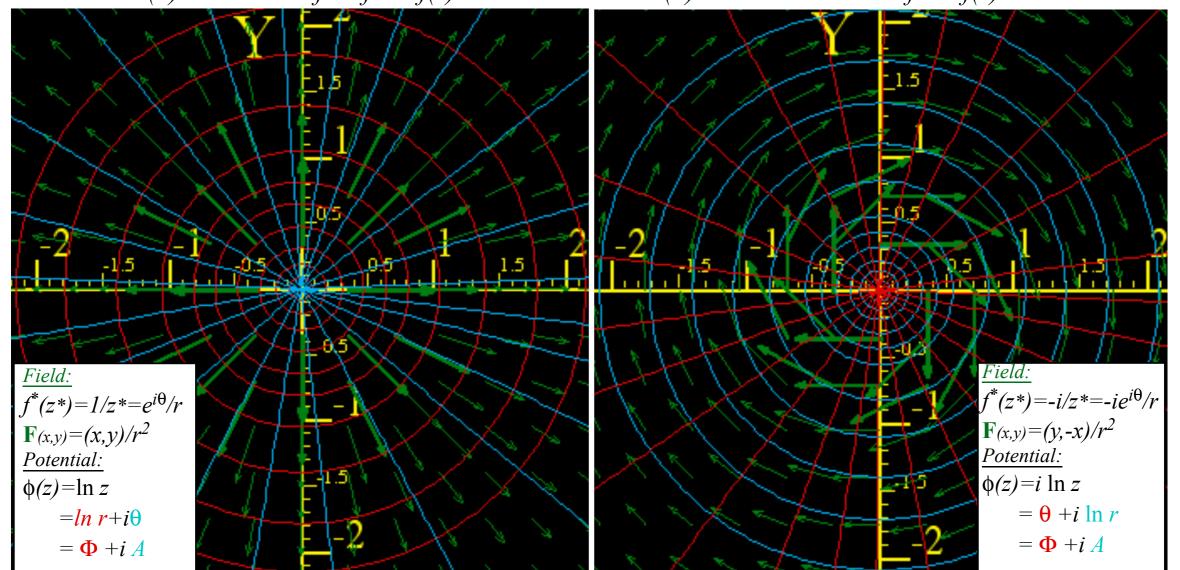
It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$

$$= a\ln(r) + ia\theta$$

(a) Unit Z-line-flux field f(z)=1/z

(b) Unit Z-line-vortex field f(z)=i/z



11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field:
$$f(z) = \frac{1}{z} = z^{-1}$$

$$f(z) = \frac{a}{z} = az^{-1}$$
 Source-a monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + iA = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$

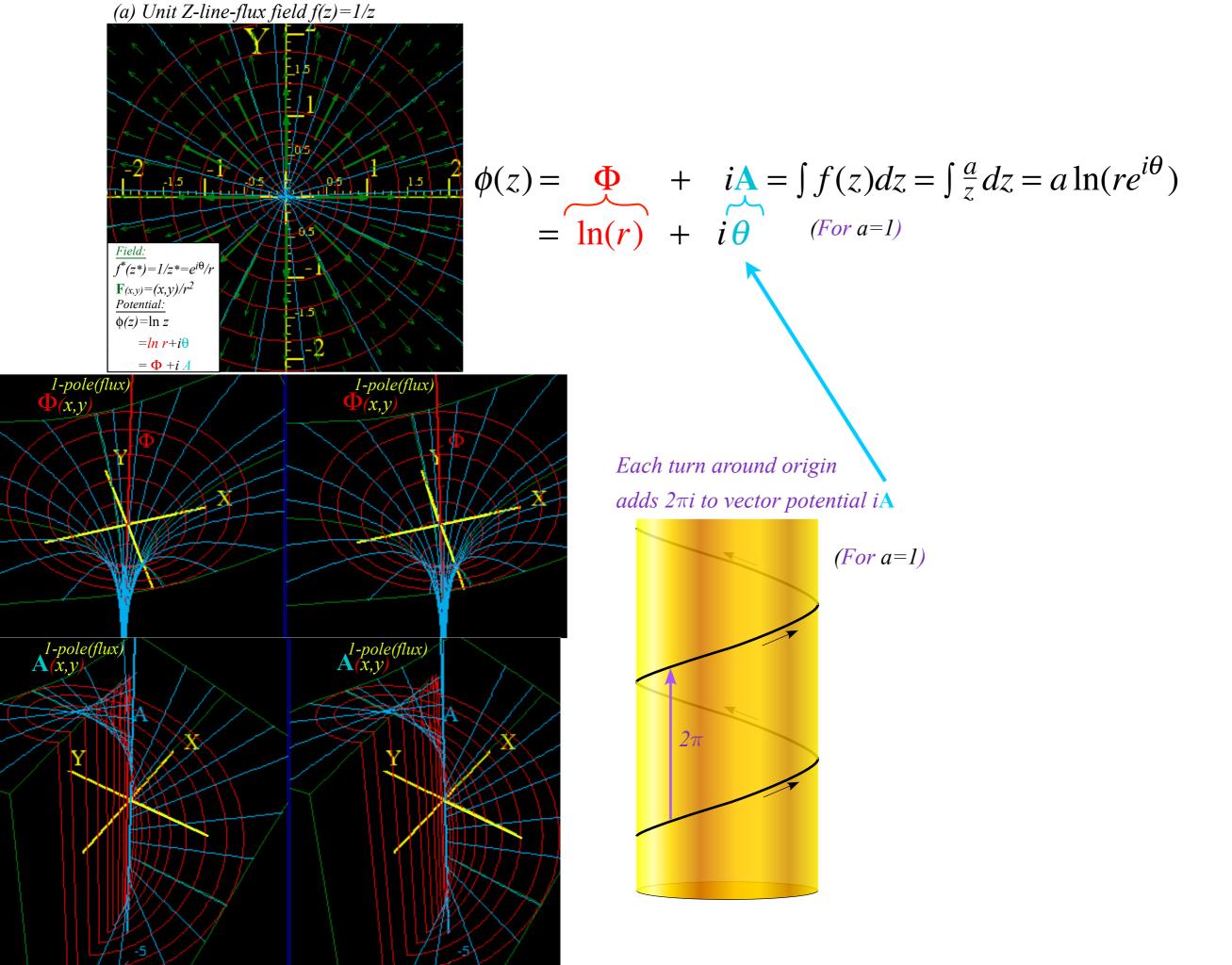
$$= a\ln(r) + ia\theta$$

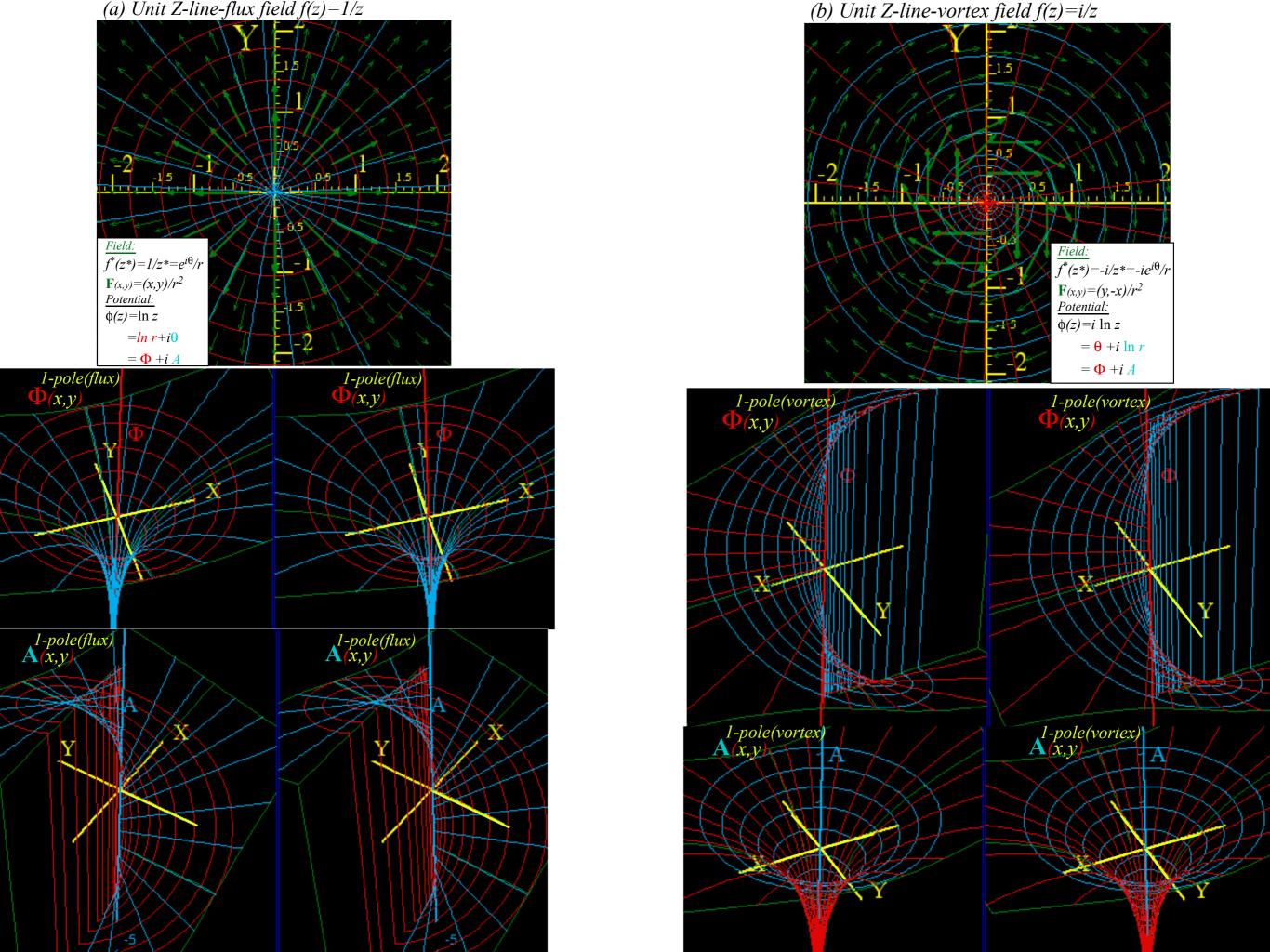
A monopole field is the only power-law field whose integral (potential) depends on path of integration.

$$z = Re^{i\theta}$$

 $z = Re^{i\theta}$ $z = Re^{i\theta}$

$$\Delta \phi = \oint f(z)dz = a \oint \frac{dz}{z} = a \int_{\theta=0}^{\theta=2\pi N} \frac{d(Re^{i\theta})}{Re^{i\theta}} = a \int_{\theta=0}^{\theta=2\pi N} id\theta = ai\theta \Big|_{0}^{2\pi N} = 2a\pi iN$$





4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery

Easy 2D monopole, dipole, and 2ⁿ-pole analysis

Easy 2ⁿ-multipole field and potential expansion

Easy stereo-projection visualization

What Good Are Complex Exponentials? (2D monopole, dipole, and 2^n -pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z)=az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z)=a\ln z$ of source strength a.

$$f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz} \qquad \phi^{1-pole}(z) = a \ln z$$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{l-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta}{2}}$$

$$\phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln\frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

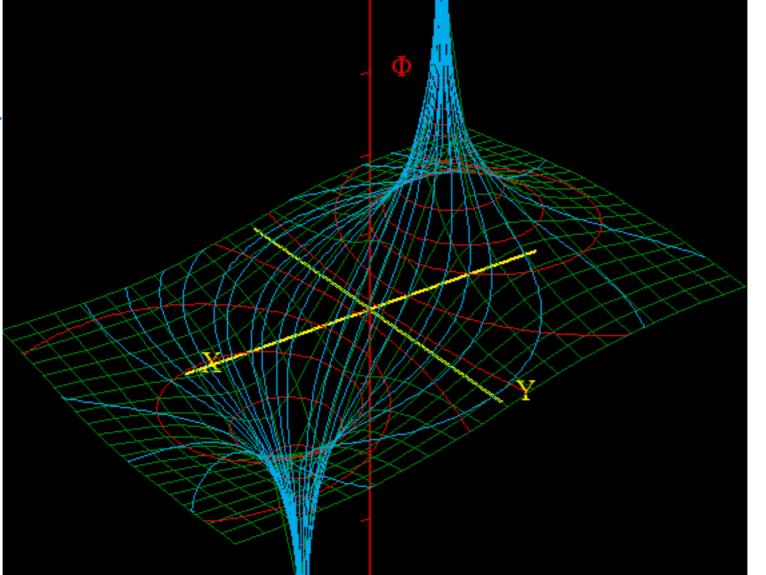
This is like the derivative definition:

$$\frac{df}{dz} = \frac{f(z + \Delta) - f(z)}{\Delta}$$

$$\frac{df}{dz} = \frac{f(z + \frac{\Delta}{2}) - f(z - \frac{\Delta}{2})}{\Delta}$$

$$if \Delta \text{ is infinitesimal}$$

if Δ is infinitesimal $(\Delta \rightarrow 0)$



So-called "physical dipole" has finite Δ (+)(**-**) separation

What Good Are Complex Exponentials? (2D monopole, dipole, and 2ⁿ-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z)=az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z)=a\ln z$ of source strength a.

$$f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz} \qquad \phi^{1-pole}(z) = a \ln z$$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}}$$

$$\phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln\frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is tiny and is divided out we get a point-dipole field f^{2-pole} that is the z-derivative of f^{1-pole} .

$$f^{2-pole} = \frac{-a}{z^2} = \frac{df^{1-pole}}{dz} = \frac{d\phi^{2-pole}}{dz}$$
 $\phi^{2-pole} = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$

What Good Are Complex Exponentials? (2D monopole, dipole, and 2ⁿ-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z)=az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z)=a\ln z$ of source strength a.

$$f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz} \qquad \phi^{1-pole}(z) = a \ln z$$

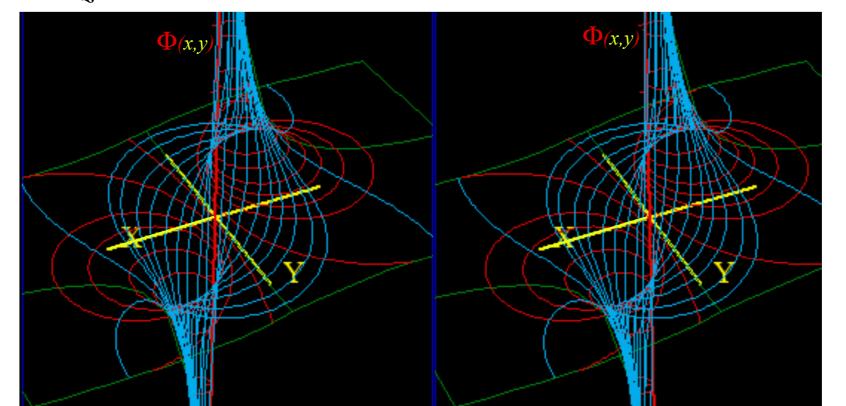
Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}}$$

$$\phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln\frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is tiny and is divided out we get a point-dipole field f^{2-pole} that is the z-derivative of f^{1-pole} .

$$f^{2-pole} = \frac{-a}{z^2} = \frac{df^{1-pole}}{dz} = \frac{d\phi^{2-pole}}{dz} \qquad \qquad \phi^{2-pole} = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$$



What Good Are Complex Exponentials? (2D monopole, dipole, and 2ⁿ-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z)=az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z)=a\ln z$ of source strength a.

$$f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz} \qquad \phi^{1-pole}(z) = a \ln z$$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}}$$

$$\phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln\frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is tiny and is divided out we get a point-dipole field f^{2-pole} that is the z-derivative of f^{1-pole} .

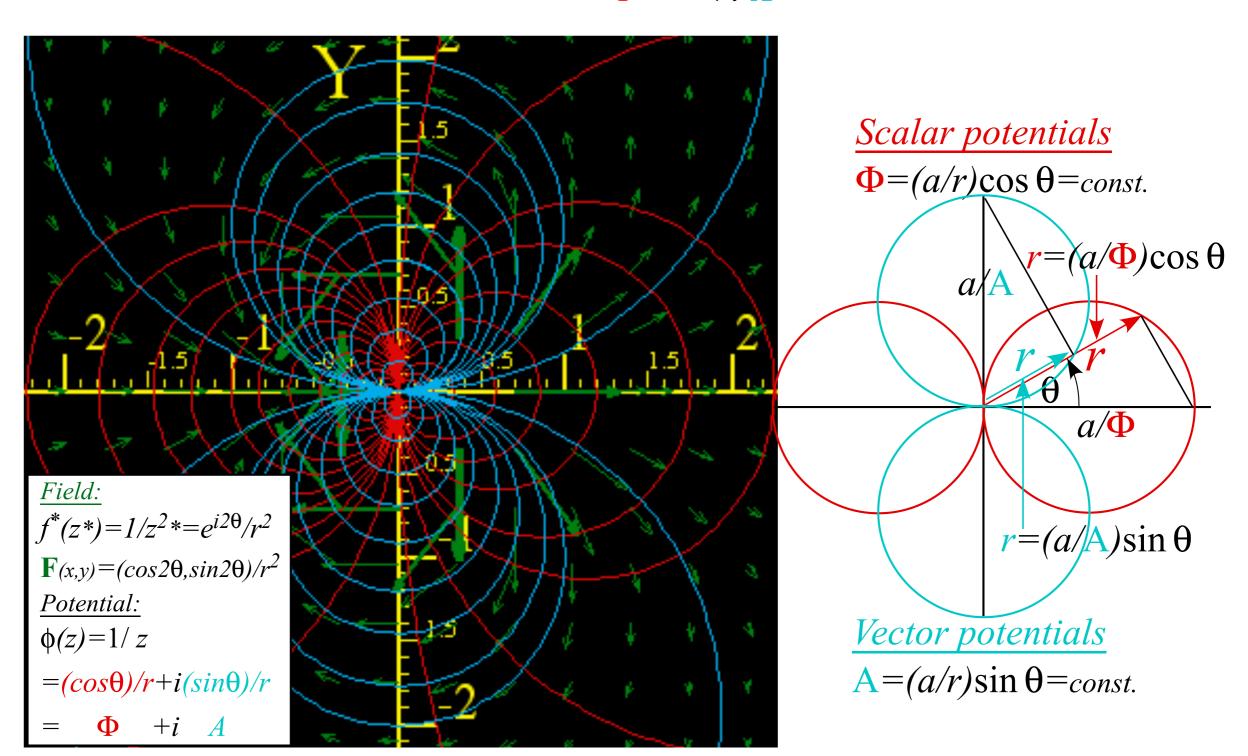
$$f^{2-pole} = \frac{-a}{z^2} = \frac{df^{1-pole}}{dz} = \frac{d\phi^{2-pole}}{dz}$$
 $\phi^{2-pole} = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$

A *point-dipole potential* $\phi^{2\text{-pole}}$ (whose *z*-derivative is $f^{2\text{-pole}}$) is a *z*-derivative of $\phi^{1\text{-pole}}$.

$$\phi^{2-pole} = \frac{a}{z} = \frac{a}{x+iy} = \frac{a}{x+iy} \frac{x-iy}{x-iy} = \frac{ax}{x^2+y^2} + i\frac{-ay}{x^2+y^2} = \frac{a}{r}\cos\theta - i\frac{a}{r}\sin\theta$$
$$= \Phi^{2-pole} + i A^{2-pole}$$

A *point-dipole potential* $\phi^{2\text{-pole}}$ (whose *z*-derivative is $f^{2\text{-pole}}$) is a *z*-derivative of $\phi^{1\text{-pole}}$.

$$\phi^{2\text{-pole}} = \frac{a}{z} = \frac{a}{x + iy} = \frac{a}{x + iy} \frac{x - iy}{x - iy} = \frac{ax}{x^2 + y^2} + i\frac{-ay}{x^2 + y^2} = \frac{a}{r}\cos\theta - i\frac{a}{r}\sin\theta$$
$$= \Phi^{2\text{-pole}} + i A^{2\text{-pole}}$$



2^{n} -pole analysis (quadrupole: 2^{2} =4-pole, octapole: 2^{3} =8-pole, ..., pole dancer,

What if we put a (-)copy of a 2-pole near its original?

Well, the result is 4-pole or quadrupole field f^{4-pole} and potential ϕ^{4-pole} .

Each a *z*-derivative of $f^{2\text{-pole}}$ and $\phi^{2\text{-pole}}$.

$$f^{4-pole} = \frac{a}{z^3} = \frac{1}{2} \frac{df^{2-pole}}{dz} = \frac{d\phi^{4-pole}}{dz}$$

$$\phi^{4-pole} = -\frac{a}{2z^2} = \frac{1}{2} \frac{d\phi^{2-pole}}{dz}$$

2^n -pole analysis (quadrupole: 2^2 =4-pole, octapole: 2^3 =8-pole, ..., pole dancer,

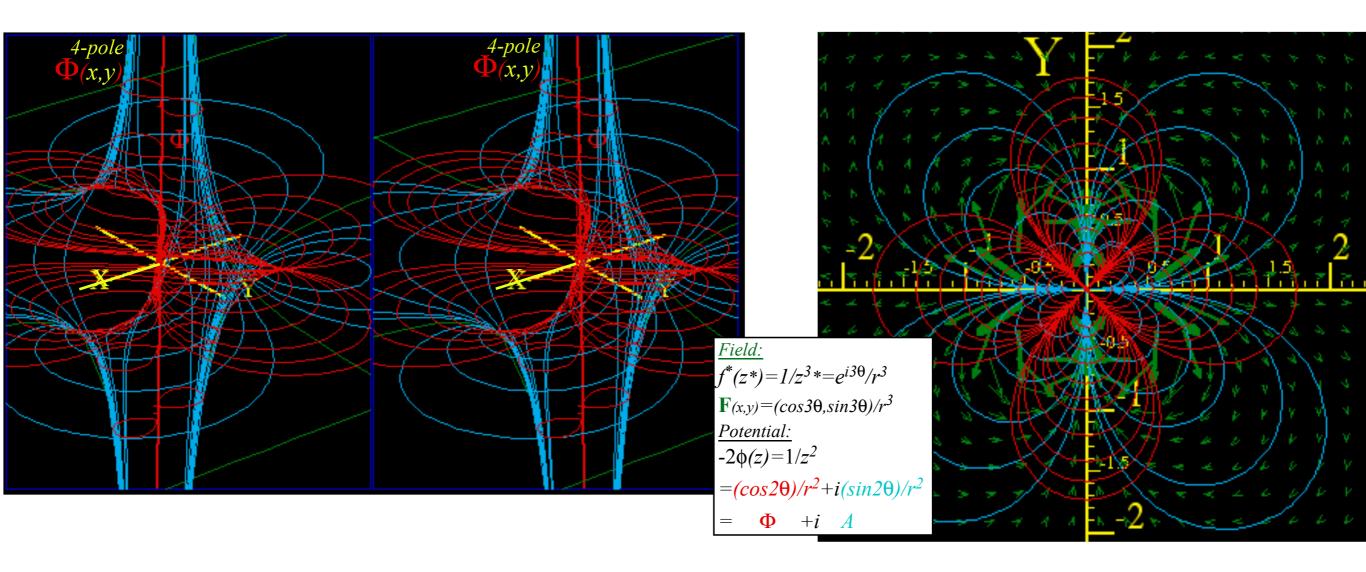
What if we put a *(-)*copy of a *2-pole* near its original?

Well, the result is 4-pole or quadrupole field f^{4-pole} and potential ϕ^{4-pole} .

Each a *z*-derivative of $f^{2\text{-pole}}$ and $\phi^{2\text{-pole}}$.

$$f^{4-pole} = \frac{a}{z^3} = \frac{1}{2} \frac{df^{2-pole}}{dz} = \frac{d\phi^{4-pole}}{dz}$$

$$\phi^{4-pole} = -\frac{a}{2z^2} = \frac{1}{2} \frac{d\phi^{2-pole}}{dz}$$



4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery

Easy 2D monopole, dipole, and 2ⁿ-pole analysis

Easy 2ⁿ-multipole field and potential expansion

Easy stereo-projection visualization

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

$$\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\dots 2^2 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^0 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^2 \text{-pole} \qquad 2^3 \text{-pole} \qquad 2^4 \text{-pole} \qquad 2^5 \text{-pole} \qquad 2^6 \text{-pole} \qquad 2^6$$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a_{-1}}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m -pole.

These are located at z=0 for m<0 and at $z=\infty$ for m>0.

$$\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + \frac{a_{-1} \ln z}{-1} + a_{0} z + \frac{a_{0} z}{2} z^{2} + \frac{a_{2} z}{3} z^{3} + \dots$$

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

$$\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\dots 2^2 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^0 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^2 \text{-pole} \qquad 2^3 \text{-pole} \qquad 2^4 \text{-pole} \qquad 2^5 \text{-pole} \qquad 2^6 \text{-pole} \qquad 2^6$$

All field terms $a_{m-1}z^{m-1}$ except $\frac{a_{-1}}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m -pole.

These are located at z=0 for m<0 and at $z=\infty$ for m>0.

$$\phi(z) = \dots \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$

$$(with z=w^{-1})$$

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

$$\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\cdots 2^2 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^0 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^2 \text{-pole} \qquad 2^3 \text{-pole} \qquad 2^4 \text{-pole} \qquad 2^5 \text{-pole} \qquad 2^6 \text{-pole} \qquad 2^6$$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a_{-1}}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m -pole.

These are located at z=0 for m<0 and at $z=\infty$ for m>0.

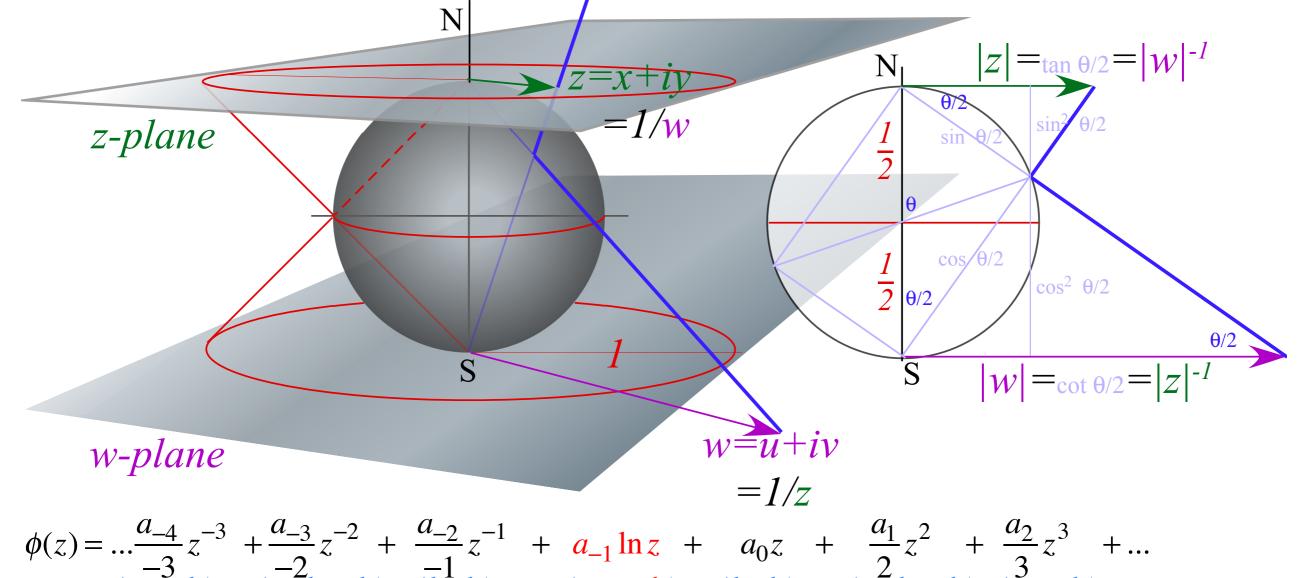
$$\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$

$$(with \ z \to w)$$

$$= \dots \frac{a_2}{3} z^{-3} + \frac{a_1}{2} z^{-2} + \frac{a_2}{3} z^{-1} - a_{-1} \ln z + \frac{a_{-2}}{-1} z + \frac{a_{-3}}{-2} z^2 + \frac{a_{-4}}{-3} z^3 + \dots$$

$$(with \ w = z^{-1})$$



$$\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$

$$(with \ z \to w)$$

$$= \dots \frac{a_2}{3} z^{-2} + \frac{a_1}{2} z^{-2} + a_0 z^{-1} - a_{-1} \ln z + \frac{a_{-2}}{-1} z + \frac{a_{-3}}{-2} z^2 + \frac{a_{-4}}{-3} z^3 + \dots$$
 (with $w = z^{-l}$)

 $\phi(z) = \frac{a_{-3}}{-2}z^{-2}$

 $f(z) = a_{-3}z^{-3}$

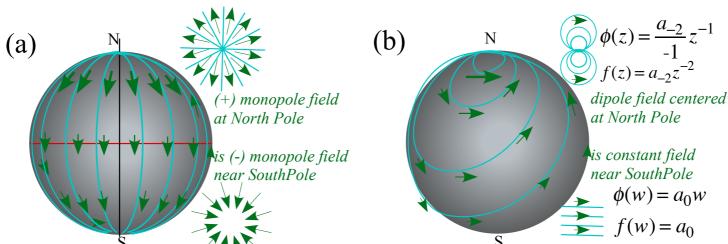
quadrupole field centered

is quadratic field

position for each point in the position for each point in the position of th

 $f(w) = a_1 w$

at North Pole



$$f(z) = ...a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + ...$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

$$f(z) = ...a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + ...$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

$$f(z) = ...a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + ...$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

$$f(z) = ...a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + ...$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$. They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$

(but any contour that doesn't "touch a gives same answer)

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*.

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz ,$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz ,$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \dots, \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated a-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \dots, \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general *Taylor-Laurent* power series expansion of function f(z) around point-a.

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$
 $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around z=a)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated a-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \cdots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n \qquad \text{where : } a_n = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - a)^{n+1}} dz \left[= \frac{1}{n!} \frac{d^n f(a)}{da^n} \quad \text{for : } n \ge 0 \right]$$

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$$

$$a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

They hold for any loop about point-a. Function f(z) is just f(a) on a tiny circle around point-a.

(assume tiny circle around
$$z=a$$
)
$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)
$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated a-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \cdots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

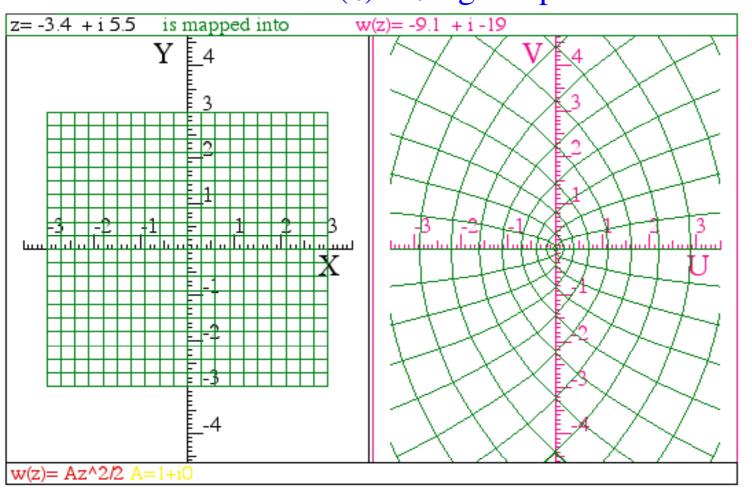
This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

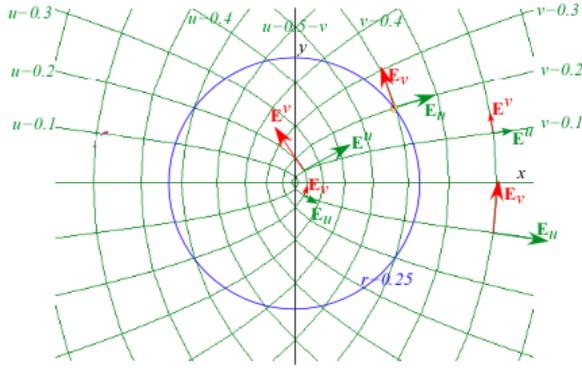
$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n \qquad \text{where : } a_n = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - a)^{n+1}} dz \left(= \frac{1}{n!} \frac{d^n f(a)}{da^n} \quad \text{for : } n \ge 0 \right)$$

 $(quadrupole)_0$ $(dipole)_0$ (monopole) $(dipole)_\infty$ $(quadrupole)_\infty$ $(octapole)_\infty$ $(hexadecapole)_\infty$...

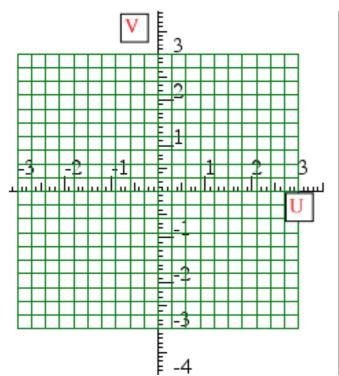
$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$w(z) = z^2$ gives parabolic OCC





Inverse: $z(w) = w^{1/2}$ gives hyperbolic OCC





$$w=(u+iv)=z^2=(x+iy)^2$$
 is analytic function of z and w Expansion: $u=x^2-y^2$ and $v=2xy$ may be solved using $|w|=|z^2|=|z|^2$ Expansion: $|w|=\sqrt{u^2+v^2}=x^2+y^2=|z|^2$ Solution: $x^2=\frac{u+\sqrt{u^2+v^2}}{2}$ $y^2=\frac{-u+\sqrt{u^2+v^2}}{2}$

$$\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} = \begin{pmatrix} \mathbf{\bar{E}}^u \\ \mathbf{\bar{E}}^v \end{pmatrix} = \begin{pmatrix} 2x & -2y \\ +2y & 2x \end{pmatrix}$$

$$\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \mathbf{\bar{E}}_u & \mathbf{\bar{E}}_v \end{pmatrix} = \begin{pmatrix} 2x & +2y \\ -2y & 2x \end{pmatrix}$$