
Lecture 28 
Multi-particle and Rotational Dynamics 

(Ch. 2-7 of Unit 6   12.12.14)

2-Particle orbits
            Ptolemetric or LAB view and reduced mass
            Copernican or COM view and reduced coupling

2-Particle orbits and scattering:  LAB-vs.-COM frame views
           Ruler & compass construction (or not)

Rotational equivalent of Newton’s F=dp/dt equations: N=dL/dt
         How to make my boomerang come back
          The gyrocompass and mechanical spin analogy 

Rotational momentum and velocity tensor relations
           Quadratic form geometry and duality (again)
                    angular velocity ω-ellipsoid vs. angular momentum L-ellipsoid  
                    Lagrangian ω-equations vs. Hamiltonian momentum L-equation

Rotational Energy Surfaces (RES) and Constant Energy Surfaces (CES)
          Symmetric, asymmetric, and spherical-top dynamics (Constant L)
                    BOD-frame cone rolling on LAB frame cone
           Deformable spherical rotor RES and semi-classical rotational states and spectra

Lecture  31 
Tue. 12.12.2014
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Defining relative coordinate vector 
     
      
and mass-weighted-average  or center-of-mass coordinate vector rCM 
     
     
The inverse coordinate transformation.
     

m1r2

m2

r1
rCM

r = r1- r2 rCM= m1r1+ m2r2
m1+m2

 r = r1 − r2

   
r = rCM =

m1r1 + m2r2
m1 + m2

   
r1 = rCM +

m2r
m1 + m2

 ,            r2 = rCM −
m1r

m1 + m2

2-Particle orbits and center-of-mass (CM) coordinate frame
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2-Particle orbits
             Ptolemetric or LAB view and reduced mass
            Copernican or COM view and reduced coupling
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Reduced mass: Ptolemetric views
 Radial inter-particle force F12 is on m1 due to m2 and F21 = -F12 is on m2 due to m1

F12 acts along relative coordinate vector r= r1 - r2 
Depends only upon the relative distance r =| r1 - r2 |

   
= F(r)r̂ =    F(r) r

r
=   F(r)

r
r1 − r2( )F12 = F(r)er =-F21

    

F12 = m1r1 =    F(r)r̂ =    F(r) r
r
=   F(r)

r
r1 − r2( )

F21 = m2r2 = −F(r)r̂ = −F(r) r
r
= − F(r)

r
r1 − r2( )

Re-scaled force: A Copernican view
   
r1 =

m2r
m1 + m2

= µ
m1

r ,            r2 =
−m1r

m1 + m2
= −µ

m2
r

   

m1
µ

r1 = r =
−m2
µ

r2

relative radius vector
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Reduced mass: Ptolemetric views
 Radial inter-particle force F12 is on m1 due to m2 and F21 = -F12 is on m2 due to m1

F12 acts along relative coordinate vector r= r1 - r2 
Depends only upon the relative distance r =| r1 - r2 |

   
= F(r)r̂ =    F(r) r

r
=   F(r)

r
r1 − r2( )F12 = F(r)er =-F21

    

F12 = m1r1 =    F(r)r̂ =    F(r) r
r
=   F(r)

r
r1 − r2( )

F21 = m2r2 = −F(r)r̂ = −F(r) r
r
= − F(r)

r
r1 − r2( )

 (m1 +m2)rCM = m1r1 +m2r2 = 0
Sum F12+F21 yields zero because of Newton's 3rd -law action-reaction cancellation.

Re-scaled force: A Copernican view
   
r1 =

m2r
m1 + m2

= µ
m1

r ,            r2 =
−m1r

m1 + m2
= −µ

m2
r

   

m1
µ

r1 = r =
−m2
µ

r2

relative radius vector
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Difference F12-F21 reduces to                   using reduced mass: 

Reduced mass: Ptolemetric views
 Radial inter-particle force F12 is on m1 due to m2 and F21 = -F12 is on m2 due to m1

F12 acts along relative coordinate vector r= r1 - r2 
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r
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r
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Sum F12+F21 yields zero because of Newton's 3rd -law action-reaction cancellation.
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Re-scaled force: A Copernican view
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Difference F12-F21 reduces to                   using reduced mass: 

Reduced mass: Ptolemetric views
 Radial inter-particle force F12 is on m1 due to m2 and F21 = -F12 is on m2 due to m1

F12 acts along relative coordinate vector r= r1 - r2 
Depends only upon the relative distance r =| r1 - r2 |
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r
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F21 = m2r2 = −F(r)r̂ = −F(r) r
r
= − F(r)

r
r1 − r2( )

 (m1 +m2)rCM = m1r1 +m2r2 = 0
Sum F12+F21 yields zero because of Newton's 3rd -law action-reaction cancellation.

 µ r = F(r) µ =
m2m1
m1 +m2   rCM = 0

 

[             m1r1          ]− [        m2r2              ] = 2F(r)
r

r1 − r2( )

m1rCM +
m1m2r
m1 +m2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− m2rCM +

m2m1r
m1 +m2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 2F(r)
r

r1 − r2( )

 µ r = F(r)r̂ = F(r)er = F(r)

  

1
µ
= 1

m1
+ 1

m2
=

m1 + m2
m1m2

Re-scaled force: A Copernican view
   
r1 =
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m1
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Difference F12-F21 reduces to                   using reduced mass: 

Reduced mass: Ptolemetric views
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m1
+ 1

m2
=

m1 + m2
m1m2

    

µ =
m

1

1 +
m

1

m
2

= m
1

1−
m

1

m
2

...
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 (m

2
>>m

1
) 

    

µ =
m

2

1 +
m

2

m
1

= m
2

1−
m

2

m
1

...
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 (m

1
>>m

2
) 

Re-scaled force: A Copernican view
   
r1 =

m2r
m1 + m2

= µ
m1
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−m1r

m1 + m2
= −µ

m2
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m1
µ

r1 = r =
−m2
µ
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relative radius vector
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Re-scaled force: A Copernican view
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= µ
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r1 = r =
−m2
µ
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relative radius vector

(Why it’s reduced)
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2-Particle orbits
            Ptolemetric view and reduced mass
            Copernican view and reduced coupling
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Difference F12-F21 reduces to                   using reduced mass: 

Reduced mass: Ptolemetric views
 Radial inter-particle force F12 is on m1 due to m2 and F21 = -F12 is on m2 due to m1
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=
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⎜⎜⎜⎜⎜
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Re-scaled force: A Copernican view
   
r1 =

m2r
m1 + m2

= µ
m1

r ,            r2 =
−m1r

m1 + m2
= −µ

m2
r

   

m1
µ

r1 = r =
−m2
µ

r2

relative radius vector

    

F12 = m1r1 =  F(
m1
µ

r1)r̂1 = −F21

F21 = m2r2 = F(
m2
µ

r2 )r̂2 = −F12

each particle keeps it original mass m1 or m2, but feels
 coordinate-re-scaled force field F(m1 r1/µ) or F(m2 r2/µ) field

(Why it’s reduced)

(Here we get  “reduced” coupling constants)
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Re-scaled force: A Copernican view
   
r1 =

m2r
m1 + m2

= µ
m1

r ,            r2 =
−m1r

m1 + m2
= −µ

m2
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µ
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F12 = m1r1 =  F(
m1
µ

r1)r̂1 = −F21

F21 = m2r2 = F(
m2
µ

r2 )r̂2 = −F12

each particle keeps it original mass m1 or m2, but feels
 coordinate-re-scaled force field F(m1 r1/µ) or F(m2 r2/µ) field

  

F(r) = k
r2

 becomes:  F(
m1
µ

r1) = µ2

m1
2

k
r1

2
     

     k → k1 = k µ2 / m1
2  ,      k → k2 = k µ2 / m2

2
(Coulomb)

(Why it’s reduced)

(Here we get  “reduced” coupling constants)
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Re-scaled force: A Copernican view
   
r1 =
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= µ
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= −µ
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F12 = m1r1 =  F(
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r1)r̂1 = −F21

F21 = m2r2 = F(
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r2 )r̂2 = −F12

each particle keeps it original mass m1 or m2, but feels
 coordinate-re-scaled force field F(m1 r1/µ) or F(m2 r2/µ) field

  

F(r) = k
r2

 becomes:  F(
m1
µ

r1) = µ2

m1
2

k
r1

2
     

     k → k1 = k µ2 / m1
2  ,      k → k2 = k µ2 / m2

2
  

F(r) = −kr  becomes:  F(
m1
µ

r1) = −
m1
µ

k r1   

     k → k1=k m1 /µ  ,   k → k2=k m2/µ
(Coulomb) (Harmonic Oscillator)

(Why it’s reduced)

(Here we get  “reduced” coupling constants)
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2-Particle orbits and scattering:  LAB-vs.-COM frame views
           Ruler & compass construction (or not)
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m2

m1

rCM= 0
r2

r1

m2

m1

r2

r1

(a) F(r) = -k/r2 (b) F(r) = -kr

Two particles are in synchronous motion around fixed CM origin. 
Orbit periods are identical to each other. 
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation. 
      

Examples of Coulomb and harmonic oscillator 2-particle “Copernican” orbits in CM system. 
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(a) F(r) = -k/r2 (b) F(r) = -kr

Two particles are in synchronous motion around fixed CM origin. 
Orbit periods are identical to each other. 
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation. 
Orbits differ in size of axes (a1 , b1) and (a2 , b2) 
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator). 
 
      

Examples of Coulomb and harmonic oscillator 2-particle “Copernican” orbits in CM system. 
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Two particles are in synchronous motion around fixed CM origin. 
Orbit periods are identical to each other. 
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation. 
Orbits differ in size of axes (a1 , b1) and (a2 , b2) 
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator). 
Orbit axial dimensions (ak , bk) and λk are in inverse proportion to mass values. 
        a1m1 = a2m2 = aµ  ,             b1m1 = b2m2 = bµ   λ1m1 = λ2m2 = λµ

Examples of Coulomb and harmonic oscillator 2-particle “Copernican” orbits in CM system. 
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Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation. 
Orbits differ in size of axes (a1 , b1) and (a2 , b2) 
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator). 
Orbit axial dimensions (ak , bk) and λk are in inverse proportion to mass values. 
        a1m1 = a2m2 = aµ  ,             b1m1 = b2m2 = bµ   λ1m1 = λ2m2 = λµ

 ε1 = ε2 = ε

Harmonic oscillator periods          and Coulomb orbit periods         and eccentricity must match

  
TIHO = 2π µ

k
= 2π

m1
k1

= 2π
m2
k2   

TCoul = 2π µ a3

k
= 2π

m1a1
3

k1
= 2π

m2a2
3

k2

Examples of Coulomb and harmonic oscillator 2-particle “Copernican” orbits in CM system. 
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m1
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r1

m2

m1

r2

r1

(a) F(r) = -k/r2 (b) F(r) = -kr

Two particles are in synchronous motion around fixed CM origin. 
Orbit periods are identical to each other. 
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation. 
Orbits differ in size of axes (a1 , b1) and (a2 , b2) 
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator). 
Orbit axial dimensions (ak , bk) and λk are in inverse proportion to mass values. 
        a1m1 = a2m2 = aµ  ,             b1m1 = b2m2 = bµ   λ1m1 = λ2m2 = λµ

 ε1 = ε2 = ε

Harmonic oscillator periods          and Coulomb orbit periods         and eccentricity must match

  
TIHO = 2π µ

k
= 2π

m1
k1

= 2π
m2
k2   

TCoul = 2π µ a3

k
= 2π

m1a1
3

k1
= 2π

m2a2
3

k2

Three Coulomb orbit energy values satisfy the same proportion relation as their axes 

  
E1m1 = E2m2 = Eµ  ,   where:   E1 =

k1
2a1

 ,   E2 =
k2

2a2
 ,   E =

k
2a

 .  

Energy values and axes satisfy similar sum relations

  
E1 + E2 =

m1
µ

E +
m2
µ

E = E  ,   and:   a1 + a2 =
m1
µ

a +
m2
µ

a = a

Examples of Coulomb and harmonic oscillator 2-particle “Copernican” orbits in CM system. 
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Θ1LAB

Θ2LAB

8

8

90°

v2CM(∞)

v1CM(∞)

v2LAB(∞)

QCM

Θ1LAB

Θ2LAB

v1CM(0)

LAB view
vCM= -v2CM(0)
v2LAB(0)=0

CM view
vCM=0

v2LAB(0)=0

v2CM(0)

v2CM(∞)

v1CM(∞)
ΘCM

v1CM(0)v2CM(0)

v1LAB(∞)

90°

A common type of scattering 
(m1=m2)

...that every pool shark should know
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m1

m2

r1

r2

ΘCM

 a1

 a2

 b1
 b2

ΘCM

rCM= 0

m1

m1

m2

Θ1LAB

Θ2LAB

m2m2

(m2 "creeps" logarithmically

from -∞ until it is hit by m1)

COG moves uniformly

at v
CM

= -v
CM
(0)

2

v
LAB

(0)=0
2

ΘCM

v2CM(0)

v2CM(∞)

v1CM(∞)

v2LAB(∞)

v1LAB(∞)

Θ1LAB

Θ2LAB

v1CM(0)

LAB view
vCM= -v2CM(0)
v2LAB(0)=0

v2LAB(0)=0

v2CM(0)

v2CM(∞)

v1CM(∞) ΘCM

v1CM(0)

CM view
vCM=0

ΘCM

To transform CM to LAB frame 
Just subtract v2CM(0) from all
(Assuming that initial v2LAB(0) is zero so v2CM(0) is CM velocity in LAB)
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From:Geometric aspects of classical Coulomb scattering
American Journal of Physics  40,1852-1856 (1972)
Class project when I taught Jr. CM at Georgia Tech
(Just 5 students)

The trouble with the Coulomb field is...

t −1∫ dt = ln t + C
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From:Geometric aspects of classical Coulomb scattering
American Journal of Physics  40,1852-1856 (1972)
Class project when I taught Jr. CM at Georgia Tech
(Just 5 students)
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From:Geometric aspects of classical Coulomb scattering
American Journal of Physics  40,1852-1856 (1972)
Class project when I taught Jr. CM at Georgia Tech
(Just 5 students)

24Wednesday, December 24, 2014



Rotational equivalent of Newton’s F=dp/dt equations: N=dL/dt
         How to make my boomerang come back
          The gyrocompass and mechanical spin analogy 
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Rotational equivalent of Newton’s F=dp/dt equations: N=dL/dt 

    
L j=r j × mj r j ≡  r j × p j

Angular momentum vector Lj of a mass mj is its linear momentum pj times its lever arm 
as given by the angular momentum cross-product relation
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Rotational equivalent of Newton’s F=dp/dt equations: N=dL/dt 

    
L j=r j × mj r j ≡  r j × p j

Angular momentum vector Lj of a mass mj is its linear momentum pj times its lever arm 
as given by the angular momentum cross-product relation

    
L = Ltotal =

j=1

3
∑ L j=

j=1

3
∑ r j × mj r jThe sum-total angular momentum is 
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Rotational equivalent of Newton’s F=dp/dt equations: N=dL/dt 

    
L j=r j × mj r j ≡  r j × p j

Angular momentum vector Lj of a mass mj is its linear momentum pj times its lever arm 
as given by the angular momentum cross-product relation

    
L = Ltotal =

j=1

3
∑ L j=

j=1

3
∑ r j × mj r jThe sum-total angular momentum is 

dL /dt gives a rotor Newton equation relating rotor momentum rxp to rotor force or torque rxF.

    

dL
dt

=
j=1

3
∑ r j × mjr j =

j=1

3
∑ r j × Fj

total

     =
j=1

3
∑ r j × Fj

applied +
j=1

3
∑ r j ×

k=1 k≠ j( )
3
∑ Fjk

constraint
⎛

⎝
⎜

⎞

⎠
⎟

m1r1

r12 = r1- r2

rCM= m1r1+ m2r2+ m3r3
m1+m2+m3

m2

m3

r31 = r3- r1

r23 = r2- r3
r3

r2

m1

m2

m3
F23 = - F32

F32 = - F23

F13 = - F31

F31 = - F13

F21 = - F12

F12 = - F21

F2applied

F1applied

F3applied

Fig. 6.4.2 Three-particle force vectors

Fig. 6.4.1 Three-particle coordinate vectors
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Rotational equivalent of Newton’s F=dp/dt equations: N=dL/dt 

    
L j=r j × mj r j ≡  r j × p j

Angular momentum vector Lj of a mass mj is its linear momentum pj times its lever arm 
as given by the angular momentum cross-product relation

    
L = Ltotal =

j=1

3
∑ L j=

j=1

3
∑ r j × mj r jThe sum-total angular momentum is 

dL /dt gives a rotor Newton equation relating rotor momentum rxp to rotor force or torque rxF.

    

dL
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∑ r j × mjr j =

j=1

3
∑ r j × Fj
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3
∑ r j × Fj

applied +
j=1

3
∑ r j ×

k=1 k≠ j( )
3
∑ Fjk
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⎛

⎝
⎜

⎞

⎠
⎟

   

r j × Fjk
constraint

k=1 k≠ j( )
3
∑

j=1

3
∑ = r1 × F12 + F13

constraint( ) + r2 × F21 + F23
constraint( ) + r3 × F31 + F32

constraint( )
                 = r1 − r2( ) × F12

constraint + r1 − r3( ) × F13
constraint + r2 − r3( ) × F23

constraint = 0

Internal constraint or coupling force terms  appear at first to be a nuisance.
m1r1

r12 = r1- r2
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m2

m3
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r23 = r2- r3
r3
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Fig. 6.4.2 Three-particle force vectors

Fig. 6.4.1 Three-particle coordinate vectors

29Wednesday, December 24, 2014



Rotational equivalent of Newton’s F=dp/dt equations: N=dL/dt 

    
L j=r j × mj r j ≡  r j × p j

Angular momentum vector Lj of a mass mj is its linear momentum pj times its lever arm 
as given by the angular momentum cross-product relation

    
L = Ltotal =
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3
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3
∑ r j × mj r jThe sum-total angular momentum is 

dL /dt gives a rotor Newton equation relating rotor momentum rxp to rotor force or torque rxF.
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=
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3
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k=1 k≠ j( )
3
∑
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3
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constraint( ) + r3 × F31 + F32

constraint( )
                 = r1 − r2( ) × F12

constraint + r1 − r3( ) × F13
constraint + r2 − r3( ) × F23

constraint = 0

Internal constraint or coupling force terms  appear at first to be a nuisance.

However, they vanish if coupling forces act along lines connecting the masses.
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Fig. 6.4.2 Three-particle force vectors

Fig. 6.4.1 Three-particle coordinate vectors
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3
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Internal constraint or coupling force terms  appear at first to be a nuisance.

However, they vanish if coupling forces act along lines connecting the masses.

   

dL
dt

= N , where: N = N j
j=1

3
∑    and:   N j =

j=1

3
∑ r j ×Fj

applied

The results are the rotational Newton's equation.
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Fig. 6.4.2 Three-particle force vectors

Fig. 6.4.1 Three-particle coordinate vectors
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Angular momentum vector Lj of a mass mj is its linear momentum pj times its lever arm 
as given by the angular momentum cross-product relation

    
L = Ltotal =

j=1

3
∑ L j=

j=1

3
∑ r j × mj r jThe sum-total angular momentum is 

dL /dt gives a rotor Newton equation relating rotor momentum rxp to rotor force or torque rxF.
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Internal constraint or coupling force terms  appear at first to be a nuisance.

However, they vanish if coupling forces act along lines connecting the masses.

   

dL
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= N , where: N = N j
j=1

3
∑    and:   N j =

j=1

3
∑ r j ×Fj

applied

The results are the rotational Newton's equation.

   

dP
dt

= F ,  where: F =
j=1

3
∑ Fj

applied

Taken together with translational Newton's equation the six equations describe rigid body mechanics.
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Rotational equivalent of Newton’s F=dp/dt equations: N=dL/dt 
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Angular momentum vector Lj of a mass mj is its linear momentum pj times its lever arm 
as given by the angular momentum cross-product relation
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3
∑ L j=
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3
∑ r j × mj r jThe sum-total angular momentum is 

dL /dt gives a rotor Newton equation relating rotor momentum rxp to rotor force or torque rxF.
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=
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3
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3
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3
∑
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3
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                 = r1 − r2( )×F12
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Internal constraint or coupling force terms  appear at first to be a nuisance.

However, they vanish if coupling forces act along lines connecting the masses.

   

dL
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= N , where: N = N j
j=1

3
∑    and:   N j =

j=1

3
∑ r j ×Fj

applied

The results are the rotational Newton's equation.

Taken together with translational Newton's equation

   

dP
dt

= F ,  where: F =
j=1

3
∑ Fj

applied

the six equations describe rigid body mechanics.

Remaining 3N-6 equations consist of normal mode or GCC equations of some kind.
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Rotational equivalent of Newton’s F=dp/dt equations: N=dL/dt
         How to make my boomerang come back
          The gyrocompass and mechanical spin analogy 
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N

L

The Australian Boomerang (that comes back!)

   
dL
dt

= N 

Less 
aerodynamic
lift

Higher 
aerodynamic
lift

N
Unbalanced 

lift gives 
torque N
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N

L

Less 
aerodynamic
lift

Higher 
aerodynamic
lift

The Australian Boomerang (that comes back and hovers down!)

   
dL
dt

= N NL

Unbalanced 
lift gives 
torque N

N

Small lifting torque due to “bad-air” 
 of leading blade hitting trailing one
left-to-right may cause boomerang 
to level and hover. Stronger effect in
3-blade boomers causes figure-8 paths.
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N

L

Less 
aerodynamic
lift

Higher 
aerodynamic
lift

The Australian Boomerang (that comes back and hovers down!)

   
dL
dt

= N NL

Unbalanced 
lift gives 
torque N

N

https://www.youtube.com/watch?v=EXJR5NWM_xI&list=PLGwmGldCxzLxbPlFVG8Z89WZIBuT4m0Ii&index=7

Charlie Drake’s famous 1961 song:
My boomerang won’t come back!
My boomerang won’t come back!

My boomerang won’t come back!

I’ve waved the thing all over the place

Practiced til’ I was blue* in the face

I’m a big disgrace

to the Aborigine Race

My boomerang won’t come back!

*blue later replaced black 
Aluminum boomerang I made in 1965.
It once flew over 18 seconds with hover-return!

Small lifting torque due to “bad-air” 
 of leading blade hitting trailing one
left-to-right may cause boomerang 
to level and hover. Stronger effect in
3-blade boomers causes figure-8 paths.

37Wednesday, December 24, 2014

https://www.youtube.com/watch?v=EXJR5NWM_xI&list=PLGwmGldCxzLxbPlFVG8Z89WZIBuT4m0Ii&index=7
https://www.youtube.com/watch?v=EXJR5NWM_xI&list=PLGwmGldCxzLxbPlFVG8Z89WZIBuT4m0Ii&index=7


Rotational equivalent of Newton’s F=dp/dt equations: N=dL/dt
         How to make my boomerang come back
          The gyrocompass and mechanical spin analogy 
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The gyrocompass and mechanical spin analogy
Suppose Euler ball has right-hand
rotation with angular momentum L

L
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The gyrocompass and mechanical spin analogy
Suppose Euler ball has right-hand
rotation with angular momentum L

L
If the α-dial for z-rotation is turning left-to-right
this applies righthand “thumbs-up” torque N

N
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The gyrocompass and mechanical spin analogy
Suppose Euler ball has right-hand
rotation with angular momentum L

L
If the α-dial for z-rotation is turning left-to-right
this applies righthand “thumbs-up” torque N

N

Then the ball tends to line-up with z-axis
(and may go past z, then come back, etc.
in a precessional or “hunting” motion)
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The gyrocompass and mechanical spin analogy
Suppose Euler ball has right-hand
rotation with angular momentum L

L
If the α-dial for z-rotation is turning left-to-right
this applies righthand “thumbs-up” torque N

N

Then the ball tends to line-up with z-axis
(and may go past z, then come back, etc.
in a precessional or “hunting” motion)

A very high speed ball in a gyro-compass will
similarly seek true North due to Earth rotation. 
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The gyrocompass and mechanical spin analogy
Suppose Euler ball has right-hand
rotation with angular momentum L

L
If the α-dial for z-rotation is turning left-to-right
this applies righthand “thumbs-up” torque N

N

Then the ball tends to line-up with z-axis
(and may go past z, then come back, etc.
in a precessional or “hunting” motion)

This is analogous to the tendency for spin magnetic moments
to allign (or precess about) the B-direction of a magnetic field

A very high speed ball in a gyro-compass will
similarly seek true North due to Earth rotation. 

Recall S-precession discussion in CMwB Unit 4 Ch.4 and Lect.26
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The gyrocompass and mechanical spin analogy
Suppose Euler ball has right-hand
rotation with angular momentum L

L
If the α-dial for z-rotation is turning left-to-right
this applies righthand “thumbs-up” torque N

N

Then the ball tends to line-up with z-axis
(and may go past z, then come back, etc.
in a precessional or “hunting” motion)

A very high speed ball in a gyro-compass will
similarly seek true North due to Earth rotation. 

General Rule: Gyros tend to 
“line-up” so they are rotating
with whatever is most closely
coupled to them. 

This is analogous to the tendency for spin magnetic moments
to allign (or precess about) the B-direction of a magnetic field

Recall S-precession discussion in CMwB Unit 4 Ch.4 and Lect.26
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Rotational momentum and velocity tensor relations
           Quadratic form geometry and duality (again)
                    angular velocity ω-ellipsoid vs. angular momentum L-ellipsoid  
                    Lagrangian ω-equations vs. Hamiltonian momentum L-equation
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Inertia tensors

    
r j =  ω × r j

 Consider N-body angular velocity ω and angular momentum L relations with Levi-Civita analysis 

    
L =

j=1

N
∑ r j × mj r j = mj

j=1

N
∑ r j × ω × r j( )  

A × B ×C( ) = A •C( )B − A •B( )C

   
rm = (xm , ym , zm ) = r(

2
   1 ,

2
   1 ,0)Consider mass m instantaneously at                                   on a bent axle rotating in a fixed bearing:  

r/√2

r/√2

0

r =

−ω/2

ω/2

0

L=mr2
0

ω

0m
ωω =

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

and with

x y

z
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Inertia tensors

    
r j =  ω × r j

 Consider N-body angular velocity ω and angular momentum L relations with Levi-Civita analysis 

    
L =

j=1

N
∑ r j × mj r j = mj

j=1

N
∑ r j × ω × r j( )  

A × B ×C( ) = A •C( )B − A •B( )C

    
L = mj r j • r j( )ω − r j •ω( )r j

⎡
⎣

⎤
⎦ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
⎦j=1

N
∑

j=1

N
∑ •ω =


I •ω

This produces the rotational inertia tensor I:
    


I =


I j

j=1

N
∑ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
⎦j=1

N
∑

   
rm = (xm , ym , zm ) = r(

2
   1 ,

2
   1 ,0)Consider mass m instantaneously at                                   on a bent axle rotating in a fixed bearing:  

r/√2

r/√2

0

r =

−ω/2

ω/2

0

L=mr2
0

ω

0m
ωω =

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

in the ω-to-L relation:

and with

x y

z

47Wednesday, December 24, 2014



Inertia tensors

 
A × B ×C( ) = A •C( )B − A •B( )C

Matrix form of the ω-to-L relation

  

Lx

Ly

Lz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠
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Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

and with

x y

z

    
r j =  ω × r j

    
L =

j=1

N
∑ r j × mj r j = mj

j=1

N
∑ r j × ω × r j( )

in the ω-to-L relation:

 Consider N-body angular velocity ω and angular momentum L relations with Levi-Civita analysis 

    
L = mj r j • r j( )ω − r j •ω( )r j

⎡
⎣

⎤
⎦ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
⎦j=1

N
∑

j=1

N
∑ •ω =


I •ω

This produces the rotational inertia tensor I:
    


I =


I j

j=1

N
∑ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
⎦j=1

N
∑

using the inertia matrix 〈I〉 
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Inertia tensors

 
A × B ×C( ) = A •C( )B − A •B( )C

Matrix form of the ω-to-L relation
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Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

and with

Instantaneous matrix 〈I〉 of inertia is:

x y

z

    
r j =  ω × r j

    
L =

j=1

N
∑ r j × mj r j = mj

j=1

N
∑ r j × ω × r j( )

in the ω-to-L relation:

 Consider N-body angular velocity ω and angular momentum L relations with Levi-Civita analysis 

    
L = mj r j • r j( )ω − r j •ω( )r j

⎡
⎣

⎤
⎦ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
⎦j=1

N
∑

j=1

N
∑ •ω =


I •ω

This produces the rotational inertia tensor I:
    


I =


I j

j=1

N
∑ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
⎦j=1

N
∑

using the inertia matrix 〈I〉 

Matrix 〈I〉 operates on angular velocity ω to give angular momentum L
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Inertia tensors

 
A × B ×C( ) = A •C( )B − A •B( )C
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Matrix 〈I〉 operates on angular velocity ω to give angular momentum L
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Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

and with

Instantaneous matrix 〈I〉 of inertia is:

x y

z

    
r j =  ω × r j

    
L =

j=1

N
∑ r j × mj r j = mj

j=1

N
∑ r j × ω × r j( )

in the ω-to-L relation:

Matrix form of the ω-to-L relation

 Consider N-body angular velocity ω and angular momentum L relations with Levi-Civita analysis 

    
L = mj r j • r j( )ω − r j •ω( )r j

⎡
⎣

⎤
⎦ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
⎦j=1

N
∑

j=1

N
∑ •ω =


I •ω

This produces the rotational inertia tensor I:
    


I =
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∑ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
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Inertia tensors

 
A × B ×C( ) = A •C( )B − A •B( )C
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Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

and with

Instantaneous matrix 〈I〉 of inertia is:

x y

z

Bearing torque is:
   
N= dL

dt
=ω×L 

    
r j =  ω × r j

    
L =

j=1

N
∑ r j × mj r j = mj

j=1

N
∑ r j × ω × r j( )

in the ω-to-L relation:

Matrix form of the ω-to-L relation

 Consider N-body angular velocity ω and angular momentum L relations with Levi-Civita analysis 

    
L = mj r j • r j( )ω − r j •ω( )r j

⎡
⎣

⎤
⎦ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
⎦j=1

N
∑

j=1

N
∑ •ω =


I •ω

This produces the rotational inertia tensor I:
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I j

j=1

N
∑ = mj r j • r j( )1− r jr j

⎡
⎣
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⎦j=1

N
∑

Matrix 〈I〉 operates on angular velocity ω to give angular momentum L
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Kinetic energy in terms of velocity ω and rotational Lagrangian
Kinetic energy T of a rotating rigid body can be expressed in terms of the inertia matrix I

    
T = 1

2 j=1

3
∑ mj r j • r j =

1
2 j=1

3
∑ mj ω × r j( ) • ω × r j( )

 
A × B( ) × C × D( ) = A •C( ) B •D( ) − A •D( ) B •C( )

Levi-Civita identity 

    

T = 1
2 j=1

3
∑ mj ω •ω( ) r j • r j( ) − ω • r j( ) r j •ω( )⎡

⎣
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2
ω •
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3
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2
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I •ω

Kinetic energy is a quadratic form 
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 (Dirac notation) 

Simplifies in principle inertial axes {X,Y,Z}or body eigen-axes

  

T =  1
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ω X ωY ωZ( )
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Kinetic energy in terms of momentum L and rotational Hamiltonian

   L =

I •ω  ,     generally implies:       ω =


I−1 •L

    
T = 1

2
ω •

I •ω  = 1

2
ω •L= 1

2
L •ω = 1

2
L •

I−1 •L

  

T =  1
2

LX LY LZ( )
I XX I XY I XZ

IYX IYY IYZ
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Express kinetic energy T in terms of angular velocity ω , momentum L,  or both at once. once
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Kinetic energy in terms of momentum L and rotational Hamiltonian

   L =

I •ω  ,     generally implies:       ω =


I−1 •L

    
T = 1

2
ω •

I •ω  = 1

2
ω •L= 1

2
L •ω = 1

2
L •

I−1 •L

Hamiltonian form is the equation of the angular momentum or L-ellipsoid
 Lagrangian  form is the equation of the    angular velocity   or ω-ellipsoid

Express kinetic energy T in terms of angular velocity ω , momentum L,  or both at once. once

L
  

T =  1
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Kinetic energy in terms of momentum L and rotational Hamiltonian

   L =

I •ω  ,     generally implies:       ω =


I−1 •L

    
T = 1

2
ω •

I •ω  = 1

2
ω •L= 1

2
L •ω = 1

2
L •

I−1 •L

Hamiltonian form is the equation of the angular momentum or L-ellipsoid
 Lagrangian  form is the equation of the    angular velocity   or ω-ellipsoid

Express kinetic energy T in terms of angular velocity ω , momentum L,  or both at once. once
Torque-free body
has conserved L=const.

=2TL                                    if energy 
is not dissipated internally

ω is generally not conserved unless it 
is aligned to L or body has symmetry
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Kinetic energy in terms of momentum L and rotational Hamiltonian

   L =

I •ω  ,     generally implies:       ω =


I−1 •L

    
T = 1

2
ω •

I •ω  = 1

2
ω •L= 1

2
L •ω = 1

2
L •

I−1 •L

   
pµ = ∂L

∂ qµ
  (where: L = T )

  
L = ∂T

∂ω
= ∇ωT = ∂

∂ω
ω • Ι •ω

2
= Ι •ω

Canonical momentum:

Hamiltonian form is the equation of the angular momentum or L-ellipsoid
 Lagrangian  form is the equation of the    angular velocity   or ω-ellipsoid

Express kinetic energy T in terms of angular velocity ω , momentum L,  or both at once. once
Torque-free body
has conserved L=const.

=2TL                                    if energy 
is not dissipated internally

ω is generally not conserved unless it 
is aligned to L or body has symmetry
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Kinetic energy in terms of momentum L and rotational Hamiltonian

   L =
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ω •
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Canonical momentum:
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  (where: H = T )  
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∂L
= ∇L H = ∂
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2
= Ι−1 •L

Hamilton's 1st equations :

Hamiltonian form is the equation of the angular momentum or L-ellipsoid
 Lagrangian  form is the equation of the    angular velocity   or ω-ellipsoid

Express kinetic energy T in terms of angular velocity ω , momentum L,  or both at once. once
Torque-free body
has conserved L=const.

=2TL                                    if energy 
is not dissipated internally

ω is generally not conserved unless it 
is aligned to L or body has symmetry
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Kinetic energy in terms of momentum L and rotational Hamiltonian

   L =

I •ω  ,     generally implies:       ω =


I−1 •L

    
T = 1

2
ω •

I •ω  = 1

2
ω •L= 1

2
L •ω = 1

2
L •

I−1 •L

   
pµ = ∂L

∂ qµ
  (where: L = T )

  
L = ∂T

∂ω
= ∇ωT = ∂

∂ω
ω • Ι •ω

2
= Ι •ω

Canonical momentum:

   
qµ = ∂H

∂pµ
  (where: H = T )  

  
ω = ∂H

∂L
= ∇L H = ∂

∂L
L • Ι−1 •L

2
= Ι−1 •L

Hamilton's 1st equations :

Hamiltonian form is the equation of the angular momentum or L-ellipsoid
 Lagrangian  form is the equation of the    angular velocity   or ω-ellipsoid

Express kinetic energy T in terms of angular velocity ω , momentum L,  or both at once. once
Torque-free body
has conserved L=const.

=2TL

L

                                    if energy 
is not dissipated internally

ω is generally not conserved unless it 
is aligned to L or body has symmetry
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Kinetic energy in terms of momentum L and rotational Hamiltonian

   L =

I •ω  ,     generally implies:       ω =


I−1 •L

    
T = 1

2
ω •

I •ω  = 1

2
ω •L= 1

2
L •ω = 1

2
L •

I−1 •L

   
pµ = ∂L

∂ qµ
  (where: L = T )

  
L = ∂T

∂ω
= ∇ωT = ∂

∂ω
ω • Ι •ω

2
= Ι •ω

Canonical momentum:

   
qµ = ∂H

∂pµ
  (where: H = T )  

  
ω = ∂H

∂L
= ∇L H = ∂

∂L
L • Ι−1 •L

2
= Ι−1 •L

Hamilton's 1st equations :

Hamiltonian form is the equation of the angular momentum or L-ellipsoid
 Lagrangian  form is the equation of the    angular velocity   or ω-ellipsoid

Express kinetic energy T in terms of angular velocity ω , momentum L,  or both at once. once
Torque-free body
has conserved L=const.

=2TL

L

                                    if energy 
is not dissipated internally

ω is generally not conserved unless it 
is aligned to L or body has symmetry

In body frame momentum L moves along intersection of L-ellipsoid and L-sphere (Length |L| is constant in any classical frame.)
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Rotational Energy Surfaces (RES)
                     Symmetric, asymmetric, and spherical-top dynamics (Constant L)
                    BOD-frame cone rolling on LAB frame cone
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J1
_

J2
_

J3
_

J1
_ J2

_

J3
_

J3
_

(a) RE surface (b) CE surface (c) RES intersecting CES

x2-

x3-

x1-
r1

r3=√7
r2=√5

r3

r2

r1=√1
I1 =6 I2 =4 I3 =3
_ _ _

E = const.J = const.

    Rotational Energy Surface (RES) is
quadratic multipole function plotted radially

        E = Jx
2

2Ix
+
Jy

2

2Iy
+
Jz

2

2Iz
  with J = const.

= J 2 sin2θ cos2φ
2Ix

+ sin2θ sin2φ
2Iy

+ cos2θ
2Iz

⎛

⎝⎜
⎞

⎠⎟

Constant Energy Surface (CES) is
asymmetric ellipsoid of constant E  

        E = Jx
2

2Ix
+
Jy

2

2Iy
+
Jz

2

2Iz
= const.

or :      Jx
2

2EIx
+
Jy

2

2EIy
+
Jz

2

2EIz
= 1

Rotational Energy Surfaces (RES) and Constant Energy Surfaces (CES) 

Here notation L or L
for angular momentum
is replaced by J or J
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(a) I2 =5.6 (c) I2 =3.2 _I1 =6 I3 =3
_

γB=63°
γB=21°γB=75°

___

CES

RESRES

J2J2-
J2J2-

J2J2-J2J2-

J1J1-

J1J1-

J1J1-

(b) I2 =5.0
RES and CES for nearly-symmetric prolate rotors and nearly-symmetric oblate rotors 

nearly-prolate
symmetric rotor

 RES
asymmetric rotor

 RES

nearly-oblate
symmetric rotor

 RES
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cone K=+10

RES contour K=+

+

+

+

+
+
+
+
+
+

-
-
-
-
-

-

-

-

-

-

+9

+8

+7

+6

+5

+4

+3

+2

+1

0

-1

-2

-3

-4

-5

-6

-7
-8

-9
-10

Polar
Uncertainty
angles

ΘK=cos
-1 K
√J(J+1)

J

Θ+10
10 =17.55°

Θ+9
10

J=10
prolate

symmetric top
RES Θ+8

10

Θ+7
10

Θ+6
10

Θ+5
10

Θ+4
10

Θ+3
10

Θ+2
10

Θ+1
10 =84.53°

Minimum uncertainty angle

√J(J+1) ~J+1/2
10.488~10.5

K=5

RES for symmetric prolate rotor locates J =10 quantum (-J<K<J) levels (at RES-quantum cone intersections)

W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013)  Fig. 1-2 p.730

J =4 Quantum cones
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cone K=+10

RES contour K=+

+

+

+

+
+
+
+
+
+

-
-
-
-
-

-

-

-

-

-

+9

+8

+7

+6

+5

+4

+3

+2

+1

0

-1

-2

-3

-4

-5

-6

-7
-8

-9
-10

Polar
Uncertainty
angles

ΘK=cos
-1 K
√J(J+1)

J

Θ+10
10 =17.55°

Θ+9
10

J=10
prolate

symmetric top
RES Θ+8

10

Θ+7
10

Θ+6
10

Θ+5
10

Θ+4
10

Θ+3
10

Θ+2
10

Θ+1
10 =84.53°

Minimum uncertainty angle

√J(J+1) ~J+1/2
10.488~10.5

K=5

RES for symmetric and asymmetric rotor approximates J =10 (-J<K<J) levels (near RES-quantum cone levels)

W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013)  Fig. 1-5 p.730

Separatrix circle pair
dihedral angle

θsep=atan( )A-B
B-C

θsep

π - θsep

θsep

RES contours
KC~10

9

8

7

6

KA~10KA~1099887766

-6

-7

-8

-9

-10
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RES for symmetric prolate rotor locates J =10 quantum (-J<K<J) levels (at RES-quantum cone intersections)

W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013)  Fig. 4 p.734

Spectra varies as symmetric prolate RES changes through a range of asymmetric RES to oblate RES 
E = AJx

2 + BJy
2 +CJz

2   with J = const.
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W. G. Harter and J C. Mitchell ,International Symposium on Molecular Spectroscopy, OSU Columbus (2009) 

RES for spherical rotor approximates J =88 (-J<K<J) levels  of SF6
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W. G. Harter and J C. Mitchell ,International Symposium on Molecular Spectroscopy, OSU Columbus (2009) 
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β r

J

ωω

(b) Angular velocity ωω
and momentum J J

ωω

ω-ellipsoid

J-ellipsoid

(c) Energy ellipsoids
x
3

x
2

x
1

x
3

α

β

LAB

x
1
axis

LAB

x
3
axis BOD

x
3
axis

(a) Constrained rotor

Fig. 6.7.1 Elementary ω-constrained rotor and angular velocity-momentum geometry.  

α

β

LAB

x
1
axis

BOD

x
3
axis

(a) Constrained rotor:LAB-fixedωω, moving J (b) Free rotor:LAB-fixed J, movingωω

α

β

LAB

x
1
axis

BOD

x
3
axisJ ωω

LAB

x
3
axis

LAB-fixed
J

ωω(0)J(t)
LAB-moving LAB-movingωω(t)ωωLAB-fixed

 Fig. 6.7.2 Free rotor cut loose from LAB-constraining ω-axis changes dynamics accordingly.

..this was the kind of dynamics that started me dropping superballs...
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αα=αx3

αα++ γγ==ωω• •

• •

γγ=γx3•
• -β

LAB x3
axis

BOD x3
axis

-

LAB

cone
BOD

cone

β

γγ==00•

β

αα==ωω•

β

αα•

γγ•

ωω

β
ωω

γγ•
αα•

γγ•
αα•

ωω

Prolate tops: (a) I
II
=4I

3
(b) I

II
=2I

3
(c) I

II
=(3/2) I

3

γ=3αcosβ γ= αcosβ γ=(1/2)αcosβ
γ=(3/4)ω3 γ=(1/2)ω3 γ=(1/3)ω3

(e) Oblate limit:

I
II
=(1/2) I

3

γ=(-1/2)αcosβ
γ= -ω3

•
•

•

(d) Spherical top:

I
II
= I

3

γ=0•

•
-• - • -

• •• • • •

ω3-

ω3

ω1-
ω1

-

I3

III − I3
2
1Fig. 6.7.3 Symmetric top ω-cones for β=30°and inertial ratios: (a)         =3, (b) 1, (c)    ,(d) 0,  (e) -   .2

1

Blue BOD-frame cones roll (around ω-sticking axis)without slipping on red LAB-frame cone
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αα•

γγ•

β

β

αα++γγ==ωω• • x3-

αα++γγ==ωω• •

LAB x3

αα•

γγ•

BOD x3 axis-

BOD −x1 axis
-

LAB −x1 axis

(a) Prolate geometry

I
II
=I
1
=I
2
=(3/2) I

3

(b) Oblate geometry

I
II
=I
1
=I
2
=(1/2) I

3

β

β
γ = ω3 - α cos β
= (α cos β)(I1-I3)/I3
= ω3 (I1-I3)/I1

• •-
•

-

αcos β= J3 /I1
=ω3I3/I1

• -

-

α= J3/I1= J/I1
• β

α+ γcos β=ω3
••

ω3 =αcos β+ γ
=α (I1/I3)cos β

- •

•
•

axis

ω1 =γ sin β•

ω1 =−α sin β•-

ω•I•ω=2E
prolate

ellipsoid

ω•I•ω=2E
oblate

ellipsoid

Fig. 6.7.4 Detailed geometry of symmetric top kinetics. (a) Prolate case. (b) Most-oblate case

Blue BOD-frame cones 
roll without slipping 
on red LAB-frame cone
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Oblate limit:

I
II
=(1/2) I

3

γ=(-1/2)αcosβ
γ= -ω3

•
•

•

Very prolate top: I
II
=9I

3

γ=8αcosβ
γ=(8/9)ω3
• -

• •
γ = ω3 - α cos β
= (α cos β)(I1-I3)/I3
= ω3 (I1-I3)/I1

• •-
•

-

β=30° BOD

cone

LAB x3
axis

LAB

cone

BOD x3
axis

-αα++ γγ==ωω• •

αα=αx3
• •

β

ωω

γγ•
αα•

β=60°
BOD

cone

LAB x3
axis

LAB

cone

BOD x3
axis

-
αα++ γγ==ωω• •

αα=αx3
• •

β=60°

ωω

γγ•
αα•

BOD x3
axis

-

BOD x3
axis

-

Fig. 6.7.5 Extreme cases (Oblate vs. Prolate) of symmetric-top geometry.

Blue BOD-frame cones 
roll without slipping 
on red LAB-frame cone
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