Complex Variables, Series, and Field Coordinates 1

(Ch. 10 of Unit 1)
1. The Story of e (A Tale of Great $Interest$)
How good are those power series?
laylor-Maclaurin series, imaginary interest, and complex exponentials

2. What good are complex exponentials?
E ClSy { ]/'i g 1. Complex numbers provide "automatic trigonometry”

2. Complex numbers add like vectors.

Easy 2D vector analysis
. . , _iot .. . .
E as y OSCI l l ator p h ase ana ly SIS 3. Complex exponentials /.\e track p?smon @d velocity using Phasor Clock.
. » . » )y 4. Complex products provide 2D rotation operations.
Easy rotation and “dot” or “cross” products
3. Easy 2D vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory

5. Complex products provide 2D “dot”(+) and “cross’(x) products.

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field

7. Invent source-free 2D vector fields [V+-F=0 and VxF=0]

E aSy 2 D vector ﬁ el d 'p otent l da l [ h 6073/ 8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA) potentials
4. Riemann-Cauc hy relations (What's analytic? What's not?) The half-n-half results: (Riemann-Cauchy Derivative Relations)
E a Sy 2 D ClUl I’Vi lln ear coor dm ate dl SCOV ery Lect. 12 9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
cCL.

. . . 10. Complex integrals [ f(z)dz count 2D “circulation”( [Fdr) and “flux”([Fxdr)
E CZS_)/ 2 D Clr Cl/ll ation an dﬂ ux int eg ra l \) ends here 11. Complex integrals define 2D monopole fields and potentials

Easy ZD mOVlOPOZe, dipOle, and 2”-]90[8 analysis 12. Complex derivatives give 2D dipole fields
ECZS_)/ 2”-multipoleﬁeld Clndp0t€ntial expansion 13. More derivatives give 2D 2N-pole fields...
. . . . . 14. ...and 2N-pole multipole expansions of fields and potentials...
Easy stereo-projection visualization 15, and Laurent Series...
Cauchy integrals, Laurent-Maclaurin series 16. Mapping and non-analytic source analysis.



The Story of e (A Tale of Great $Interest$)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.
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Semester compounded interest gives p)=(1+r%)p©) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate =1 earns $2.25.

P (O=(+rHpE)=(1+r5y(1+r$)p0)=331=3=225
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Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives p)=(1+r%)p©) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate =1 earns $2.25.
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Trimester compounded interest gives p)=qa+r5Hp©) at the I/37-period 35 or Ist trimester and

$

then use that to figure the 2nd trimester and so on. Now $1.00 at rate =1/ earns $2.37.

P () =(+r5)p25) = A+r5y(+r5HpG) = A+ r5(+r 1 +r5)p0) =5341=5=2.3 5 s

So if you compound interest more and more frequently, do you approach INFININTEREST? 0
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Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
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Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.
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P (O=(+rHpE)=(1+r5y(1+r$)p0)=331=3=225

Trimester compounded interest gives p)=qa+r5Hp©) at the I/37-period 35 or Ist trimester and

then use that to figure the 2nd trimester and so on. Now $1.00 at rate =1/ earns $2.37.

(1) = A+rHpRH=0+rd)yU+rHpE =0+ r5)A+r5) A+ rHp0)=3531=5=23

So if you compound interest more and more frequently, do you approach INFININTEREST?

NOT!!
AN 1 £ \12 13 \12
p' (1) = (1+rH) p(0)= (1) 1=7=2.00 Monthly:  p2(t)=(1+r1) “ p(0)= (ﬁ) 1=2.613
, +25¢ “
p>(t)=(1+r%5)" p(0)= (%) 1=3=225 Weekly: pgz(t)=(1+r'§2)52p(0)=(%%) 1=
+12¢
3 365
PP (0)=(1+r5)° p(0)= (%) 1=57=2.37 Daily:  ps (1) = (1474 )" p(0)=(%6§) 1=2.7145
+7¢
4 8760
pi()=(+r5) p0)=(3) 1=532 =244 Hrly: po (1) = (1+r60)" p(0) = (18] 1=2.7181



Interest product formula is really inefficient: 100 products for 6-figures! .. .10° products for 9 ...

p D)= (L)

1 \m-rt
Let: mrt=n (1+m)
or: I/m=rtn (1 _I_:_l-t )n

m-—»o0

m—>oo

AN
/7

n— oo

> e

2.718281828459..

—e

ret
€

r

pln(l) = 2.7169239322
pln(l) = 2.7181459268
pln(l) = 27182682372
pln(l) = 2.7182804693
pln(l) = 2.7182816925
pln(l) =2.7182818149
plm(l) = 27182818271

form = 1,000

form = 10,000

form = 100,000
form = 1,000,000
form = 10,000,000
for m = 100,000,000
for m = 1,000,000,000



Interest product formula is really inefficient: 100 products for 6-figures! .. .10° products for 9 ...

plm(l) =2.7169239322 form = 1,000
2.718281828459.. p/m(1) =2.7181459268 for m = 10,000

p D)= (L)

e —e plm(l) = 27182682372 form = 100,000
[ 4Ly e plm(l) = 27182804693  for m = 1,000,000
et mori—n Fm) m—es € plm(l) = 27182816925  form = 10,000,000
or: 1/m=rt/n g Lriyn e pim(l) = 27182818149  for m = 100,000,000
g noe € plm(l) = 27182818271  for m = 1,000,000,000

Can improve computational efficiency using binomial theorem:

—1 —1D(n—-2
n(nz' )xn—2y2+n(n 3)'(’1 )xn—3y3+...+n.xyn—1+yn

r-t nn—=10(r-t 2 nn—-1)n—-2)(r-t 3 Define: Factorials(!):
+ 71 + 31 T Ol=1=1!, 2!=12, 3!=123,..

A+ =x"+n-x""'y+

-1
I+ =1+n-
n

n n n
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x4+ =x"+n-x"y+

-1
1+ =1+n-
n

n n n

( )p Asn — oolet :

ert:1_|_r.t_|_2_!(r.t)2—|—§(r-t)3+...=p§0 D! nn-1)— Vlz,

nin—-1)(n-2)—> n’ , erc.



Interest product formula is really inefficient: 100 products for 6-figures! .. .10° products for 9 ...

plm(l) =2.7169239322 form = 1,000
2.718281828459.. p/m(1) =2.7181459268 for m = 10,000

p D)= (L)

e —e plm(l) = 27182682372 form = 100,000
[ 4Ly e plm(l) = 27182804693  for m = 1,000,000
et mori—n Fm) m—es € plm(l) = 27182816925  form = 10,000,000
or: 1/m=rt/n g Lriyn e pim(l) = 27182818149  for m = 100,000,000
g noe € plm(l) = 27182818271  for m = 1,000,000,000

Can improve computational efficiency using binomial theorem:

—1 —1D(n—-2
n(nz' )xn—2y2+n(n 3)'(’1 )xn—3y3+...+n.xyn—1+yn

r-t nn—=10(r-t 2 nn—-1)n—-2)(r-t 3 Define: Factorials(!):
+ + T Ol=1=1!, 2!=12, 3!=123,..

A+ =x"+n-x""'y+

-1
I+ =1+n-

n n 2! n 3! n
p As n — oo let :
1 1 o \r-t
e”:1+r-t+—(r-t)2+—(r-t)3+...= D (r1) )
2! 3! p=0 P! nin—-1)—-n,
. . . 3
Precision order:  (0=1)-e-series = 2.00000 =1+1 nn—1)(n-2)—->n ,etc.

(0=2)-e-series = 2.50000 =1+1+1/2
(0=3)-e-series = 2.66667 =1+1+1/2+1/6
(0=4)-e-series = 2.70833 =1+1+1/2+1/6+1/24
(0=35)-e-series = 2.71667 =1+1+1/2+1/6+1/24+1/120
(0=6)-e-series = 2.71805 =1+1+1/2+1/6+1/24+1/120+1/720
(0=7)-e-series = 2.71825
(0=8)-e-series = 2.71828 About 12 summed quotients
for 6-figure precision (A lot better!)



Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢, efc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + 65t5 +..t+c "+
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ 62t2 + c3t3 + c4t4 + CSIS +..t+c "+

Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).

n—1

d 2 3 4
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dt



Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + cst5 +..t+c "+

Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).
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Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ 62t2 + c3t3 + c4t4 + CSIS +..t+c "+
Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).
_ d _ 2 3 4 n—1
v(t)= Ex(t) =0+c¢ +2cyt+3c5t" +4cyt” +5¢st” +...+nc t” "+
Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).

d
a(t) = —v(t) 0+2¢, +23cst +3de,t” +45ct> + .ot n(n—1)e, "% +

1
Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set t=0 to get c3 = 31 j(0).
d
J(t) = Ea(t) =0+23¢c;+2:34c,t+ 3‘4‘56’5t2 +..+nn—-1)(n- 2)cnt"_3 —

Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get c4 =i, i(0).
i(7) = dij(r) =0+234c, +2:345ct+...+n(n—)(n—2)n-3)c " * +
A

Gives Maclaurin (or Taylor) power series

[x(t):x(0)+v(())t+ a(0)t* +3, j(O) +4, i(0)* +3, r(0)F + ...+%, xWe" + ]




Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + cst5 +..t+c "+
Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).
_ d _ 2 3 4 n—1
v(t)= Ex(t) =0+c¢ +2cyt+3c5t" +4cyt” +5¢st” +...+nc t” "+
Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).

d
a(t) = —v(t) 0+2c, +2:3¢5t +3de,t” +4-5ct> + .t n(n—)e, "% +

1
Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set t=0 to get c3 = 31 j(0).
d
J(t) = Ea(t) =0+23¢c;+2:34c,t+ 3‘4‘56’5t2 +..+nn—-1)(n- 2)cnt"_3 —

Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get c4 =i, i(0).
i(1) = dij(f) =0+234c, +2345ct+ ...+ n(n—1)(n—2)(n— 3)cnt”_4 +
A

Gives Maclaurin (or Taylor) power series

x(2) = x(0) + v(0)t +3, a(0)t>|+3, j(O)E +3,i(0)* +3, r(0) + ... +% x"t" + ]

/

Good old UP | formula!



Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ 62t2 + c3t3 + c4t4 + CSIS +..t+c "+
Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).
_ d _ 2 3 4 n—1
v(t)= Ex(t) =0+c¢ +2cyt+3c5t" +4cyt” +5¢st” +...+nc t” "+
Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).

d
a(t) = —v(t) 0+2¢, +23cst +3de,t” +45ct> + .ot n(n—1)e, "% +

1
Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set t=0 to get c3 = 31 j(0).
d
J(t) = Ea(t) =0+23¢c;+2:34c,t+ 3‘4‘56’5t2 +..+nn—-1)(n- 2)cnt"_3 —

Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get c4 =i, i(0).
i(7) = dij(r) =0+234c, +2:345ct+...+n(n—)(n—2)n-3)c " * +
A

Gives Maclaurin (or Taylor) power series

x(2) = x(0) + v(0)t +3, a(0)t>|+3, j(O)E +3,i(0)* +3, r(0) + ... +% x"t" + ]

/ Setting all iitial values to /= x(0) = v(0) = a(0) =j(0) =i(0) = ....
Good old UP | formula!
gives exponential: €' =1+1+y, 17 43,17 3, 17 45+ r 1+



But, how good are power series

|'10,0

quartic

quadratic
(parabola)

Gives Maclaurin (or Taylor) power series

[x(t):x(0)+v(0)t+ a(0)t* +3, j(O) +4, i(0)* +3, r(0)F + ...+%, xWe" + ]

Setting all initial values to /= x(0) = v(0) = a(0) =j(0) =i(0) = ....

gives exponential: €' =1+1+y, 17 43,17 3,17 45+ r 1+



How good are power series? Depends...

2 4 6 8
:1+O—t—+0+t—+0—t—+0+t— l.

2! 4 6! 8!

; 5 : 0 Unit 1
t t t ¢t~ Fig. 10.3
O+“O__+O+_+O__+O+E'“




1. The Story of e (A 1ale of Great $Interesty)

How good are those power series?
laylor-Maclaurin series,
imaginary interest, and complex exponentials



Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.

Imaginary numberi=v-1 powers have repeat-after-4-pattern: i'=1, i'=i, i2=-1, i3=-i, i‘=1,etc...
e e 3 Y| A\
@0y o) o) @6’
2! 3! 4! 5!
6> .0 o 6>
—1+i0-— —i— +— +i— —..  (i=~-1imples:i'=i,i*=-1,i°=i,i*=+1,i’=i,..)
2! 3! 41 5!

0° 0* 0> O
:[1— + —...}+(i9—i—+i——...}
21 4! 315!

% =1+i0+

(From exponential series)




Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.

Imaginary numberi=v-1 powers have repeat-after-4-pattern: i'=1, i!=i, i2=-1, i3=-i, i*=1, etc...

)
0 _1+i0+ (l? + (lz? + (li)' + (l? + ... (From exponential series)

0> o e K&

—1+19—§ —igy ot i T (i =~-1 imples: i'=i, i*=-1, =i, i*=+1, i’ =i,...)
r 2 oxt &
L X X
92 94 93 95 cosine . CoOS Xx : : '
=|l-—+ +|i@—i—+i——...| To match series for - 2L 41 6!
21 41 3! 5! PN B
sine:sinx=x——+4+———+---
U 305 T
e? = cos6 + isinf \ (a) x(t)=cos t / /

/

Euler-DeMoivre Theorem

E__
quartic >
. . / / 20th

NG TN \\_y
quadratic
o Unit 1

\ (b) x(t) Esint_/ /

3\ & 40 :13t, T 3 | | \%
_l_l_th\ )

IlI




Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.
Imaginary numberi=v-1 powers have repeat-after-4-pattern: i'=1, i!=i, i2=-1, i3=-i, i*=1, etc...
) NG 4 -\
o) (6 G6)"  0)
2! 3! 4 5!
6> .0 o 6

% =1+i0+

(From exponential series)

—1+i0-— —i— +— +i— —... (i=+-limples: i'=i,i*=-1,i°=-i,i*=+1,i°=i,...)
21 3! 41 5!
] 1 X + x* x6 +
cosine :cosx=1— —
0> o* e e , TS
= 1——++ — |- —+i——... To match series for < 204l 6!
21 4! 315! | [RCIE B
sine :SINX = X — + — +-.--
B \ 31 51 7!
¢l? = cosO + isin@ "*., (a) x(t)=os t / ;"
Euler-DeMoivre Theorem LT ‘/
Imaginary axis . / S
(i N TR
qu:;dratic 1
drabola) .
" E Unit 1
) z=re” =x+iy Fig. 10.3

=sin t /
1st

_l_l_th\

0

re’ = rcos@+ isin@



2. What Good Are Complex Exponentials?

Easy trig
— Easy 2D vector analysis
Yy a5y oscillator phase analysis

Easy rotation and “dot” or “cross” products



What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is cos(a+b) or sin(a+b)? Just factor €@ = eidei ..

ei(a+b) — eia eib
cos(a+b) +isin(a+b) = (cos a +isina) (cos b+ isinb)

cos(a+b)/+ isin(a+b)/=/[cos a cos b - sin a sin b]/H/[Sin a cos b + cos a sin b] /
|




What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is cos(a+b) or sin(a+b)? Just factor €@ = eidei ..

pifa+h) _ ol oib
cos(a+b) +isin(a+b) = (cos a +isina) (cos b+ isinb)
cos(a+b)/+ isin(a+b)/=/[cos a cos b - sin a sin b]/H/[Sin a cos b + cos a sin b] /

2. Complex numbers add like vectors. zsum =z +z'=(x+iy) +x'+iy)=x+x)+i(y+y)
zdiff =z—z'=(x Tiy) - (X' T )= (x-x) iy -y)

(a) (b)

y=ImZ—Z ,
YZ 5

/=Im ’ 1S - /

Y “ 1 Vo (I)k

x=Rez x=RezZ’

|ZSUM| = J(z + z')*(z +7) = J(rei‘f’ + 1 e? )*(rei‘z’ + r’ei‘P') = J(re_i¢ +re” 9 )(rei¢ + r'ei¢')

= ‘/r2 +r2 4 rr'(ei(fp—fp') + e-i(fi’—fP’)) _ ‘/r2 +r2+2m cos(¢p—¢’)  (quick derivation of Cosine Law)




What Good Are Complex Exponentials? (contd.)

3.Complex exponentials Ae™* track position and velocity using Phasor Clock.
(a) Complex plane and unit vectors

imaginary . imaginary
axis o : e V2=t 1 axis
ev=xt1y |
'y etMA=(1+)A2
=sin 0

»
e M=_]

v

e+i5n/4: e-i3n/4

= -(1+i)N2 e 2=
(b) Quantum Phasor Clock ¢y = Ae™ '™l = Acoswi—i ASINnor=x+iy  Unit 1

Fig. 10.5
Im Y |(The “Gonna’be”) e
Re y
x(t) = Acosmt
Phase angle or Argument Re Y CARTESIAN
POLAR <«——Imy
COMPONENTS y(t)=v(t)/o= -Asinwt
Magnitude or Modulus :
Ae-i0f

Azl\yI:\/\u*w



What Good Are Complex Exponentials? (contd.)

3.Complex exponentials Ae™! track position
(a) Complex plane and unit vectors

imaginary _ imaginary
axis .9 | . e T2 41 axis
eV=x+1y
=sin 0 y
 / e M=_] ]

and velocity using Phasor Clock.

FIMA=(1+ N2

real

real
axis

>~ -
cos 0 d 3l
e+z57t/ :e-z37t/ e

= -(1+i)N2

e

axis

A=(1-)N2

-iTE/2:_l-

(b) Quantum Phasor Clock y = Ae il = Acosw —i Asinot=x+iy

Im Y |(The “Gonna’be”)
R :
- I Unit 1
X(t) = ACOsm? .
Phase angle or Argument Re Y CARTESIAN Fig. 10.5
O0=—w1 = ATAN[v(?)/0x(1)] () (The “Is») COMPONENTS
POLAR <—Im Y
COMPORERTS Yt)=v(t)/o= -Asinw!
Magnitude or Modulus
A=lyl= v Yy

Some Rect-vs-Polar relations worth remembering

+ %
v =Rey(t) =x(1)= Acosa)tzw Ld
Cartesian )
(x,y) form R
v :Iml//(t)Zﬂz—Asina)tzw W
Y 0) 21

4
v

(

.

e .
— o lO_re it

= r(cos @t —ismmt)

* —16 +imt
=re —

re = r(cos Wt +ismwt)

Polar
(r,0)

form

Jr=4 L T

0 = —a)tzarctan(wy /v.)

+i0 4+ e—iO)

COS 9:% (e Rey=

sinf=1. (e - ) Imy=

2i

R

*

y—v




2. What Good Are Complex Exponentials?

Easy trig
Easy 2D vector analysis

Easy oscillator phase analysis
—)  Fasy rotation and “dot” or “cross” products



What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
ez = (cos + i sind)-(x + iy)= x cosh — y sind + i (xsing +ycosd )

R, r = (xcos@—ysing)e +(xsin(b+ycosqb)éy

cos¢ —sing@ BN XCcos¢—ysin@
sing cos¢ J\y - xsing+ ycoso



What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.

ez = (cos + i sind)-(x + iy)= x cosh — y sind

cos¢ —sing@ BN
sing cos¢ J\y

ei® acts on this: z=ré'

+ i (xsing +ycosd )

R, r = (xcos@—ysing)e +(xsin(b+ycosq§)éy

0

(x COS P — ysin(p]

xsing+ ycoso

to give this: ei® ¢z = re'?e™

Imaginary axis

(i axis)

l

Imaginary axis

(

axis)

\ 07 =re0e? = !0t = 4 Ly

z=re¥ = x+iy




What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
el®-z = (cosd + i sin®)(x + iy)= x cosd — y sing +i (xsing +ycosd)

R, or =(xcos¢— ysing)e +(xsin¢+ ycos¢)éy
(cosq) —sin (p]{x] 3 (x COs ¢ — ysin (p]
sing cos¢ J\y - xsing+ ycoso

5. Complex products provide 2D “dot”(¢) and “cross”(x) products.
Two complex numbers A=A4.+iA, and B=B.+iB, and their “star” (*)-product 4 *B.
A*B=(A,+iA,) (B, +iB,)= (A, —iA,)(B, +iB,)
=(AB,+A,B)+i(AB,— AB)=A*B+ilAXBl,

Real part 1s scalar or “dot”(e) product A*B. T
Imaginary part is vector or “cross”’(X) product, but just the Z-component normal to xy-plane.

Rewrite A*B in polar form.
A*B=(Ale%) (|B|ef)=|A|e”™ |B|ef =|A||B| PO
=|A||B|cos(Bp —6,)+i|A||B|sin(0p —60,) = A*B+ilAxBlz, ,




What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
el®-z = (cosd + i sin®)(x + iy)= x cosd — y sing +i (xsing +ycosd)

R, or =(xcos¢— ysing)e +(xsin¢+ ycos¢)éy
(cosq) —sin (p}[x] 3 (x COs ¢ — ysin (p]
sing cos¢ J\y - xsing+ ycoso

5. Complex products provide 2D “dot”(¢) and “cross”(x) products.

Two complex numbers A=A4.+iA, and B=B.+iB, and their “star” (*)-product 4 *B.
A*B=(A,+iA,) (B, +iB,)= (A, —iA,)(B, +iB,)
= (AB, +A,B)+i(AB,~A,B)=A*B+ilAxBl,

Real part 1s scalar or “dot”(e) product A*B. T
Imaginary part is vector or “cross”’(X) product, but just the Z-component normal to xy-plane.

Rewrite A*B in polar form.
A*B=(Ale%) (|B|ef)=|A|e”™ |B|ef =|A||B| PO
=|A||B|cos(Bp —6,)+i|A||B|sin(0p —60,) = A*B+ilAxBlz, ,
A *B=|A||B|cos(05—6,) |AXBI| =|A||B|sin(65 —6,)

=|A|cos6, |B|cosOg +|A|sin6, |B|sin Oy =|A|cos6, |B|sin6g —|A|sin6, | B|cos O
= A.B, + AyB, = A\B, -  AB,




What Good are complex variables?
Easy 2D vector calculus
— Easy 2D vector derivatives

Easy 2D source-free field theory
Easy 2D vector field-potential theory



What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gJ; and “star” z*-derivative. %;
< =X+1 :l + 7% df: QXQ][ QYQf :le _L@f L _10 _id
7 =Xx—1y y =3 (z —2z%) chain-rule  df _dx df , dy df _10f _I_LQf %z*:%gx—%gy

dz*  dz*ox +8z*8y ~20x 20y



What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative ¢ and “star” z*-derivative. g,
y dz Z

S_ o Y 1Y _idf|
dz~ dzox dzdy ~ 20x 20dy dz 2

19
20
df _dx dof ,0y df _19df ,idf d _19
dz+=oz¢ox Tor¥dy —2ax T2y

32 :iﬁx_iﬁy
Derivative chain-ruie shows real part'of gfzf has 2D divergence Vef and imaginary part has curl V< f.

J =g (fo+i fy) = (gx—iaéy)(fx+ify) (my)hm) 2V'f+2|VXf|ZL(xy)




What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative ¢ and “star” z*-derivative. g,
y dz Z

=Xx+1 df _ oxof ,dydf _10f _idf |
+ 0 19f i C |
Z* e dz~ Jdzox +8z8y ~20x 20y Zﬁz =%§x—§§y
T B DY Y T Gl

dz*  dz*ox +8z*8y ~20x 20y

{ _10 id
32: :iﬁx_igy
Derivative chain-ruie shows real part'of gfzf has 2D divergence Vef and imaginary part has curl V< f.

1 3f, 9 (& — a3) —LVef +5IVxfly | 1 )y

=t e if) =35G8 ) et if) =3 Gl +5 Gl -5

7. Invent source-free 2D vector fields [V-F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.
Take any function f(z), conjugate it (change all i’s to —i) to give f*(z*) for which gf -0
<




What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gJ; and “star” z*-derivative. E*Z*

S_ o Y 1Y _idf|
dz~ dzox dzdy ~ 20x 20dy dz 2

19
20
df _dx dof ,0y df _19df ,idf d _19
dz+=oz¢ox Tor¥dy —2ax T2y

{ _10 id
32: :iﬁx_igy
Derivative chain-ruie shows real part'of gfzf has 2D divergence Vef and imaginary part has curl V< f.

J =g (fo+i fy) = (gx—iaéy)(fx+ify) (my)hm) 2V'f+2|VXf|ZL(xy)

7. Invent source-free 2D vector fields [V-F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.
Take any function f(z), conjugate it (change all i’s to —i) to give f*(z*) for which gf -0
<

For example: if f(z)=a z then f*(z*)=a-z*=a(x-iy) 1s not function of z so it has zero z-derivative.
F=(F, Fy)=("f")=(ax,-ay) has zero divergence: VeF=0 and has zero curl: IVXFI=0.

oF aFy a(ax) oF (—ay) , OF, _d(=ay) dF(ax)

ox dy  ox Jy ox dy  ox Jy
A DFL field F (Divergence-Free-Laminar)

=0

VeF = =0 IVXFl, | ()=



What Good Are Complex Exponentials? (contd.)

7. Invent source-free 2D vector fields [V-F=0 and VxF =0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.
Take any function f(z), conjugate 1t (change all i’s to —i) to give f*(z*) for which

For example: if f(z)=a'z then f*(z*)=a-z*=a(x-iy) 1s not function of z so 1t has zero z-derivative.
F=(F,F,)=("v.f")=(ax,-ay) has zero divergence: VeF=0 and has zero curl: IVXFI|=0.
oF  dF,  d(ax) +8F (—ay) doF, OF, _d(=ay) dF(ax) _

Vel'= i ox dy ox dy

— 0
ox dy ox dy

0 IVxFIZL(X,y):

precursor to
Unit 1
Fig. 10.7

F=("\.f*) =(ax,-a'y) 1s a divergence-free laminar (DFL) field.



What Good are complex variables?

Easy 2D vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory

— Easy 2D vector field-potential theory



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=VO F= VX
A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DF'L field F.



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=Vo® F= VX

A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DF'L field F.

To find ¢=D+iA integrate f(z)=a-z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=Vo® F= VX

A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.

Its complex conjugate ¢*(z*)=®(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DFL field F.
To find ¢=D+iA integrate f(z)=az to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
f@=4 = O = () +1 Azjf-dzzjaz-dzz%azz



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=Vo® F= VX
A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DF'L field F.

To find ¢=D+iA integrate f(z)=a-z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
f@=i =  ¢= ®  +i A=|f-dz=[az-dz=y az’ =5 a(x+iy)’

A
r N\

=% a(xz—yz) +1 axy



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials
Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=VO F= VX

A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.

Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DF'L field F.
To find p=D+iA integrate f(z)=a-z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
f@O=% = ¢= O +i A=[f-di=[az-dz=} az’ =5 a(x+iy)’

~

" 2 2
=5 a(x”—y7) +i

T T_l 1 ]|
ik

1T

ILh

3
2

Field:

I (z¥)=z%=x-iy
Fey)=(x,-y)

Potential:
0(z)=2’
:X2-y2+i
= O +i

Lh

T

]
iLh

TrrrroIrrrTrr
»
~—



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=Vo® F= VX

A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DF'L field F.

To find ¢=D+iA integrate f(z)=a-z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.

f(z):z—llf — ¢: J(g +l :jfdzzjazdz :% CZZ2 :% Cl(X"'iy)z BONUS/
' N\ :

:% a(x® —y?) +i Get a free

- coordinate
system!

T T_l 1 ]|
ik

1T

The (®,A) grid is a GCC
coordinate system™:
q]: o Z(x2—y2)/2 — const.

q2: — (xy) — const.

ILh

3
2

*Actually 1t’s OCC.

Field:
fE=zr=xiy

Fry=(x,-y)
Potential:

0(z)=z
=x2—y2+i
= O +]

Lh

T T 1::‘|

]
iLh

TrrrroIrrrTrr
»
~—



What Good are complex variables?
Easy 2D vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory
—) o5y 2D vector field-potential theory

é The half-n*-half results: (Riemann-Cauchy Derivative Relations)



What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

0P
Derivative 4% has 2D gradient vy = [ax ]of scalar @ and curl vxa=

0D
f(0)=% = ax

of vector A (and they re equal!)

L=t (@-in)= =5 (§,+ig, (D= iA) = z(ax+8y

d

1
dz — 2
Ql _1

-2

Jd
ox
J
dx

0D\ | 1/0A
)+2(

N

IM=lva+ivxa



What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.
dA
ayA of vector A (and they re equal!)

oD
Derivative 4% has 2D gradient vy = {ax ]of scalar @ and curl vxa=
dx

oD
f@=¢ =

dy

¢ 9= (P=iA)= =5 (§,+ig, (D= iA) = z(ax+ay )+2(aA 9 =1V +lvxa

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO



What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

0P
Derivative 4% has 2D gradient vy = [ax ]of scalar @ and curl vxa=

00
f(Z)_dq) = dy
.
i 0" = e (P—iA)= =1 +za ND—iA) 2(ax+aayq’)+2(aA —id=tvao+lvxa

of vector A (and they re equal!)

Bx

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO

Given ¢: || ¢ = D +i A The half-n*half result

1,2 2
find: = a(x” —y") +i axy or find: l

%‘D 3 Q(Xz — yz) l ax 5 5 axy
2 ax

V(I) — a);) — axa ) ’ — ( ]: F V)(A = ay = ay = ( ): F
» ) (e =) -y 5 ) \faw) 79




What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

oD
Derivative ¢ 3 " has 2D gradient vy - {ax ]of scalar @ and curl vxa=

gCD
_do
f@=4 = ’ A
d % _d AY=L9 19 \PH_i ANy 1 1
dz* ¢ d7 (CD_ ! ) 2 (ax _HBy)(q) ! ) —2 (ax +1 ay )+2 (ay —ox ) 2 Vo +2 VX
Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-V®

Given ¢: || ¢ = () +1 The half-n™-half result
find: =5 a(x” =y*) +i
1
V= ox 8x2( ) y
JdP 9 a
dy 8y2 (X -y )

ax | 2 2 ax
[ ]: F V)( = ay = ay = ( ): F

Scalar static potential lines ®=const. and vector =const. define DF'L field-net.

of vector A (and they re equal!)

y
_9
ox

Fey)=(x,-y)
Potential:
0(z)=z?
:x2_y2+l'

= O +i




What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

o0 ah
Derivative 9% has 2D gradient vo - [g’; ]Of scalar @ and curl vxa= * |of vector A (and they re equall)
“on
” A The half-n*- result
d : OAy 1 1
dz* ¢ ((D A)= —2 (ax _HBy NP—iA)= —2 (ax +i ay ) +2 (ay L ox ) 2 Vo ) VX
Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-V®
Given ¢: || ¢ = () +1 The half-n™-half result
find: =5 a(x* —y%) +i :
JD da, 2 2 d d
. 2 (X7 =7) l 5 S
Vq): 3(1) — gz ) ’ :[ax]:F V)( = ay = ay :(ax):F
o) (G- ) -y 40 ) (Beaw) o
Scalar static potential lines ®=const. and vector =const. define DF'L field-net.
The half-n’-half results
are called

Riemann-Cauchy
Derivative Relations

Jo_Jd o aRef(Z) dlmf(z)
fe v dx — dy 15-11 9x dy
(x,y)f ;;-y F——f
s ~ 9P _ _9A ;|| dRef(z)_ _ dImf(z)
=x2-)?+i =8 ay o a.x ’ ay o a.x
- +i .




— {. Riemann-Cauchy conditions what’ analytic? (...and what’s not?)



Review (z,z*) to (x,y) transformation relations
df dx o f dy df

d; 0z ax dz dy
* .
Z =x—iy y=1(z —2z%) df _dxdf 3y af _
a7t 37 ox ' dz" dy

7 =X+Iy x:%(z + 7%)

laf 1of 1 a_ia 7
2 0x 218)/_2 ox dy

1of 14df _1 aﬂ,a 7
20x 2idy 2ldx dy

Criteria for a field function f = fx(x,y) +i f,(x,y) to be an analytic function f(z) of z=x+iy:
. d

First, f(z) must not be a function of z*=x-iy,

This implies f(z) satisfies diﬁ‘erential equations known as the @iemann-Cauchy conditions)
J (0 J J
d—f=0=l 8 (f f)— Bf J, 4L fy+afx implies : af"z J, and : iz—afx
dz * 2 ax ox dy ] 2\ odx 9y o0x  dy ox dy
d _1({d .0 . of, I\, i o) o .9 9 .o 0 N .
dz _2(ax layj(fx“fy)_ [8x v ) 2\ )T e gy oy ax T T U



Review (z,z*) to (x,y) transformation relations

. | df _dxdf dydf _13f 1af 1(9 0

¢ AT . 2(Z +2%) dz 9z ax Jz dy 2 0x 218)/ 2\ dx lay /
* .

7 =x—iy y=5; (2 —2%) & _9xdf dydf 19f 19f (0 o),

a7t 97" ax 9z dy 29x 2idy 2ldx Iy

Criteria for a field function f = f«(x,y) +i f,(x,y) to be an analytic function f(z) of z=x+iy:
First, f(z) must not be a function of z*=x-iy, that is: %=
This implies f(z) satisfies differential equations known as the

d—f=0=l(a j(f f)— [af afyj+ (af afjlmplles afx:afy and : %:—afx
dz * 2\ ox ox dy ox dy o0x  dy ox ay y

da _1{d _.9d _L(of O (9 o o 9 U o _ O _ 9
dz _2(836 8)(f+f) [ax-l_ay)-l_z(ax 8y)_ax+lax_ay ay x(f if,) (f+zf)

( ° ° o \
Riemann-Cauchy conditions

Criteria for a field function f = f«(x,y) +i f,(x,y) to be an analytic function f(z*) of z*=x-iy:

First, f(z*) must not be a function of z=x+1iy, that iS.'Z—j;=0
This implies f(z*) satisfies differential equations we call Anti q{iemann-Cauchy conditions

\ .
i: 1[8 j(f f)_—(afx+afy +i(afy—aﬁ“j=implies: afx:_% and : afy:afx

x oy dx dy ) 2\ dx 9y ox dy ox ay)

dz ox  dy
df 1(9 . o (of. IR i o) 9 .afy__f O _ 0 __ 9
dz*_Z(ax_H j(fxﬂfy)_ (ax ay]+2\8x+8yj_8x+18x_ ay ay x(f i) (fﬂf)



What's analytic? (...and what’s not?)

Example: Is f(x,y) = 2x + iy an analytic function of z=x+i)?



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*¥=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*¥=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*¥=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-z*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-z*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x? + y? an analytic function of z=x+1i)?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x? + y? an analytic function of z=x+1i)?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.

Example 3: Q: Is s(x,y) = x2-y? + 2ixy an analytic function of z=x+iy?

A: YES! s(xy)=(x+iy)? =z2 is analytic function of z.



4. Riemann-Cauchy conditions What’ analytic? (...and what’s not?)

———- /5y 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
Easy 2n-multipole field and potential expansion
Easy stereo-projection visualization



What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between point z; and point z> is potential difference A¢p =¢(z2)- ¢(z1)
2

A¢:¢(Zz)_¢(zl): J f(Z)deq)(xzayz)_q)(xpyl)+i[A(xzayz)_A(xpyl)]
71 — _
AQ = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(#) connecting z; and z>.



What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between point z; and point z> is potential difference A¢p =¢(z2)- ¢(z1)

A¢:¢(Zz)_¢(zl): jzf(Z)deq)(xzayz)_q)(xpyl)+i[A(xzayz)_A(xpyl)]
71 — _
AQ = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(#) connecting z; and z>.
[ £(2)dz = j(f*(z*)) dz = J(f*(z*)) (dx+idy)= J(fx* ; z’fy*) (cbx+idy)= j(fj _ if;)(dx+ jdy)

=[(f; dx+ [, dy)+i[(f; dy—f, dx)

= [Fedr +i[FXdree,

= [Fedr +i]Fedrxe,

= JFedr +i[FedS where:  dS=drxe,



What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between point z; and point z> is potential difference A¢p =¢(z2)- ¢(z1)

A¢:¢(Zz)_¢(zl): jzf(Z)deq)(xzayz)_q)(xpyl)+i[A(xzayz)_A(xpyl)]
71 — _
AQ = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(#) connecting z; and z>.
[ £(2)dz = j(f*(z*)) dz = J(f*(z*)) (dx+idy)= j(fj ; ify*) (dx+idy)= j(fx* - if;)(dx+ jdy)

= [(f dxt 7 dy) [ (f7 dy— £ d)
= [Fedr +i[FXdree,

= [Fedr +i[Fedrxe,
ds

= [Fedr +i|FedS where:  dS=drXxe, e,
Adr ge=—"—~
F dr f_Big Fed
! / bie zp.dr \ part [ZFedS = AA
Real part Jl Fedr = AD sums F projection across path dr
sums F projections along path that 1s, thru surface
dr that 1s, circulation on path elements dS=drxez normal to dr

to get AD . to get AA.



Here the scalar potential ®=(x?-y2?)/2 is stereo-plotted vs. (x,y)
The ®=(x?-y?)/2=const. curves are topography lines

The curves are streamlines normal to topography lines




4. Riemann-Cauchy conditions What’ analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
—— 05y 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
Easy 2n-multipole field and potential expansion
Easy stereo-projection visualization



What Good Are Complex Exponentials? (contd.)
10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:
q]: d Z(x2—y2)/2 — const.

g’= A = (xy) = const.

*Actually it’s OCC. Foy=(x-y)

Potential:

0(z)=2

=x?-y?+i
- @ +

a_ql dq' 0ob JD

o ox dy ox dy x —-y\«E° .| og" 9q" | |9d aa| 1(x
Kajobian = = = Jacobian = = =—

dg* 9g* | |94 94| \y x)<E gy 9y | [dy | -y ox

ox 9y ox 9y dq' 9q’ 8(%) aT A

E, E E, E

E,cE, E_ -E 0
Metrictensor = (gm So ] = ( v e ] = ( Zj where: r*=x"+y’
0 & r



What Good Are Complex Exponentials? (contd.)
10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:
q]: d Z(x2—y2)/2 — const.

q2= — (xy) — const.

*Actually it’s OCC. Foy=(x-y)

Potential:

0(z)=2

=x?-y?+i
- @ +

ETANE

o ox dy ox dy x —-y\«E° .| og" 9q" | |9d aa| 1(x
Kajobian = = — Jacobian = = =—
dg> o’ | |94 94| \y x)«E Oy 9y | |9y dy| ri-y x
ox 9y ox 9y dq' 9q’ 8(%) aT A
E, E E, E
E.c-E, E_-E 0 :
Metrictensor = (gm 8o ] = ( e @ j ~" , | where: ri=x’+y’
.o 8§ EE, E E 0 r
Riemann-Cauchy Derivative Relations make coordinates orthogonal
0P da (x> —y%) The half-n’-half results assure 0 0
ox 0x2 y ax dy dy ax
VO = = = =F oD A 0D 9 VXA = = =
oD d Q( 2 _ 2) —ay E(D'E = + 0 0 —ay
dy gy2 X T ox dx dy dy ~ ~
0D oD 9D ID

0

— + =
ox dy dy ox



What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:

q]: () Z(x2—y2)/2 — const.
g’= A = (xy) = const.

[ E)=z*=x-iy
*Actually it’s OCC. Feew=(x-y)

Potential:

0(z)=2

=x?-y?+i
- @ +

' 3 (90
o ox dy ox dy (x —yjeEq’ : dq' g’ ob o 1(x )’j
Kajobian = = =

Jacobian = = =—

dg g’ | |94 94| vy x )«E dy 9y | |9y Iy -y X
ox E ox 9y dq' 9q’ 8(%) aT A
E, E E, E
E.-E, E_E 0 ®
Metrictensor =| 50 891 |=| ToTe e —" , | where: r*=x’+y
80 &8 E 'Eq) E ‘E 0 r
Riemann-Cauchy Derivative Relations make coordinates orthogonal
oo 0 ( x> —y?) The half-n*-half results assure ] 0
ox 8x2 -y ax dy dy ax
VO = = = =F oD A 0D 9 VXA = = = =F
dy 8y2 y dx dx dy dy " ox ~ox
__ 9000 9DID _
C Ox ay dy ox

of fy 000 90D _ 82613 PR
0=—% -0
Zero divergence requirement: TR N W M N NN potential ® obeys Laplace equation




What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:

q]: () Z(x2—y2)/2 — const.

q2= — (xy) — const.
*Actually it’s OCC.
') (s
ox d
Kajobian = 8x2 ay2 | & Y
dq° d¢* | |94 A
ox  dy dx  dy

oo

S (@¥)=z*=x-iy
Fay=(x,-y)

Potential:
0(z)=2’
=x7-)?+i
=0 +i

X =)
_yx

E °E E .E
Metrictensor = [ So ] — ( o Ho  To
810 8 E 'Eq)

E E

«—E°®
~—EKE

.

Jacobian =

Riemann-Cauchy Derivative Relations make coordinates orthogonal

L2 2.2
2} where: r'=x"+y

P J ac 2 2) The half-n’-half results assure
ox 8x2 -y ax
VO = = = =F 0D oA 9D 9
QCD g ( . 2) _ay E(D.E = +
dy 8y2 y ox dx dy dy
_ 0D acb oD 0D 0o
ox ay dy ox
or Riemann-Cauchy
U U _092 990_00 00

Zero divergence requirement: 0=

N

ox

dy

T Ox ox ay dy

8x2

dy”

T T 1
E, E E, E
oA J axy ax
5 5, 4X)
—ar ) ) A
and so does

=0 potential ®,0obeys Laplace equation

N



4. Riemann-Cauchy conditions What’ analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
—) Lasy 2D monopole, dipole, and 2"-pole analysis
Easy 2n-multipole field and potential expansion
Easy stereo-projection visualization



What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= n% | 2" Ttis the n = -/ case.

1

Unit monopole field: f (z)=i= z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a'In(x+iy).



What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= n% | 2" Ttis the n = -/ case.

1

Unit monopole field: f (z)=i= z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a'In(x+iy).

d(2)= @ + iA=]f()dz=]7dz=aln(z)



What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= n% | 2" Ttis the n = -/ case.

1 f(z)=5= az”' Source-a monopole

Unit monopole field: f (z):i: z
It has a logarithmic potential O(z)=a"In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’)=i0, and z=re®.
()= ® + iA=[f(2)dz=][%z=aln(z)=aln(re)

=aln(r) + iab



What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= n% | 2" 1t is the case.
Unit monopole field: f (Z)Zi: z7} f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a"In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’)=i0, and z=re®.
()= ® + iA=[f(2)dz=][%z=aln(z)=aln(re)

=aln(r) + iab
(a) Unit Z—line—ﬂx field f(z)=1/z

Lecture 12 Tue. 10.03
May end here

R A R
llllllllllll

f(z%)=1/z=e"/r
Fan=(xy)/r

Potential:

0(z)=Inz
=Iln r+i
=0 +




What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= n% | 2" Tt is the case.

1

Unit monopole field: f (z)=i: z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a"In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’)=i0, and z=re®.
()= ® + iA=[f(2)dz=][%z=aln(z)=aln(re)

=aln(r) + iab
(a) Unit Z-line-flux field f(z)=1/z (b) Unit Z-line-vortex field f(z)=i/z

| AT TR

N |-].i|:l / I '|_.‘,_|_-1.:c_l-_'_l-.__l_'q_::ll_f|.l‘l_l_ll_'l; |1;-|| I |

A 1 2
|||||||||||||||||

—
| &

Field:
(z*%)=-i/z*=-ie"/r
Fay=0,-x)/r
Potential:

f(z%)=1/z=e"/r
Fan=(xy)/r

R AN IS R a
M . :
1 |
—

Potential:
0(z)=Inz Oz)=ilnz
=In r+i =0 +i
-2 = +i

=D +i



What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= n% | 2" Ttis the n = -/ case.

-1

Unit monopole field: f (z)=i= z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a"In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’)=i0, and z=re®.

0()= @+ iA=[f(2)dz=]¢dz=aln(z)=aln(re")
=aln(r) + iab

A monopole field is the only power-law field whose integral (potential) depends on path of integration.
path that goes N times

around origin (r=0) at

constant r = R.

dy  6=27N g(Re'%)  6=27N. 2 .
Ap=¢ f(z)dz = aCﬁ =a {0 Py a { id6 = ai G‘O”N = 2amiN




§ 0(0)= @+ iA=]f()dz=][¢dz=aln(re")
= In(r) + i (For a=1)

Field:
f(Y)=1/z%=e"
Fay=(xy)/r

Potential:

O(z)=In z

=ln r+i

=D +i

1-pole(flux) 1-pole(flux)
X,V X,y

Each turn around origin

adds 27i to vector potential i

: T (For a=1)
141 —xp’?}]e(ﬂux) o /
27



(a) Unit Z-line-flux field f(z)=1/z

A\V4 T
e
F15
X
-/ 1
L
1 | 1
=3 NN iy R -
R, AN o
{_‘
b
f(z%)=1/z*=e®/r 1y l
Foy=(x)/r? C
Potential: s
d(z)=Inz F N
=In r+i i: )
=@ +i £
I-pole(flux) 1-pole(flux)
x;y x’y
‘:1}' V.]
Y ¥
\ \
1-pole(flux) 1-pole(flux)
X,y A X,y
, X i X
Y / ( /
M T
\\""«. . "*"-..,.: 7
/’/ﬁ \ /,/-
r/ z/

(b) Unit Z-line-vortex field f(z)=i/z

1-pole(vortex)
X,y

1-pole(vortex)
X,y

[(z*)=-i/z*=-ie®/r

Foy= (y, - X) /7,.2

0(z)=ilnz
=0 +i
=@ +i

1-pole(vortex)
X,V

\‘\
3 wlll
XA
Y

1-pole(vortex)

X,y

j’/y
\.\ XF’



What Good Are Complex Exponentials? (contd.)

1(z) =(0.5 +i0.5)/z=ei"/4/\2 1(z) =(0.75 +i0.25)/z=€i'$ /z\n

“Vortex” “Hurricane”

X=-3.6 y=3.2

N 1O
- | "lhi S

x=-0.82 y=-4.8

LT T
12
n
~
TY T T
(]
(W)}

I | b

-III_Y_T'I'

<3 22 oA AT T 3 ) I P RPAN, S\ ey o)
|-_|3 |5| I I | |. | lv__'l’l “ |l |\‘| J-% |5| -015; : |?f}45| - l"InI 5! |VI|Afl.-?v|A I I 111 _’ljl' I I [ IQ . |_-|’ ?lvvll'-allll_*.lsm || |ll_|L|3lI. 1 ||’— o v |
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4. Riemann-Cauchy conditions What’ analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
—) Lasy 2D monopole, dipole, and 2"-pole analysis
Easy 2n-multipole field and potential expansion
Easy stereo-projection visualization



What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az-1: 2D line monopole field and 1s its monopole potential¢(z)= alnzof source strength a.

] a d 1-pole )
f] pole (2)= Z _ (bdz ¢] pole (z)=alnz

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of f/-role-fields is called a cz’ipole field.

. —a-A . 7 -2
fdzpole (Z)= a _ a _ a : dipole (Z): aln(z _é) _ aln(z _l_é) _aln 2
R S
This is like the
derivative definition.
So-called
f{; = f(Z+AA)_f(Z) “physical dipole”
o has finite A
A A :
daf f(z+5)—f(z—5) (+)(-) separation
dz A

if A is infinitesimal
(A—0)




What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az-1: 2D line monopole field and 1s its monopole potential¢(z)= alnzof source strength a.

_ a d 1-pole )
f] pole (Z): Z _ ¢dZ ¢] pole (Z): aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of f/-role-fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A 1s tiny and 1s divided out we get a point-dipole field f 2-role that 1s the z-derivative of f /-role,
1-pole

f2-pole _ —a _ df]-pole _ d¢2-p0le ¢2-p01€ B ﬁ _ d¢ P

72 dz dz Z dz




What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az-1: 2D line monopole field and 1s its monopole potential¢(z)= alnzof source strength a.

_ a d 1-pole )
f] pole (Z): Z _ ¢dZ ¢] pole (Z): aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of f/-role-fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A 1s tiny and 1s divided out we get a point-dipole field f 2-role that 1s the z-derivative of f /-role,

1-pole
—a df]-pole B d¢2-pole ¢2-pole B E _ d¢

f2-pole _

72 dz dz Z dz




What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az-1: 2D line monopole field and 1s its monopole potential¢(z)= alnzof source strength a.

_ a d 1-pole )
f] pole (Z): Z _ ¢dZ ¢] pole (Z): aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of f/-role-fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A 1s tiny and 1s divided out we get a point-dipole field f 2-role that 1s the z-derivative of f /-role,

1-pole
—a df]-pole B d¢2-p0le ¢2-pole _a _ d¢

72 dz dz Z dz

A point-dipole potential ¢p?-role (whose z-derivative 1s f2-role) 1s a z-derivative of ¢pZ»ole,

f2-pole _

= —= +1 =—c0osO@—i—sin@

¢2_p016_a_ a a x-—iy ax —ay a a
z x+iy x+iyx—iy x24y*  xP4y? 7 r

_ (D2-pole 4 A2—pole



A point-dipole potential ¢p?-role (whose z-derivative 1s f2-role) 1s a z-derivative of ¢/-»pole,

a a a x-—1 ax . —a a .a .
“_ _ = . .y= 47 J =—cosf—i—sinb
z x+iy x+iyx—iy x24y?  xP4y? 7 r

¢2-pole _

_ (I)Z—pole 4 2-pole

Scalar potentials
o= (a/r)cos O=const.

.

o A3 T NN

IIIIIIIII
— - — - s

a/D

|
=(a/)")sin ©

f(z*)=1/z>*=e*%/y?
F () =(c0s20,5in20)/r*
Potential.:

O(z)=1/z
=(cos0)/r+i
= @ +i

— (Cl/?‘) sin O=const.




2”-]90[6 analySiS (quadrupole:2?=4-pole, octapole:23=8-pole, ..., poie dancer,

What if we put a (-)copy of a 2-pole near its original?
Well, the result 1s 4-pole or quadrupole field f 4pole and potential ¢4-»ole,

Each a z-derivative of f2-pole and ¢2-pole,

a 1d¢2-p016
T3 2 4 dz 2.2 2 d:

a 1df2-pole _d¢4-pole

f4-pole _“ _ ¢4-pole .




2 ”—p()le analys 1S (quadrupole:2?=4-pole, octapole:23=8-pole, ..., poie dancer,

What if we put a (-)copy of a 2-pole near its original?
Well, the result 1s 4-pole or quadrupole field f 4pole and potential ¢4-»ole,

Each a z-derivative of f2-role and ¢2-pole,

a 1 de-pole - d¢4-pole

f4-pole _ _—

4-pole
X,V

Field:
(z%)=1/23*=¢3%/43
F(x.0)=(c0s38,5in30)/i
Potential:
20(z)=1/z°
=(c0s20)/r’+i

= O +i




4. Riemann-Cauchy conditions What’ analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
> Easy 2n-multipole field and potential expansion
Easy stereo-projection visualization



2”-]?016 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

d -3 -2 -1 2 3 4 5
d—fzf(z):..a_ﬂ + a,7 "+ a2z + ay + @z + ar7Z" + a7z + ayz + asz +..

22-pole 21-pole 20 -pole 21-pole 22-pole 23-pole 24 -pole 2° -pole 26-pole

(quadrupﬁle) (d%'pole) (manapaée) (dipole (quadrupole) (octapole) (hexadecapole)
at z= at z=0 at =

at z= 7=o0 atz=oo  atz=oo  atz=oo atz=oo  at z=oo
[fdz=
a_~ _ a_» _ a a a a a
N)=.—=27°+ =27 + a lnz + ayz + Lz + 27 + 3B 4+ AP 50 4
—2 —1 2 3 4 5 6

All field terms am-1zm-1 except /-pole ;—1 have potential term a,,-z"/m of a 2m-pole.
These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«
a_, _— a_~ _ a_» _ a a
¢(Z)=-..—4Z . +—37 2 4 —27 by a_Inz + agz + —122 + —2z3 + ...
-3 -2 -1 2 3



2”-]?016 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

d _ _ _
d_f:f(Z):...a_:;Z 3 + a_»Z 2 + a_Z I + ay + aqz + 612Z2 + Cl3Z3 + a4z4 + ClsZS + ...
22—pole 21—pole 20 -pole 21—pole 22—pole 23—pole 24 -pole 27 -pole 26—pole
(quadrupgle) (dipole) (monopole) (dipole) (quadrupole) (octapole) (hexadecapole)
[ fdz= at z=0 at z=0 at z=0 at z=oc0  at z=o0 at z=o0 at z=oc0 atz=oo atz=oo
a3 2 49 -1 4 2 a4 3 as 4 A4 5, 45 6
()=.—=27 "+ —=7  + aInz+ ayz + —z° + =7 + =27 4+ =77+ 270 +..
/ ) -1 1 ° 2 3 4 5 6

All field terms am-1zm-1 except /-pole ;—1 have potential term a,,-z"/m of a 2m-pole.

These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«
a , _ a , a , _ da a
¢(Z)=---—3Z R e a Inz + ayz + L2+ 2 4
-2 -2 -1 2 3

(with z=w-1)



2”-]?016 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

d _ _ _
d—f=f(z)=...a_3z > 4 a_,z o a ,z bt a, + az + a2Z2 + a3z3 + a4z4 + a5Z5 + ...
22—pole 21—pole 2" -pole 21—pole 22—pole 23 -pole 24 -pole 2° -pole 20 -pole ---
(quadrupole) (dipole) (monopole) (dipole) (quadrupole) (octapole) (hexadecapole)
[ fdz= at z=0 at z=0 at z=0 at 7z=oo atz=oco  atz=oco  atz=oc atz=oo  at z=oo
a a a a a a a
O()=..—277+ 27 + a Inz+ ayz + L% + 27 + 2+ 22+ 20 4.
—2 —1 2 3 4 5 6

All field terms am-1zm-1 except /-pole ;—1 have potential term a,,-z"/m of a 2m-pole.

These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«
a4, -3 a3 - a_» _ a - a, 3
O()=..—27° +—27° + —277 + a,lnz + ayz + =¥ + 27" +..
-3 -2 -1 2 3
a_ _ _ _ a_ _ a a
O(w) = T, I8, 22 a_lnw + aggw + Ap? + 223 4
_ -2 —1 2 3
e e
a, _ ar _ — a_ a_ a_
= %Z ) +Elz 2Ty apl Pz a_ilnz + —12z + —23z2 + 4z3 +

(with w=z-1)



N |Z|:tan6/2:|W|_]
\ .
Z_plane — /W 1 DY N 0/2
2
0
] cos/6/2 /
z 0/2 cos® 0/2
0/2
S |W|:cot6/2:|Z|_]
w-plane W=UTLY

=1/z

a _ a_~r _ a_» _ a a
(octcclzpole)o (qzéladmpole)o (&z’ipole)o (monopole) (dipole)«

(quadrupole)» (octapole)s
a2 a 3
doW + 7 w + —w + ...

¢(W)=...—3w +3 Tt 227 a_jlnw +
B (with z—w)
_ 4 2 a -2 -1

a_ a3 » a4 3
=277 +77 4+ gt - anz+ 2+ S+ =P o4
Kf _45 -1
(a) 15 (b) N ¢(Z) - TZ ¢(Z) — a;23z—2
¢ y\ f()= a_zz_2 f(2)= a_3z_3
(+) monopole field dipole field centered quadrupole field centered
at North Pole at North Pole at North Pole
is (-) monopole field is constant field is quadratic field
near SouthPole near SouthPole near South Pole
R o(w) = agw (W) = agw?
} ( —>— f(w)=q fw)y=aw
BRI\ !



-3 —2 ~1 2 3 4 5
f(@)=.a3z2” + ay,z " + a2+ a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz=2mia_, =+ ¢ f(2)dz



-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

§f(2)dz=¢a_z"'dz="2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 272:1 f(Z)

Z



-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz=2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p = 277:1 §2'f(2)dz , a 1_27:1 §f(2)dz , ay = 272:1 Cﬁf(Z) » 41 = 272:1 f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢-"'dz=2zi or, with origin shifted §(z-a)"'dz=2xri.



-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz=2mia_, 27” ¢ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)
< /@) Sf>f (a)

<~ Cl
(but any Contour that doesn’ t touch a gIves same answer)




-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz=2mia_, 27” ¢ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral.



-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

§f(2)dz=¢a_z"'dz="2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df(a) _ 1 g VACII
da  2mi (z— a)

9



-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

§f(2)dz=¢a_z"'dz="2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df(a) _ 1 § f(Z) dzf(a) 2 § f(Z)
da  2mi (z— a) © o gg: 2w (z— a)

9



-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz=2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2°f(@)dz . a -2 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) > 4 272:1 f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) 1s just f(a) on a u, circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
@f 95f d = f(a) f(a)= .cﬁf dz
7— a 2w z—a

(but any contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df@_ 1, f@) . df@_ 2, /@) , df@_ 3, /) ,
da  2mi (z-a) da? 7 (z— a) © 4l 2w (z—a)*




f(Z)=...a_3z_3 + a_zz_z + a_lz_l + a + az + a2z2 + a3z3 + a4z4 + a5z5 + ...
Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz=2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.

(Z) (z)

SR =2%ri cﬁzzf(z)dz , a_y 27rz E]SZ fdz , a 1_2}, $ f(2)dz , dy = 27;, Cﬁ > 4 27rz 98

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) 1s just f(a) on a u, circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

d@_ 1, S o Ef@_ 2, @) L@ 3 @) @ )
da  2mi" (z- a) | dd® 2 (o a) ' ddd 2w (o a) T w2 (zmay




-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz=2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2°f(@)dz . a -2 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) > 4 272:1 f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) 1s just f(a) on a u, circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
@f 95f d = f(a) f(a)= .cﬁf dz
7— a 2w z—a

(but any contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

d@_1 ., /@  dEf@_2 [  df@_3 . & df@_n . f()
d (j) Z b 2 Cﬁ b Cf) Z, ) - Cﬁ dZ
a  2mi (z— a) da 27 (z— a)

da® 27 (z— a) da" 27 (z—g)"!

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.



f(Z)=...a_3z_3 + a_zz_z + a_lz_l + a + az + a2z2 + a3z3 + a4z4 + a5z5 + ...
Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f(2)dz=¢a_z"'dz=2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.

(Z) (Z)

SR =2%ri cﬁzzf(z)dz , a_y 27rz E]SZ fdz , a 1_2}, $ f(2)dz , dy = 27;, Cﬁ > 4 27rz 98

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) 1s just f(a) on a u, circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df(a) _ 1 § G4 d’f(a) _ 24-) ACI d3f(a): 3 s f@ o 4@ nl JACINN

da  2mi’ (;— q)’ da®  2mi (7 a) L ddd i (z—a)t T dd" 27 (z— )™

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

f(2)= § an(Z—d)n where : a_ = : $ /(@) dz£: 1 d"f(a)

for : nZO]



Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz=2mia_, 27” ¢ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

@ 1, /6 , df@_ 2, /6 , &f@_ 3 f@ o @ e (6

da 27 (z_q  dd®  2mi (z- a) L dd 2 (z-a) L da" 27 (z—g)"t!

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

= 1 1 d"
f()= ¥ a (z—a) where : a =—¢ A dz| = AC) for: n=0
N=—o00 271 (Z — a)n+1 n! dan
(quadrupole)y (dipole)o (monopole) (dipole)s (quadrupole)« (octapole)s (hexadecapole)s ...

=3 -2 -1 2 3 4 5
f(R=.axz7” + aysz "+ a2z + a + aqz + @&im + a7 + a7 + asz +...
dipole monopole
moment moment



w(z)=z> gives parabolic OCC

z=-34 +155 1s mapped info wiz)=-91 +1-19
Y 4
E 3
-
= B A A
| TMINMMAIMME 1Ml NIMAT l

= 2
- _l:-
3
E 4

wiz)= Az"202 )

w= (u+ )= 2" = (z+1iy)’ is analytic function of z and w

Expansion: u=2"—y" and v =22y may be solved using |w |=| 2* |=| z |’
V z_ 3 Expansion: |w = yu® +v* =2’ +¢* = 2
F ’ 2 2 ' 2 2
Solution: xQ — m y2 — M
= 2 2
ﬂ
Qu Ou| dz Oz 20 +2y
e or oy|_[EY|_[20 -2 ou ov|_(E, B )= —2y 2
PR & ov dul (B} (42 20 oy Oy Uoafet )
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dr Oy ou Ov
I || Ll | I 1 II Ll | | I LLLLLLL I
3 U
H
-3
E 4




