Multi-particle and Rotational Dynamics
(Ch. 2-7 of Unit 6 12.12.14)

2-Particle orbits
Ptolemetric or LAB view and reduced mass
Copernican or COM view and reduced coupling

2-Particle orbits and scattering: LAB-vs.-COM frame views
Ruler & compass construction (or not)

Rotational equivalent of Newton s KF=dp/dt equations: N=dL/dt
How to make my boomerang come back
The gyrocompass and mechanical spin analogy

Rotational momentum and velocity tensor relations
Quadratic form geometry and duality (again)
angular velocity w-ellipsoid vs. angular momentum L-ellipsoid
Lagrangian w-equations vs. Hamiltonian momentum L-equation

Rotational Energy Surfaces (RES) and Constant Energy Surfaces (CES)
Symmetric, asymmetric, and spherical-top dynamics (Constant L)
BOD-frame cone rolling on LAB frame cone
Deformable spherical rotor RES and semi-classical rotational states and spectra
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2-Particle orbits and center-of-mass (CM) coordinate frame

m

r=ri{-r _
Iy _Tom 3@ Fem= m Tyt mory
% 1'1 m] +m2

Defining relative coordinate vector

r=r, —r,
and mass-weighted-average or center-of-mass coordinate vector rcy
_ _omyry +myr,
r = rCM =
ml + m2
The inverse coordinate transformation.
H=Tm™ ’ I =Tem ~

m1+m2 ml +m2
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2-Particle orbits
3 Ptolemetric or LAB view and reduced mass
Copernican or COM view and reduced coupling
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Reduced mass: Ptolemetric views

Radial inter-particle force Fi2 1s on m; due to m> and F21 = -F12 1s on m> due to m;
F(I”) (

r

5_5)
F

p=miy= F(E= F(r)—= (r

F12 = F(r)er =-F21 = F(}/‘)f' — F(l’)£ —
r

F1; acts along relative coordinate vector r=r; - r>

Depends only upon the relative distance » =| r; - 2 | r F(r)(

F, =my, =-F(r)r= —F(r); =—

Re-scaled force: A Copernican view . __"™" _ K1, L L U
: : Vom o +m, m 2 m+m, m
relative radius vector m, —m, I I  mym,
U u
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Reduced mass: Ptolemetric views

Radial inter-particle force Fi2 1s on m; due to m> and F21 = -F12 1s on m> due to m;
F(I”) (

r

5_5)

F12 = F(r)er =-F21 = F(}/‘)f' — F(l’)£ —
r

F12 acts along relative coordinate vector r=r; - r» Fp =mfy = Flr=F@r)—
Depends only upon the relative distance » =| r; - r2 | . r
21

Sum F12+F2; yields zero because of Newton's 3™ -law action-reaction cancellation.
(my +my)tepg =Mty +myt, =0

Re-scaled force: A Copernican view . __"™" _ K1, L L U
: : Vom o +m, m 2 m+m, m
relative radius vector m, —m, 1 Ty ptmy  m
—rl =r = —r2
U U

= m,it, = —F(r)yr= —F(r); =
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Reduced mass: Ptolemetric views

Radial inter-particle force Fi2 1s on m; due to m> and F21 = -F12 1s on m> due to m;
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Re-scaled force: A Copernican view . __"™" _ K1, L L U
: : Vom o +m, m 2 m+m, m
relative radius vector m, —m, 1 Ty ptmy  m
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Reduced mass: Ptolemetric views

Radial inter-particle force Fi2 1s on m; due to m> and F21 = -F12 1s on m> due to m;
F(I”) (

r

5_5)
F

p=miy= F(E= F(r)—= (r

F12 = F(r)er =-F21 = F(}/‘)f' — F(l’)£ —
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F1; acts along relative coordinate vector r=r; - r>

Depends only upon the relative distance » =| r; - 2 | r F(r)(

F, =my, =-F(r)r= —F(r); =—

Sum F12+F2; yields zero because of Newton's 3™ -law action-reaction cancellation.
(my +my)tepg =Mty +myt, =0

Difference Fi2-F21 reduces to pi=F(@) using|reduced mass: 1= mi—nij fepg =90
2F(r) [

[ mE, 1= myk, == (r,—r,) T_1T 1T _m+m
.o .o m m m m
. m;m,x . m,m,xr 2F(r) H 1 2 1772 J
mir, +——|—| M,T, + = ry—r
l: I"CM m, +m, 2°CM m, +m, r (1 2)

ur=F(r)r=F(r)e. =F(r)

Re-scaled force: A Copernican view . __"™" _ K1, L L U
: : Vom o +m, m 2 m+m, m
relative radius vector m, —m, 1 Ty ptmy  m
—rl =r = —r2
U U
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Reduced mass: Ptolemetric views

Radial inter-particle force Fi2 1s on m; due to m> and F21 = -F12 1s on m> due to m;
F(I”) (

r

5_5)
F

p=miy= F(E= F(r)—= (r

F12 = F(r)er =-F21 = F(}/‘)f' — F(l’)£ —
r

F1; acts along relative coordinate vector r=r; - r>

Depends only upon the relative distance » =| r; - 2 | r F(r)(

F, =my, =-F(r)r= —F(r); =—

Sum F12+F2; yields zero because of Newton's 3™ -law action-reaction cancellation.
(my +my)tepg =Mty +myt, =0

Difference Fi2-F21 reduces to pi=F(@) using|reduced mass: 1= mi—nij fepg =90
2F(r) [

[ m, iy 1-1 m,t, 1= - (1’1—1’2) 11 N 1 my+my - m, :m[l—@... (m.>>m,)
- - 2 1 2
l:mlfCM ML }—[mzi‘CM e :|=2F(r)(l‘1 —1'2) 1 - 1 ZJ H m2 1
m1+m2 m1+m2 r 1
o [1 il ] (> om)
= =m |1——.. ) :
ur=F(r)r=F(r)e. =F(r) 14+ g
m2
Re-scaled force: A Copernican view ™" _#, L L
1 t d t B ml + m2 ml ml + m2 m2
relative radius vector 4, m
—lr1 —r=—2 r,
U u

Wednesday, December 24, 2014



Reduced mass: Ptolemetric views

Radial inter-particle force Fi2 1s on m; due to m> and F21 = -F12 1s on m> due to m;
F(I”) (
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p=miy= F(E= F(r)—= (r

F12 = F(r)er =-F21 = F(}/‘)f' — F(l’)£ —
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F1; acts along relative coordinate vector r=r; - r>

Depends only upon the relative distance » =| r; - 2 | r F(r)(

F, =my, =-F(r)r= —F(r); =—

Sum F12+F2; yields zero because of Newton's 3™ -law action-reaction cancellation.
(my +my)tepg =Mty +myt, =0
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(= ] —m[lﬁ ](m>>m)
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ur=F(r)r=F(r)e =F(r) 14 e
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2-Particle orbits
Ptolemetric view and reduced mass
¥ Copernican view and reduced coupling
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Reduced mass: Ptolemetric views

Radial inter-particle force Fi2 1s on m; due to m> and F21 = -F12 1s on m> due to m;
F(I”) (

r

5_5)
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F1; acts along relative coordinate vector r=r; - r>

Depends only upon the relative distance » =| r; - 2 | r F(r)(

F, =my, =-F(r)r= —F(r); =—

Sum F12+F2; yields zero because of Newton's 3™ -law action-reaction cancellation.
(my +my)tepg =Mty +myt, =0

Difference Fi2-F21 reduces to pi=F(@) using|reduced mass: 1= mi—nij fepg =90
2F(r) [

[ mlfl ]_[ mzfz ]= 7 (1’1—1’2) l: 1 + 1 — ml +m2) n= m2 :mg[l_@ (m1>>m2)
m m
. m,m, 1 . m,m,t 2F(r) Hoomm, mm, 1+ —2% L,
l:merM +ﬁ}— [merM + " 2+1}n :|= - (rl — r2) m, (Why it s reduced)
1 Ty ) m m
= —=m |1—-—..| (m,>>m)
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cach particle keeps it original mass m; or m,, but feels
coordinate-re-scaled force field F(m; ri/u) or F(m2 r2/u) field

. m A
K, =mf = F(Irl)rl =-F,,

.. m, ~
K, =myk, = F(I”z)rz =-F,
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Reduced mass: Ptolemetric views
Radial inter-particle force Fi2 1s on m; due to m> and F21 = -F12 1s on m> due to m;
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Reduced mass: Ptolemetric views

Radial inter-particle force Fi2 1s on m; due to m> and F21 = -F12 1s on m> due to m;
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2-Particle orbits and scattering: LAB-vs.-COM frame views
Ruler & compass construction (or not)
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Examples of Coulomb and harmonic oscillator 2-particle “Copernican’ orbits in CM system.

(a) F(r) = -kir? . (b) F(r) = -kr
m;
/Q )
If AN
/I'C/M=_O7 & / m
4
" L/

J
J
ry

Two particles are 1n synchronous motion around fixed CM origin.
Orbit periods are i1dentical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation.
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Examples of Coulomb and harmonic oscillator 2-particle “Copernican’ orbits in CM system.

(a) F(r) = -kir? . (b)F(r) = -kr
m;
/p 3
| I \
P / -
/T
" %/

J
J
ry

Two particles are 1n synchronous motion around fixed CM origin.

Orbit periods are 1dentical to each other.

Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation.
Orbits differ in size of axes (a;, b;) and (a2, b2)

Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
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Examples of Coulomb and harmonic oscillator 2-particle “Copernican’ orbits in CM system.

(a) F(r) = -k/r? Q (b) F(r) = -kr
m;

1 r2 A
rem="0 m;
J r2
J
& W
ry

Two particles are 1n synchronous motion around fixed CM origin.
Orbit periods are 1dentical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation.
Orbits differ in size of axes (a;, b;) and (a2, b2)
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions (ax, bx) and Ai are in inverse proportion to mass values.

a,m, = a,m, =apl , bm, = b,m, = bl Am = A,m, = AU
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Examples of Coulomb and harmonic oscillator 2-particle “Copernican’ orbits in CM system.

(a) F(r) = -k/r? Q (b) F(r) = -kr
m;

1 r2 A
rem=0 m;
J r2
J
& W
ry

Two particles are 1n synchronous motion around fixed CM origin.
Orbit periods are 1dentical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation.
Orbits differ in size of axes (a;, b;) and (a2, b2)
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions (ax, bx) and Ai are in inverse proportion to mass values.

a,m, = a,m, =apl , bm, = b,m, = bl Am = A,m, = AU

Harmonic oscillator periods and Coulomb orbit periods and eccentricity must match

3 3
_ fﬂ_ /ﬂ_ /mz /Has_ /mlal _ m,a, — —
Tpo =27 k—27t kl =27 a Ty =27 p =2 k—_zn - 81 —82 =&
1 2
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Examples of Coulomb and harmonic oscillator 2-particle “Copernican’ orbits in CM system.

(a) F(r) = -kir? Q (b) F(r) = -kr
&

L) .
rev=10 &
J rz
J
& W
ry

Two particles are 1n synchronous motion around fixed CM origin.
Orbit periods are 1dentical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a/b), eccentricity, and orientation.
Orbits differ in size of axes (a;, b;) and (a2, b2)
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions (ax, bx) and Ai are in inverse proportion to mass values.

a,m, = a,m, =apl , bm, = b,m, = bl Am = A,m, = AU

Harmonic oscillator periods and Coulomb orbit periods and eccentricity must match

3 3
_ fﬂ_ /ﬂ_ /mZ /Has_ /mlal _ m,a, — —
Tpo =27 k—27t kl =27 a Ty =27 p =2 k—_zn - 81 —82 =&
1 2

Three Coulomb orbit energy values satisfy the same proportion relation as their axes

B = By = wheres 5=l (g tel gl
2a, 2a, 2a
Energy values and axes satisty similar sum relations
" i) oM
E+E,=—FE+—=E=F, and: g +a,=—a+—=a=a
woooou uooou
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A common type of scattering
(m1=mp)
...that every pool shark should know

CM view LAB view
vCM=( viM= _y,CM()

VILAB(OO) V] M(OO)
90° 0

VZLAB(OO) V2C o0) PALAB

v,LAB(0)=0 T
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1o transform CM to LAB frame
Just subtract v2*M(0) from all

(Assuming that initial v2*45(0) is zero so v2*™(0) is CM velocity in LAB)

CM view
vCM=(

COG moves uniformly
CM CM
at v =-vy (0)

LAB
HEa @
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Geomeirical Aspecis of Classical Coulomb Scallering

Fic. 5. The laboratory picture of Fig. 3. The scattering
begins with both particles infinitely far to the right. The
heavier particle is at rest and the lighter particle is moving
left about 0.3 mile per day in the scale of this drawing.
When the heavier particle first appears on this picture, one
or two years before the “collision,” it is creeping extremely
slowly leftward, while the lighter particle is still over a
hundred miles off to the right. The heavier particle con-
tinues creeping until finally the lighter particle arrives in
the picture and moves through in about 12 sec. Most of the
momentum is transferred in 3 or 4 sec.

From:Geometric aspects of classical Coulomb scattering

American Journal of Physics 40,1852-1856 (1972)
Class project when I taught Jr. CM at Georgia Tech
(Just 5 students)

The trouble with the Coulomb field is...
jt‘ldt =Int+C

VP AB(t) = [(| F |/ma)dt
= [kdt/ma[ v, (initial )¢
[ —k/mgp,©™ (initial ) -1

1866 | December 1972

Wednesday, December 24, 2014
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Geomeirical Aspecis of Classical Coulomb Scallering ~ Adolph, Garcia, Harter, McLaughlin, Shiffman, and Surkus

Fic. 5. The laboratory picture of Fig. 3. The scattering
begins with both particles infinitely far to the right. The

heavier particle is at rest and the lighter particle is moving Fi . : :
left about 0.3 mile per day in the scale of this drawing. G. 6. Logarithmic recession of tangents demonstrates the

When the heavier particle first appears on this picture, one nonexistence of asymptotes, for pure Coulomb scattering in
or two years before the “collision,” it is creeping extremely laboratory system. At ¢=10° the slopes of the tangents are
slowly leftward, while the lighter particle is still over a 3!‘)' of 6,“*® and 6,“A® by only 0.02° and 0.04° respec-
hundred miles off to the right. The heavier particle con- tively.

tinues creeping until finally the lighter particle arrives in

the picture and moves through in about 12 sec. Most of the

momentum is transferred in 3 or 4 sec.

From:Geometric aspects of classical Coulomb scattering

American Journal of Physics 40,1852-1856 (1972)
Class project when I taught Jr. CM at Georgia Tech
(Just 5 students)
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Geomeirical Aspecis of Classical Coulomb Scallering ~ Adolph, Garcia, Harter, M cLaughlin, Shiffman, and Surkus

Fic. 5. The laboratory picture of Fig. 3. The scattering
begins with both particles infinitely far to the right. The

heavier particle is at rest and the lighter particle is moving Fi . : :
left about 0.3 mile per day in the scale of this drawing. G. 6. Logarithmic recession of tangents demonstrates the

When the heavier particle first appears on this picture, one nonexistence of asymptotes, for pure Coulomb secattering in
or two years before the “‘collision,” it is creeping extremely laboratory system. At ¢=10° the slopes of the tangents are
slowly leftward, while the lighter particle is still over a s.hy of 6,“AB and 6,“AB by only 0.02° and 0.04°, respec-
hundred miles off to the right. The heavier particle con- tively.
tinues creeping until finally the lighter particle arrives in

the picture and moves through in about 12 sec. Most of the
momentum is transferred in 3 or 4 sec.

From:Geometric aspects of classical Coulomb scattering

American Journal of Physics 40,1852-1856 (1972)

Class project when I taught Jr. CM at Georgia Tech
(Just 5 students)

Fu?. 7. Attractive Coulomb scattering in laboratory systen.
This has the same “anomalies” as the repulsive case,
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*Rotational equivalent of Newton's KF=dp/dt equations: N=dL/dt
How to make my boomerang come back
The gyrocompass and mechanical spin analogy
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Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt

Angular momentum vector L; of a mass m; 1s its linear momentum p; times its lever arm
as given by the angular momentum cross-product relation L=r,xmf = r,Xp,

Wednesday, December 24, 2014
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Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt

Angular momentum vector L; of a mass m; 1s its linear momentum p; times its lever arm
as given by the angular momentum cross-product relation L=r,xmf =r1,xp,

. 3 3
The sum-total angular momentum is L=1"%~-7% L=3% r xmf
=1 =l
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Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt

Angular momentum vector L; of a mass m; 1s its linear momentum p; times its lever arm
as given by the angular momentum cross-product relation L=r,xmf =r1,xp,

. 3 3
The sum-total angular momentum is L=1"%~-7% L=3% r xmf
j=1 j=1

dL /dt gives a rotor Newton equation relating rotor momentum rXp to rotor force or forque rXxF.

dL 3 L3 &
—=) r.Xmi.= ) l‘.XFZ.Otal 3 = =13
dt . J J J - J J

j=1 j=1

l'3 _
I3 =Ir3-1;
/ )

‘ 7
_ % r ><Fapplied n % rox % Fconstraint 2 rCM= m Uyt myly+ msry
]:

] ; k m;+mytm
1 ] ] ]=1 ] kzl(kij) ] r2 r12=r1-r ! ? 3
ry

Fig. 6.4.1 Three-particle coordinate vectors

F3applied\

F3=-Fy3 im

anpplied

—

Fig. 6.4.2 Three-particle force vectors
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Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt

Angular momentum vector L; of a mass m; 1s its linear momentum p; times its lever arm
as given by the angular momentum cross-product relation L=r,xmf =r1,xp,

. 3 3
The sum-total angular momentum is L=1"%~-7% L=3% r xmf
j=1 j=1

dL /dt gives a rotor Newton equation relating rotor momentum rXp to rotor force or forque rXxF.

dL 3 . 3 m;
oY rxmi.=3Y r xFed Iy3 = Iy-4%
e R b B A B
j=1 j=1 r _
3 ryy=rs-r
@ T

4
_ % r ><Fapplied n % rox % Fconstraint 2 rCM= m Uyt myly+ msry
]:

] ; k m;+mytm
1 J ] ]=1 ] kzl(kij) ] r2 r12=rl-r ! ? 3
ry

Internal constraint or coupling force terms appear at first to be a nuisance.

Fig. 6.4.1 Three-particle coordinate vectors

3 3 . . . . .
constramnt __ constraint constraint constraint F applied

a Y rXFy —1~1><(F12+F13 )+1~2><(F21+F23 )+1~3><(F31+F32 ) 3 \

J=lk=1(k# ) Fyy =

_ _ constraint _ constraint _ constraint __
—(rl 1'2)><F12 +(r1 1'3)><F13 +(r 1“3)><F23 =0

2

anpplied

—

Fig. 6.4.2 Three-particle force vectors
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Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt

Angular momentum vector L; of a mass m; 1s its linear momentum p; times its lever arm
as given by the angular momentum cross-product relation L=r,xmf =r1,xp,

. 3 3
The sum-total angular momentum is L=1"%~-7% L=3% r xmf
j=1 j=1

dL /dt gives a rotor Newton equation relating rotor momentum rXp to rotor force or forque rXxF.

dL 3 L3 &
—=) r.Xmi.= ) l‘.XFt.Otal 3 = =13
dt . J J J - J J

j=1 j=1

l'3 _
I3 =I3- I
/ e

‘ 4
_ % r ><Fapplied n % rox % Fconstraint 2 rCM= m Uyt myly+ msry
]:

] ; k m;+mytm
1 ] ] ]:1 ] kzl(kij) ] r2 r12=rl-r ! ? 3
ry

Internal constraint or coupling force terms appear at first to be a nuisance.

Fig. 6.4.1 Three-particle coordinate vectors

3 3 . . . ) .
constraint __ constraint constraint constraint F applied
2 3 rxFy —rlx(F12+Fl3 )+r2><(F21+F23 )+r3><(F31+F32 ) NG
J=1k=1(k# ) Fy=-Fy3lm
_ _ constraint _ constraint _ constraint __
—(rl 1'2)><F12 +(r1 1'3)><F13 +(r2 1“3)><F23 =0

However, they vanish if coupling forces act along lines connecting the masses. Fyorld

Fig. 6.4.2 Three-particle force vectors
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Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt

Angular momentum vector L; of a mass m; 1s its linear momentum p; times its lever arm
as given by the angular momentum cross-product relation L=r,xmf =r1,xp,

. 3 3
The sum-total angular momentum is L=1"%~-7% L=3% r xmf
j=1 j=1

dL /dt gives a rotor Newton equation relating rotor momentum rXp to rotor force or forque rXxF.

dL. 3 L3 &
i Z r.- Xm.x.= Z I‘.XFt.Otal I3 =I)-173
dt . J J J - J J

j=1 j=1

r3 _
I3 =I3- I
/ e

‘ 4
_ % r ><Fapplied n % rox % Fconstraint 2 rCM= m Uyt myly+ msry
]:

] 1 k m;+mytm
1 ] ] ]:1 ] kzl(kij) ] r2 r12=rl-r ! ? 3
ry

Internal constraint or coupling force terms appear at first to be a nuisance.
3 3 . : . . .
. Fc_’onstramt — F Fconstramt F Fconstralnt F Fconstramt FLapplied
Jé1k=1(zlf¢1)rjx H rlx( 127753 )+r2><( 217523 )+r3><( 31755 ) ’ \

Fig. 6.4.1 Three-particle coordinate vectors

Fy=-Fy3 [m
_ _ constraint _ constraint _ constraint _
—(r1 r2)><F12 +(r1 r3)><F13 +(r2 l'3)><F23 =0

However, they vanish if coupling forces act along lines connecting the masses. Fyorld

The results are the rotational Newton's equation.

dL 3 3 lied
— =N R where: N = 2 N] and: N]: 2 l‘j X F]C-pr e Fig. 6.4.2 Three-particle force vectors

dt j=1 j=1
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Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt

Angular momentum vector L; of a mass m; 1s its linear momentum p; times its lever arm
as given by the angular momentum cross-product relation L=r,xmf =r1,xp,

. 3 3
The sum-total angular momentum is L=1"%~-7% L=3% r xmf
j=1 j=1

dL /dt gives a rotor Newton equation relating rotor momentum rXp to rotor force or forque rXxF.

dL. 3 L3 &
i Z r.- Xm.x.= Z I‘.XFt.Otal I3 =I)-173
dt . J J J - J J

j=1 j=1

r3 _
I3 =I3- I
/ e

\ 4
_ % r ><Fapplied n % rox % Fconstraint 2 rCM= m Uyt myly+ msry
]:

] 1 k m;+mytm
1 ] ] ]=1 ] kzl(kij) ] r2 r12=rl-r ! 2 I
ry

Internal constraint or coupling force terms appear at first to be a nuisance.
3 3 . : . . .
. Fc_’onstramt — F Fconstramt F Fconstralnt F Fconstramt FLapplied
Jé1k=1(zlf¢1)rjx H rlx( 127753 )+r2><( 217523 )+r3><( 31755 ) ’ \

Fig. 6.4.1 Three-particle coordinate vectors

Fy=-Fy3 [m
_ _ constraint _ constraint _ constraint _
—(r1 r2)><F12 +(r1 r3)><F13 +(r2 l'3)><F23 =0

However, they vanish if coupling forces act along lines connecting the masses. Fyorld

The results are the rotational Newton's equation.

3 3 .
daL =N, where: N= Y Nj and: N].: Y r; XFJC.‘pphed

dt j=1 j=1
Taken together with translational Newton's equation the six equations describe rigid body mechanics.

AP 3 .
“_=F, where: F= 3 Frled
dt j=1 J

Fig. 6.4.2 Three-particle force vectors
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Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt

Angular momentum vector L; of a mass m; 1s its linear momentum p; times its lever arm
as given by the angular momentum cross-product relation L=r,xmf =r1,xp,

. 3 3
The sum-total angular momentum is L=1"%~-7% L=3% r xmf
j=1 j=1

dL /dt gives a rotor Newton equation relating rotor momentum rXp to rotor force or forque rXxF.

dL 3 .. 3 ms

r3 _
I3 =I3- I
/ e

\ 4
_ % r ><Fapplied n % rox % Fconstraint 2 rCM= m Uyt myly+ msry
]:

k m;tmytm
/ 1 ] ] ]:1 ] kzl(kij) ] r2 r12=rl-r ! ? 3
ry

Internal constraint or coupling force terms appear at first to be a nuisance.
3 3 . : . . .
. Fc_onstramt — F Fconstramt F Fconstralnt F Fconstramt FLapplied
Jé1k=1(zlf¢1)rjx H rlx( 127753 )+r2><( 217523 )+r3><( 31755 ) ’ \

Fig. 6.4.1 Three-particle coordinate vectors

Fy=-Fy3 [m
_ _ constraint _ constraint _ constraint _
—(r1 r2)><F12 +(r1 r3)><F13 +(r2 l'3)><F23 =0

However, they vanish if coupling forces act along lines connecting the masses. Fyorld

The results are the rotational Newton's equation.

dl 3 3 .
—=N,where: N= X N. and: N.=Y r. w Fapplied

Taken together with translational Newton's equation the six equations describe rigid body mechanics.

AP 3 .
“_=F, where: F= 3 Frled
dt j=1 J

Remaining 3N-6 equations consist of normal mode or GCC equations of some kind.

Fig. 6.4.2 Three-particle force vectors
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Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt
* How to make my boomerang come back
The gyrocompass and mechanical spin analogy
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The Australian Boomerang (that comes back!)

ul“\‘l\

N | ferodynamic
. derodsmamic N
B Uilfz.balqnced
------ ift gives
torque N

v
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v

The Australian Boomerang (that comes back and hovers down!)

erodynamic N

lift

Unbalanced
lift gives
torque N

Small lifting torque due to “bad-air”
of leading blade hitting trailing one
left-to-right may cause boomerang
to level and hover. Stronger effect in"
3-blade boomers causes figure-8 paths.
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*blue later replaced black

v

The Australian Boomerang (that comes back and hovers down!)

Charlie Drake’s famous 1961 song:

My boomerang won 't come back!

My boomerang won t come back!

My boomerang won 't come back!
I’ve waved the thing all over the place

Practiced til’ [ was blue* in the face PP e menn
I’'m a big disgrace " Teey dt

to the Aborigine Rgcge ©

My boomerangion t come back!

.. Aluminum boomerang I made in 1965. A rodynamic N
“*~w... It once flew over 18 seconds with hover-return! ift Unbal
TTe— _ n aqnced
"""""""""""" lift gives

torque N

Small lifting torque due to “bad-air”
of leading blade hitting trailing one
left-to-right may cause boomerang
to level and hover. Stronger effect in
3-blade boomers causes figure-8 paths.
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https://www.youtube.com/watch?v=EXJR5NWM_xI&list=PLGwmGldCxzLxbPlFVG8Z89WZIBuT4m0Ii&index=7
https://www.youtube.com/watch?v=EXJR5NWM_xI&list=PLGwmGldCxzLxbPlFVG8Z89WZIBuT4m0Ii&index=7

Rotational equivalent of Newton s F=dp/dt equations: N=dL/dt
How to make my boomerang come back
* The gyrocompass and mechanical spin analogy
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The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand
rotation with angular momentum L

L

Euler Angle Dial
B

(Polar Coordinate)

Euler Angle Dial
v

(Twist' Coordinate)

Euler Angle Dial
o
(Azimuthal Coordinate)
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The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand
rotation with angular momentum L N

If the a-dial for z-rotation is turning left-to-right

L

Euler Angle Dial
B

(Polar Coordinate)

Euler Angle Dial
v

(Twist' Coordinate)

'O
(Azimuthal Coordinate)
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The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand
rotation with angular momentum L

If the a-dial for z-rotation is turning left-to-right

Euler Angle Dial
v

(Twist' Coordinate)

'O
(Azimuthal Coordinate)

L

Euler Angle Dial
B

(Polar Coordinate)

N

Then the ball tends to line-up with z-axis
(and may go past z, then come back, etc.
in a precessional or “hunting” motion)
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The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand N

rotation with angular momentum L

If the a-dial for z-rotation is turning left-to-right

L

Euler Angle Dial
B

(Polar Coordinate)

Euler Angle Dial
v

(Twist' Coordinate)

o
(Azimut]fal Coordinate)

A very high speed ball in a gyro-compass will
similarly seek true North due to Earth rotation.

Then the ball tends to line-up with z-axis
(and may go past z, then come back, etc.
in a precessional or “hunting” motion)
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The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand
rotation with angular momentum L N

If the a-dial for z-rotation is turning left-to-right

L

Euler Angle Dial
B

(Polar Coordinate)

Euler Angle Dial
v

(Twist' Coordinate)

o
(Azimut]fal Coordinate)

A very high speed ball in a gyro-compass will Then the ball tends to line-up with z-axis

similarly seek true North due to Earth rotation. (and may go past z, then come back, etc.
in a precessional or “hunting” motion)

This is analogous to the tendency for spin magnetic moments

to allign (or precess about) the B-direction of a magnetic field
Recall S-precession discussion in CMwB Unit 4 Ch.4 and Lect.26
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The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand
rotation with angular momentum L N

If the a-dial for z-rotation is turning left-to-right

L

Euler Angle Dial
B

(Polar Coordinate)

Euler Angle Dial
v

(Twist' Coordinate)

o
(Azimuth’al Coordinate)

A very high speed ball in a gyro-compass will Then the ball tends to line-up with z-axis

similarly seek true North due to Earth rotation. (and may go past z, then come back, etc.

in a precessional or “hunting’” motion
General Rule: Gyros tend to P g )

“line-up”’ so they are rotating This is analogous to the tendency for spin magnetic moments
with whatever is most closely to allign (or precess about) the B-direction of a magnetic field
coupled to them. Recall S-precession discussion in CMwB Unit 4 Ch.4 and Lect.26
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Rotational momentum and velocity tensor relations
Quadratic form geometry and duality (again)

angular velocity w-ellipsoid vs. angular momentum L-ellipsoid

Lagrangian w-equations vs. Hamiltonian momentum L-equation
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Inertia tensors

Consider N-body angular velocity w and angular momentum L relations with Levi-Civita analysis

. N . N .
.= 0Xr, and szél rijjrj:]E,lmjjx((erj) with Ax(BxC)z(AoC)B—(AoB)C

Consider mass m instantaneously at r,, =(x,.»,.2,)=7(5.5 -0 on a bent axle rotating in a fixed bearing:

A2
I = /A2

0

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.
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Inertia tensors

Consider N-body angular velocity w and angular momentum L relations with Levi-Civita analysis
N N

i = OXr, and L= ]Zl r. Xm]r]—]élm]r ><((:)><r]) with  Ax(BxC)=(A¢C)B-(AB|C
- N . N
This produces the rotational inertia tensor Iz =3 I =>m. [(rj or, )1 — rjr]}
]:1 ]:1
in the ®-to-L relation: > > I
In the M-to-L relation: L= Zlm |:(rj orj)(o—(rj oa))r]i|:]§ m. |:(r] ol‘])l—l‘jl‘ji|0(g) =Joe®

Consider mass m instantaneously at r,, =(x,.»,.2,)=7(5.5 -0 on a bent axle rotating in a fixed bearing:

A2
I = /A2

0

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.
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Inertia tensors

Consider N-body angular velocity w and angular momentum L relations with Levi-Civita analysis

N N ,
r.— WXr. and L= rxmr.=> m, .><(0)><r.) with AX(BXC)=(A0C)B—(AOB)C
J J PR A A e N N
This produces the rotational inertia tensor Iz I=3S1.=3m. [(r o r.)l —rr }
= o LT JJ
in the w-to-L relati > > I
in the w-to-L relation: = Alr.or.|o—|(r. = Alr.or.]1-rr. =
L jzlmj [(r]or])(o (rjoco)r]} lem] [(r]or])l r]rj}oa) Tew
Matrix form of the w-to-L relation using the inertia matrix (I)
Lx y]2. + Z? —xj y]. _ijj o, y? + Z? XY, —X,Z;
N - N . N
_ 2, .2 _ _ N 2,2
= ]El TR X TE YA P (T)= J§1<Ij> SR TV GRE TYE
L. —ZX;  TZ;Y; x? + yjz. @, Ay TEYy sz' T yjz_

Consider mass m instantaneously at r,, =(x,.»,.2,)=7(5.5 -0 on a bent axle rotating in a fixed bearing:

A2
I = /A2

0

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.
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Inertia tensors

Consider N-body angular velocity w and angular momentum L relations with Levi-Civita analysis

N N ,
r.— WXr. and L= rxmr.=> m, .><(0)><r.) with AX(BXC)=(A0C)B—(AOB)C
J J PR A A e N N
This produces the rotational inertia tensor Iz I=3S1.=3m. [(r o r.)l —rr }
m o LT JJ
in the w-to-L relati > > I
in the w-to-L relation: = Alr.or.|o—|(r. = Alr.or.]1-rr. =
L jzlmj [(r]or])(o (rjoco)r]} lem] [(r]or])l r]rj}oco Tew
Matrix form of the w-to-L relation using the inertia matrix (I)
Lx y]2. + Z? —xj yj _ijj o, y? + Z? XY, —X,Z;
N - N . N
_ 2, .2 _ _ N 2,2
= ]El TR X TE YA P (T)= J§1<Ij> SR TV GRE TYE
L. —ZX;  TZ;Y; x? + yjz. @, Ay TEYy sz' T yjz_

Consider mass m instantaneously at r,, =(x,.»,.2,)=7(5.5 -0 on a bent axle rotating in a fixed bearing:

~0/2 Instantaneous matrix (I) of inertia is:

Li=m W2 (1/x/5)2+o ~(1V2)(1n2)  —(1n2]o
12 12 0
0 (D)= —(1n2)(12) (1/\/5)2+0 (12} -2 12 o
0 0 I

—0(1n2 —0(1n2 W) +(1In2)
/) 0(1 2) 0(1 2) (1 2) (1 2)

I = /A2

Matrix (I) operates on angular velocity o to give angular momentum L

0

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.
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Inertia tensors

Consider N-body angular velocity w and angular momentum L relations with Levi-Civita analysis

N N ,
r.— WXr. and L= rxmr.=> m, .X(O)Xr.) with AX(BXC)=(A0C)B—(AOB)C
J J PR A A e N N
This produces the rotational inertia tensor Iz I=3S1.=3m. [(r o r.)l —rr }
m o LT JJ
in the w-to-L relati > > I
in the w-to-L relation: = Alr.or.|o—|(r. = Alr.or.]1-rr. =
L jzlm] [(r]or])(o (rjoco)r]} lem] [(r]or])l r]rj}ou) Tew
Matrix form of the w-to-L relation using the inertia matrix (I)
Lx y]2. + Z? —xj yj _ijj o, y? + zi XY, —X,Z;
N - N . N
_ 2, .2 _ _ N 2,2
= ]El TR X TE YA P (1)= J§1<Ij> SR TV GRE TYE
L. —ZX;  TZ;Y; x? + yjz. @, Ay TEYy sz' T yjz_

Consider mass m instantaneously at r,, =(x,.»,.2,)=7(5.5 -0 on a bent axle rotating in a fixed bearing:

A2
Matrix (I) operates on angular velocity o to give angular momentum L

Ir = P2
L, 12 =12 0 | o -12
0 L, l=m| 212 12 0 | @ [=m?| 12 |0
Fig. 6.5.1 Angular momentum for mass rotating on bent axle. L 0 0 1 0 0

~0/2 Instantaneous matrix (I) of inertia is:
OI‘:mr iy (1/\/5)2+O ~(1V2)(1n2)  —(1n2]o .
0 (Tl —(1n2)(142) (1/\/5)2+O ~(12)0 e c12 12 o
~0(1n2) ~0(12) (1/\/5)2+(1/\/§)2 v
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Inertia tensors

Consider N-body angular velocity w and angular momentum L relations with Levi-Civita analysis

N N ,
r.— WXr. and L= rxmr.=> m, .X(O)Xr.) with AX(BXC)=(A0C)B—(AOB)C
J J PR A A e N N
This produces the rotational inertia tensor Iz I=3S1.=3m. [(r o r.)l —rr }
m o LT JJ
in the w-to-L relati > > I
in the w-to-L relation: = Alr.or.|o—|(r. = Alr.or.]1-rr. =
L jzlm] [(r]or])(o (rjoco)r]} lem] [(r]or])l r]rj}ou) Tew
Matrix form of the w-to-L relation using the inertia matrix (I)
Lx y]2. + Z? —xj yj _ijj o, y? + zi XY, —X,Z;
N - N . N
_ 2, .2 _ _ N 2,2
= ]El TR X TE YA P (1)= J§1<Ij> SR TV GRE TYE
L. —ZX;  TZ;Y; x? + yjz. @, Ay TEYy sz' T yjz_

Consider mass m instantaneously at r,, =(x,.»,.2,)=7(5.5 -0 on a bent axle rotating in a fixed bearing:

A2
Matrix (I) operates on angular velocity o to give angular momentum L

Ir = P2
. . dL L 12 -12 0 12
0 Bearing torque 1s: N=—=wXxL ’ 2 0 >
dt L, |=mr?| —12 12 0 || @ |=mr’| 12 |0
Fig. 6.5.1 Angular momentum for mass rotating on bent axle. L 0 0 1 0 0

~0/2 Instantaneous matrix (I) of inertia is:
OI‘:mr iy (1/\/5)2+O ~(1V2)(1n2)  —(1n2]o .
0 (Tl —(1n2)(142) (1/\/5)2+O ~(12)0 e c12 12 o
~0(1n2) ~0(12) (1/\/5)2+(1/\/§)2 v
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Kinetic energy in terms of velocity o and rotational Lagrangian
Kinetic energy T of a rotating rigid body can be expressed in terms of the inertia matrix I

T—EEI mr. e, = 5% m; ((oxrj)O(mxrj) Levi-Civita identity
(AxB)x(CxD)=(AeC)(BeD)—(AeD)(BeC
P24 m[(@eolfrer)-(aer) o] . ) e
foe 3 [l en)i-fo o -0
_Lpeien
Kinetic energy is a quadratic form ,
xx  Txy  Txz O
I'= %( @, o, wy) L Ay Ly [wy
sz Izy zz ,

) (Dirac notation)

) =1y} (i) )| (z]e)
yi + ij Vi TXE) 0N
1 3 2
- E( o, o, o, )]El il VX Xyt Yz y
—ZX; ~2;¥; x? + y? @,

| Iyy Iyy Ixz Oy
r= 5( Dy Gy O ) lyy Iyy Iy, %
Iy gy gy @,
1 S ° Ux I,,0°% [0 1,0
:E(wX Wy a)Z) 0 I, O Wy :XX2X+YY2Y+ZZZZ
0 0o 7, ,
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Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [ leL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once
1 1 1. -

T=—@elom=—meL=—Len=—Lel oL
2 2 2 2
-1
[XX ]XY IXZ LX
1
T= 5( Ly Ly L )| Iy Iy Iy L,
IZX IZY IZZ L
1/1 0 0 L
I - * L, L, L
= —( L, L, LZ) 0 1/I,, O L, |=
2 21, 2I,, 2I,
0 0 1/, || L,
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Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Tew,

generally implies:

m=f_10L

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

- 1 1 1 -_
T=—@elom=—meL=—Len=—Lel oL
2 2
1
Iy Iy 1y, L,
1
T= 5( Ly Ly L) Iy 1y I L,
IZX IZY IZZ LZ
/1, 0 0 L,
I
_ 5( L, L, LZ) 0 1/, 0 L

Hamiltonian form 1s the equation of the angular momentum or L-ellipsoid

0 1/1, || L

E =const

ﬂ)—ﬂllipsﬁ

\

E =const. | ‘
L-ellipsoid

T

Plane normal t 5 star-fixed

i ent to @-ellisoid
JA

Lagrangian form is the equation of the angular velocity or w-ellipsoid
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®* L=const.

54



Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [eL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

T=lm0fomzlmoL:lLo(D:lL.i—l.L E =const Torque-free body
2 2 2 2 ¥ has conserved L.=const.
M-ellipsgid
-1 ;
1 1

_ !
1 S L <llipscid |
T= 5( Ly Ly L) Iy 1y I L,
1 1 L

T
Plane normal t 5 star-fixed
and-tarngent to w-ellisoid

|
0 1/1 0 L, |=—2%+—"T1+—-*% |
2 i Yo\ 20, 20, 20, /o
0 0 1/1, || L, _ |
X ®e* L=const. =27 if energy

Hamiltonian form is the equation of the angular momentum or L-ellipsoid is not dissipated internally
Lagrangian form is the equation of the angular velocity or w-ellipsoid w is generally not conserved unless it

is aligned to L. or body has symmetry
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Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [eL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

T=lm0fomzlmoL:lLo@=lL.i—1.L E =const Torque-free body
2 2 2 2 ¥ has conserved L.=const.
M-ellipsgid
-1 ;
1 1

T
Plane normal t 5 star-fixed
ent to -ellisoid

|
0 1/1 0 L, |=—2%+—"T1+—-*% |
2 i Yo\ 20, 20, 20, /o
0 0 1/1, || L, _ |
X ®e* L=const. =27 if energy

Hamiltonian form is the equation of the angular momentum or L-ellipsoid is not dissipated internally
Lagrangian form is the equation of the angular velocity or w-ellipsoid w is generally not conserved unless it

is aligned to L. or body has symmetry

((

. oL N
Canonical momentum: ~ p, = a_# (where: L=T)
L=9_y -0 @0 _y ,

\___ 0O w2 )
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Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Tew,

generally implies:

m=f_10L

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

- 1 1 1 -_
T=—(ooIo(o=5(o-L=—Lo(o=—LoI leLL
1
Iy Iyy Iy Ly
1
T= 5( Ly Ly L) Iy 1y I L,
IZX IZY IZZ LZ
1 /1, 0 0 L,
_ 5( L, L, LZ) 0 1/, 0 L

0 1/1, || L

E =const

ﬂ)—ﬂllipsﬁ\

Torque-free body
has conserved L.=const.

!

Plane normal t 5 star-fixed
ent to -ellisoid

.~

Hamiltonian form 1s the equation of the angular momentum or L-ellipsoid

Lagrangian form is the equation of the angular velocity or w-ellipsoid w is generally not conserved unless it
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®°* L=const. =27 if energy
is not dissipated internally

is aligned to L. or body has symmetry

a oL A
Canonical momentum: ~ p, = —n (where: L=T)
a .
L=9_y -0 @0 _y ,

\___ 0O w2 )
a H N
Hamilton's 1% equations : G = 8_ (where: H =T)

P
o] le H
oy terelt
\ oL oL 2 J,
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Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [eL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

E =const
2 a}enipsﬁ
| \

Torque-free body
has conserved L.=const.

T

Plane normal t 5 star-fixed

i ent to @-ellisoid
O YRR YRy | \

0 0 1/1, || L, wemr _ .

X ®e* L=const. =27 if energy

Hamiltonian form is the equation of the angular momentum or L-ellipsoid is not dissipated internally
Lagrangian form is the equation of the angular velocity or w-ellipsoid w is generally not conserved unless it

is aligned to L. or body has symmetry

(7 oL B\
Canonical momentum: ~ p, = —n (where: L=T)
a .
oT 0 wele®
= —= V(DT = — I *(®
\___ 0O w2 )
Z
Absolutely (7 oH \\
stable axis ([ ‘Hamilton's 15 equations : g = 8_ (where: H =T)
/4
1 Pu
H LeIleL” __
m:g—:VLH:aa .IZ. :IIOL
stable axis Separatrix \\ L L )J
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Kinetic energy in terms of momentum L and rotational Hamiltonian

L=Iew, generallyimpliess = [eL

Express kinetic energy 7 in terms of angular velocity w , momentum L, or both at once. once

T=l(00i0(1)ZlmoLzlLomzlLoi_loL E =const Torque-free body
2 2 2 2 ¥ has conserved L.=const.
M-ellipsgid
-1 ;
1 1

T
Plane normal t 5 star-fixed
ent to -ellisoid

|
0 1/1 0 L, |=—2%+—"T1+—-*% |
2 i Yo\ 20, 20, 20, /o
0 0 1/1, || L, _ .
X ®e* L=const. =27 if energy

Hamiltonian form is the equation of the angular momentum or L-ellipsoid is not dissipated internally
Lagrangian form is the equation of the angular velocity or w-ellipsoid w is generally not conserved unless it

is aligned to L. or body has symmetry

f(

oL A
Canonical momentum: ~ p, = —n (where: L=T)
a .
oT %) I
L=""=v 7=2220 140
\___ 0O w2 )
Z
Absolutely(7” H N
stable axis ([ ‘Hamilton's 15 equations : g = — (where: H =T)
p
1 Pu
H LelleL” _
m:g—:VLH:aa .12. :IIOL
stable axis Separatrix \\ L L )J

In body frame momentum L. moves along intersection of Li-ellipsoid and 1.-sphere (Length |L| is constant in any classical frame.)
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Rotational Energy Surfaces (RES)
Symmetric, asymmetric, and spherical-top dynamics (Constant L)
BOD-frame cone rolling on LAB frame cone
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Rotational Energy Surfaces (RES) and Constant Energy Surfaces (CES)

Rotational Energy Surface (RES) is
quadratic multipole function plotted radially
2 J2 2
_ 4 +—+ J; with J = const.
21, 21, 21
.2 2 - 2 - 2 2
_ j2| sin 6 cos (/)+ sin“0sin ¢+ cos“6
21 21 21

X y

(a) RE surface ]

rIZ\/]

%
r2 X

Constant Energy Surface (CES) is

asymmetric ellipsoid of constant E

rn o or. Here notation L or L
= + + = const.
21, 21, 21 for angular momentum
2 2 2 .
U NN I is replaced by J or J

2EI,  2EI, 2EI

Z

(b) CE surface (c) RES intersecting CES

I17=6 Iy=4 I3=3

E = const.

Fig. 6.8.1 Rigid rotor surfaces (a) RES polynomial, (b) CES ellipsoid, and (c) RES and CES intersected.
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RES and CES for nearly-symmetric prolate rotors and nearly-symmetric oblate rotors
(@) [+ =5.6 (b) I;=5.0

(c) [5=3.2 _ =
> [1 6 ]3 3

RES RES

J-
J 3 JI_ _2

nearly-prolat nearly-oblate

symmetric rotor asymmetric rotor

RES

symmetric rotor
RES RES

low-E CES), (b)15=50and y,=634°, (c)Is=32 and y,=20.7° (Nearly oblate high-E CES).
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RES for symmetric prolate rotor locates J =10 quantum (-J<K<J) levels (at RES-quantum cone intersections)

J=10 Minimum uncertainty angle 1%:17.550 Polar.
AT 15 rolate ~ \— cone | ) Q!0 Uncertlalnly
symmetric top O e

@J_

—cos L &
KNI+

RE S /\ RES contour K=+10
AN

NIH1) ~J+1/2
10.488~10.5 AA\\ L /O\ i
b/ \ o1
o\ el
— 4 ©!0=84.53°

N/ J =4 Quantum cones
- =5 —0,-2656

W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013) Fig. 1-2 p.730
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RES for symmetric and asymmetric rotor approximates J =10 (-J<K<J) levels (near RES-quantum cone levels)

Separatrix circle pair

J=10 Minimum uncertainty angle 510 =17.550 Polar .
dihedral angle

___________________________________ 10 .
prolate [ Uncertainty

symmetric top
RES

A-B
0 se p=atan( EC’

NIQ+1) ~J+1/2
10.488~10.5

-/
Kt/\
‘ /\

/

W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013) Fig. 1-5 p.730
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RES for symmetric prolate rotor locates J =10 quantum (-J<K<J) levels (at RES-quantum cone intersections)
E=A) + BJi +CJ? with J = const.
Spectra varies as symmetric prolate RES changes through a range of asymmetric RES to oblate RES

W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013) Fig. 4 p.734
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RES for spherical rotor approximates J =88 (-J<K<J) levels of SFs

<H> ~ Vvib+BJ( J+1) _|_<HScalar Coriolis < Tensor Centrifugal~, +<Tensor Coriolis >+<HNucIear Spin~

]

| 3
2 2 4 4 4 4
H:B(Jx+Jy +Jz)+,44O(Jx+Jy+J: —gJ )+

B R O O

i g Surface
precessing
W semi-classical
SR J veclor

0,, or T ; Spherical Top: (Hecht CH, Hamiltonian 1960) /{4 =88

topo-lines \track

—88=n4

87
/ — _86__..

85—
—84
e GG e
t——— 82.,.-__
8l
—80
79
—
7675

74

(next page shows slice) @_

W. G. Harter and J C. Mitchell ,International Symposium on Molecular Spectroscopy, OSU Columbus (2009)

—

| OGHz

vibration
ground-
state
rotation
levels

J=N
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SF z Spectra of Oy, Ro-vibronic Hamiltonian described by RE Tensor Topography

3
2 42 . y2 4 14 14 4
HZB(Jx+Jy+Jz)+’44o(Jx+Jy+Jz—gJ )+

— 2
BJ + 440

Rovibronic Energy (RE)
Iensor Surface

precessing
,4 J vector

,5
4 4 4
T, + M[T4+T_ ] T

SFg nug rovib FT spectra~615cm’

McDowell et.al. LosAlamos _—
-
< _ASaddle

Point

2

and J-cone intersection

A

P
Herzberg + Do
rules still

%

2
06‘

apply near
separatrices

or saddle 1&

~.

Al
2\'\\ 5% Y9
O f ,/o 3\‘ \

g NN
\./ /< J/-.e /0,36 m
y ‘ s )
=/// /35 QP @

- \\ s ac{a’/ e
\ ()()ml.s
\

-
-y
~

~ et
W. G. Harter and J C. Mitchell ,International Symposium on Molecular Spectroscopy, OSU Columbus (2009)
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(a) Constrained rotor  (b) Angular velocity ® (c) Energy ellipsoids
and momentum J

Fig. 6.7.1 Elementary w-constrained rotor and angular velocity-momentum geometry.

(a) Constrained rotor:LAB-fixed 0, moving J (b) Free rotor:LAB-fixed J, moving ®

(N V¥
N

_;’/ : |
S«
X, axis
X4 axis O !

Fig. 6.7.2 Free rotor cut loose from LAB-constraining w-axis changes dynamics accordingly.

..this was the kind of dynamics that started me dropping superballs...
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Prolate tops: (a) I,,=41, (c) 1,=(3/2) I,

7.236(COSB v=(1/2)0.cos3
?=(3/4)(D3-
LAB X3 .
_ axis 0(+l=(D
LAB A
y, cone

(e) Oblate limit:
I,=(1/2) I,

V=(-1/2)d.cosf o\ \
V= -0 vt

Blue BOD-frame cones roll (around w-sticking axis)without slipping on red LAB-frame cone

Fig. 6.7.3 Symmetric top ®-cones for 3=30°nd inertial ratios: (a) 1,,1:13 =3, (b) 1, (c)% ,(d) 0, (e) —%.
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BOD }3 axis

Il 111 =1, =(3/2 ) 1

=

Rt Al

=0 (If/l3)cos B
|

/
/

/”.YZ(D:;—(;CCOSB

/ = (o cos B3/,
s o3 (Pl Blue BOD-frame cones

roll without slipping
on red LAB-frame cone

LAB —X, axis T~

(b) Oblate geometry
I=1,=1,=(172) I,

welew=2F
oblate
ellipsoid

~

Fig. 6.7.4 Detailed geometry of symmetric top kinetics. (a) Prolate case. (b) Most-oblate case
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Oblate limit: 7=w3-dcos Very prolate top: I,,=91,
IHZ (1/2) [3 = (0L cos BYI-13)/1,

. . = o (I- v=80.cosp
v=(-1/2)o.cosf3 @3 (b

Blue BOD-frame cones
roll without slipping
on red LAB-frame cone

Fig. 6.7.5 Extreme cases (Oblate vs. Prolate) of symmetric-top geometry.
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