Multi-particle and Rotational Dynamics

(Ch. 2-7 of Unit 6 12.12.14)
2-Particle orbits
Ptolemetric or LAB view and reduced mass
Copernican or COM view and reduced coupling
2-Particle orbits and scattering: LAB-vs.-COM frame views
Ruler \& compass construction (or not)
Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$
How to make my boomerang come back
The gyrocompass and mechanical spin analogy
Rotational momentum and velocity tensor relations
Quadratic form geometry and duality (again)
angular velocity $\boldsymbol{\omega}$-ellipsoid vs. angular momentum L-ellipsoid
Lagrangian $\boldsymbol{\omega}$-equations vs. Hamiltonian momentum L-equation
Rotational Energy Surfaces (RES) and Constant Energy Surfaces (CES)
Symmetric, asymmetric, and spherical-top dynamics (Constant L)
BOD-frame cone rolling on LAB frame cone
Deformable spherical rotor RES and semi-classical rotational states and spectra

2-Particle orbits and center-of-mass (CM) coordinate frame

$$
\mathbf{r}_{\mathrm{CM}}=\frac{m_{1} \mathbf{r}_{\mathbf{1}}+m_{2} \mathbf{r}_{\mathbf{2}}}{m_{1}+m_{2}}
$$

Defining relative coordinate vector

$$
\mathbf{r}=\mathrm{r}_{1}-\mathrm{r}_{2}
$$

and mass-weighted-average or center-of-mass coordinate vector $\boldsymbol{r}_{C M}$

$$
\overline{\mathbf{r}}=\mathbf{r}_{\mathbf{C M}}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}
$$

The inverse coordinate transformation.

$$
\mathbf{r}_{1}=\mathbf{r}_{\mathbf{C M}}+\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}, \quad \mathbf{r}_{2}=\mathbf{r}_{\mathbf{C M}}-\frac{m_{1} \mathbf{r}}{m_{1}+m_{2}}
$$

2-Particle orbits
\rightarrow Ptolemetric or $L A B$ view and reduced mass Copernican or COM view and reduced coupling

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{1} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2} \quad \quad \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)$
Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$

$$
\mathbf{F}_{21}=m_{2} \dot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Re-scaled force: A Copernican view relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

$$
\mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{l}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{l}-\mathbf{r}_{2}\right|$
Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's $3^{\text {rd }}$-law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \dot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{2}=\mathbf{0}
$$

Re-scaled force: A Copernican view relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

$$
\mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{1} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \dot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{l}-\mathbf{r}_{2}\right|$
Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's $3^{\text {rd }}$-law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \dot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{2}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

Re-scaled force: A Copernican view $\quad \mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}$
relative radius vector relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{1} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{l}-\mathbf{r}_{2}\right|$
Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's $3^{\text {rd }}$-law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \ddot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{2}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
m_{1} \ddot{\mathbf{r}}_{\mathbf{1}} &]-[& m_{2} \ddot{\mathbf{r}}_{\mathbf{2}} \\
{\left[m_{1} \ddot{\mathbf{r}}_{\mathbf{C M}}+\frac{m_{1} m_{2} \ddot{\mathbf{r}}}{m_{1}+m_{2}}\right]-\left[\begin{array}{l}
\left.m_{2} \ddot{\mathbf{r}}_{\mathbf{C M}}+\frac{m_{2} m_{1} \ddot{\mathbf{r}}}{m_{1}+m_{2}}\right]=\frac{2 F(r)}{r}\left(\mathbf{r}_{\mathbf{1}}-\mathbf{r}_{2}\right) \\
\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}}=\frac{m_{1}+m_{2}}{m_{1} m_{2}}
\end{array}\right.}
\end{array}, \begin{array}{l}
\left.\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{array}\right.}
\end{aligned}
$$

$$
\mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r)
$$

Re-scaled force: A Copernican view $\quad \mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}$ relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{1} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$
Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's $3^{\text {rd }}$-law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \ddot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{2}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}
\end{array}\right]-\left[\quad m_{2} \ddot{\mathbf{r}}_{2} \quad\right]=\frac{2 F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)} \\
& {\left[\begin{array}{ll}
\left.m_{1} \ddot{\mathbf{r}}_{\mathbf{C M}}+\frac{m_{1} m_{2} \ddot{\mathbf{r}}}{m_{1}+m_{2}}\right]-\left[m_{2} \ddot{\mathbf{r}}_{\mathbf{C M}}+\frac{m_{2} m_{1} \ddot{\mathbf{r}}}{m_{1}+m_{2}}\right]=\frac{1}{m_{1}}=\frac{2 F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) & \mu=\frac{m_{1}+m_{2}}{m_{1} m_{2}}
\end{array}\right.} \\
& \\
& \mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r)
\end{aligned}
$$

Re-scaled force: A Copernican view relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{1} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$
Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's $3^{\text {rd }}$-law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \ddot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{2}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& \left.\begin{array}{l}
{\left[\begin{array}{cc}
m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}
\end{array}\right]-\left[\quad m_{2} \ddot{\mathbf{r}}_{2} \quad\right.}
\end{array}\right]=\frac{2 F(r)}{r}\left(\mathbf{r}_{\mathbf{1}}-\mathbf{r}_{2}\right)\left(\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}}=\frac{m_{1}+m_{2}}{m_{1} m_{2}} \quad \mu=\frac{m_{2}}{1+\frac{m_{2}}{m_{1}}}=m_{2}\left(1-\frac{m_{2}}{m_{1}} \ldots\right)\left(\begin{array}{l}
\left(m_{1} \gg m_{2}\right) \\
\text { (Why it's reduced) }
\end{array}\right.\right. \\
& \mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r) \\
& \mu=\frac{m_{1}}{1+\frac{m_{1}}{m_{2}}}=m_{1}\left(1-\frac{m_{1}}{m_{2}} \ldots\right)\left(m_{2} \gg m_{1}\right)
\end{aligned}
$$

Re-scaled force: A Copernican view relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

2-Particle orbits
 Ptolemetric view and reduced mass
 \rightarrow Copernican view and reduced coupling

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{l}-\mathbf{r}_{2}$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's $3^{\text {rd }}$-law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \ddot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{\mathbf{2}}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& \left.\begin{array}{llll}
{[} & m_{1} \dot{\mathbf{r}}_{1} &]-[& m_{2} \dot{\mathbf{r}}_{2}
\end{array}\right]=\frac{2 F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \quad\left(\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}}=\frac{m_{1}+m_{2}}{m_{1} m_{2}} \quad \mu=\frac{m_{2}}{1+\frac{m_{2}}{m_{1}}}=m_{2}\left(1-\frac{m_{2}}{m_{1}} \ldots\right)\left(m_{1} \gg m_{2}\right)\right. \\
& \mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r) \\
& \mu=\frac{m_{1}}{1+\frac{m_{1}}{m_{2}}}=m_{1}\left(1-\frac{m_{1}}{m_{2}} \ldots\right)\left(m_{2} \gg m_{1}\right)
\end{aligned}
$$

Re-scaled force: A Copernican view relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

$$
\mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
$$

(Here we get "reduced" coupling constants)
each particle keeps it original mass m_{l} or m_{2}, but feels coordinate-re-scaled force field $F\left(m_{1} r_{1} / \mu\right)$ or $F\left(m_{2} r_{2} / \mu\right)$ field

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}=F\left(\frac{m_{1}}{\mu} r_{1}\right) \hat{\mathbf{r}}_{1}=-\mathbf{F}_{21} \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=F\left(\frac{m_{2}}{\mu} r_{2}\right) \hat{\mathbf{r}}_{2}=-\mathbf{F}_{12}
\end{aligned}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$
Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's $3^{\text {rd }}$-law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \ddot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{\mathbf{2}}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& \mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r) \\
& \mu=\frac{m_{1}}{1+\frac{m_{1}}{m_{2}}}=m_{1_{1}}\left(1-\frac{m_{1}}{m_{2}} \ldots\right)\left(m_{2} \gg m_{1}\right)
\end{aligned}
$$

Re-scaled force: A Copernican view relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

$$
\mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
$$

(Here we get "reduced" coupling constants)
each particle keeps it original mass m_{1} or m_{2}, but feels
coordinate-re-scaled force field $F\left(m_{1} r_{1} / \mu\right)$ or $F\left(m_{2} r_{2} / \mu\right)$ field

$$
\begin{array}{l|l|}
\mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F\left(\frac{m_{1}}{\mu} r_{1}\right) \hat{\mathbf{r}}_{1}=-\mathbf{F}_{21} \\
\mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=F\left(\frac{m_{2}}{\mu} r_{2}\right) \hat{\mathbf{r}}_{2}=-\mathbf{F}_{12} & F(r)=\frac{k}{r^{2}} \text { becomes: } F\left(\frac{m_{1}}{\mu} r_{1}\right)=\frac{\mu^{2}}{m_{1}^{2}} \frac{k}{r_{1}^{2}} \\
k \rightarrow k_{1}=k \mu^{2} / m_{1}^{2}, \quad k \rightarrow k_{2}=k \mu^{2} / m_{2}^{2}
\end{array}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$
Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's $3^{\text {rd }}$-law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \ddot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{\mathbf{2}}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& \mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r) \\
& \mu=\frac{m_{1}}{1+\frac{m_{1}}{m_{2}}}=m_{1}\left(1-\frac{m_{1}}{m_{2}} \ldots\right)\left(m_{2} \gg m_{1}\right)
\end{aligned}
$$

Re-scaled force: A Copernican view relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

$$
\mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
$$

(Here we get "reduced" coupling constants)
each particle keeps it original mass m_{l} or m_{2}, but feels coordinate-re-scaled force field $F\left(m_{1} r_{1} / \mu\right)$ or $F\left(m_{2} r_{2} / \mu\right)$ field

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F\left(\frac{m_{1}}{\mu} r_{1}\right) \hat{\mathbf{r}}_{1}=-\mathbf{F}_{21} \\
& \begin{aligned}
F(r) & =\frac{k}{r^{2}} \text { becomes: } F\left(\frac{m_{1}}{\mu} r_{1}\right)=\frac{\mu^{2}}{m_{1}^{2}} \frac{k}{r_{1}^{2}} \\
k & \rightarrow k_{1}=k \mu^{2} / m_{1}^{2}, \quad k \rightarrow k_{2}=k \mu^{2} / m_{2}^{2}
\end{aligned} \\
& F(r)=-k r \text { becomes: } F\left(\frac{m_{1}}{\mu} r_{1}\right)=-\frac{m_{1}}{\mu} k r_{1} \\
& k \rightarrow k_{1}=k m_{1} / \mu, k \rightarrow k_{2}=k m_{2} / \mu
\end{aligned}
$$

2-Particle orbits and scattering: LAB-vs.-COM frame views Ruler \& compass construction (or not)

Examples of Coulomb and harmonic oscillator 2-particle "Copernican" orbits in CM system.

Two particles are in synchronous motion around fixed CM origin.
Orbit periods are identical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a / b), eccentricity, and orientation.

Examples of Coulomb and harmonic oscillator 2-particle "Copernican" orbits in CM system.

Two particles are in synchronous motion around fixed CM origin.
Orbit periods are identical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a / b), eccentricity, and orientation.
Orbits differ in size of axes $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).

Examples of Coulomb and harmonic oscillator 2-particle "Copernican" orbits in CM system.

Two particles are in synchronous motion around fixed CM origin.
Orbit periods are identical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a / b), eccentricity, and orientation.
Orbits differ in size of axes $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator). Orbit axial dimensions $\left(a_{k}, b_{k}\right)$ and λ_{k} are in inverse proportion to mass values.
$a_{1} m_{1}=a_{2} m_{2}=a \mu$
$b_{1} m_{1}=b_{2} m_{2}=b \mu$
$\lambda_{1} m_{1}=\lambda_{2} m_{2}=\lambda \mu$

Two particles are in synchronous motion around fixed CM origin.
Orbit periods are identical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a / b), eccentricity, and orientation.
Orbits differ in size of axes $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions $\left(a_{k}, b_{k}\right)$ and λ_{k} are in inverse proportion to mass values.

$$
a_{1} m_{1}=a_{2} m_{2}=a \mu
$$

Harmonic oscillator periods
$T_{I H O}=2 \pi \sqrt{\frac{\mu}{k}}=2 \pi \sqrt{\frac{m_{1}}{k_{1}}}=2 \pi \sqrt{\frac{m_{2}}{k_{2}}}$
$b_{1} m_{1}=b_{2} m_{2}=b \mu$
and Coulomb orbit periods

$$
T_{\text {Coul }}=2 \pi \sqrt{\frac{\mu a^{3}}{k}}=2 \pi \sqrt{\frac{m_{1} a_{1}^{3}}{k_{1}}}=2 \pi \sqrt{\frac{m_{2} a_{2}^{3}}{k_{2}}}
$$

$$
\varepsilon_{1}=\varepsilon_{2}=\varepsilon
$$

Two particles are in synchronous motion around fixed CM origin.
Orbit periods are identical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a / b), eccentricity, and orientation.
Orbits differ in size of axes $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions $\left(a_{k}, b_{k}\right)$ and λ_{k} are in inverse proportion to mass values.

$$
a_{1} m_{1}=a_{2} m_{2}=a \mu, \quad b_{1} m_{1}=b_{2} m_{2}=b \mu \quad \lambda_{1} m_{1}=\lambda_{2} m_{2}=\lambda \mu
$$

Harmonic oscillator periods
$T_{\text {IHO }}=2 \pi \sqrt{\frac{\mu}{k}}=2 \pi \sqrt{\frac{m_{1}}{k_{1}}}=2 \pi \sqrt{\frac{m_{2}}{k_{2}}}$
and eccentricity must match

$$
T_{\text {Coul }}=2 \pi \sqrt{\frac{\mu a^{3}}{k}}=2 \pi \sqrt{\frac{m_{1} a_{1}^{3}}{k_{1}}}=2 \pi \sqrt{\frac{m_{2} a_{2}^{3}}{k_{2}}}
$$

$$
\varepsilon_{1}=\varepsilon_{2}=\varepsilon
$$

Three Coulomb orbit energy values satisfy the same proportion relation as their axes

$$
E_{1} m_{1}=E_{2} m_{2}=E \mu, \text { where: }\left|E_{1}\right|=\frac{\left|k_{1}\right|}{2 a_{1}},\left|E_{2}\right|=\frac{\left|k_{2}\right|}{2 a_{2}},|E|=\frac{|k|}{2 a} .
$$

Energy values and axes satisfy similar sum relations

$$
E_{1}+E_{2}=\frac{m_{1}}{\mu} E+\frac{m_{2}}{\mu} E=E, \text { and: } a_{1}+a_{2}=\frac{m_{1}}{\mu} a+\frac{m_{2}}{\mu} a=a
$$

A common type of scattering

$$
\left(m_{1}=m_{2}\right)
$$

...that every pool shark should know

Fig. 5. The laboratory picture of Fig. 3. The scattering begins with both particles infinitely far to the right. The heavier particle is at rest and the lighter particle is moving left about 0.3 mile per day in the scale of this drawing. When the heavier particle first appears on this picture, one or two years before the "collision," it is creeping extremely slowly leftward, while the lighter particle is still over a hundred miles off to the right. The heavier particle continues creeping until finally the lighter particle arrives in the picture and moves through in about 12 sec . Most of the momentum is transferred in 3 or 4 sec .

The trouble with the Coulomb field is...

$$
\int t^{-1} d t=\ln t+C
$$

$$
\begin{aligned}
v_{2}^{\mathrm{LAB}}(t) & =\int\left(|F| / m_{2}\right) d t \\
& \cong \int k d t / m_{2}\left[v_{1}^{\mathrm{CM}}(\text { initial }) t\right]^{2} \\
& \cong\left[-k / m_{2} v_{1} \mathrm{CM}(\text { initial })^{2}\right] t^{-1}
\end{aligned}
$$

1856 / December 1972

[^0]

Fig. 5. The laboratory picture of Fig. 3. The scattering begins with both particles infinitely far to the right. The heavier particle is at rest and the lighter particle is moving left about 0.3 mile per day in the scale of this drawing. When the heavier particle first appears on this picture, one or two years before the "collision," it is creeping extremely slowly leftward, while the lighter particle is still over a hundred miles off to the right. The heavier particle continues creeping until finally the lighter particle arrives in the picture and moves through in about 12 sec . Most of the momentum is transferred in 3 or 4 sec .

[^1]Adolph, Garcia, Harter, McLaughlin, Shiffman, and Surkus

Fig. 6. Logarithmic recession of tangents demonstrates the nonexistence of asymptotes, for pure Coulomb scattering in laboratory system. At $t=10^{3}$ the slopes of the tangents are shy of $\theta_{1}^{\mathrm{LAB}}$ and $\theta_{2}^{\mathrm{LAB}}$ by only 0.02° and 0.04°, respectively.

Fig. 5. The laboratory picture of Fig. 3. The scattering begins with both particles infinitely far to the right. The heavier particle is at rest and the lighter particle is moving left about 0.3 mile per day in the scale of this drawing. When the heavier particle first appears on this picture, one or two years before the "collision," it is creeping extremely slowly leftward, while the lighter particle is still over a hundred miles off to the right. The heavier particle continues creeping until finally the lighter particle arrives in the picture and moves through in about 12 sec . Most of the momentum is transferred in 3 or 4 sec.

From:Geometric aspects of classical Coulomb scattering
American Journal of Physics 40,1852-1856 (1972)
Class project when I taught Jr. CM at Georgia Tech
(Just 5 students)

Adolph, Garcia, Harter, McLaughlin, Shiffman, and Surkus

Fig. 6. Logarithmic recession of tangents demonstrates the nonexistence of asymptotes, for pure Coulomb scattering in laboratory system. At $t=10^{3}$ the slopes of the tangents are shy of $\theta_{1}^{\mathrm{LAB}}$ and $\theta_{2}^{\mathrm{LAB}}$ by only 0.02° and 0.04°, respectively.

Fig. 7. Attractive Coulomb scattering in laboratory system. This has the same "anomalies" as the repulsive case.
\Rightarrow Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$ How to make my boomerang come back The gyrocompass and mechanical spin analogy

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$

The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathrm{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$
The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathrm{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L} / \mathrm{dt}$ gives a rotor Newton equation relating rotor momentum $\mathbf{~} \mathbf{X p}$ to rotor force or torque $\mathbf{~} \mathbf{X F} \mathbf{F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Fig. 6.4.2 Three-particle force vectors

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$
The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathbf{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L} / \mathrm{dt}$ gives a rotor Newton equation relating rotor momentum $\mathbf{~} \mathbf{X p}$ to rotor force or torque $\mathbf{~} \mathbf{X F} \mathbf{F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Internal constraint or coupling force terms appear at first to be a nuisance.

$$
\begin{gathered}
\sum_{j=1}^{3} \sum_{k=1(k \neq j)}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j k}^{\text {constraint }}=\mathbf{r}_{1} \times\left(\mathbf{F}_{12}+\mathbf{F}_{13}^{\text {constraint }}\right)+\mathbf{r}_{2} \times\left(\mathbf{F}_{21}+\mathbf{F}_{23}^{\text {constraint }}\right)+\mathbf{r}_{3} \times\left(\mathbf{F}_{31}+\mathbf{F}_{32}^{\text {constraint }}\right) \\
=\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \times \mathbf{F}_{12}^{\text {constraint }}+\left(\mathbf{r}_{1}-\mathbf{r}_{3}\right) \times \mathbf{F}_{13}^{\text {constraint }}+\left(\mathbf{r}_{2}-\mathbf{r}_{3}\right) \times \mathbf{F}_{23}^{\text {constraint }}=\mathbf{0}
\end{gathered}
$$

Fig. 6.4.1 Three-particle coordinate vectors

Fig. 6.4.2 Three-particle force vectors

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$
The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathbf{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L} / \mathrm{dt}$ gives a rotor Newton equation relating rotor momentum $\mathbf{~} \mathbf{X p}$ to rotor force or torque $\mathbf{~} \mathbf{X F} \mathbf{F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Internal constraint or coupling force terms appear at first to be a nuisance.

$$
\begin{gathered}
\sum_{j=1}^{3} \sum_{k=1(k \not k j)}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j k}^{\text {constraint }}=\mathbf{r}_{1} \times\left(\mathbf{F}_{12}+\mathbf{F}_{13}^{\text {constraint }}\right)+\mathbf{r}_{2} \times\left(\mathbf{F}_{21}+\mathbf{F}_{23}^{\text {constraint }}\right)+\mathbf{r}_{3} \times\left(\mathbf{F}_{31}+\mathbf{F}_{32}^{\text {constraint }}\right) \\
=\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \times \mathbf{F}_{12}^{\text {constraint }}+\left(\mathbf{r}_{1}-\mathbf{r}_{3}\right) \times \mathbf{F}_{13}^{\text {constraint }}+\left(\mathbf{r}_{2}-\mathbf{r}_{3}\right) \times \mathbf{F}_{23}^{\text {constraint }}=\mathbf{0}
\end{gathered}
$$

However, they vanish if coupling forces act along lines connecting the masses.

Fig. 6.4.2 Three-particle force vectors

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathbf{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$

The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathbf{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L} / \mathrm{dt}$ gives a rotor Newton equation relating rotor momentum $\mathbf{~} \mathbf{X p}$ to rotor force or torque $\mathbf{~} \mathbf{x} \mathbf{F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Internal constraint or coupling force terms appear at first to be a nuisance.

$$
\begin{gathered}
\sum_{j=1 k=1}^{\sum_{k \neq j)}^{3}} \mathbf{r}_{j} \times \mathbf{F}_{j k}^{\text {constraint }}=\mathbf{r}_{1} \times\left(\mathbf{F}_{12}+\mathbf{F}_{13}^{\text {constraint }}\right)+\mathbf{r}_{2} \times\left(\mathbf{F}_{21}+\mathbf{F}_{23}^{\text {constraint }}\right)+\mathbf{r}_{3} \times\left(\mathbf{F}_{31}+\mathbf{F}_{32}^{\text {constraint }}\right) \\
=\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \times \mathbf{F}_{12}^{\text {constraint }}+\left(\mathbf{r}_{1}-\mathbf{r}_{3}\right) \times \mathbf{F}_{13}^{\text {constraint }}+\left(\mathbf{r}_{2}-\mathbf{r}_{3}\right) \times \mathbf{F}_{23}^{\text {constraint }}=\mathbf{0}
\end{gathered}
$$

However, they vanish if coupling forces act along lines connecting the masses. The results are the rotational Newton's equation.

$$
\frac{d \mathbf{L}}{d t}=\mathbf{N} \text {, where: } \mathbf{N}=\sum_{j=1}^{3} \mathbf{N}_{j} \text { and: } \mathbf{N}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}
$$

Fig. 6.4.2 Three-particle force vectors

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$
The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathbf{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L} / \mathrm{dt}$ gives a rotor Newton equation relating rotor momentum $\mathbf{~} \mathbf{X p}$ to rotor force or torque $\mathbf{~} \mathbf{X F} \mathbf{F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Internal constraint or coupling force terms appear at first to be a nuisance.

$$
\begin{gathered}
\sum_{j=1}^{3} \sum_{k=1}^{3}(k \neq j) \mathbf{r}_{j} \times \mathbf{F}_{j k k}^{\text {constraint }}=\mathbf{r}_{1} \times\left(\mathbf{F}_{12}+\mathbf{F}_{13}^{\text {constraint }}\right)+\mathbf{r}_{2} \times\left(\mathbf{F}_{21}+\mathbf{F}_{23}^{\text {constraint }}\right)+\mathbf{r}_{3} \times\left(\mathbf{F}_{31}+\mathbf{F}_{32}^{\text {constraint }}\right) \\
=\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \times \mathbf{F}_{12}^{\text {constraint }}+\left(\mathbf{r}_{1}-\mathbf{r}_{3}\right) \times \mathbf{F}_{13}^{\text {constraint }}+\left(\mathbf{r}_{2}-\mathbf{r}_{3}\right) \times \mathbf{F}_{23}^{\text {constraint }}=\mathbf{0}
\end{gathered}
$$

However, they vanish if coupling forces act along lines connecting the masses. The results are the rotational Newton's equation.

$$
\frac{d \mathbf{L}}{d t}=\mathbf{N}, \text { where: } \mathbf{N}=\sum_{j=1}^{3} \mathbf{N}_{j} \quad \text { and: } \quad \mathbf{N}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}
$$

Fig. 6.4.2 Three-particle force vectors

Taken together with translational Newton's equation the six equations describe rigid body mechanics.

$$
\frac{d \mathbf{P}}{d t}=\mathbf{F}, \text { where: } \mathbf{F}=\sum_{j=1}^{3} \mathbf{F}_{j}^{\text {applied }}
$$

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$
The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathbf{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L} / \mathrm{dt}$ gives a rotor Newton equation relating rotor momentum $\mathbf{~} \mathbf{X p}$ to rotor force or torque $\mathbf{~} \mathbf{x} \mathbf{F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Internal constraint or coupling force terms appear at first to be a nuisance.

However, they vanish if coupling forces act along lines connecting the masses. The results are the rotational Newton's equation.

$$
\frac{d \mathbf{L}}{d t}=\mathbf{N}, \text { where: } \mathbf{N}=\sum_{j=1}^{3} \mathbf{N}_{j} \quad \text { and: } \quad \mathbf{N}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}
$$

Fig. 6.4.2 Three-particle force vectors

Taken together with translational Newton's equation the six equations describe rigid body mechanics.

$$
\frac{d \mathbf{P}}{d t}=\mathbf{F}, \text { where: } \mathbf{F}=\sum_{j=1}^{3} \mathbf{F}_{j}^{\text {applied }}
$$

Remaining 3N-6 equations consist of normal mode or GCC equations of some kind.

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$
 How to make my boomerang come back
 The gyrocompass and mechanical spin analogy

The Australian Boomerang (that comes back!)

The Australian Boomerang (that comes back and hovers down!)

The Australian Boomerang (that comes back and hovers down!)

Charlie Drake's famous 1961 song:

*blue later replaced black

My boomerang won't come back!

 3-blade boomers causes figure-8 paths.

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$
How to make my boomerang come back
\Rightarrow The gyrocompass and mechanical spin analogy

The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand rotation with angular momentum L

The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand rotation with angular momentum \mathbf{L} If the α-dial for z-rotation is turning left-to-right thisis applies righthand "thumbs-up" torque \mathbf{N}

Suppose Euler ball has right-hand rotation with angular momentum \mathbf{L} If the α-dial for z-rotation is turning left-to-right thisis applies righthand "thumbs-up" torque \mathbf{N}

Then the ball tends to line-up with z-axis (and may go past z, then come back, etc. in a precessional or "hunting" motion)

Suppose Euler ball has right-hand rotation with angular momentum \mathbf{L} If the α-dial for z-rotation is turning left-to-right this applies righthand "thumbs-up" torque \mathbf{N}

A very high speed ball in a gyro-compass will similarly seek true North due to Earth rotation.

Then the ball tends to line-up with z-axis (and may go past z, then come back, etc. in a precessional or "hunting" motion)

Suppose Euler ball has right-hand rotation with angular momentum \mathbf{L} If the α-dial for z-rotation is turning left-to-right thisis applies righthand "thumbs-up" torque \mathbf{N}

A very high speed ball in a gyro-compass will similarly seek true North due to Earth rotation.

Then the ball tends to line-up with z-axis (and may go past z, then come back, etc. in a precessional or "hunting" motion)

This is analogous to the tendency for spin magnetic moments to allign (or precess about) the B-direction of a magnetic field Recall S-precession discussion in CMwB Unit 4 Ch. 4 and Lect. 26

Suppose Euler ball has right-hand rotation with angular momentum \mathbf{L} If the α-dial for z-rotation is turning left-to-right thisis applies righthand "thumbs-up" torque \mathbf{N}

A very high speed ball in a gyro-compass will similarly seek true North due to Earth rotation.

General Rule: Gyros tend to "line-up" so they are rotating with whatever is most closely coupled to them.

This is analogous to the tendency for spin magnetic moments to allign (or precess about) the B-direction of a magnetic field Recall S-precession discussion in CMwB Unit 4 Ch. 4 and Lect. 26

Rotational momentum and velocity tensor relations
Quadratic form geometry and duality (again) angular velocity $\boldsymbol{\omega}$-ellipsoid vs. angular momentum L-ellipsoid Lagrangian $\boldsymbol{\omega}$-equations vs. Hamiltonian momentum \mathbf{L}-equation

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \bullet \mathbf{C}) \mathbf{B}-(\mathbf{A} \bullet \mathbf{B}) \mathbf{C}
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, 0\right)$ on a bent axle rotating in a fixed bearing:

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \bullet \mathbf{B}) \mathbf{C}
$$

This produces the rotational inertia tensor I:

$$
\ddot{\mathbf{I}}=\sum_{j=1}^{N} \overrightarrow{\mathbf{I}}_{j}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right]
$$

in the ω-to-L relation:

$$
\mathbf{L}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \omega-\left(\mathbf{r}_{j} \bullet \omega\right) \mathbf{r}_{j}\right]=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) 1-\mathbf{r}_{j} \mathbf{r}_{j}\right] \bullet \omega=\overrightarrow{\mathbf{I}} \bullet \omega
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\sqrt{\sqrt{2}}, \frac{1}{2}, 0\right)$ on a bent axle rotating in a fixed bearing:

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \bullet \mathbf{B}) \mathbf{C}
$$

This produces the rotational inertia tensor I:

$$
\overrightarrow{\mathbf{I}}=\sum_{j=1}^{N} \ddot{\mathbf{I}}_{j}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right]
$$

in the ω-to-L relation:

$$
\mathbf{L}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \omega-\left(\mathbf{r}_{j} \bullet \omega\right) \mathbf{r}_{j}\right]=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) 1-\mathbf{r}_{j} \mathbf{r}_{j}\right] \bullet \omega=\overrightarrow{\mathbf{I}} \bullet \omega
$$

Matrix form of the ω-to-L relation

using the inertia matrix $\langle\mathbf{I I}\rangle$

$$
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \quad\langle\overrightarrow{\mathbf{I}}\rangle=\sum_{j=1}^{N}\left\langle\overrightarrow{\mathbf{I}}_{j}\right\rangle=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\sqrt{2}, \frac{1}{\sqrt{2}}, 0\right)$ on a bent axle rotating in a fixed bearing:

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \cdot \mathbf{B}) \mathbf{C}
$$

This produces the rotational inertia tensor I:

$$
\overrightarrow{\mathbf{I}}=\sum_{j=1}^{N} \ddot{\mathbf{I}}_{j}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right]
$$

in the ω-to-L relation:

$$
\mathbf{L}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \omega-\left(\mathbf{r}_{j} \bullet \omega\right) \mathbf{r}_{j}\right]=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) 1-\mathbf{r}_{j} \mathbf{r}_{j}\right] \bullet \omega=\ddot{\mathbf{I}} \bullet \omega
$$

Matrix form of the ω-to-L relation using the inertia matrix $\langle\mathbf{I}\rangle$

$$
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \quad\langle\overrightarrow{\mathbf{I}}\rangle=\sum_{j=1}^{N}\left\langle\overrightarrow{\mathbf{I}}_{j}\right\rangle=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\sqrt{\sqrt{2}}, \frac{1}{2}, 0\right)$ on a bent axle rotating in a fixed bearing:

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \bullet \mathbf{B}) \mathbf{C}
$$

This produces the rotational inertia tensor I:

$$
\overrightarrow{\mathbf{I}}=\sum_{j=1}^{N} \overrightarrow{\mathbf{I}}_{j}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right]
$$

in the ω-to- L relation:

$$
\mathbf{L}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \omega-\left(\mathbf{r}_{j} \bullet \omega\right) \mathbf{r}_{j}\right]=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) 1-\mathbf{r}_{j} \mathbf{r}_{j}\right] \bullet \omega=\ddot{\mathbf{I}} \bullet \omega
$$

Matrix form of the ω-to-L relation using the inertia matrix $\langle\mathbf{I}\rangle$

$$
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \quad\langle\overrightarrow{\mathbf{I}}\rangle=\sum_{j=1}^{N}\left\langle\tilde{\mathbf{I}}_{j}\right\rangle=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\sqrt{2}, \frac{1}{\sqrt{2}}, 0\right)$ on a bent axle rotating in a fixed bearing:

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \bullet \mathbf{B}) \mathbf{C}
$$

This produces the rotational inertia tensor I:

$$
\ddot{\mathbf{I}}=\sum_{j=1}^{N} \ddot{\mathbf{I}}_{j}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right]
$$

in the ω-to- L relation:

$$
\mathbf{L}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \omega-\left(\mathbf{r}_{j} \bullet \omega\right) \mathbf{r}_{j}\right]=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) 1-\mathbf{r}_{j} \mathbf{r}_{j}\right] \bullet \omega=\ddot{\mathbf{I}} \bullet \omega
$$

Matrix form of the ω-to-L relation using the inertia matrix $\langle\mathbf{I}\rangle$

$$
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \quad\langle\overrightarrow{\mathbf{I}}\rangle=\sum_{j=1}^{N}\left\langle\tilde{\mathbf{I}}_{j}\right\rangle=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\sqrt{2}, \frac{1}{\sqrt{2}}, 0\right)$ on a bent axle rotating in a fixed bearing:

Kinetic energy in terms of velocity ω and rotational Lagrangian

Kinetic energy T of a rotating rigid body can be expressed in terms of the inertia matrix I

$$
\begin{aligned}
T= & \frac{1}{2} \sum_{j=1}^{3} m_{j} \dot{\mathbf{r}}_{j} \bullet \dot{\mathbf{r}}_{j}=\frac{1}{2} \sum_{j=1}^{3} m_{j}\left(\boldsymbol{\omega} \times \mathbf{r}_{j}\right) \bullet\left(\boldsymbol{\omega} \times \mathbf{r}_{j}\right) \\
T & =\frac{1}{2} \sum_{j=1}^{3} m_{j}\left[(\boldsymbol{\omega} \bullet \boldsymbol{\omega})\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right)-\left(\boldsymbol{\omega} \bullet \mathbf{r}_{j}\right)\left(\mathbf{r}_{j} \bullet \boldsymbol{\omega}\right)\right] \\
& =\frac{1}{2} \boldsymbol{\omega} \bullet \sum_{j=1}^{3} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\left(\mathbf{r}_{j}\right)\left(\mathbf{r}_{j}\right)\right] \bullet \boldsymbol{\omega} \\
& =\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{I} \bullet \boldsymbol{\omega}
\end{aligned}
$$

Kinetic energy is a quadratic form

$$
\begin{aligned}
& T=\quad \frac{1}{2}\left(\begin{array}{lll}
\omega_{x} & \omega_{y} & \omega_{y}
\end{array}\right)\left(\begin{array}{ccc}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
\langle\omega \mid x\rangle & \langle\omega \mid y\rangle & \langle\omega \mid z\rangle
\end{array}\right)\left(\begin{array}{ll}
\langle x| \mathbf{I}|x\rangle & \langle x| \mathbf{I}|y\rangle \\
\langle y| \mathbf{I}|x\rangle & \langle y| \mathbf{I}|z\rangle \\
\langle z| \mathbf{I}|y\rangle & \langle y| \mathbf{I}|z\rangle \\
\langle z\rangle & \langle z| \mathbf{I}|y\rangle \\
\langle z| \mathbf{I}|z\rangle
\end{array}\right)\left(\begin{array}{c}
\langle x \mid \omega\rangle \\
\langle y \mid \omega\rangle \\
\langle z \mid \omega\rangle
\end{array}\right) \text { (Dirac notation) } \\
& =\frac{1}{2}\left(\begin{array}{lll}
\omega_{x} & \omega_{y} & \omega_{y}
\end{array}\right) \sum_{j=1}^{3} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
\end{aligned}
$$

Levi-Civita identity

$$
(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D})=(\mathbf{A} \bullet \mathbf{C})(\mathbf{B} \bullet \mathbf{D})-(\mathbf{A} \bullet \mathbf{D})(\mathbf{B} \bullet \mathbf{C})
$$

Simplifies in principle inertial axes $\{X, Y, Z\}$ or body eigen-axes

$$
\begin{aligned}
T & =\frac{1}{2}\left(\begin{array}{lll}
\omega_{X} & \omega_{Y} & \omega_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
\omega_{X} \\
\omega_{Y} \\
\omega_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
\omega_{X} & \omega_{Y} & \omega_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & 0 & 0 \\
0 & I_{Y Y} & 0 \\
0 & 0 & I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
\omega_{X} \\
\omega_{Y} \\
\omega_{Z}
\end{array}\right)=\frac{I_{X X} \omega_{X}^{2}}{2}+\frac{I_{Y Y} \omega_{Y}^{2}}{2}+\frac{I_{Z Z} \omega_{Z}^{2}}{2}
\end{aligned}
$$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
T=\frac{1}{2} \omega \bullet \overrightarrow{\mathbf{I}} \bullet \omega=\frac{1}{2} \omega \bullet \mathrm{~L}=\frac{1}{2} \mathrm{~L} \bullet \omega=\frac{1}{2} \mathrm{~L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathrm{~L}
$$

$$
T=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)
$$

$$
=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
$$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \boldsymbol{\omega} \bullet \overrightarrow{\mathbf{I}} \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{L}=\frac{1}{2} \mathbf{L} \bullet \boldsymbol{\omega}=\frac{1}{2} \mathbf{L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathrm{~L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum \mathbf{L}, or both at once. once

$$
\begin{aligned}
& T=\frac{1}{2} \omega \bullet \overrightarrow{\mathbf{I}} \bullet \omega=\frac{1}{2} \omega \bullet \mathrm{~L}=\frac{1}{2} \mathrm{~L} \bullet \omega=\frac{1}{2} \mathrm{~L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathrm{~L} \\
& T=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid Lagrangian form is the equation of the angular velocity or ω-ellipsoid

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$

Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
& T=\frac{1}{2} \omega \bullet \overrightarrow{\mathrm{I}} \bullet \omega=\frac{1}{2} \omega \bullet \mathrm{~L}=\frac{1}{2} \mathrm{~L} \bullet \omega=\frac{1}{2} \mathrm{~L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathrm{~L} \\
& T=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid is aligned to L or body has symmetry

$$
\begin{aligned}
& \text { Canonical momentum: } \quad p_{\mu}=\frac{\partial L}{\partial \dot{q}^{\mu}} \quad(\text { where: } L=T) \\
& \mathbf{L}=\frac{\partial T}{\partial \omega}=\nabla_{\omega} T=\frac{\partial}{\partial \omega} \frac{\omega \bullet \mathrm{I} \bullet \omega}{2}=\mathrm{I} \bullet \omega
\end{aligned}
$$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \boldsymbol{\omega} \bullet \overrightarrow{\mathrm{I}} \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathrm{~L}=\frac{1}{2} \mathrm{~L} \bullet \boldsymbol{\omega}=\frac{1}{2} \mathbf{L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid is not dissipated internally
$\boldsymbol{\omega}$ is generally not conserved unless it is aligned to L or body has symmetry

$$
\begin{aligned}
& \text { Canonical momentum: } \quad p_{\mu}=\frac{\partial L}{\partial \dot{q}^{\mu}}(\text { where: } L=T) \\
& L=\frac{\partial T}{\partial \omega}=\nabla_{\omega} T=\frac{\partial}{\partial \omega} \frac{\omega \bullet \mathrm{I} \bullet \omega}{2}=\mathrm{I} \bullet \omega
\end{aligned}
$$

$$
\text { Hamilton's } \left.1^{\text {st }} \text { equations : } \dot{q}^{\mu}=\frac{\partial H}{\partial p_{\mu}} \text { (where: } H=T\right)
$$

$$
\omega=\frac{\partial H}{\partial \mathbf{L}}=\nabla_{\mathbf{L}} H=\frac{\partial}{\partial \mathbf{L}} \frac{\mathbf{L} \bullet \mathbf{I}^{-1} \bullet \mathbf{L}^{\mu}}{2}=\mathbf{I}^{-1} \bullet \mathbf{L}
$$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
& T=\frac{1}{2} \boldsymbol{\omega} \bullet \overrightarrow{\mathbf{I}} \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{L}=\frac{1}{2} \mathbf{L} \bullet \boldsymbol{\omega}=\frac{1}{2} \mathbf{L} \bullet \stackrel{\mathbf{I}}{ }^{-1} \bullet \mathbf{L} \\
& T=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
&=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{l}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}} \\
& \text { Hamillips }
\end{aligned}
$$ Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid

$\boldsymbol{\omega}$ is generally not conserved unless it is aligned to L or body has symmetry

$$
\begin{aligned}
& \text { Canonical momentum: } \quad p_{\mu}=\frac{\partial L}{\partial \dot{q}^{\mu}}(\text { where: } L=T) \\
& \mathrm{L}=\frac{\partial T}{\partial \omega}=\nabla_{\omega} T=\frac{\partial}{\partial \omega} \frac{\omega \bullet \mathrm{I} \bullet \omega}{2}=\mathrm{I} \bullet \omega
\end{aligned}
$$

Hamilton's $1^{\text {st }}$ equations : $\dot{q}^{\mu}=\frac{\partial H}{\partial p_{\mu}}$ (where: $H=T$) $\boldsymbol{\omega}=\frac{\partial H}{\partial \mathbf{L}}=\nabla_{\mathbf{L}} H=\frac{\partial}{\partial \mathbf{L}} \frac{\mathbf{L} \bullet \mathbf{I}^{-1} \bullet \mathbf{L}}{2}=\mathbf{I}^{-1} \bullet \mathbf{L}$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
& T=\frac{1}{2} \omega \bullet \overrightarrow{\mathbf{I}} \bullet \omega=\frac{1}{2} \omega \bullet \mathrm{~L}=\frac{1}{2} \mathrm{~L} \bullet \omega=\frac{1}{2} \mathrm{~L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathrm{~L} \\
& T=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}} \\
& \text { Hamiltonian form is the equation of the angular momentum or } \mathbf{L} \text {-ellipsoid } \\
& \text { is not dissipated internally }
\end{aligned}
$$

Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid $\boldsymbol{\omega}$ is generally not conserved unless it is aligned to L or body has symmetry

Z
Absolutely
stable axis

$$
\begin{aligned}
& \text { Hamilton's } 1^{\text {st }} \text { equations : } \dot{q}^{\mu}=\frac{\partial H}{\partial p_{\mu}}(\text { where: } H=T) \\
& \boldsymbol{\omega}=\frac{\partial H}{\partial \mathbf{L}}=\nabla_{\mathbf{L}} H=\frac{\partial}{\partial \mathbf{L}} \frac{\mathbf{L} \bullet \mathbf{I}^{-1} \bullet \mathbf{L}}{2}=\mathbf{I}^{-1} \bullet \mathbf{L}
\end{aligned}
$$

In body frame momentum L moves along intersection of L -ellipsoid and L -sphere (Length $|\mathrm{L}|$ is constant in any classical frame.)

Rotational Energy Surfaces (RES)

Symmetric, asymmetric, and spherical-top dynamics (Constant \mathbf{L}) BOD-frame cone rolling on LAB frame cone

Rotational Energy Surfaces (RES) and Constant Energy Surfaces (CES)

Rotational Energy Surface (RES) is quadratic multipole function plotted radially
$E=\frac{\mathbf{J}_{x}^{2}}{2 I_{x}}+\frac{\mathbf{J}_{y}^{2}}{2 I_{y}}+\frac{\mathbf{J}_{z}^{2}}{2 I_{z}} \quad$ with $J=$ const.
$=J^{2}\left(\frac{\sin ^{2} \theta \cos ^{2} \phi}{2 I_{x}}+\frac{\sin ^{2} \theta \sin ^{2} \phi}{2 I_{y}}+\frac{\cos ^{2} \theta}{2 I_{z}}\right)$
(a) RE surface

Constant Energy Surface (CES) is asymmetric ellipsoid of constant E

$$
\begin{array}{ll}
E=\frac{\mathbf{J}_{x}^{2}}{2 I_{x}}+\frac{\mathbf{J}_{y}^{2}}{2 I_{y}}+\frac{\mathbf{J}_{z}^{2}}{2 I_{z}}=\text { const. } & \text { Here notation } L \text { or } \mathbf{L} \\
\text { or }: \quad \frac{\mathbf{J}_{x}^{2}}{2 E I_{x}}+\frac{\mathbf{J}_{y}^{2}}{2 E I_{y}}+\frac{\mathbf{J}_{z}^{2}}{2 E I_{z}}=1 & \text { is replaced by } \boldsymbol{J} \text { or } \mathbf{J}
\end{array}
$$

(b) CE surface $I_{\bar{I}}=6 \quad I_{\overline{2}}=4 I_{\overline{3}}=3$
(c) RES intersecting CES

$$
3
$$ 3 $\mid J-$

Fig. 6.8.1 Rigid rotor surfaces (a) RES polynomial, (b) CES ellipsoid, and (c) RES and CES intersected.

RES and CES for nearly-symmetric prolate rotors and nearly-symmetric oblate rotors

Fig. 6.8.2 Fixed-J-RES with CES at separatrix $E=J^{2} / 2 I_{2}$ as I_{2} varies. (a) $I_{2}=5.6$ and $\gamma_{B}=75.5^{\circ}$ (Nearly prolate low-E CES), (b) $I_{2}=5.0$ and $\gamma_{B}=63.4^{\circ}$, (c) $I_{2}=3.2$ and $\gamma_{B}=20.7^{\circ}$ (Nearly oblate high-E CES).

RES for symmetric prolate rotor locates $J=10$ quantum $(-J<K<J)$ levels (at RES-quantum cone intersections)

W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013) Fig. 1-2 p. 730

RES for symmetric and asymmetric rotor approximates $J=10(-J<K<J)$ levels (near $R E S$-quantum cone levels)

W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013) Fig. 1-5 p. 730

RES for symmetric prolate rotor locates $J=10$ quantum $(-J<K<J)$ levels (at RES-quantum cone intersections)

$$
E=A \mathbf{J}_{x}^{2}+B \mathbf{J}_{y}^{2}+C \mathbf{J}_{z}^{2} \text { with } J=\text { const }
$$

Spectra varies as symmetric prolate RES changes through a range of asymmetric RES to oblate RES

W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013) Fig. 4 p. 734
$<\mathrm{H}>\sim \mathrm{v}_{\text {vil }}+\mathrm{B} J(J+1)+<\mathrm{H}^{\text {Scalar Coriolis }}>+\left\langle\mathrm{H}^{\text {Tensor Centrifugal }}>+\left\langle\mathrm{H}^{\text {Tensor Coriolis }}>+<\mathrm{H}^{\text {Nuclear Spin }}>+\ldots\right.\right.$

$$
\theta_{K}^{J}=\operatorname{acos}[K / \sqrt{J(J+1)}]
$$

W. G. Harter and J C. Mitchell ,International Symposium on Molecular Spectroscopy, OSU Columbus (2009)
$S F_{6}$ Spectra of O_{h} Ro-vibronic Hamiltonian described by RE Tensor Topography

$$
\begin{aligned}
\mathbf{H} & =B\left(\mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}+\mathbf{J}_{z}^{2}\right)+t_{440}\left(\mathbf{J}_{x}^{4}+\mathbf{J}_{y}^{4}+\mathbf{J}_{z}^{4}-\frac{3}{5} J^{4}\right)+\cdots \\
& =\quad B \mathbf{J}^{2} \quad+t_{440}\left(\mathbf{T}_{0}^{4}+\sqrt{\frac{5}{14}}\left[\mathbf{T}_{4}^{4}+\mathbf{T}_{-4}^{4}\right]\right)+
\end{aligned}
$$

and J-cone intersection

Rovibronic Energy (RE) Tensor Surface

Fig. 6.7.1 Elementary ω-constrained rotor and angular velocity-momentum geometry
(a) Constrained rotor:LAB-fixed ω, moving $\mathbf{J} \quad$ (b) Free rotor:LAB-fixed \mathbf{J}, moving $\boldsymbol{\omega}$

Fig. 6.7.2 Free rotor cut loose from LAB-constraining ω-axis changes dynamics accordingly.
..this was the kind of dynamics that started me dropping superballs...

Prolate tops: (a) $I_{I I}=4 I_{3}$

$$
\begin{aligned}
& \dot{\gamma}=3 \dot{\alpha} \cos \beta \\
& \dot{\gamma}=(3 / 4) \omega_{\overline{3}}
\end{aligned}
$$

$$
L A B \mathbf{x}_{3}
$$

(b) $I_{I I}=2 I_{3}$
(c) $I_{I I}=(3 / 2) I_{3}$
$\dot{\gamma}=(1 / 2) \dot{\alpha} \cos \beta$
$\dot{\gamma}=(1 / 3) \omega_{\overline{3}}$

(d) Spherical top:

Blue BOD-frame cones roll (around $\boldsymbol{\omega}$-sticking axis)without slipping on red LAB-frame cone Fig. 6.7.3 Symmetric top ω-cones for $\beta=30^{\circ}$ and inertial ratios: (a) ${ }^{I_{I}-I_{3}} I_{3}=3$, (b) 1 , (c) $\frac{1}{2}$, (d) 0 , (e) $-\frac{1}{2}$.

Blue BOD-frame cones roll without slipping on red $L A B$-frame cone

Fig. 6.7.4 Detailed geometry of symmetric top kinetics. (a) Prolate case. (b) Most-oblate case

Fig. 6.7.5 Extreme cases (Oblate vs. Prolate) of symmetric-top geometry.

[^0]: From:Geometric aspects of classical Coulomb scattering
 American Journal of Physics 40, 1852-1856 (1972)
 Class project when I taught Jr. CM at Georgia Tech
 (Just 5 students)

[^1]: From:Geometric aspects of classical Coulomb scattering
 American Journal of Physics 40,1852-1856 (1972)
 Class project when I taught Jr. CM at Georgia Tech
 (Just 5 students)

