Geometry and Symmetry of Coulomb Orbital Dynamics II.

(Ch. 2-4 of Unit 5 12.11.14)
Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb r-orbit geometry
Review of lectures 28 and 29
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
Ruler \& compass construction of ε-vector and orbits

$$
\begin{aligned}
& (R=-0.375 \text { elliptic orbit) } \\
& (R=+0.5 \text { hyperbolic orbit) }
\end{aligned}
$$

Properties of Coulomb trajectory families and envelopes
Graphical ε-development of orbits
Launch angle fixed-Varied launch energy
Launch energy fixed-Varied launch angle
Launch optimization and orbit family envelopes

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
$\rightarrow \quad \varepsilon$-vector and Coulomb r-orbit geometry
Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
Ruler \& compass construction of ε-vector and orbits

$$
\begin{aligned}
& (R=-0.375 \text { elliptic orbit }) \\
& (R=+0.5 \text { hyperbolic orbit })
\end{aligned}
$$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

(Review of Lect. 28-29)
 $\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison ...)

ILO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\mathbf{A}=k m \cdot \varepsilon$ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. Generate symmetry groups: $U(2) \subset U(2)$

Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r=\frac{\mathbf{L} \bullet \mathbf{L}}{}
$$

Let angle ϕ be angle between ε and radial vector \mathbf{r}

$$
\varepsilon r \cos \phi=r-\frac{L^{2}}{k m} \quad \text { or: } \quad r=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

...or of ε with momentum vector \mathbf{p} : $\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$
(Rotational momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ is normal to the orbit plane.)
(a) Attractive $(k>0)$ Elliptic $(E<0)$

(b) Attractive $(k>0)$

For $\lambda=L^{2} / k m$ that matches: $r=\frac{\lambda}{1-\varepsilon \cos \phi}=$
(c) Repulsive $(k<0)$ Hyperbolic $(E>0)$
$\frac{\lambda}{1-\varepsilon}$ if: $\phi=0$ apogee
λ if: $\phi=\frac{\pi}{2}$ zenith $\frac{\lambda}{1+\varepsilon}$ if: $\phi=\pi$ perigee

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb r-orbit geometry
\Rightarrow
Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
Ruler \& compass construction of ε-vector and orbits

$$
\begin{aligned}
& (R=-0.375 \text { elliptic orbit }) \\
& (R=+0.5 \text { hyperbolic orbit) }
\end{aligned}
$$

(From Lecture 28 p. 63-74) Geometry of Coulomb orbits (Let: $r=\rho$ here) $r / \varepsilon=\lambda / \varepsilon+r \cos \phi \quad r=\lambda+r \varepsilon \cos \phi \quad r=\frac{\lambda}{1-\varepsilon \cos \phi}$ (Review of Lect. 28-29)

All conics defined by:

Defining eccentricity ε
Distance to Focal -point $=\boldsymbol{\varepsilon} \cdot$ Distance to Directrix-line

$$
\begin{aligned}
& \frac{1}{r}=\frac{1-\varepsilon \cos \phi}{\lambda}=\frac{1}{\lambda}-\frac{\varepsilon}{\lambda} \cos \phi \\
& =\lambda /(1+\varepsilon) \text { perhelion } \\
& \frac{1}{\rho}=\frac{-k}{\mu^{2} / m}+\frac{\sqrt{k^{2}+2 E \mu^{2} / m}}{\mu^{2} / m} \cos \phi
\end{aligned}
$$

aphelion $\rho_{+}=\lambda /(1-\varepsilon)$

$$
\begin{aligned}
& \text { Major axis: } \rho_{+}+\rho_{-}=2 a \\
& \rho_{+}+\rho_{-}=[\lambda(1+\varepsilon)+\lambda(1-\varepsilon)] /\left(1-\varepsilon^{2}\right)=2 \lambda /\left|1-\varepsilon^{2}\right| \\
& \text { Focal axis: } \rho_{+}-\rho_{-}=2 a \varepsilon
\end{aligned}
$$

(x, y)	physical	(r, ϕ)
parameters	constants	parameters
$a=\frac{k}{2 E}$	$E=\frac{k}{2 a}$	$\varepsilon=\sqrt{\frac{k^{2} m+2 L^{2} E}{k^{2} m}}=\sqrt{1 \pm \frac{b^{2}}{a^{2}}}$
$b=\frac{L}{\sqrt{2 m\|E\|}}$	$L=\sqrt{k m \lambda}$	$\lambda=\frac{L^{2}}{k m}=\frac{b^{2}}{a}$

$$
\rho_{+}-\rho_{-}=[\lambda(1+\varepsilon)-\lambda(1-\varepsilon)] /\left(1-\varepsilon^{2}\right)=2 \lambda \varepsilon /\left|1-\varepsilon^{2}\right|
$$

Minor radius: $b=\sqrt{ }\left(a^{2}-a^{2} \varepsilon^{2}\right)=\sqrt{ }(a \lambda)($ ellipse $: \varepsilon<1)$ Minor radius: $b=\sqrt{ }\left(a^{2} \varepsilon^{2}-a^{2}\right)=\sqrt{ }(\lambda a)$ (hyper $\left.: \varepsilon>1\right)$

$$
\begin{aligned}
& \left.\varepsilon^{2}=1-\frac{b^{2}}{a^{2}} \quad \text { (ellipse: } \varepsilon<1\right) \frac{b^{2}}{a^{2}}=\sqrt{1-\varepsilon^{2}} \\
& \varepsilon^{2}=1+\frac{b^{2}}{a^{2}} \quad(\text { hyperbola: } \varepsilon>1) \frac{b^{2}}{a^{2}}=\sqrt{\varepsilon^{2}-1} \\
& \lambda=a\left(1-\varepsilon^{2}\right) \quad(\text { ellipse }: \varepsilon<1) \\
& \lambda=a\left(\varepsilon^{2}-1\right) \quad(\text { hyper }: \varepsilon>1)
\end{aligned}
$$

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics ε-vector and Coulomb r-orbit geometry

Review and connection to standard development
$\Rightarrow \quad \varepsilon$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
Ruler \& compass construction of ε-vector and orbits

$$
\begin{aligned}
& (R=-0.375 \text { elliptic orbit }) \\
& (R=+0.5 \text { hyperbolic orbit) }
\end{aligned}
$$

(Review of Lect. 29)

Dot product of ε with momentum vector p :
$\varepsilon \bullet \mathrm{p}=\frac{\mathrm{p} \bullet \mathbf{r}}{r}-\frac{\mathrm{p} \bullet \mathrm{p} \times \mathbf{L}}{k m}$ $=\mathrm{p} \bullet \hat{\mathbf{r}}=p_{r}=\varepsilon p_{x}$

This says:
"Projection of \mathbf{p} onto \mathbf{r} is eccentricity ε times projection of \mathbf{p} onto $\hat{\mathbf{x}}$-axis"
$(\hat{\mathbf{x}}=\hat{\boldsymbol{\varepsilon}})$

Hyperbola has eccentricity $\varepsilon>1$
(Here: $\varepsilon=5 / 4=1.25$)
(Review of Lect. 29)

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics ε-vector and Coulomb r-orbit geometry

Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
$\boldsymbol{\nabla} \quad \varepsilon$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
Ruler \& compass construction of ε-vector and orbits

$$
\begin{aligned}
& (R=-0.375 \text { elliptic orbit }) \\
& (R=+0.5 \text { hyperbolic orbit) }
\end{aligned}
$$

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r:

$$
\text { Polar angle } \phi \text { using: } L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}
$$

$$
\begin{array}{clr}
r= & \frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} & \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} & r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi) \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} & \text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi \quad \text { using: } \frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \\
\dot{r}=-\frac{k}{L^{2}} m r^{2} \dot{\phi} \varepsilon \sin \phi=-\frac{k}{L} \varepsilon \sin \phi \quad \text { again using: } L=m r^{2} \dot{\phi}
\end{array}
$$

Cartesian $x=r \cos \phi$:

$$
\begin{array}{llrl}
\dot{x}=\frac{d x}{d t}=\quad \dot{r} \cos \phi-\sin \phi r \dot{\phi} & \dot{y}=\frac{d y}{d t}= & \dot{r} \sin \phi+\cos \phi r \dot{\phi} \\
=-\frac{k}{L} \sin \phi & & =\frac{k}{L}(\cos \phi-\varepsilon) \\
p_{x}=m \dot{x}=-\frac{m k}{L} \sin \phi & \text { Velocity: Momentum: } & p_{y}=m \dot{y}=\frac{m k}{L}(\cos \phi-\varepsilon)
\end{array}
$$

Cartesian $y=r \sin \phi$:

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb r-orbit geometry
Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
$\rightarrow \quad$ Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
Ruler \& compass construction of ε-vector and orbits

$$
\begin{aligned}
& (R=-0.375 \text { elliptic orbit }) \\
& (R=+0.5 \text { hyperbolic orbit) }
\end{aligned}
$$

Wednesday, December 24, 2014

Wednesday, December 24, 2014

Wednesday, December 24, 2014

Wednesday, December 24, 2014

Wednesday, December 24, 2014

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb r-orbit geometry
Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
\rightarrow Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
Ruler \& compass construction of ε-vector and orbits

$$
\begin{aligned}
& (R=-0.375 \text { elliptic orbit }) \\
& (R=+0.5 \text { hyperbolic orbit) }
\end{aligned}
$$

ε-vector and Coulomb orbit construction steps

Pick launch point P

(radius vector \mathbf{r})
and elevation angle γ from radius (momentum initial \mathbf{p} direction)

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$ Extend resulting line QPQ^{\prime} to make focus locus

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$ Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .
Mark R-line fractions $R=0,+1 / 4,+1 / 2 \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T .

Pick initial $R=$ KETPE value (here $R=-3 / 8$) Draw ε-vector from focus F to R-point and beyond to $2^{\text {nd }}$ focu F^{\prime}

ε-vector and Coulomb orbit construction steps

Pick launch point P
(radius vector \mathbf{r})
and elevation angle γ from radius
(momentum initial \mathbf{p} direction)

Next several pages give step-by-step constructions of ε-vector and Coulomb orbit and trajectory physics

ε-vector and Coulomb orbit construction steps

Next several pages give step-by-step constructions of ε-vector and Coulomb orbit and trajectory physics

ε-vector and Coulomb orbit construction steps

Pick launch point P

(radius vector \mathbf{r})
and elevation angle γ from radius (momentum initial \mathbf{p} direction)

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$ Extend resulting line QPQ^{\prime} to make focus locus

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$ Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .

Mark R-line fractions $R=0,+1 / 4,+1 / 2 \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T . $\mathrm{R}=$ KE/PE

ε-vector and Coulomb orbit construction steps

Pick launch point P

(radius vector \mathbf{r})
and elevation angle γ from radius

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$ Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .
Mark R-line fractions $R=0,+1 / 4,+1 / 2 \ldots$ above P and
$R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T .

R=

ε-vector and Coulomb orbit construction steps

Pick launch point P

(radius vector \mathbf{r})
and elevation angle γ from radius (momentum initial \mathbf{p} direction)

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$ Extend resulting line QPQ^{\prime} to make focus locus

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$ Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .
Mark R-line fractions $R=0,+1 / 4,+1 / 2 \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T .

Pick initial $R=$ KETPE value (here $R=-3 / 8$) Draw ε-vector from focus F to R-point and beyond to $2^{\text {nd }}$ focu F^{\prime}

ε-vector and Coulomb orbit construction steps

Pick launch point P
(radius vector \mathbf{r})
and elevation angle γ from radius (momentum initial \mathbf{p} direction)

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$ Extend resulting line QPQ^{\prime} to make focus locus

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$ Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .
Mark R-line fractions $R=0,+1 / 4,+1 / 2 \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T .

Pick initial $R=K E / P E$ value (here $R=+1 / 2$) Draw ε-vector from focus F to R-point
(Here it intersects $2^{\text {nd }}$ focus F^{\prime}

$$
R=\frac{\text { Initial } K E}{\text { Initial } P E}=\frac{m v^{2}(0) / 2}{-k / r(0)}
$$ focus F and $2^{\text {nd }}$ focus F^{\prime} allow final construction of orbital trajectory. Here it is an $R=+1 / 2$ hyperbola.

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb r-orbit geometry
Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
\rightarrow Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
Ruler \& compass construction of ε-vector and orbits

$$
\begin{aligned}
& (R=-0.375 \text { elliptic orbit }) \\
& (R=+0.5 \text { hyperbolic orbit) }
\end{aligned}
$$

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb r-orbit geometry
Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
\rightarrow Connection formulas for (a, b) and (ε, λ) with (γ, R)
Ruler \& compass construction of ε-vector and orbits

$$
\begin{aligned}
& (R=-0.375 \text { elliptic orbit }) \\
& (R=+0.5 \text { hyperbolic orbit })
\end{aligned}
$$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\begin{aligned}
\varepsilon^{2} & =1+4 R(R+1) \sin ^{2} \gamma \\
& =1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \\
& =1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1)
\end{aligned}
$$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

Three pairs of parameters for Coulomb orbits: 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial (γ, R)
$\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma$
$=1-\frac{b^{2}}{a^{2}}$ for ellipse $\quad(\varepsilon<1)$ where: $4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$
$=1+\frac{b^{2}}{a^{2}}$ for hyperbola $(\varepsilon>1)$ where: $\quad 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$
$\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma$
$=1-\frac{b^{2}}{a^{2}}$ for ellipse $\quad(\varepsilon<1)$ where: $\quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)<0$
$=1+\frac{b^{2}}{a^{2}}$ for hyperbola $(\varepsilon>1)$ where: $4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)>0$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$
Three pairs of parameters for Coulomb orbits: 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial (γ, R)

$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$=1-\frac{b^{2}}{a^{2}}$ for ellipse $\quad(\varepsilon<1)$ where: $\quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)<0$
$=1+\frac{b^{2}}{a^{2}}$ for hyperbola $(\varepsilon>1)$ where: $\quad 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)>0$
(or: $-R^{2}<R$)
(or: $0<R<-1$)

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$$
=1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}>R \text {) } \\
& \text { (or: } 0>R>-1 \text {) }
\end{aligned}
$$

$$
=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}<R \text {) } \\
& \text { (or: } 0<R<-1 \text {) }
\end{aligned}
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.

$$
\frac{-k}{2 a}=E=K E+P E=R \cdot P E+P E=(R+1) P E=(R+1) \frac{-k}{r} \text { or: } \frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)
$$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

Three pairs of parameters for Coulomb orbits:

 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial $(\gamma, R)$$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$$
=1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}>R \text {) } \\
& \text { (or: } 0>R>-1 \text {) }
\end{aligned}
$$

$$
=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}<R \text {) } \\
& \text { (or: } 0<R<-1 \text {) }
\end{aligned}
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.
$\frac{-k}{2 a}=E=K E+P E=R \cdot P E+P E=(R+1) P E=(R+1) \frac{-k}{r}$ or: $\frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)$
$a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)}\right.$ assuming unit initial radius $(r \equiv 1)$.

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$$
=1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}>R \text {) } \\
& \text { (or: } 0>R>-1 \text {) }
\end{aligned}
$$

$$
=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0
$$

$$
\text { (or: }-R^{2}<R \text {) }
$$

$$
\text { (or: } 0<R<-1 \text {) }
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.
$\frac{-k}{2 a}=E=K E+P E=R \cdot P E+P E=(R+1) P E=(R+1) \frac{-k}{r}$ or: $\frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)$
$a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)}\right.$ assuming unit initial radius $(r \equiv 1)$.
$4 R(R+1) \sin ^{2} \gamma=\mp \frac{b^{2}}{a^{2}}$ implies: $\quad 2 \sqrt{\mp R(R+1)} \sin \gamma=\frac{b}{a}$ or: $\quad b=2 a \sqrt{\mp R(R+1)} \sin \gamma$
$b=r \sqrt{\frac{\mp R}{R+1}} \sin \gamma\left(=\sqrt{\frac{\mp R}{R+1}} \sin \gamma\right.$ assuming unit initial radius $\left.(r \equiv 1)\right)$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$$
=1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}>R \text {) } \\
& \text { (or: } 0>R>-1 \text {) }
\end{aligned}
$$

$$
=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0
$$

$$
\text { (or: }-R^{2}<R \text {) }
$$

$$
\text { (or: } 0<R<-1 \text {) }
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.
$\frac{-k}{2 a}=E=K E+P E=R \cdot P E+P E=(R+1) P E=(R+1) \frac{-k}{r}$ or: $\frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)$
$a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)}\right.$ assuming unit initial radius $(r \equiv 1)$.
$4 R(R+1) \sin ^{2} \gamma=\mp \frac{b^{2}}{a^{2}}$ implies: $\quad 2 \sqrt{\mp R(R+1)} \sin \gamma=\frac{b}{a}$ or: $\quad b=2 a \sqrt{\mp R(R+1)} \sin \gamma$
$b=r \sqrt{\frac{\mp R}{R+1}} \sin \gamma\left(=\sqrt{\frac{\mp R}{R+1}} \sin \gamma\right.$ assuming unit initial radius $(r \equiv 1)$
Latus radius is similarly related:

$$
\lambda=\frac{b^{2}}{a}=\mp 2 r R \sin ^{2} \gamma
$$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\begin{aligned}
\varepsilon^{2} & =1+4 R(R+1) \sin ^{2} \gamma \\
& =1-\frac{b^{2}}{a^{2}} \operatorname{ellipse}(\varepsilon<1) \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}} \\
& =1+\frac{b^{2}}{a^{2}} \text { hyperbola }(\varepsilon>1) 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}
\end{aligned}
$$

$a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)}\right.$ assuming unit initial radius $\left.(r \equiv 1).\right)$
$b=r \sqrt{\frac{\mp R}{R+1}} \sin \gamma\left(=\sqrt{\frac{\mp R}{R+1}} \sin \gamma\right.$ assuming unit initial radius $\left.(r \equiv 1)\right)$

Latus radius is similarly related:

$$
\lambda=\frac{b^{2}}{a}=\mp 2 r R \sin ^{2} \gamma
$$

From ε^{2} result (at top):
$\frac{b}{a}=2 \sqrt{\mp R(R+1)} \sin \gamma=\sqrt{ \pm\left(1-\varepsilon^{2}\right)}$

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb \mathbf{r}-orbit geometry
Review and connection to standard development
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
Ruler \& compass construction of ε-vector and orbits
$\Rightarrow \quad(R=-0.375$ elliptic orbit) ($R=+0.5$ hyperbolic orbit)

$R=-3 / 8$ elliptic orbit

$$
R=-3 / 8
$$

$\gamma=45^{\circ}$

Strike radius-r arc about point P^{\prime} to intersect original radius-r circle about focus \mathbf{F} at ends of bisection line BB^{\prime}.

$$
\gamma=45^{\circ}
$$ Draw radius-a circle at \mathbf{F} tangent to bisection line BB^{\prime}. B^{\prime}

$R=-3 / 8$ elliptic orbit construction

$$
R=-3 / 8
$$

Strike radius-r arc about
$R=-3 / 8$ elliptic orbit construction

Draw radius-a circle at \mathbf{F}^{\prime}
Draw radius-a and radius-b circles at \mathbf{O} (Center of bisection line $(\pm b)$.
$\varepsilon=\sqrt{1+4 R(R+1) \sin ^{2} \gamma}=\frac{\sqrt{34}}{8}=.73$ $a=\frac{1}{2(R+1)}=\frac{4}{5}$
$b=\sqrt{\frac{R}{R+1}} \sin \gamma=\sqrt{\frac{3}{10}}=.54$
$\lambda=\frac{b^{2}}{a}=2 R \sin ^{2} \gamma=\frac{3}{8}=.375$
$\frac{b}{a}=2 \sqrt{R(R+1)} \sin \gamma=\tan 34^{\circ}$
$R=-3 / 8$ elliptic orbit construction

$$
\begin{aligned}
& R=-3 / 8 \\
& \gamma=45^{\circ}
\end{aligned}
$$

Draw radius-a circle at \mathbf{F}^{\prime}
Draw radius-a and radius-b circles at \mathbf{O}
(Center of bisection line $(\pm b)$.) Do (a, b)-ellipse construction.

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics ε-vector and Coulomb r-orbit geometry

Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
Ruler \& compass construction of ε-vector and orbits
($R=-0.375$ elliptic orbit)
$\Rightarrow \quad(R=+0.5$ hyperbolic orbit)

Major diameter $2 a$ is difference $\left(r-r^{\prime}=2 a\right)$. Major radius a is half of difference $\left(r-r^{\prime}\right) / 2=a$ Major diameter 2 a needs to be centered on $\mathrm{F}^{\prime} \mathrm{F}^{\prime}$ focal axis
$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

Major diameter $2 a$ is difference $\left(r-r^{\prime}=2 a\right)$. Major radius a is half of difference $\left(r-r^{\prime}\right) / 2=a$
$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

Major diameter $2 a$ is difference $\left(r-r^{\prime}=2 a\right)$. Major radius a is half of difference $\left(r-r^{\prime}\right) / 2=a$ Major diameter 2 a needs to be centered on $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis

1. Bisect F-P radius r using F-P circle intersections to define r/2 sections. .-...
2. Bisect $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis using $\mathrm{F}-\mathrm{F}^{\prime}$ circle intersections to locate orbit center $\mathrm{C} .--{ }^{-1}$
$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

Major diameter $2 a$ is difference $\left(r-r^{\prime}=2 a\right)$.
Major radius a is half of difference $\left(r-r^{\prime}\right) / 2=a$
Major diameter $2 a$ needs to be centered on $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis

1. Bisect F-P radius r using F-P circle intersections to define r/2 sections. ----
2. Bisect $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis using $\mathrm{F}-\mathrm{F}^{\prime}$ circle intersections to locate orbit center $\mathrm{C} .--{ }^{-1}$
3. Bisect F^{\prime} - P radius r^{\prime} using F^{\prime} - P circle intersections.

$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

Major diameter $2 a$ is difference $\left(r-r^{\prime}=2 a\right)$.
Major radius a is half of difference $\left(r-r^{\prime}\right) / 2=a$
Major diameter $2 a$ needs to be centered on $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis \qquad

1. Bisect F-P radius r using F-P circle intersections to define r/2 sections.
2. Bisect $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis using $\mathrm{F}-\mathrm{F}^{\prime}$ circle intersections to locate orbit center $\mathrm{C} .-\ldots$
3. Bisect $\mathrm{F}^{\prime}-\mathrm{P}$ radius r^{\prime} using F^{\prime} - P circle intersections. \qquad
4. Swing radius $r^{\prime} / 2$ onto $r / 2$ section to make major radius $a=\left(r-r^{\prime}\right) / 2$.
$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

Major diameter $2 a$ is difference $\left(r-r^{\prime}=2 a\right)$.
Major radius a is half of difference $\left(r-r^{\prime}\right) / 2=a$
Major diameter $2 a$ needs to be centered on $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis

1. Bisect F-P radius r using F-P circle intersections to define r/2 sections. .-...
2. Bisect $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis using $\mathrm{F}-\mathrm{F}^{\prime}$ circle intersections to locate orbit center $\mathrm{C} .--{ }^{-1}$
3. Bisect F^{\prime} - P radius r^{\prime} using F^{\prime} - P circle intersections.
4. Swing radius $r^{\prime} / 2$ onto $r / 2$ section to make major radius $a=\left(r-r^{\prime}\right) / 2$.
5. Copy circle of major radius $a=\left(r-r^{\prime}\right) / 2$ about orbit centpr C .
$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

Major diameter $2 a$ is difference $\left(r-r^{\prime}=2 a\right)$.
Major radius a is half of difference $\left(r-r^{\prime}\right) / 2=a$
Major diameter $2 a$ needs to be centered on $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis

1. Bisect F-P radius r using F-P circle intersections to define r/2 sections.
2. Bisect $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis using $\mathrm{F}-\mathrm{F}^{\prime}$ circle intersections to locate orbit center C .
3. Bisect F^{\prime} - P radius r^{\prime} using F^{\prime} - P circle intersections.
4. Swing radius $r^{\prime} / 2$ onto $r / 2$ section to make major radius $a=\left(r-r^{\prime}\right) / 2$.
5. Copy circle of major radius $a=\left(r-r^{\prime}\right) / 2$ about orbit centpr C .
6. Draw focal circle of diameter $2 a \varepsilon$ about orbit center C .
$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

Major diameter $2 a$ is difference $\left(r-r^{\prime}=2 a\right)$.
Major radius a is half of difference $\left(r-r^{\prime}\right) / 2=a$ Major diameter $2 a$ needs to be centered on $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis

1. Bisect F-P radius r using F-P circle intersections to define r/2 sections.
2. Bisect $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis using $\mathrm{F}-\mathrm{F}^{\prime}$ circle intersections to locate orbit center C .
3. Bisect F^{\prime} - P radius r^{\prime} using F^{\prime} - P circle intersections.
4. Swing radius $r^{\prime} / 2$ onto $r / 2$ section to make major radius $a=\left(r-r^{\prime}\right) / 2$.
5. Copy circle of major radius $a=\left(r-r^{\prime}\right) / 2$ about orbit center C .
6. Draw focal circle of diameter $2 a \varepsilon$ about orbit center C .
7. Erect minor radius b tangent to a-circle from point a of C -axis to point b on focal circle.

$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

Major diameter $2 a$ is difference $\left(r-r^{\prime}=2 a\right)$.
Major radius a is half of difference $\left(r-r^{\prime}\right) / 2=a$ Major diameter $2 a$ needs to be centered on $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis

1. Bisect F-P radius r using F-P circle intersections to define r/2 sections.
2. Bisect $\mathrm{F}-\mathrm{F}^{\prime}$ focal axis using $\mathrm{F}-\mathrm{F}^{\prime}$ circle intersections to locate orbit center C .
3. Bisect F^{\prime} - P radius r^{\prime} using F^{\prime} - P circle intersections.
4. Swing radius $r^{\prime} / 2$ onto $r / 2$ section to make major radius $a=\left(r-r^{\prime}\right) / 2$.
$R=+1 / 2$ hyperbolic orbit construction
5. Copy circle of major radius $a=\left(r-r^{\prime}\right) / 2$ about orbit centlpr C .
6. Draw focal circle of diameter 2as about orbit center C.
7. Erect minor radius b tangent to a-circle from point a o $\mathrm{C} \varepsilon$-axis to point b on focal circle.
8. Complete orbit $a-X-b$ box between focal circle and a-c rcle and its diagonal asymptotes.

$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

Construction based
on: $r-r^{\prime}=2 a$ or: $r^{\prime}=r-2 a$
$1^{s t}$ draw an r-arc about focus F
$2^{s t}$ set compass to (r-2a) using r-arc-minus-2a on Ce-line.
3rd draw (r-2a)-arc about focus F^{\prime}.
$R=+1 / 2$ hyperbolic orbit construction

$$
\begin{aligned}
& R=+1 / 2 \\
& \gamma=45^{\circ}
\end{aligned}
$$

Properties of Coulomb trajectory families and envelopes
Graphical ε-development of orbits
\rightarrow Launch angle fixed-Varied launch energy
Launch energy fixed-Varied launch angle
Launch optimization and orbit family envelopes

Graphs and protractors make Coulomb trajectory analysis easier

Range Longitude

Label Main Focus F
initial angle Construct R-line normal to initial velocity $y_{\mathbf{5}}^{\mathbf{y}}(0)$ line

$$
\alpha=20^{\circ}
$$

(horiz. elev.)

Construct focus locus for prime foci F^{\prime}

Label Main Focus F
initial angle Construct R-line normal to initial velocity $\mathbf{y} \mathbf{y}$ (O) line

$$
\alpha=20^{\circ}
$$

(horiz. elev.) Construct focus locus for prime foci F^{\prime}

This $(R=-9 / 8)$, ε-line hits fgcus-locus far qway.
This $(R= \pm \infty) \varepsilon$-line $\frac{7 \pi}{n t e r s e c t s ~ f o c u s-l o c u s ~ o n ~ u n t t ~ c i r c l e . ~}[(R= \pm \infty) \varepsilon$-line parallel to R-scale line. $]$
This $(R=-1)$ ह-line intersects focus-locus at $\pm \infty$
Start with Label Main Focus F

[$(R=-1)$ ह-line parallel to focus-locus] initial angle Construct R-line normal to initial velocitys \mathbf{y} (O) Ine
$\alpha=20^{\circ} \quad$ Construct focus locus for prime foci F^{\prime}
(horiz. elev.)
or $\gamma=70^{\circ}$

(rad. elev.)

 for velocity $\mathbf{v}(0)$ or $-\mathbf{v}(0)$ beyond to prime foci F^{\prime}beyond to prime foci F^{\prime}

Extend eccentricity c -vectors (0) or $-\mathbf{v}(0)$
from the main Focus F to each R-line-point and beyond to prime foci F^{\prime}

Properties of Coulomb trajectory families and envelopes
Graphical ε-development of orbits
Launch angle fixed-Varied launch energy
\rightarrow Launch energy fixed-Varied launch angle
Launch optimization and orbit family envelopes

($N=8$)-sect R-line normal to
mark $R=K E \not P E=0, \pm 1 / 8, \pm 2 / 8, \pm 3 / 8, \ldots$
for eccentricity ε-vector scale
Extend eccentricity ε-vectors 150°
from the main Focus F
to each R-line-point and
beyond to prime foci F^{\prime}

Properties of Coulomb trajectory families and envelopes
Graphical ε-development of orbits
Launch angle fixed-Varied launch energy
\rightarrow Launch energy fixed-Varied launch angle
Launch optimization and orbit family envelopes

Properties of Coulomb trajectory families and envelopes
Graphical ε-development of orbits
Launch angle fixed-Varied launch energy
Launch energy fixed-Varied launch angle
\rightarrow Launch optimization and orbit family envelopes

Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes Problem:
Find trajectory angle of minimum enersy to fly 90° of arc (1/4 around planet)

Range Longitude

Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes Problem:
Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet)
Solution: Prime focus \mathbb{F}^{\prime} lies on radial line that bisects longitude angle

Range Longitude

Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes Problem:
Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet)
Solution: Prime focus \mathbf{F}^{\prime} lies on radial line that bisects longitude angle
Optimal prime focus \mathbf{F}^{\prime} lies on line connecting START and FINISH at tangent point of minimal energy circle $\mathbf{S F}^{\prime}$.

Range Longitude

Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes Problem:
Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet)
Solution: Prime focus \mathbb{F}^{\prime} lies on radial line that bisects longitude angle
Optimal prime focus \mathbf{F}^{\prime} lies on line connecting START and FINISH at tangent point of minimal energy circle $\mathbf{S F}^{\prime}$. R-line normal must bisect angle $\mathbf{F S F}^{\prime}$ connecting foci \mathbf{F} and \mathbf{F}^{\prime} and is normal to initial launch vector \mathbf{v}_{0}

Range Longitude

Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes Problem:
Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet)
Solution: Prime focus \mathbf{F}^{\prime} lies on radial line that bisects longitude angle
Optimal prime focus \mathbf{F}^{\prime} lies on line connecting START and FINISH at tangent point of minimal energy circle $\mathbf{S F}^{\prime}$.
R-line normal must bisect angle $\mathbf{F S F}{ }^{\prime}$ connecting foci \mathbf{F} and \mathbf{F}^{\prime} and is normal to initial launch vector \mathbf{v}_{0} with launch angle $\mathrm{\alpha}=22.5^{\circ}$

The ε-vector and R-value:

Range Longitude

Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes Problem:
Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet)
Solution: Prime focus \mathbf{F}^{\prime} lies on radial line that bisects longitude angle
Optimal prime focus \mathbf{F}^{\prime} lies on line connecting START and FINISH at tangent point of minimal energy circle $\mathbf{S F}^{\prime}$.
R-line normal must bisect angle $\mathbf{F S F}{ }^{\prime}$ connecting foci \mathbf{F} and \mathbf{F}^{\prime} and is normal to initial launch vector \mathbf{v}_{0} with launch angle $\alpha=22.5^{\circ}$
The ε-vector and R-value:

Maximum range 269.9990:

Range Longitude

Coulomb envelope geometry
(a)

(b)
(c)

Ideal comet "heads" or "tails" in solar wind

Launch optimization

