Lecture 30 Tue. 12.11.2014

Geometry and Symmetry of Coulomb Orbital Dynamics II.

(Ch. 2-4 of Unit 5 12.11.14)

Eccentricity vector $\boldsymbol{\varepsilon}$ *and* (ε, λ) *-geometry of orbital mechanics* ε -vector and Coulomb **r**-orbit geometry Review and connection to standard development ε -vector and Coulomb **p**=m**v** geometry Example with elliptical orbit Analytic geometry derivation of ε -construction Algebra of ε -construction geometry *Connection formulas for* (a,b) *and* (ε,λ) *with* (γ, R) *Ruler & compass construction of* ε *-vector and orbits* $(R=-0.375 \ elliptic \ orbit)$ (R=+0.5 hyperbolic orbit)*Properties of Coulomb trajectory families and envelopes* Graphical ε -development of orbits Launch angle fixed-Varied launch energy Launch energy fixed-Varied launch angle Launch optimization and orbit family envelopes

Review of lectures 28 and 29

\rightarrow

Eccentricity vector ε *and* (ε , λ) *geometry of orbital mechanics*

Isotropic field V=V(r) guarantees conservation angular momentum vector **L** $\mathbf{L} = \mathbf{r} \times \mathbf{p} = m \mathbf{r} \times \dot{\mathbf{r}}$ (Review of Lect. 28-29) (...for sake of comparison...) Coulomb V = -k/r also conserves *eccentricity vector* ε IHO $V = (k/2)r^2$ also conserves *Stokes vector* **S** $S_{A} = \frac{1}{2} (x_{1}^{2} + p_{1}^{2} - x_{2}^{2} - p_{2}^{2})$ $\mathbf{\varepsilon} = \hat{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}$ $S_{\boldsymbol{B}} = x_1 p_1 + x_2 p_2$ $S_C = x_1 p_2 - x_2 p_1$ $\mathbf{A} = km \cdot \varepsilon \text{ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector.} \overset{\text{Generate symmetry groups:}}{\to} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2)$ Consider dot product of ε with a radial vector **r**: ...or of ε with momentum vector **p**: $\boldsymbol{\varepsilon} \bullet \mathbf{p} = \frac{\mathbf{p} \bullet \mathbf{r}}{r} - \frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{km} = \mathbf{p} \bullet \hat{\mathbf{r}} = p_r$ $\mathbf{\varepsilon} \bullet \mathbf{r} = \frac{\mathbf{r} \bullet \mathbf{r}}{r} - \frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{km} = r - \frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{km} = r - \frac{\mathbf{L} \bullet \mathbf{L}}{km}$ Let angle ϕ be angle between ε and radial vector \mathbf{r} $\frac{\lambda}{1-\varepsilon}$ if: $\phi=0$ apogee $\varepsilon r \cos \phi = r - \frac{L^2}{km}$ or: $r = \frac{L^2/km}{1 - \varepsilon \cos \phi}$ For $\lambda = L^2 / km$ that matches: $r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \begin{cases} \lambda & \text{if: } \phi = \frac{\pi}{2} \\ z & \text{if: } \phi = \frac{\pi}{2} \end{cases}$ $\frac{\lambda}{1+\epsilon}$ if: $\phi = \pi$ perigee (b) Attractive (k>0) (c) Repulsive (k<0) (a) Attractive (k>0)Hyperbolic (E>0)*Elliptic* (E<0) Hyperbolic (E>0)latus pxL **px**L (Rotational radius zenith **DXL** (Nothing momentum perhelion aphelion here) 3 $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ is (Nothing l+ε 1–ε normal to the here) attrative (repulsive P Nothing $\hat{\mathbf{e}} = \hat{\mathbf{r}} - \hat{\mathbf{r}}$ apogee perigee force pxL force *here*) attractive orbit plane.) center) *center*) *force center)*

(Review of Lect. 29)

ε-vector and Coulomb **p**=*m***v** *geometry* (*Review of Lect. 29 p.50-62*)

Finding time derivatives of orbital coordinates r, ϕ , x, y, and eventually velocity **v** or momentum **p**=m**v**

$$\begin{aligned} \text{Radius } r: \\ r &= \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2 / km}{1 - \varepsilon \cos \phi} \\ \dot{r} &= \frac{dr}{dt} = \frac{L^2}{km} - \frac{d}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= \frac{dr}{dt} = \frac{L^2}{km} - \frac{d}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= \frac{L}{km} - \frac{L^2}{km} - \frac{d}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= \frac{L^2}{km} - \frac{\varepsilon \sin \phi \dot{\phi}}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= -\frac{L^2}{km} - \frac{\varepsilon \sin \phi \dot{\phi}}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= -\frac{k}{L^2} mr^2 \dot{\phi} \varepsilon \sin \phi \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \\ \dot{r} &= -\frac{k}{L} \sin \phi \\ \dot{r} &= -\frac{mk}{L} \sin \phi \\ \dot{r} &= -$$

Next several pages give *step-by-step constructions* of ε -vector and Coulomb orbit and trajectory physics

ε -vector and Coulomb orbit construction steps

Pick launch point **P** (radius vector **r**) and elevation angle γ from radius (momentum initial **p** direction)

Next several pages give step-by-step constructions of ε -vector and Coulomb orbit and trajectory physics

ε -vector and Coulomb orbit construction steps

Copy F-center circle around launch point P Pick launch point P *Copy elevation angle* γ (\angle FPP') *onto* \angle P'PQ (radius vector **r**) and elevation angle γ from radius Extend resulting line QPQ' to make focus locus (momentum initial **p** direction) inital momentum *wpied* elevation angle γ D inital momentum elevation angle γ Reason for focus loc Line **r** from 1st focus **F**/"reflects line **p** (or **P'P**) toward 2nd focus **F** somewhere so incident-angle γ equals reflected-angle γ

Next several pages give step-by-step constructions of ε-vector and Coulomb orbit and trajectory physics

Eccentricity vector $\boldsymbol{\varepsilon}$ *and* (ε, λ) *-geometry of orbital mechanics ε*-vector and Coulomb **r**-orbit geometry *Review and connection to standard development* ε -vector and Coulomb **p**=m**v** geometry ε -vector and Coulomb **p**=m**v** algebra Example with elliptical orbit Analytic geometry derivation of ε -construction Algebra of ε -construction geometry *Connection formulas for* (a,b) *and* (ε,λ) *with* (γ, R) *Ruler & compass construction of* ε *-vector and orbits* $(R=-0.375 \ elliptic \ orbit)$ (R=+0.5 hyperbolic orbit)

Algebra of ε -construction geometry The eccentricty parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$

$$\varepsilon^{2} = 1 + 4R(R+1)\sin^{2}\gamma$$
$$= 1 - \frac{b^{2}}{a^{2}} \quad \text{for ellipse} \quad (\varepsilon < 1)$$
$$= 1 + \frac{b^{2}}{a^{2}} \quad \text{for hyperbola} \ (\varepsilon > 1)$$

Three pairs of parameters for Coulomb orbits: 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial (γ, \mathbf{R}) Algebra of ε -construction geometry The eccentricty parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$

$$\varepsilon^{2} = 1 + 4R(R+1)\sin^{2}\gamma$$

$$= 1 - \frac{b^{2}}{a^{2}} \quad \text{for ellipse} \quad (\varepsilon < 1) \quad \text{where:} \quad 4R(R+1)\sin^{2}\gamma = -\frac{b^{2}}{a^{2}} = \varepsilon^{2} - 1$$

$$= 1 + \frac{b^{2}}{a^{2}} \quad \text{for hyperbola} \ (\varepsilon > 1) \quad \text{where:} \quad 4R(R+1)\sin^{2}\gamma = +\frac{b^{2}}{a^{2}} = \varepsilon^{2} - 1$$

Three pairs of parameters for Coulomb orbits: 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial (γ, \mathbf{R}) Algebra of ε -construction geometry The eccentricty parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Three pairs of parameters for Coulomb orbits: 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε , λ) Now we relate a 4th pair: 4.Initial (γ ,**R**)

$$\varepsilon^{2} = 1 + 4R(R+1)\sin^{2}\gamma$$

$$= 1 - \frac{b^{2}}{a^{2}} \text{ for ellipse } (\varepsilon < 1) \text{ where: } 4R(R+1)\sin^{2}\gamma = -\frac{b^{2}}{a^{2}} = \varepsilon^{2} - 1 \text{ implying: } R(R+1) < 0$$

$$= 1 + \frac{b^{2}}{a^{2}} \text{ for hyperbola } (\varepsilon > 1) \text{ where: } 4R(R+1)\sin^{2}\gamma = +\frac{b^{2}}{a^{2}} = \varepsilon^{2} - 1 \text{ implying: } R(R+1) > 0$$

Algebra of ε -construction geometryThree pairs of parameters for Coulomb orbits:
1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε , λ)
Now we relate a 4th pair: 4. Initial (γ , R)The eccentricty parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Three pairs of parameters for Coulomb orbits:
1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε , λ)
Now we relate a 4th pair: 4. Initial (γ , R) $\varepsilon^2 = 1+4R(R+1)\sin^2\gamma$
 $= 1-\frac{b^2}{a^2}$ for ellipse ($\varepsilon < 1$) where: $4R(R+1)\sin^2\gamma = -\frac{b^2}{a^2} = \varepsilon^2 - 1$ implying: R(R+1) < 0 (or: $-R^2 > R$)
(or: 0 > R > -1)
 $= 1+\frac{b^2}{a^2}$ for hyperbola ($\varepsilon > 1$) where: $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2} = \varepsilon^2 - 1$ implying: R(R+1) > 0 (or: $-R^2 < R$)
(or: 0 < R < -1)

Algebra of ε -construction geometry The eccentricity parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Three pairs of parameters for Coulomb orbits: 1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε,λ) Now we relate a 4th pair: 4. Initial (γ, R) $\varepsilon^2 = 1+4R(R+1)\sin^2\gamma$ $= 1 - \frac{b^2}{a^2}$ for ellipse $(\varepsilon < 1)$ where: $4R(R+1)\sin^2\gamma = -\frac{b^2}{a^2} = \varepsilon^2 - 1$ implying: R(R+1) < 0 (or: $-R^2 > R$) (or: 0 > R > -1) $= 1 + \frac{b^2}{a^2}$ for hyperbola $(\varepsilon > 1)$ where: $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2} = \varepsilon^2 - 1$ implying: R(R+1) > 0 (or: $-R^2 < R$) (or: 0 < R < -1)Total $\frac{-k}{2a} = \varepsilon = energy = KE + PE$ relates ratio $R = \frac{KE}{PE}$ to individual radii $a, b, \text{ and } \lambda$. $\frac{-k}{2a} = E = KE + PE = R \cdot PE + PE = (R+1)PE = (R+1)\frac{-k}{r}$ or: $\frac{1}{2a} = (R+1)\frac{1}{r} = (R+1)$

Three pairs of parameters for Coulomb orbits: Algebra of ε -construction geometry 1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε , λ) The *eccentricty* parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Now we relate a 4th pair: 4. Initial (γ, \mathbf{R}) $\varepsilon^2 = 1 + 4R(R+1)\sin^2\gamma$ $=1-\frac{b^2}{a^2} \quad \text{for ellipse} \quad (\varepsilon < 1) \text{ where: } 4R(R+1)\sin^2\gamma = -\frac{b^2}{a^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) < 0 \quad (\text{or: } -R^2 > R) \\ (\text{or: } 0 > R > -1) \quad (\text{or: } 0 > R > =1+\frac{b^2}{a^2} \text{ for hyperbola } (\varepsilon > 1) \text{ where: } 4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) > 0 \quad (\text{or: } -R^2 < R) \text{ (or: } 0 < R < -1)$ Total $\frac{-k}{2a} = E = energy = KE + PE$ relates ratio $R = \frac{KE}{PE}$ to individual radii a, b, and λ . $\frac{-k}{2a} = E = KE + PE = \mathbf{R} \cdot PE + PE = (\mathbf{R}+1)PE = (\mathbf{R}+1)\frac{-k}{r} \text{ or: } \frac{1}{2a} = (\mathbf{R}+1)\frac{1}{r} = (\mathbf{R}+1)$ $a = \frac{r}{2(\mathbf{R}+1)} = \left(\frac{1}{2(\mathbf{R}+1)} \text{ assuming unit initial radius } (r \equiv 1).\right)$

Three pairs of parameters for Coulomb orbits: Algebra of ε -construction geometry 1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε , λ) The *eccentricty* parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Now we relate a 4th pair: 4. Initial (γ, \mathbf{R}) $\varepsilon^2 = 1 + 4R(R+1)\sin^2\gamma$ $=1-\frac{b^2}{r^2} \quad \text{for ellipse} \quad (\varepsilon < 1) \text{ where:} \quad 4R(R+1)\sin^2\gamma = -\frac{b^2}{r^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) < 0 \quad (\text{or: } -R^2 > R) \\ (\text{or: } 0 > R > -1) \quad (\text{or: } 0 > R >$ $= 1 + \frac{b^2}{a^2} \text{ for hyperbola } (\varepsilon > 1) \text{ where: } 4R(R+1)\sin^2\gamma = + \frac{b^2}{a^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) > 0 \quad (\text{or: } -R^2 < R) \text{ (or: } 0 < R < -1) \text{ (or: } 0 < -1) \text{ (or: } 0$ Total $\frac{-k}{2a} = E = energy = KE + PE$ relates ratio $R = \frac{KE}{PE}$ to individual radii a, b, and λ . $\frac{-k}{2a} = E = KE + PE = R \cdot PE + PE = (R+1)PE = (R+1)\frac{-k}{r} \text{ or: } \frac{1}{2a} = (R+1)\frac{1}{r} = (R+1)$ $a = \frac{r}{2(R+1)} = \left(\frac{1}{2(R+1)} \text{ assuming unit initial radius } (r=1).\right)$ $4R(R+1)\sin^2\gamma = \mp \frac{b^2}{a^2} \text{ implies: } 2\sqrt{\mp R(R+1)}\sin\gamma = \frac{b}{a} \text{ or: } b = 2a\sqrt{\mp R(R+1)}\sin\gamma$ $b = r \sqrt{\frac{\mp R}{R+1}} \sin \gamma \left(= \sqrt{\frac{\mp R}{R+1}} \sin \gamma \text{ assuming unit initial radius } (r \equiv 1) \right)$

Three pairs of parameters for Coulomb orbits: Algebra of ε -construction geometry 1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε , λ) The *eccentricty* parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Now we relate a 4th pair: 4. Initial (γ, \mathbf{R}) $\varepsilon^2 = 1 + 4R(R+1)\sin^2\gamma$ $=1-\frac{b^2}{c^2} \quad \text{for ellipse} \quad (\varepsilon < 1) \text{ where:} \quad 4R(R+1)\sin^2\gamma = -\frac{b^2}{c^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) < 0 \quad (\text{or: } -R^2 > R) \\ (\text{or: } 0 > R > -1) \text{ or: } 0 > R > -1 \text{$ $=1+\frac{b^2}{a^2} \text{ for hyperbola } (\varepsilon > 1) \text{ where: } 4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) > 0 \quad (\text{or: } -R^2 < R) \text{ (or: } 0 < R < -1)$ Total $\frac{-k}{2a} = E = energy = KE + PE$ relates ratio $R = \frac{KE}{PE}$ to individual radii a, b, and λ . $\frac{-k}{2a} = E = KE + PE = R \cdot PE + PE = (R+1)PE = (R+1)\frac{-k}{r} \text{ or: } \frac{1}{2a} = (R+1)\frac{1}{r} = (R+1)$ $a = \frac{r}{2(R+1)} = \left(\frac{1}{2(R+1)} \text{ assuming unit initial radius } (r=1).\right)$ $4R(R+1)\sin^2\gamma = \pm \frac{b^2}{a^2} \text{ implies: } 2\sqrt{\pm R(R+1)}\sin\gamma = \frac{b}{a} \text{ or: } b = 2a\sqrt{\pm R(R+1)}\sin\gamma$ $b = r \sqrt{\frac{\mp R}{R+1}} \sin \gamma \left(= \sqrt{\frac{\mp R}{R+1}} \sin \gamma \text{ assuming unit initial radius } (r \equiv 1) \right)$

Latus radius is similarly related:

$$\lambda = \frac{b^2}{a} = \mp 2r R \sin^2 \gamma$$

Algebra of
$$\varepsilon$$
-construction geometry
The eccentricity parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$.
 $\varepsilon^2 = 1 + 4R(R+1)\sin^2\gamma$
 $= 1 - \frac{b^2}{a^2}$ ellipse($\varepsilon < 1$) $4R(R+1)\sin^2\gamma = -\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2} + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2} + \frac{b^2}{a^2} + \frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2} + \frac{b^2}{a^2} + \frac{b^2}{a^2}$
From ε^2 result (at top):
 $\frac{b}{a} = 2\sqrt{+R(R+1)}\sin\gamma = \sqrt{\pm(1-\varepsilon^2)}$

Eccentricity vector $\boldsymbol{\varepsilon}$ *and* (ε, λ) *-geometry of orbital mechanics ε*-vector and Coulomb **r**-orbit geometry Review and connection to standard development ε -vector and Coulomb **p**=m**v** geometry ε -vector and Coulomb $\mathbf{p}=m\mathbf{v}$ algebra Example with elliptical orbit Analytic geometry derivation of ε -construction Algebra of ε -construction geometry *Connection formulas for* (a,b) *and* (ε,λ) *with* (γ, R) *Ruler & compass construction of* ε *-vector and orbits* \rightarrow $(R=-0.375 \ elliptic \ orbit)$ (R=+0.5 hyperbolic orbit)

Wednesday, December 24, 2014

Eccentricity vector $\boldsymbol{\varepsilon}$ *and* (ε, λ) *-geometry of orbital mechanics* ε -vector and Coulomb **r**-orbit geometry *Review and connection to standard development* ε -vector and Coulomb **p**=m**v** geometry ε -vector and Coulomb **p**=m**v** algebra *Example with elliptical orbit* Analytic geometry derivation of ε -construction Algebra of ε -construction geometry *Connection formulas for* (a,b) *and* (ε,λ) *with* (γ, R) *Ruler & compass construction of* ε *-vector and orbits* $(R=-0.375 \ elliptic \ orbit)$ (*R*=+0.5 *hyperbolic orbit*)

Major diameter 2a is difference (r-r'=2a). Major radius a is half of difference (r-r')/2=aMajor diameter 2a needs to be centered on F-F' focal axis

Major diameter 2a is difference (r-r'=2a). Major radius a is half of difference (r-r')/2=aMajor diameter 2a needs to be centered on F-F' focal axis 1. Bisect F-P radius r using F-P circle intersections to define r/2 sections. 2. Bisect F-F' focal axis using F-F' circle intersections to locate orbit center C. 3. Bisect F'-P radius r' using F'-P circle intersections.

4. Swing radius r'/2 onto r/2 section to make major radius a=(r-r')/2.

5. Copy circle of major radius a = (r-r')/2 about orbit center C.

- 6. Draw focal circle of diameter 2ae about orbit center C
- 7. Erect minor radius b tangent to a-circle from point a on C ε -axis to point b on focal circle.

R=+1/2 hyperbolic orbit construction

4. Swing radius r'/2 onto r/2 section to make major radius a=(r-r')/2.

5. Copy circle of major radius a=(r-r')/2 about orbit center C.

6. Draw focal circle of diameter 2ae about orbit center C

7. Erect minor radius b tangent to a-circle from point a on Ce-axis to point b on focal circle. 8. Complete orbit a-x-b box between focal circle and a-circle and its diagonal asymptotes.

R=+1/2 hyperbolic orbit construction

Properties of Coulomb trajectory families and envelopes Graphical ε -development of orbits

 Launch angle fixed-Varied launch energy Launch energy fixed-Varied launch angle
Launch optimization and orbit family envelopes

Graphs and protractors make Coulomb trajectory analysis easier

Properties of Coulomb trajectory families and envelopes Graphical ε -development of orbits Launch angle fixed-Varied launch energy Launch energy fixed-Varied launch angle Launch optimization and orbit family envelopes

Label Main Focus F

Label Main Focus F

Label Main Focus F

Properties of Coulomb trajectory families and envelopes Graphical ε -development of orbits Launch angle fixed-Varied launch energy Launch energy fixed-Varied launch angle Launch optimization and orbit family envelopes

Properties of Coulomb trajectory families and envelopes Graphical ε -development of orbits Launch angle fixed-Varied launch energy Launch energy fixed-Varied launch angle Launch optimization and orbit family envelopes

Range Longitude

Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes *Problem:*

Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet) Solution: Prime focus **F'** lies on radial line that bisects longitude angle

Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes Problem: Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet) Solution: Prime focus F' lies on radial line that bisects longitude angle Launch Elevation Angle Optimal prime focus F' lies on 110° 100° 90° 80° 70° line connecting START and FINISH 120° 60° 130° 50° at tangent point of minimal 140° 40° energy circle **SF**'. 150° 30° 160° 20° R-line normal must bisect 170° 10° angle **FSF'** connecting [AR] 180° foci F and F' and is normal 340° 350° 10° 20'° -10° to initial launch vector \mathbf{v}_0 330° 30° -20° 3109 300° 60° 2900 70° 280° 10 270° FINISH -260° 100° 110° 250° 240° 120° 🗐 230° 30° 40° 220° 210° 150° 160° 200° 190° 180° 170°

Range Longitude

Range Longitude

Coulomb envelope geometry

Launch optimization

