
Unit 7 
Action and Functional Variation 

William G. Harter 

 Who or what makes the classical laws? Here we begin to see some of the deeper principles that 
underlie the classical façade of our world. Something called action seems to be in control and prefers 
lowest bidders.
	
 The minimization of entire families of functions is called calculus of variation or functional 
variation. It is introduced here in connection with the famous Hamilton’s Principle function Sp=∫Ldt or 
action and Hamilton’s Characteristic function SH=∫p dx or reduced action.
	
 Why these two actions seek minimum or stationary values is a question that begs introduction 
of wave interference behavior in the form of the Hamilton-Jacobi equation. The HJ equation is an 
approximation to quantum wave theory that was discovered before the latter.
	
 This old theory is still useful in the form of semi-classical mechanics that provides powerful 
approximate solutions to otherwise intractible quantum problems. Old ideas never die. They just lie in 
waiting.

HarterSoft –LearnIt©2013                                                          Unit 7Action and Functional Variation   1



 

(a) SH=0.3
(b) SH=0.35

(c) SH=0.4

(d) SH=0.9

∇∇SH=p

∇∇SH=p

   Time evolution by contact transformation

 

0=S(v0, α , : x, y)

x

y
v0

α= 45°

Contact points

α
     

HarterSoft –LearnIt©2013                                                          Unit 7Action and Functional Variation   2



...................................................................UNIT 7   ACTION AND FUNCTIONAL VARIATION! 4

............................................................................................................................................................Chapter 7.1 Introduction 	
 4

...............................................................................................................................................Chapter 7.2 Variational Calculus	
 5

..........................................................................................................................Solution 1. Solve Euler-Lagrange for y(x)	
 6

...........................................................................................................Solution 2. Use "pseudo-hamiltonian" conservation	
 6

.......................................................Solution 3. Make y independent variable and use "pseudo-momentum" conservation	
 7

................................................................................................................Solution 4. Obtain differential equations directly	
 8

.............................................................................................................................................Chapter 7.3 Hamilton's Principle	
 11

................................................................................................................................................................(a) Geodesic curves	
 13

...................................................................................................................................(b) Tautochrone-brachistichone curves	
 15

...........................................................................................................................................................(c) Huygen's pendulum	
 17

...............................................................................................................Chapter 7.4 Curve Families and Contact Relations	
 19

....................................................................................................................................................(a) Contact transformations	
 21

..................................................................................................................................................(b) Legendre transformations	
 21

...................................................................................Chapter 7.5 Action: Generators of Active Contact Transformations	
 25

........................................................................................................................................(a) Hamilton's characteristic action	
 25

..........................................................................................................(c) Example of H-J equations: Elementary trajectories	
 27

..................................................................................................(d) Example of H-J wavefronts: wave and particle velocity	
 30

.....................................................................................................................Chapter 7.6 Time of Flight, Energy, and Action	
 35

....................................................................................................................................(a) Quantum wave fronts vs. classical	
 35

...............................................................................................................(b) Huygen's principle: "Proof" of classical axioms	
 36

.......................................................................................Chapter 7.7 Action-Angle Variables : Semi-classical quantization	
 39

................................................................................................................................(a) 1-Dimensional vibration and rotation	
 39

..........................................................................................................................(b) Multi-dimensional action angle analysis	
 42

......................................................................................................................(c) Action-color and Davis-Heller quantization	
 43

.....................................................................................................................................................(d) A "clockwork universe"	
 45

.......................................................................................................................(e) Non-linear modes: Action Fourier analysis	
 46

HarterSoft –LearnIt©2013                                                          Unit 7 Action and Functional Variation   3



Unit 7   Action and Functional Variation

Chapter 7.1 Introduction
POOF!Foop! Waves disappear then reappear elsewhere. They are non-local unlike our very local classical 
mechanics that decides at each point in space and time exactly how fast and where each mass or particle-
coordinate should proceed in the next instant of time. This leads along a particular trajectory qk(t) or phase-
space path {qk(t),pm(t)} that is one of the solutions to a Newton, Lagrange, Riemann, or Hamilton set of 
differential equations treated in Units 1 thru 6.
 Now we take a more global view of mechanical motion and ask what integral or global properties are 
peculiar to the trajectories or paths that massive bodies follow when they are obeying our various differential 
equations of motion. We will inquire about arbitrary kinds of variation from the "straight-and narrow" trajectory 
paths found so far, and thereby develop a type of mathematics which is known as the calculus of variation. 
 
 Variational calculus leads to path-integral equations as well as differential equations. A type of integrals 
known as action integrals will be discussed, in particular, Hamilton's principle action Sp which is the time 
integral of the Lagrangian
      

 
S p = L dt∫      (7.1.1)

and Hamilton's characteristic action SH which is the sum of areas swept out in phase space.

      
 
SH = pµ dqµ∫      (7.1.2)

From Poincare's invariant equation (1.13.5) it follows that the two actions are closely related.

    
 
S p = L dt∫ = pµ dqµ∫ − H dt∫ = SH − E ⋅ t     (7.1.3)

The principle action is called that because it arises in the consideration of Hamiltion's least action principle 
which will be one of the first things considered in this Unit.
 The naming of the characteristic action is more obscure but no less interesting. The name comes from a 
method for solving wave equations which is called the method of characteristics. Using this method it is 
possible of obtain solutions to certain partial differential equations by ordinary integration along certain 
characteristic or "ray" curves. We shall see how families of particle trajectories are the characteristic rays of 
wave equations for Hamilton's characteristic function SH. Such equations are known as Hamilton-Jacobi 
equations and perhaps the most esoteric form that Newton's original mechanical equations can take. However, 
they are the relations that forge connection to quantum wave mechanics and more basic statement of the laws of 
nature. Then, Newton's axioms are reduced to results of more basic axioms and seen to be only approximately 
true in the limit of high action. 
 In summary, this chapter is not so much concerned with single trajectories or functions; the techniques 
considered so far do that as well as we know how. Rather, this section is devoted to the study of whole families 
of trajectories or functions such as orbit clouds shown in Unit 5.
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Chapter 7.2 Variational Calculus
Variational calculus is concerned with finding minimum or maximum values to integrals such as 

     
  
I y( ) = dx

x0

x1
∫ λ y x( ) , ′y x( ) , x( )     (7.2.1)

where the curve y(x) can vary at every point x. If I(y) was a simple function like I(y)=y2 -4y we would find zero
(s) of its derivative dI = (2y-4)dy=0 at y=2 and be done. However, here I(y) is a functional, that is, a function 
∫dx λ(y,y') of an entire function y(x) and its derivative y'(x) either of which can be varied arbitrarily at any point 
between x0 and x1 of the dependent integration variable as shown in Fig. 7.2.1. (It is possible that λ(y,y',x) may 
have explicit x-dependence, as well.)

  

y(x)

x0 x1

y(x)+δy(x)

x0

y(x)

δy(x)
..varied to:

x1
  Fig. 7.2.1 Variation of function curve or path from y(x) to y(x)+δy(x).

 As shown in the figure, an arbitrary but small variation function δy(x) is allowed at every point x along 
the curve except at the end points x0 and x1 where, by definition 
      δy(x0 )=0=δy(x1) .     (7.2.2) 
This changes integral (7.2.1) according to a Taylor series of first order.

  
  
I y + δ y( ) = dx

x0

x1
∫ λ y, ′y , x( ) + ∂λ

∂ y
δ y + ∂λ

∂ ′y
δ ′y

⎡

⎣
⎢

⎤

⎦
⎥        where: δ ′y = d

dx
δ y  (7.2.3)

Replacing 
 

∂λ
∂ ′y

δ ′y  with 
 

d
dx

∂λ
∂ ′y

δ y
⎛
⎝⎜

⎞
⎠⎟
− d

dx
∂λ
∂ ′y

⎛
⎝⎜

⎞
⎠⎟
δ y  gives 

  

  

I y + δ y( ) = dx
x0

x1
∫ λ y, ′y , x( ) + ∂λ

∂ y
δ y − d

dx
∂λ
∂ ′y

⎛
⎝⎜

⎞
⎠⎟
δ y

⎡

⎣
⎢

⎤

⎦
⎥+ dx

x0

x1
∫

d
dx

∂λ
∂ ′y

δ y
⎛
⎝⎜

⎞
⎠⎟

              = dx
x0

x1
∫ λ y, ′y , x( ) + dx

x0

x1
∫

∂λ
∂ y

− d
dx

∂λ
∂ ′y

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥δ y+ ∂λ

∂ ′y
δ y

⎛
⎝⎜

⎞
⎠⎟

x1

x0
  

 (7.2.4)

The third and last term vanishes by (7.2.2) leaving a total first order variation δI as follows.

    
  
δ I = I y + δ y( ) − I y( ) = dx

x0

x1
∫

∂λ
∂ y

− d
dx

∂λ
∂ ′y

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥δ y   (7.2.5a)

If integral I is a minimum or maximum its first order variation δI must be zero for all δy(x) even if it is only 
non-zero for a small region of the x interval. So, the I integrand must be zero everywhere.

     
  
δ I = 0 ⇒ d

dx
∂λ
∂ ′y

⎛
⎝⎜

⎞
⎠⎟
− ∂λ
∂ y

= 0     (7.2.5b)
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The result is called an Euler-Lagrange equation. It has the form of a 1-D Lagrange equation

      
   

d
dt

∂L
∂ q

⎛
⎝⎜

⎞
⎠⎟
− ∂L
∂q

= 0     (7.2.5c)

with λ , y, y', and x replaced with L , q,   q , and t, respectively. Indeed, it will be shown that Lagrange's equations 

guarantee that the principle action integral Sp of (7.1) always accumulates a minimum value along any 
trajectory and hence must do so consistently along each infinitesimal segment of any path. 
 As in trajectory problems, the writing of Lagrange equations is one task, but finding useful solutions 
may be quite another. For example, let a string of beads of density ρ hang on a curve y=y(x) so the integral V 
over gravitational potential ρg y(x)ds of each line segment ds is minimum.

      V = ∫ ρgy ds = ρg ∫ y dx2 + dy2 = ρg dx∫ y 1+ ′y 2   (7.2.6)

Several methods for finding the desired minimizing curve y=y(x) need to be exposed and compared.

Solution 1. Solve Euler-Lagrange for y(x)

 The pseudo-lagrangian integrand function in (7.2.6) is 
  
λ y, ′y( ) = y 1+ ′y 2 . Its Euler-Lagrange equation 

has fairly complicated parts.

  

  

∂λ
∂ y

= 1+ ′y 2( )1/ 2
,    ∂λ

∂ ′y
= 1+ ′y 2( )−1/ 2

y ′y  ,   d
dx

∂λ
∂ ′y

= ′′y y + ′y 2 + ′y 4

1+ ′y 2( )1/ 2
  (7.2.7)

The solution of the resulting equation is not immediately obvious so it is left as an exercise!

       ′′y y = 1+ ′y 2       (7.2.8)

Solution 2. Use "pseudo-hamiltonian" conservation

 The pseudo-lagrangian integrand function 
  
λ y, ′y( ) = y 1+ ′y 2  is independent of x. This is just like a 

Lagrangian L(q,   q ) with no time dependence which allows a constant Hamiltonian H=p  q -L. Here x 

independence implies a constant or conserved pseudo-hamiltonian h defined as follows.

   
  
const. = h = p ′y − λ = ′y ∂λ

∂ ′y
− λ = 1+ ′y 2( )−1/ 2

y ′y − 1+ ′y 2( )1/ 2
y   

This simplifies easily to a common integral.

   
  

h2 = y2

1+ ′y 2
  ,     h ′y = y2 − h2  ,     dx∫ = ∫

hdy

y2 − h2
= hcosh−1 y   (7.2.9)

The result is a beautiful hyperbolic catenary curve of the St. Louis arch by Ereo Saarinen. (Fig. 7.2.2)
      y(x) = h cosh (x/h)      (7.2.10) 
 A hanging catenary chain (Fig. 7.2.3) has all tension forces lined up with the tangent at every point, and 
so must the inverted catenary of St. Louis have all compressive loads centered on tangents, as well. One might 
imagine a thousand hanging chains all welded into a solid so it would stand upside down without buckling. All 
its arch curves, inside and out, belong to a family of congruent hyperbolic cosines.
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Fig 7.2.2  St. Louis Arch (Jefferson National Monument) is being”topped-out” as the final segment is lifted into 
place on  October 28 1965. A 450-ton force is being applied to separate the arms for the final semgment that 
will match its gap to within a fraction of a millimeter and allow closure. 

Solution 3. Make y independent variable and use "pseudo-momentum" conservation

Converting the integral (7.2.6) over x to a y-integral gives a different pseudo-lagrangian Λ as follows.

  

  

V = ρg dx∫ y 1+ ′y 2 = ρg dy dx
dy∫ y 1+ ′y 2

   = ρg dy Λ x, ′x( )∫ ,   where:  Λ x, ′x( ) = y ′x 2 +1
  

Pseudo-lagrangian Λ has no x-dependence which implies a constant pseudo-momentum p, as follows.
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∂Λ x, ′x( )
∂x

= 0  implies: const.=p=
∂Λ x, ′x( )

∂ ′x
= y ′x

′x 2 +1
    (7.2.11)

There immediately results a hyperbolic cosine like that of (7.2.10) and Fig. 7.2.2..

    
  

dx= pdy

y2 − p2
 ,     y=p cosh  x

p
    (7.2.12)

Solution 4. Obtain differential equations directly

The most elegant solutions might not be the best for all occasions! Consider the differential analysis of tension 
vectors from one link of a chain to the next as sketched in Fig. 7.2.3. At the same time we can compare a 
catenary arch (Fig. 7.2.4a) with an arch of a suspension bridge.(Fig. 7.2.4b) 

 

T(x)

T(x+Δx)ΔT
T(x+Δx)

T(x+Δx)-T(x)=

ΔT=mgey

Δx Δx
T

dx Tx
dy = Ty

 Fig. 7.2.3 Variation of tension vector from T(x) to T(x+dx).

 

ΔT=ρg Δx ey

(b) Suspension Arch

ΔT=ρg Δs ey

(a) Catenary Arch

equal arc
intervals
Δs=w

equal
horizontal
intervals
Δx=w

w
w

w

w

w
w
w
w

 
 Fig. 7.2.4 Comparison of supporting arch curves. (a) Catenary,  (b) Suspension bridge

The first differential relation, shown on the right of Fig. 7.2.3, simply demands tension tangency.

      
 

dy
dx

= ′y =
Ty

Tx
     (7.2.13)
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A second order differential equation relates arch curvature to the extra weight ΔT=mg of each link or bead 
supported by the arch. As shown in Fig. 7.2.3, the extra weight increases y-component Ty by 
      ΔT = Ty(x+Δx) - Ty(x) =mg    
The preceding relations are used in the derivative.

   
  

d2 y
dx2

= ′′y = lim
Δx→0

′y x + Δx( ) − ′y x( )
Δx

≅ 1
Δx

Ty x + Δx( )
Tx x + Δx( ) −

Ty x( )
Tx x( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
≅ ΔT

TxΔx
  (7.2.13)

The x-component Tx of tension is constant. The y-equation depends on y-tension increment as shown in Fig. 
7.2.4(a) for a catenary (ΔT =ρg Δs) or in Fig. 7.2.4(b) for the suspension arch (ΔT =ρg Δx).

   

  

′′y = 1
Tx

dT
dx

= ρg
Tx

ds
dx

   For: ΔT =ρg  Δs

    = ρg
Tx

1+ dy
dx

⎛
⎝⎜

⎞
⎠⎟

2

= ρg
Tx

1+ ′y 2

  

  

′′y = 1
Tx

dT
dx

= ρg
Tx

   For: ΔT =ρg  Δx
 

The catenary arch is hyperbolic.(Fig. 7.2.4(a))     The suspension arch is a parabola.(Fig. 7.2.4(b))

  

  

′y = sinh
ρg x + a( )

Tx

y =
Tx
ρg

cosh
ρg x + a( )

Tx
+ b

 (7.2.14a)  

  

′y = ρg
Tx

x + a

y = ρg
2Tx

x2 + ax + b
   (7.2.14b)

This shows a subtle difference between the St. Louis arch (Jefferson monument) and more common arches of 
San Francisco (Golden Gate), New York (Brooklyn, George Washington, Veranzo, etc.).

   

pop!h 2R

A B

Optimum-path

vs.

V-path

Exercise 7.2.1 Extreme soap films
A soap film is stuck outside a pair of pair of circular rings separated by height h as shown above. 
What curve do you get if the film is stable?  As h increases when does the film “pop” as sketched.

Exercise 7.2.2 Earth tunnels revisted
What curved tunnel inside the Earth minimizes travel time in the manner of Exercise 1.9.3 for Unit 1? As in the previous exercise 
involving V-shaped tunnels, assume a uniform density Earth.

Exercise 7.2.3 Tornado alley
What is the curve of a tornado funnel or a bathtub drain vortex? 
Solve the problem assuming a curl-free flow that conserves angular momentum as in the f(z)=Ai/z complex flow field shown in Fig. 
1.10.10b in Ch. 10 of Unit 1. (Also, show the flow when A is complex, for example A=1+i.)†

First solve an easier problem for constant-curl flow, that is, rigid rotation. This is usually more appropriate at the bottom region of a 
bathtub vortex. (The two together are quite analogous to Fig. 1.9.7 showing Earth PE inside and out. Discuss.)
†Don’t neglect Solution 4.
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Chapter 7.3 Hamilton's Principle
We now consider Hamilton's principle time integral Sp of a generalized coordinate Lagrangian. 

     
   
S p (q) = dt

t0

t1
∫ L qµ t( ) , qµ t( ) , t( )    (7.3.1)

As shown in Fig. 7.3.1 each trajectory curve q1(t)=x(t) or q2(t)=y(t) may vary everywhere except at end points t0 
and t1 where, a definition similar to that used in (7.2.2) "pinches" the beginning and end. 

      δqµ(t0 )=0=δqµ(t1) .     (7.3.2) 
This changes integral (7.3.1) according to a Taylor series of first order.

 
   
S p

1( )(q + δq) = dt
t0

t1
∫ L q t( ) , q t( ) , t( ) + ∂L

∂qµ
δqµ + ∂L

∂ qν
δ qν

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

       where: δ qµ = d
dt
δqµ (7.3.3)

Replacing 
  

∂L
∂ qν

δ qν  with 
  

d
dt

∂L
∂ qν

δqν
⎛

⎝
⎜

⎞

⎠
⎟ −

d
dt

∂L
∂ qν

⎛

⎝
⎜

⎞

⎠
⎟ δqν  gives an integration by parts. 

 

   

S p
1( )(q + δq) = dt

t0

t1
∫ L q t( ) , q t( ) , t( ) + ∂L

∂qµ
δqµ − d

dt
∂L
∂ qν

⎛

⎝
⎜

⎞

⎠
⎟ δqν

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ dt
t0

t1
∫

d
dt

∂L
∂ qν

δqν
⎛

⎝
⎜

⎞

⎠
⎟

                 = dt
t0

t1
∫ L q t( ) , q t( ) , t( ) + dt

t0

t1
∫

∂L
∂qµ

− d
dt

∂L
∂ qµ

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
δqµ + ∂L

∂ qν
δqν

⎛

⎝
⎜

⎞

⎠
⎟

t1
t0

  

(7.3.4)

The third and last term vanishes by (7.3.2) leaving a total first order variation δSp as follows.

   
   
δ S p

1( ) = S p
1( )(q + δq) − S p (q) = dt

t0

t1
∫

∂L
∂qµ

− d
dt

∂L
∂ qµ

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
δqµ   (7.3.5a)

Suppose each coordinate qµ(t) obeys Lagrange's equations, that is, (Recall (1.11.5) or (3.12.1d).)

     
  

∂L
∂qµ

− d
dt

∂L
∂ qµ

⎛

⎝
⎜

⎞

⎠
⎟ = 0  .    (7.3.5b)

This guarantees that δS
  p

1( ) =0 so the action function Sp  achieves an extreme value or extremum for qµ(t). In other 

words, qµ(t) could give for Sp  a minimum value, a maximum value, or (most unpleasant) uncountable many 
inflection values. At this point we only know 1st-order variation is zero.
 The second order variation involves only the following second order Taylor expansion terms if first-order 
variation (7.3.5a) vanishes with the Lagrange equations (7.3.5b).

 
   
δ S p

(2) = dt
t0

t1
∫

1
2

∂2L
∂qµ∂qν

δqµδqν + 2 ∂2L
∂qµ∂ qν

δqµδ qν + ∂2L
∂ qµ∂ qν

δ qµδ qν
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (7.3.6a)

Let us consider the simplest example of this for one coordinate dimension and    L = L(q, q) .

   
   
δ S p

(2) = dt
t0

t1
∫

1
2

∂2L
∂q2

δq( )2 + 2 ∂2L
∂q∂ q

δqδ q + ∂2L
∂ q2

δ q( )2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (7.3.6b)

Lagrange equations (7.3.5b) equate 
 

∂L
∂q

 with   p  where 
  
p = ∂L

∂ q
  is the canonical momentum definition.
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Fig. 7.3.1 Variation of paths and time trajectories for evaluating Hamilton's principle action Sp.

     
   
δ S p

(2) = dt
t0

t1
∫

1
2

∂ p
∂q

δq( )2 + 2 ∂ p
∂q

δqδ q + ∂2L
∂ q2

δ q( )2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= dt

t0

t1
∫

1
2

∂
∂q

d
dt

p δq( )2⎡
⎣⎢

⎤
⎦⎥
+ ∂2L
∂ q2

δ q( )2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (7.3.7)

If partial derivatives may be reordered, so may 
 
d
dt

 and 
 

∂
∂q

 in this case. (Recall Lemma 2 (Eq. 1.5.2).)

  

   

∂
∂q

df (q, q, t)
dt

= ∂
∂q
q ∂ f
∂q

+ q ∂ f
∂ q

+ ∂ f
∂t

⎡

⎣
⎢

⎤

⎦
⎥ =

∂2 f
∂q2

q + ∂2 f
∂q∂ q

q + ∂2 f
∂q∂t

                   = q ∂
∂q

+ q ∂
∂ q

+ ∂
∂t

⎡

⎣
⎢

⎤

⎦
⎥
∂ f
∂q

= d
dt

∂ f
∂q

  (7.3.8)

Therefore the first term of (7.3.7) integrates out and vanishes at the end points according to (7.3.2). All that is left 
is inertia times velocity variation squared which is non-negative. 

   
   
δ S p

(2) = dt
t0

t1
∫

1
2
∂2L
∂ q2

δ q( )2 = dt
t0

t1
∫

I(q)
2

δ q( )2 ≥ 0      (7.3.9)

The GCC second variation is the following and should be positive-definite, too. (See exercises)

HarterSoft –LearnIt©2013                                                          Chapter 3 Hamilton’s  Principles   12



    
   
δ S p

(2) = dt
t0

t1
∫

1
2
γ µνδ q

µδ qν ≥ 0       (7.3.10)

If kinetic energy is positive, i.e., all eigenvalues of γµν are positive definite, there follows Hamilton's least action 
principle; principle action Sp is minimum for classical paths no matter how negative may be the potential energy 
functions if they are continuous differentiable functions.

(a) Geodesic curves
 If no potential is present (V=0) then the Lagrangian L=T-V is reduced to its kinetic part alone.

   
   
L = T = 1

2
γ µν q

µ qν = 1
2

m ds
dt

⎛
⎝⎜

⎞
⎠⎟

2

    (for :  V = 0)      (7.3.11)

The GCC expression (3.7.4) or (3.9.10d) is given with the single-particle KE=mv2/2. With no potential or explicit 
time dependence, a Lagrangian is also a Hamiltonian and is constant. (Recall (3.12.6).) 
    L = H = T = E = const.  (for:  V=0)    (7.3.12)
This implies that the speed   v = s  is constant for a single particle on any coordinate manifold.

   
   
v = ds

dt
= s = const.    (for :  V = 0)        (7.3.13)

The (V=0) principle action integral Sp can be written a number of ways for constant speed v.

  
   
S p = 1

2
dt

t0

t1
∫ γ µν q

µ qν = m
2

dt
t0

t1
∫

ds
dt

⎛
⎝⎜

⎞
⎠⎟

2

= mv2

2
dt

t0

t1
∫ = mv

2
ds

s0

s1
∫     (7.3.10)

Hamiltion's least-action principle demands minimum time ∫dt and minimum distance ∫ds for all paths on a 
GCC manifold if no potential or forces other than coordinate constraints are present. Curves of minimum time are 
called tautochrones and curves of minimum length are called geodesics.
 The geodesic equations are simply the force-free Riemann's equation (3.10.10).

    
  
qk + Γmn

k qm qn = 0      (7.3.11a)

As discussed in Ch. 3, these are the Euler-Lagrange equations in GCC form. They correspond to zero intrinsic 

derivative equations for momentum pµ=   q
µ  and pµ according to (3.10.11a-b).

  
   

δ pk

δ t
=0 = pk + Γmn

k pm qn = qk + Γmn
k qm qn    (7.3.11a)

  
   

δ pk
δ t

=0=pk − Γ kn
m pm q

n       (7.3.11c)

 Examples of surface geodesics are shown in Fig. 7.3.2 for a circular cone and paraboloid. The curvature 
of the surface causes a particle or a light ray to curve around the symmetry axis of these figures. Often, these are 
used as analogies for gravitational attraction in a curved space-time continuum. Fig. 7.3.2a has been used as a 
model for a "cosmic string" in which a dense line of matter or ant-matter distorts a flat-space vacuum. However, 
there are serious objections to such analogies some of which are brought up in the exercises. We imagine Fig. 
7.3.2a as a model for an outer-space bowling alley having an automatic ball-return! (See Exercises 5.2.4 and 
5.2.5 in Unit 5.)
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(a)

(b)

 Fig. 7.3.1 Geodesic curves on curved surfaces. (a) Circular Cone.  (b) Circular Paraboloid.
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Geodesics for the paraboloid is analyzed in cylindrical coordinates (ρ,φ,z).
     x=ρ cos φ,  y=ρ sin φ,  z= q+ρ2  
The resulting Jacobian and covariant unitary vectors are from (3.7.2).

    

   

∂x
∂ρ

∂ y
∂ρ

∂z
∂ρ

∂x
∂φ

∂ y
∂φ

∂z
∂φ

∂x
∂q

∂ y
∂q

∂z
∂q

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

cosφ sinφ 2ρ

−ρ sinφ ρ cosφ 0

0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

→ Eρ

→ Eφ

→ Eq

    (7.3.12) 

The covariant metric coefficients follow from (3.x.x).

  

   

Eρ •Eρ = gρρ Eρ •Eφ = gρφ Eρ •Eq = gρq

Eφ •Eφ = gφφ Eφ •Eq = gφq

Eq •Eq = gqq

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
1+ 4ρ2 0 2ρ

0 ρ2 0
2ρ 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   (7.3.13)

This gives a kinetic energy and (for V=0) a Lagrangian. We constrain the q-terms in braces{} to zero.

   
   
T = L = 1

2
γ µν q

µ qν = m
2

1+ 4ρ2( ) ρ2 + m
2
ρ2 φ2 + m

2
2ρ q φ + q2{ }    (7.3.14)

Two canonical momenta pρ and pφ are left. Cylindrical symmetry conserves azimuthal momentum pφ=. Also, 
Hamiltonian T=H is conserved (H=ε) since it has no explicit time dependence.

   
   
T = L = H = m

2
1+ 4ρ2( ) ρ2 + 2

2mρ2
= ε = const.      (7.3.15a)

 where:  
   
pρ = ∂L

∂ ρ
= m 1+ 4ρ2( ) ρ  (7.3.15b) 

   
pφ = ∂L

∂ φ
= mρ2 φ2 =  = const.    (7.3.15c)

Radial momentum varies according to Lagrange-Riemann equations

   
   
pρ = m 1+ 4ρ2( ) ρ + 8mρ ρ = ∂L

∂ρ
= 4mρ ρ2 − 

2

mρ3
     (7.3.16)

The direct quadrature integral solution of (7.3.15a) is the following.

   

   

ρ dρ∫
1+ 4ρ2

2ε
m

ρ2 − 
2

m2

= dt∫

(b) Tautochrone-brachistichone curves
 Perhaps no minimization problem is older or more famous than the brachistichone or minimum-time 
curve for a particle falling in a uniform gravitational potential. Its solution is the same as that of another problem, 
the tautochone or equal-time period curve which Huygens sought for much of his life. Energy conservation gives 
velocity v from gravitational g.

     
  
ds
dt

= v = 2gy         (7.3.17a)

The elapsed travel time which we seek to minimize is the following.
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t = dt∫ = ds

2gy
∫ = dx

1+ ′y 2

2gy
= dy 1+ ′x 2

2gy
∫∫      (7.3.17b)

Let us try Solution 4 of (7.2.11) ; a pseudo-momentum px for a y-integral which has no x dependence.

   

  

px = const. = ∂
∂ ′x

1+ ′x 2

2gy
,       where: ′x = dx

dy
= 1

′y

                  = ′x

1+ ′x 2 2gy
= 1

′y 2 +1 2gy

     (7.3.18a)

Changing variables from y to velocity v using (7.3.17) simplifies the equation.

     
  
v2 = 2gy,              dy = vdv

g
,              ′y = v

g
dv
dx

     (7.3.18b)

    
  

px
2 ′y 2 +1( )2gy = 1=

px v2

g
dv
dx

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+ px
2v2       (7.3.18c)

An elementary integral results and suggests an elementary substitution v=a cosθ.

    
  

v2dv

g a2 − v2
∫ = dx∫  ,  where: a2 = 1 / px

2       (7.3.19)

Setting v=a cosθ immediately yields solutions for both x and y in terms of an angle parameter θ.

   

  

v2 = 2gy = a2 cos2 θ  ,  dv = −a sinθ dθ

y= a2

2g
cos2 θ ,              x = - a2

g
cos2 θ dθ∫ = - a2

2g
1+cos2θ( )dθ∫

y = R 1+cos2θ( ) ,         x = -R 2θ+sin2θ( )     where: R = a2

4g
 

    (7.3.20)

The result (7.3.20) is a cycloid made by a point on a wheel rolling on a ceiling as shown in Fig. 7.3.3.

-3-2-1123X

1

2 Y

R

R

x=2Rθ
φ=2θ

m (φ=π)
(θ=π/2)

(φ=−π)
(θ=−π/2)

(φ=0=θ)

0

  Fig. 7.3.3 Right cycloid generated by a circle rolling below y=0.

The angle φ=2θ of wheel rotation is positive (counter-clockwise) in Fig. 7.3.3 so the wheel contact point on the 
ceiling line y=0 translates right by x =-Rφ along the line as the wheel rolls without slipping on it. (The coordinate 
system suggested by (7.3.20) is inverted; +X is to the left and +Y is down.)
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 Some extraordinary properties of the cycloid (7.3.20) are due to the invariant px in (7.3.18a).

    
  

1
px

2
= const. = 2gy ′y 2 +1( ) = v2 sec2 θ = a2       (7.3.21)

Here v=a cos θ was used again. Rewriting velocity v using time derivatives yields an expression.

 
   
v2 = x2 + y2 = φ2 R + R cosφ( )2 + −R sinφ( )2⎡

⎣⎢
⎤
⎦⎥
= 2R φ2 1+ cosφ( ) = 4R2 φ2 cos2 θ   (7.3.22)

Comparing this to v=a cos θ leads to the remarkable result that the circle turns at a constant angular frequency  φ

= ω and rolls along at a constant linear velocity ωR. (See Exercise 3.8.1.)

    
   

1
px

= a = 4gR = 4R φ = 8R θ ,      or: ω= φ = g
4R

     (7.3.23)

This in turn gives a simple formula for the arc length of the cycloid from bottom (θ=0) to angle θ<π/2.
   

   
s = v dt0

t∫ = 4Rω cosθ dt0
t∫ = 4R ω / θ( )cosθ dθ =0

θ∫ 4R sinθ       (7.3.24)

Arc length s is indicated by a segment hh of length 2h = 4R sin θ in Fig. 7.3.4. 

(c) Huygen's pendulum
 Note the segment hh between points m' and m" acts like a flexible wire attached to an ascending point m" 
and tangent to its cycloid as shown in the upper right hand portion of Fig. 7.3.4. The hh wire is unwinding from 
the m" cycloid while its descending end-point m' generates another similar cycloid curve. The tangent to the m' 
cycloid, in turn, is a similar wire segment h'h' of length 2h'= 4R cos θ which is attached to the original mass point 
m and winding onto the m' cycloid as shown in the bottom right hand portion of Fig. 7.3.4. This generates the 
original m cycloid as points m and m" execute identical motions and take turns with the point m'. (When  m and 
m" are near the top of their cycloid m' is near its bottom and vice-versa.) Total top-to-bottom arc length is 4R 
according to (7.3.24) and holds for each cycloid.
 The segment hh is the radius of curvature rc(m') =2h= 4R sin θ  of the m' cycloid and the points m' or m" 
are centers of curvature for circular arcs around unwinding points m" or m', respectively. Segment h'h' is the 
radius of curvature rc(m) =2h'= 4R cos θ of the m cycloid whose center of curvature is at the point  m'. The three 
wheels roll synchronically on their ceilings. As point m approaches the top of a cycloid point m' approaches m so 
that curvature becomes infinite.    ( k=1/rc→∞ as θ→π/2.)
 Fig. 7.3.4 shows examples of circular arcs fitting a cycloid. The largest arc and one with the least 
curvature kc =1/(4R) is a circle of radius rc =4R that surrounds the entire cycloid. This is the path of a simple 
circular pendulum. The figure shows that the circle deviates only slightly from the cycloid with the greatest 
deviation near the tips of the cycloid where curvature blows up.
 The constructions sketched in Fig. 7.3.4 are part of what is known as a Huygen's pendulum. The cycloid 
pendulum represents one of the great achievements of a preeminent 17th century physicist, Christian Huygens 
who spent much of his life trying to improve the quality of astronomical pendulum clocks. The use of a cycloid to 
"pinch" the fulcrum was only realized late in Huygen's lifetime. Before that he had achieved considerable 
improvement using a pair of circles; not a bad approximation as we have noted.
 The cycloid path has the unique ability to guarantee the same frequency ω = √(g/4R)  for any amplitude 
θ0 of oscillation within the range {-π/2<θ0<π/2} between cycloid tips. The circular pendulum frequency ω = √
(g/) holds for small amplitudes θ<<1 but degrades at large amplitudes. The time integral (7.3.17b) is modified 
for arbitrary θ0 {-π/2<θ0<π/2}.
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t1/ 4 = ds

2g y − y0( )s0
0∫ = 4R cosθ dθ

2gR cos 2θ − cos 2θ0( )0
θ0∫ = 4R

g
cosθ dθ

sin2 θ0 − sin2 θ
0
θ0∫   (7.3.25a)

Arc length s=4R sin θ (7.3.24) and cycloid height y=R(1+cos2θ) are used. Let: sin θ= sin θ0 sin α. 

   
  

t1/ 4 = 4R
g

sinθ0 cosα dα

sinθ0 1− sin2 α
0
α =π / 2∫ = π

2
4R
g

       (7.3.25b)

A cycloid has a full period of t1=2π√/g for all θ0. It matches a simple (=4R)-pendulum for θ0<<1.

 

1

2

X

Y

h'=2R cos θ
h'

h'm

m'

h

h

h =2R sin θ

φ=2θ

φ/2= θ

θ

m''

Fig. 7.3.4 Cycloid paths generated by a wires unwinding from similar cycloids.

 

3

4

X

Y

2

1

0
4R

Fig. 7.3.5 Cycloid path of Huygen's pendulum compared to that of simple circular pendulum.

HarterSoft –LearnIt©2013                                                          Chapter 3 Hamilton’s  Principles   18



Chapter 7.4 Curve Families and Contact Relations
 The following begins with a review of functional optimization and contact relations introduced in Ch. 12 
of Unit 1. The example used there and sketched again below is an ancient artillery problem: What launch angle 
α gives maximum range? Nowadays high-speed computers let us optimize functions of many variables using a 
"brute-force" or "Monte-Carlo" approach of trial and error as sketched in Fig. 7.4.1 below that tries over sixty 
values of angle α between 0° and 360°. This is an example of a family of trajectories or curve family.

α=45°
V0

       Fig. 7.4.1 Family of trajectories with fixed initial velocity v0 and varying launch angle α.
        
 Each of the curves share something in common (Here all have the same initial v0.) while differing in 
other ways. (Here the distinguishing variable is initial angle α of launch.) A key feature of Fig. 7.4.1 is the 
dashed enveloping arch or contacting envelope function of the curve family of solutions x(t) =(x(t), y(t)) to the 
elementary trajectory equation   x = −g  for constant gravity g=-gey. 

 The initial conditions of position are x(0)=0=y(0) while initial velocity components are as follows
    

   
x 0( ) = vx 0( ) = v0 cosα ,         y 0( ) = vy 0( ) = v0 sinα .  (7.4.1)

The time solutions are the integrals of the trajectory equation 
   
x, y( ) = 0,−g( )  subject to initial values.

    
  
x t( ) = v0 cosα( ) t ,         y t( ) = v0 sinα( ) t − 1

2
gt2 .   (7.4.2)

Eliminate time t=x/(v0 cos α) using the x-solution. An individual trajectory y(x) curve function results.

    
  
y x( ) = v0 sinα

v0 cosα
x − gx2

2v0
2 cos2 α

.     (7.4.3)

 Each trajectory is the zero value of a Contact Generating Function S(v0, α : x, y) as follows. 

    
  
S v0 ,α :x, y( ) = − y + x tanα − gx2

2v0
2 cos2 α

= 0 .   (7.4.4)

In other words, S(v0, α : x, y) maps each initial value point (v0, α) in Fig. 7.4.2 onto a complete trajectory curve 
y(x). A horizontal line of points (same v0 but differing α) gives the v0-family of trajectories.
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0=S(v0, α , : x, y)

x

y
v0

α= 45°

Contact points

α
       Fig. 7.4.2 Generating function maps trajectories with fixed initial velocity v0 and varying launch angle α.

 The contact points between the individual family member trajectories and their family boundary 
represent a kind of extreme. Contact points are where the generating function value is least sensitive to a change 
in the angle α. More precisely, they are points of zero first α-derivative; no first-order change.

     
  

∂S v0 ,α :x, y( )
∂α

= 0      (7.4.5a)

      
  
x ∂ tanα

∂α
− gx2

2v0
2
∂ cos−2 α

∂α
= 0 = x

cos2 α
− gx2

2v0
2

2sinα
cos3α

  (7.4.5b)

Solving this equation relates the x-value and the α-value of each contact point for a given v0.

       
  
tanα =

v0
2

gx
 ,    or:             x =

v0
2

g tanα
 .    (7.4.5b)

Substitution of this relation into generating function (7.4.4) yields a contact envelope function.

  

  

y x( ) = x tanα − gx2

2v0
2

1+ tan2 α( )   ⇒   y x( ) = x
v0

2

gx
− gx2

2v0
2

1+
v0

4

g2x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                                     =
v0

2

2g
− gx2

2v0
2

. (7.4.6)

This is the dashed parabolic curve contacting all parabolic family curves in Fig. 7.4.1 and Fig. 7.4.2. 
Coincidentally, it also has the shape of the (α =0)-trajectory that is sketched in Fig. 7.4.1. Often a contact 
function for a family of trajectories is itself a possible trajectory though usually not actually a family member.
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(a) Contact transformations
 The transformation shown in Fig. 7.4.2 of a line in (v0, α)-space to a curve in (x,y)-space is an example 
of a contact transformation. A generic contact transformation is indicated in Fig. 7.4.3 below. 

      

(a) y

xx0 x1 x2

(x0,y(x0))

y(x)
(b) Y

XX0 X2X1

(X0,Y(X0))

Y(X)

S(x2,y2,X,Y)=10

S(x1,y1,X,Y)=10

S(x0,y0,X,Y)=10

 Fig. 7.4.3  Geometry of a general contact transformation y(x)-->Y(X).

 As in Fig. 7.4.2 there is one curve S(x,y : X,Y)=const. in the XY-space for each point (x,y) on the curve y
(x) in xy-space. The envelope(s) or contacting curve(s) Y(X) are the desired contact transformation of the curve y
(x). 
 Each point (x0, y(x0)) is mapped onto a contact point (X0, Y(X0)) in the XY-space. At such points, the 
values of the generator S(x,y : X,Y) are least sensitive to changing the original point x0. In Fig. 7.4.3, a small 
change in x0 causes the S=const. curve to slide a little along the Y(X) envelope but this does not cause the 
contact point (X0, Y(X0)) to stray from the sliding curve, at least at first. Hence, to first order 

     

  

∂S x, y(x) : X ,Y( )
∂x

x= x0

= 0 .     (7.4.7a)

Note that contact transformations are a two-way deal; each point (X0, Y(X0)) generates a tangent curve (not 
shown in Fig. 7.4.3a) to the y(x) curve at (x0, y(x0)), and the following equation is applicable, too.

     

  

∂S x, y : X ,Y ( X )( )
∂X

X = X0

= 0      (7.4.7b)

(b) Legendre transformations
 One kind of contact transformation is a Legendre transformation which uses straight lines, rather than 
curves, to contact its envelopes. (Recall in Sec. 1.12.) This is depicted in Fig. 7.4.4. Each xy-point (xj, y(xj)) 
maps to a line in XY-space with slope xj and Y-intercept -yj as generated by relation
      S(x,y : X,Y) = y + Y - xX = 0 .    (7.4.8)
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(a) y

xx0 x1 x2

(x0,y(x0))

y(x)

(b) Y

XX0 X2X1

(X0,Y(X0))

Y(X)

Y=x0X-y(x0)
Y=x1X-y(x1)

Y=x2X-y(x2)

-y(x2)
-y(x1)
-y(x0)

  Fig. 7.4.4  Geometry of a Legendre contact transformation y(x)-->Y(X).

 Derivative relations (7.4.7) combine with the generator to locate contact points.

   
  
Y = xX − y  where: ∂S

∂x
= 0 ⇒ X = ∂ y

∂x
 , and ∂S

∂X
= 0 ⇒ x = ∂Y

∂X
  (7.4.9)

Legendre transformation between Lagrangian y(x)=L(  q ) and Hamiltonian Y(X)=H(p) is as follows.

   
   
H = qp − L  where: ∂S

∂ q
= 0 ⇒ p = ∂L

∂ q
 , and ∂S

∂ p
= 0 ⇒ q = ∂H

∂ p
  (7.4.10)

L

q
q
0
q
1
q
2

(q
1
,L(q

1
))

L(q)

H

p
p
0

p
2

p
1

(p
1
,H(p

1
))

H(p)

H=q
1
p-L(q

1
)

-L(q
2
)

-L(q
1
)

-L(q
0
)

-H(p
1
)

L=p
1
q-H(p

1
)

(Slope = p1)

(Slope = q1)

  Fig. 7.4.5  Geometry of a Legendre  transformation of Lagrangian L to Hamiltonian H.
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 The slope of the H versus p curve is the velocity   q  in agreement with Hamilton's equations. In quantum 

theory, the Hamiltonian or energy E=H corresponds to frequency (E=ω by Planck's axiom.) while momentum 
p corresponds to wavevector (p=k by DeBroglie's formula.) An ω versus k curve is called a dispersion function 

and its slope or derivative 
 
dω
dk

 is the wave group velocity 

     
 
dω
dk

= Vgroup.       (7.4.11)

Vgroup is also the classical particle velocity   q  according to the preceding relations. On the other side of Fig. 

7.4.5, the slope p of the Lagrangian curve is inversely related to the wave phase velocity 
     Vphase = ω /k.      (7.4.12)
 Note that the Legendre transformation of the Lagrangian and the Hamiltonian has the form of the 
Poincare' relation first seen in Chapter 1 (equation (1.12.11)) Chapter 2 (equation (2.6.9b))) and in Chapter 3 
(equation  (3.8.5)).
    L  = p   q  - H   , or:      H  = p   q  - L  

For multiple coordinate dimensions it takes the generalized coordinate form.
    L  = pm   q

m - H   , or:      H  = pm   q
m - L  

The effect of the other dimensions on Fig. 7.4.5 is simply to move the position of the intercept origin downward 
or, equivalently, shift the contacting curves upward.
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Chapter 7.5 Action: Generators of Active Contact Transformations
 The Hamilton principle action Sp can be viewed as a bi-variant functional Sp(r0, t0 : r1, t1) of an initial 
space-time point (r0, t0) and a final space-time point (r1, t1) as well as the r(t) between them.

    
    
S p (r0 , t0  : r1, t1) = dt

t0

t1
∫ L r t( ) , r t( ) , t( )    (7.5.1)

As such, it is the generating function of the contact transformation to end all contact transformations; it is the 
prime mover of the entire classical mechanical universe! Given (r0, t0) one finds (r1, t1).
 It is customary to distinguish active transformations, that is, ones which move or change the state of 
actual physical objects, from passive transformations, that is, ones which merely re-label an object or state 
without actually changing it. If so, then a transformation of a system from one point (r0, t0) in space-time to 
another point (r1, t1) (presumably later but not necessarily so!) is definitely an active one. The contact 
transformation generated by Sp(r0, t0 : r1, t1) certainly is active, and so, perhaps, this is the reason we call the 
active generating function Sp by the name action. 
 Later, we shall consider other generating functions, usually labeled by the letter F, which generate 
passive or change-of-variable transformations. Legendre transformation is an example. A passive generator 
merely dresses up physics in different clothing, so one might see F called fashion or passion if classical 
mechanics had a sense of humor. Unfortunately, they usually don't so one usually won't.

(a) Hamilton's characteristic action
 A second type of action is known as Hamilton's characteristic action SH or reduced action.

     
   
SH (r0  : r1) = p • dr

r0

r1
∫     (7.5.2a)

Reduced action is a spatial integral of phase-space area pm dqm=pm   q
m dt and a time integral of the sum of the 

Hamiltonian H and Lagrangian L according to the Poincare' relation L dt = pm dqm - H dt.

   
    
SH (r0  : r1) = p • r

t0

t1
∫ dt = H + L( )

t0

t1
∫ dt = 2 T

t0

t1
∫ dt    (7.5.2b)

The final integral over kinetic energy T results if the Hamiltonian can be written H=T+V so it cancels the 
potential V in the Lagrangian L=T-V. Poincare' relation between the actions Sp and SH  is given.

  

   

S p (r0 , t0  : r1, t1) =   p • dr
r0

r1
∫    − dt

t0

t1
∫ H

                            = SH (r0  : r1) − t1 − t0( )E      for: H = E = const.( )
 (7.5.3)

A Hamiltonian with no explicit t-dependence is a constant of motion as given in the last line. Then the two 
kinds of action differ only by a product of energy and elapsed time. Variation of functional SH  is done by fixing 
total energy E and varying only the spatial trajectory path y(x) between its end points r0 and r1 as sketched in 
Fig. 7.5.1. Keeping E fixed makes time end point t1 vary with different paths..
 Imagine that path r or y(x) is a flexible frictionless tube whose shape is bent to y(x)+Δψ(x) or r+Δr in 
Fig. 7.5.1. With each variation function Δy(x) the particle is shot with energy E into the r0 end and forced 
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(Constrained is a better word, perhaps!) to go along a new tube but come out at the same x1 end point. Since E 
is constrained to be constant, different paths may have different travel times t1+Δt as indicated in Fig. 7.5.1. 
Compare to Fig. 7.3.1 in which the particle is constrained and forced to finish at the same time with each 
variation δy.
 We ask, "What is special about a natural path (or paths), that is, a path r or y(x) which happens on its 
own without needing a flexible tube to constrain its journey from r0 to r1 ?" 

Coordinate
Space (x,y)

y(t) Trajectories

x(t) Trajectories

r

y(t)

x(t)

r+Δr

y(t)+Δy(t)

x(t)+Δx(t)

t=t
0

t=t1+Δt
x

y

t
t=t1

=y(t1+Δt)+Δy(t1+Δt)

y(t1)

=x(t1 +Δt)+Δx(t1 +Δt)
x(t1 )

r0

r1

 Fig. 7.5.1 Variation of paths and time trajectories for evaluating Hamilton's characteristic action SH.

First order variation ΔS(1)H  is like δS(1)p in (7.3.5a) but it has extra terms for time "tardiness" Δt.

 

   

ΔSH
1( ) = SH

1( )(q + Δq) − SH (q) = dt
t0

t1+Δt
∫ L(q + Δq) + H (q + Δq)⎡⎣ ⎤⎦ − dt

t0

t1
∫ L(q) + H (q)⎡⎣ ⎤⎦

                                             = dt
t0

t1
∫

∂L
∂qµ

− d
dt

∂L
∂ qµ

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Δqµ + ∂L

∂ qµ
Δqµ t1( ) + HΔt + LΔt

(7.5.4a)
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The first-order approximation drops all second-order (or higher) terms such as (Δq)2 or Δq Δt or (Δt)2. A parts 
term Δqµ(t1) does not vanish as it did in (7.3.2). Instead, as in Fig. 7.5.1, the following holds.

    

  

qµ t1( ) =    qµ t1 + Δt( )       + Δqµ t1 + Δt( )
         ≅ qµ t1( ) + ∂qµ

∂t
Δt    + Δqµ t1( ) + ...

   

or     
   
Δqµ t1( ) ≅ − ∂qµ

∂t
Δt + ... ≅ − qµΔt     (7.5.4b)

This gives zero first-order variation if Lagrange equations and the Poincare' identity hold.

  
   
ΔSH

1( ) = dt
t0

t1
∫

∂L
∂qµ

− d
dt

∂L
∂ qµ

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Δqµ − ∂L

∂ qµ
qµΔt + HΔt + LΔt = 0   (7.5.4c)

Thus action SH is stationary like Sp (In fact, both are minimum.) for a naturally occurring path.
(b) Hamilton Jacobi equations
 The Poincare' identity gives the following differential relation for actions Sp  and SH.
    dSp = L dt = pm dqm - H dt = dSH - H dt     (7.5.5a)
Expressing this as a first differential with respect to coordinate and time end points gives

   
 
dS p =

∂S p

∂qµ
dqµ +

∂S p

∂t
dt ,   

 
dSH =

∂SH

∂qµ
dqµ  (7.5.5b)

where

  
 

∂S p

∂qµ
= pµ =

∂SH

∂qµ
 ,  (7.5.5c)   

 

∂S p

∂ t
= −H ,  (7.5.5d)

lead to what are called the time-dependent Hamilton-Jacobi equations. This is certainly a most advanced and 
esoteric form of Newton's equations; it reduces to a non-linear partial differential equation. 

  
  
−
∂S p

∂ t
= H p1, p2 ,..;q1,q2 ,...( ) = H

∂S p

∂q1
,
∂S p

∂q2
,..;q1,q2 ,...

⎛

⎝
⎜

⎞

⎠
⎟    (7.5.5e)

The characteristic action SH satisfies the following time-independent Hamilton-Jacobi equation .

  
  
const. = E = H p1, p2 ,..;q1,q2 ,...( ) = H

∂SH

∂q1
,
∂SH

∂q2
,..;q1,q2 ,...

⎛

⎝
⎜

⎞

⎠
⎟   (7.5.5f)

Recall (7.5.3):    Sp =SH - H t   (7.5.5g)   or:    SH = Sp + H t   (7.5.5h)

(c) Example of H-J equations: Elementary trajectories
 A quick way to see both utility and limitations of Hamilton-Jacobi theory is to return to the simple 
trajectory problem which began in Sec. 7.4. It will be evident that its power is not in the derivation of solutions 
to equations of motion. Quite the opposite, H-J theory is most often practically useless for individual trajectory 
analysis even for the sophomoric example we will consider first. The job of trajectory analysis is best handled 
by ordinary differential equations of Newton, Lagrange, Riemann, Euler or Hamilton as described in Units 2-3. 
H-J equations are partial differential equations that only seem to make simple problems into difficult ones or 
difficult problems impossible!
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 Rather, the H-J equation is appropriate for organizing and exposing properties of various families of 
trajectories. Since quantum theory, due to its inherent uncertainty, forces us to deal with such families, one 
hopes H-J theory may relate classical mechanics to quantum wave mechanics.
 Here the uniform gravitational trajectory Hamiltonian is 
     E = H = (px2 + py2)/2m + mgy .    (7.5.6)
The time-independent H-J equation is from (7.5.5e); the time-dependent H-J equation is from (7.5.5f).

  

  

1
2m

∂S p

∂x

⎛

⎝
⎜

⎞

⎠
⎟

2

+
∂S p

∂ y

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+ mgy = −

∂S p

∂t
,         

  

1
2m

∂SH
∂x

⎛

⎝⎜
⎞

⎠⎟

2

+
∂SH
∂ y

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+ mgy = E = const.

     (7.5.7a)      (7.5.7b)
As is usual for partial differential equations, we attempt solution by separation of variables.
     SH(x,y) = sx(x) + sy(y)      (7.5.8a)
     Sp(x,y,t) = sx(x) + sy(y)+ st(t)     (7.5.8a)
The Sp separation is guaranteed by (7.5.5g) with st(t) = - H t if the SH separation splits as follows.

   
  

−1
2m

dsx (x)
dx

⎛

⎝⎜
⎞

⎠⎟

2

+ E = 1
2m

dsy ( y)

dy

⎛

⎝
⎜

⎞

⎠
⎟

2

+ mgy     (7.5.9)

Isolation of independent variable x and y on the left and right, respectively, means either side is constant.

   
  

−1
2m

dsx (x)
dx

⎛

⎝⎜
⎞

⎠⎟

2

+ E =  
  
ε y = 1

2m
dsy ( y)

dy

⎛

⎝
⎜

⎞

⎠
⎟

2

+ mgy = const.   (7.5.10a)

      
  
εx = 1

2m
dsx (x)

dx
⎛

⎝⎜
⎞

⎠⎟

2

   where: E = ex + ey  (7.5.10b)

 This is an example of classical separability of a system into two dimensions or "normal modes" that do 
not share energy. Such separation is not guaranteed, but when it is possible it is a very important property and 
technique. For this problem, it recapitulates the old saw that rifle bullets fired horizontally or dropped vertically 
hit the ground simultaneously. (Actually, this is baloney unless you are on the moon! Aero-dynamic forces on a 
hundred-mile-per-hour objects are enormous, unpredictable, and capable of coupling dimensions x, and y as 
well as z.)
 The separated ordinary differential equations (7.5.10) are solved by conventional integration.

   
   
sx x( ) = 2mεx x1 − x0( ) = mx0 x1 − x0( )     (7.5.11a)

   
   

sy y( ) = −1
3m2g

2m ε y − mgy( )⎡
⎣

⎤
⎦

3
2

y1

y0
= −m

3g
y1( )3 − y0( )3⎡

⎣⎢
⎤
⎦⎥

  (7.5.11a)

Here the conventional velocity-momentum-energy relations peculiar to this system are used.

     
   
px = mx = 2mεx( )

1
2      (7.5.11c)

     
   
py = my = 2m ε y − mgy⎡

⎣
⎤
⎦( )

1
2     (7.5.11d)
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Time-dependent action in terms of travel time T = t1 - t0 follows from (7.5.5.g) and the above. 

   
   
S p = SH − ET = mx0 x1 − x0( ) − m

3g
y1( )3 − y0( )3⎡

⎣⎢
⎤
⎦⎥
− ET   (7.5.12)

The remainder of this discussion will revolve around rewriting the action in terms of different variables.
 Doing this uses individual trajectory equations, something that tends to get lost in the H-J theory.
     x1(T ) = x0 + x0T   (7.5.13a)    x1(T ) = x0    (7.5.13b)

  
   
y1(T ) = y0 + y0T − g

2
T 2  (7.5.13c)    y1(T ) = y0 − gT   (7.5.13d)

Putting    y1  from (7.5.13b) and energy E from (7.5.6) into (7.5.12) 

 

   

S p = mx0 x1 − x0( ) − m
3g

y0 − gT( )3 − y0( )3⎡
⎣⎢

⎤
⎦⎥

                     − ET

    = mx0 x1 − x0( ) − m
3g

−3gT y0( )2 + 3 gT( )2 y0 − gT( )3⎡
⎣⎢

⎤
⎦⎥
− mT

2
x0( )2 + y0( )2 + 2gy0

⎡
⎣⎢

⎤
⎦⎥

    = mx0 x1 − x0( ) +       mT y0( )2    − mgT 2 y0 + mg2T 3

3
 −

mT x0( )2
2

−
mT y0( )2

2
− mgTy0

    =
mT x0( )2

2
      +     

mT y0( )2
2

   − mgT 2 y0 + mg2T 3

3
 − mgTy0

The last step uses x-time solution (7.5.13a).        (7.5.14)
     

   
x1 − x0( ) = T x0

Result (7.5.14) is explicitly a function of elapsed time T and initial coordinate and velocity values. It could be 
obtained by direct integration using the fundamental definition Sp = ∫Ldt of action. However, such an expression 
lacks the functional dependence on initial and final coordinate and time values needed to make a true generating 
function Sp(r0,t0 : r1,t1)=Sp(x0,y0,0 : x1,y1,T). The x and y-time solutions (7.5.13) give velocity in terms of 
position interval r1-r0 and time interval T= t1 - t0.

   
   
x0 =

x1 − x0( )
T

 ,    
   
y0 =

y1 − y0
T

+ g
2

T

 
  
S p =

m x1 − x0( )2
2T

+
m y1 − y0 + g

2
T 2⎛

⎝⎜
⎞
⎠⎟

2

2T
− mgT 2 y1 − y0

T
+ g

2
T

⎛

⎝⎜
⎞

⎠⎟
+ mg2T 3

3
− mgTy0

This expands to the following.

  
S p =

m x1 − x0( )2
2T

+
m y1 − y0( )2

2T
+ mgT

2
y1 − y0( ) + m g2T 3

8
− mgT y1 − y0( ) − mg2T 3

2
+ mg2T 3

3
− mgTy0 Finally, there emerges a 

simplified time-dependent generating function Sp, the principle action.

  
  
S p =

m x1 − x0( )2
2T

+
m y1 − y0( )2

2T
− mgT

2
y1 − y0( ) − mg2T 3

24
− mgTy0  (7.5.15)

 It is instructive to check the partial and total time derivatives of the principle action Sp. According to the 
fundamental definition of Sp = ∫Ldt , its total derivative should equal the Lagrangian function.
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dS p r0 ,0 : r1 T( ) ,T( )
dT

= L      (7.5.16)

But, its partial derivative should equal the negative Hamiltonian according to the H-J equation (7.5.5d)

    
   

∂S p r0 ,0 : r1,T( )
∂T

= −H      (7.5.17)

To check the total derivative we differentiate the expression (7.5.14) and compare using (7.5.13).

  

   

dS p

dT
=

m x0( )2
2

+
m y0( )2

2
− 2mgTy0 + mg2T 2 − mgy0

        =
m x1( )2

2
+

m y1( )2
2

− mgy1 = L at time:t1 = T( )
           (7.5.16)example

To check the partial derivative we differentiate the expression (7.5.15) and compare using (7.5.13).

  

   

∂S p

∂T
= −

m x1 − x0( )2
2T 2

−
m y1 − y0( )2

2T 2
− mg

2
y1 + y0( ) − mg2T 2

8

        = −
m x0( )2

2
−

m y0( )2
2

− mgy0 = −H at time:t0( ) = −H at time:t1( )
     (7.5.17)example

 An expression similar to (7.5.15) for the characteristic action SH  is the following.

   
  
SH =

m x1 − x0( )2
T

+
m y1 − y0( )2

T
+ mg2T 3

12
   (7.5.18)

However, SH(x0,y0 : x1,y1) is supposed to be explicitly energy dependent and time independent. Usually there is 
not a convenient expression for time T in terms of total energy E and end points (r0: r1), and this makes elegant 
and concise analytic expressions of action difficult or impossible. Even for this sophomoric trajectory problem 
we have pages of algebra but still not a lot to show for it all! 
 Nevertheless, action Sp = ∫Ldt and SH = Sp + HT are quite easy to compute and graph numerically. One 
only has to follow trajectories of a given energy H and mark off values of action Sp or SH obtained by 
integrating along each path.This method is not so dependent on the analytic and algebraic concerns. 

(d) Example of H-J wavefronts: wave and particle velocity
 A path integration technique for solving H-J equations is called the method of characteristics. It was 
developed to solve partial differential wave equations by integrating along characteristic rays or directions of 
wave propagation. For the example considered here the rays are particle trajectories, that is, families of 
parabolic trajectories of a given initial energy such as were sketched in Fig. 7.4.1. According to the time-
independent H-J equation (7.5.5c) particle momentum is the gradient of SH . 

   
   
pµ =

∂SH

∂qµ
 ,           or:       p = ∇SH .      (7.5.19)

Examples of constant-SH  contours are shown in Fig. 7.5.2. They are constant-phase wavefronts for a time-
independent H-J "wavefunction" solution. The constant-SH contours are not to be confused with constant-time-
T contours that are descending circles shown in Fig. 7.5.3.
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 Fig. 7.5.3 shows how a swarm of classical particles behaves in this situation, while Fig. 7.5.2 is closer to 
an ultimate reality by approximating what quantum matter-waves do in the same situation. Fig. 7.5.3 seems 
quite natural and simple to us since we are mostly live in a classical world. There a circle of particles uniformly 
expands at velocity v0=1 m/s while uniformly accelerating downward at g=1m/s2. (The equivalence principle 
equates it to a constant v0-expansion in an inertial frame as viewed by someone on an elevator accelerating 
upward at g.) 
 As a result, the particles on the bottom of the circles in Fig. 7.5.3 always have a more negative velocity 
(by -2v0 ) than the particles on top, though each and every particle has the same negative acceleration. At time 
T=1 in Fig. 7.5.3, the downward drift of the circle just matches its expansion rate v0, and the top particles stop 
rising and start falling.
 The sequence of SH contours or action wavefronts in Fig. 7.5.2 can also be viewed as a sequence in time, 
but it is different from the classical trajectory swarm in Fig. 7.5.3. Consider principle action.

     Sp(0, 0 : r, t ) =
   
  p • dr

0

r
∫    − dt

0

t
∫ H = SH(0 : r) - Ht    

Here, energy H=E is assumed constant. If momentum is also constant then Sp reduces to 
     Sp(0, 0 : r, t ) = p•r - Ht = (k•r - ω t), 
which is the plane-wave quantum phase times Planck's angular constant =h/2π. It is the time dependent 
principle action contours which actually move at a speed equal to the quantum phase velocity

     
  
Vphase = dr

dt
= H

p
= ω

k
      (7.5.20a)

This follows by setting Sp=const. or 
       dSp(0, 0 : r, t ) = 0 = p•dr - Hdt .     (7.5.20b)
This is quite the opposite of classical particle velocity which matches the quantum group velocity 

     
  
Vgroup = dr

dt
= ∂H

∂p
= ∂ω
∂k

      (7.5.20c)

 Consequently, when the particle velocity or momentum p is highest the Sp phase velocity of the contours 
in Fig. 7.5.2 is slowest. High p in Fig. 7.5.2 means high gradient ∇SH = p so the SH  contours are closer 
together. An Sp front moves from one SH =n2π contour to the next SH =(n+1)2π contour at frequency ω=H/ so 
big p means slow going. Note that the lower regions of each contour in Fig. 7.5.2 moves much slower that the 
upper regions; quite the opposite of the classical swarm circles in Fig. 7.5.3. Two "cat ears" move down rapidly 
until, like Carroll's Cheshire cat, nothing remains but its smile! 
 When classical momentum approaches zero, as at the top of Fig. 7.5.3b, the Sp wave phase speed 
diverges to infinity. This is when two "cat ears" are created which race out along the top of the classical 
envelope in Fig. 7.5.2b. Soon, they too slow down as the classical momentum again picks up.
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(a) SH=0.3
(b) SH=0.35

(c) SH=0.4

(d) SH=0.9

∇∇SH=p

∇∇SH=p

 Fig. 7.5.2 Constant SH contours for iso-energetic trajectory family are normal to trajectory paths.
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(a) T=0.4 (b) T=1.0

(c) T=2.3

 Fig. 7.5.3 Constant travel-time-T contours for iso-energetic trajectory family are circles.
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Chapter 7.6 Time of Flight, Energy, and Action
 Action formalism is generally reluctant to yield convenient analytic expressions since action, by its 
fundamental definitions (7.5.1) and (7.5.2), is an accumulation or integration. Also, action Sp or SH has the units 
of Joule-seconds, that is, energy-time, so it is intertwined with two other extensive variables that are also based 
upon integration, work-energy E=H and period or time of flight T.
 Consider the time integrals of the form of the quadrature integrals first introduced in Units 2-3 (Equation 
(2.7.10b) or in (3.8.15)). Let a separable system have a conserved partial-Hamiltonian
    ε = h(q,p) = p2/2m + V(q) = const. ,    (7.6.1a)
for each canonical variable q, q',.., so the total Hamiltonian and energy is a sum of the separate parts.
   E = H(q, p, q', p', ...) = h(q,p) + h'(q',p') +.. = ε + ε' + ...    (7.6.1b)
Then the time-of-flight from q0 to q1 is an integral

   
   
T = t1 − t0 = dt

t0

t1
∫ = dq

q0

q1
∫

dt
dq

= dq
qq0

q1
∫      (7.6.2)

where Hamilton's equation gives velocity   q  in terms of momentum and conserved energy ε in (7.6.1).

   
   
q = ∂H

∂ p
= p

m
=

2m ε −V q( )⎡⎣ ⎤⎦
m

     (7.6.3)

The time-of-flight integral for coordinate q between q0 and q1 is as follows. 

   

  

T = t1 − t0 = m dq
pq0

q1
∫ = m dq

2m ε −V q( )⎡⎣ ⎤⎦q0

q1
∫     (7.6.4)

 The Hamilton characteristic or reduced action sh  has an integral related to the time integral.

   
  
sh q0 :q1( ) = p dq

q0

q1
∫ = dq 2m ε −V q( )⎡⎣ ⎤⎦

q0

q1
∫     (7.6.5a)

There is one such integral for each separable coordinate q, q',.... The total action is a sum of such integrals.

  

  

SH = sh q0 :q1( ) + ′sh ′q0 : ′q1( ) + ... = p dq
q0

q1
∫ + ′p d ′q

′q0

′q1
∫ + ... = pµ dqµ

q0
µ

q1
µ

∫
µ
∑  (7.6.5b)

Each sh is related by ε-derivative to its corresponding time of flight integral T, T',... for each q.

  
  

∂SH
∂ε

=
dsh
dh

= T  ,   
∂SH
∂ ′ε

=
d ′sh
d ′h

= ′T  , ....   or:       
∂SH
∂εµ

=
dsh

µ

dhµ
= T µ   (7.6.5c)

This is a general result based on a time-to-energy change of variable in each one-dimensional integral. 

   

 

T = dt∫ = dq
dq
dt

∫ = dq
dh
dp

∫ = dq dp
dh∫ = d

dh
p dq∫ =

dsh
dh

   (7.6.6)

It is consistent with Poincare' relation sh = sp + h t in (7.5.5h) since sp is independent of energy h=ε.

(a) Quantum wave fronts vs. classical 
 Dirac and Feynman noted quantum wave function approximations using action as phase. 
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ψ r, t( ) =ψ 0e

iS p /       (7.6.7)

If this approximation is substituted into the Schrodinger wave equation,

    
   
i
∂ψ r, t( )

∂t
= Hψ = − 

2

2m
∇2ψ +V r( )ψ    (7.6.8)

the result is an equation of the Riccati form.

   

    

−ψ ∂S
∂t

= −ψ i
2m

∇2S +ψ 1
2m

∂S
∂r

⎛
⎝⎜

⎞
⎠⎟

2

+V r( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

i
2m

∇2S = ∂S
∂t

+ 1
2m

∂S
∂r

⎛
⎝⎜

⎞
⎠⎟

2

+V r( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ∂S

∂t
+ H ∂S

∂r
,r

⎛
⎝⎜

⎞
⎠⎟

  (7.6.9)

In the limit that the left hand double (Laplacian) derivative vanishes, the full quantum Schrodinger equation 
reduces to the classical HJ equation (7.5.5). This is sometimes called the semi-classical limit.

 
    
 ∇2S << ∂S

∂r
⎛
⎝⎜

⎞
⎠⎟

2

 ,  or:   d2S
dx2

= 
dpx
dx

<< px
2  ,  or:  

dpx
dx

/ px << px =  kx  (7.6.10a)

If this holds, then DeBroglie wavelength λx/h = 1/kx = 1/px is small compared to its variation over one 
wavelength, or, equivalently wavevector kx is large compared to relative rate of change of kx. 

    
  

dkx
dx

/ kx << kx  ,  or:   
dλx
dx

<< 1     (7.6.10b)

 Since Planck's constant  = 1.054572E-34 Joule seconds is so small, a classical particle with a modest 
momentum of 1 Joule second per meter has an extraordinarily immodest wavevector:  kx=px/ = 9.4825 E 33, 
that is, roughly 1/λx =1.50919 E33 or 1,509,190,000,000,000,000,000,000.000,000,000 wavelengths per meter. 
Usually, a potential is not strong enough to make momentum vary appreciably over the 10-32 meters occupied 
by one such wave. The one exception is where momentum goes to zero and the wavelength blows up as it does 
on top of the envelope in Fig. 7.5.2. At such singularities the HJ-equations will part company with Schrodinger. 
Such points are the classical turning points.

(b) Huygen's principle: "Proof" of classical axioms 
 Enveloping curves generated by contact transformations are closely related to Huygen's principle of 
wave optics which applies to quantum waves of matter, as well. Consider a hypothetical action function SH(r0 : 
r) which might generate the curves SH(r0 : r)=10, 20, and 30 as sketched in Fig. 7.6.1.
 Now imagine the same generator acts starting from two points r10 and r'10 on the SH(r0 : r)=10 wave 
front thereby generating two sets of intermediate wave fronts: SH(r10 : r)=10 and SH(r'10 : r)=10 around each 
of these two points. All points on these curves represent a total accumulation of 20 J.s of action since leaving r0, 
but only for select points like r20 and r'20 is 20 J. the least action. 
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H
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H
(r´10:r)=20

Non-optimal path r0 to r20
accumulates 30

Optimal path r0 to r20
accumulates 20

(Least action possible)

 Fig. 7.6.1 Comparison of paths and wave fronts for discussion of Huygen's principle. 

 These special points r=r20 and r=r'20  of least action are just the contacting ones that lie on the 
envelope curve SH(r0 : r)=20. They also lie on optimal (least action) trajectory paths from r0 which have never 
failed to follow the undeviating "straight-and-narrow" paths determined by Lagrange equations. What makes 
these paths appear to follow the classical Lagrange equations? Why do they appear to optimize their action so 
faithfully? Huygens knew the answer in the 1600's, at least for rays of light. The key word here is "appear" 
since neither light waves nor matter waves originally have any intention of following a straight and narrow 
path! 
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 Quite the contrary, every point on a Huygen's wave front broadcasts a continuum of deviant wave fronts 
in the form of the intermediate "wavelet" ovals such as SH(r10 : r)=10 and SH(r'10 : r)=10 in Fig. 7.6.1. But, for 
each of these non-optimal deviant "rascals" there are thousands more neighboring "rascals" whose actions differ 
enough that most paths end up canceling each other by destructive interference of the varying phases due to 
deviant actions. There is no honor amongst thieves!
 Only for those optimal paths of stationary action (and therefore, stationary phase) do the phases add 
constructively, and it is only for these that quantum wave intensity or classical presence appears to exist most of 
the time in a classical world of enormous action. All paths are possible to varying degrees and exist in some 
sense, but only the optimal ones make their presence known and generally do so while obeying quite precisely 
the classical equations of motion. 
 In a sense, this constitutes an evolutionary proof of Newton's "laws" or at least justification of Newton's 
axioms in the case of high action or the classical limit. The classical world appears to be a result of a continual 
process of natural selection! 
 However, the situation is different for systems with discrete or limited number of paths as in the case of 
low action or when wavelength is comparable to the size of a system. Then the classical myth is likely to 
disintegrate like Dracula out of his coffin at dawn! Now matter how dearly we believe in our precisely 
machined gears and fine particles there comes a time and place where the classical equations part company with 
new reality, that is, with increasingly clever and precise experimental evidence.
 Nevertheless, the classical apparatus is far too well developed to die forever, and it rises to assist the 
newly appointed quantum paradigm in what is called semi-classical approximation theory. The role of 
generating action functions Sp(r0,t0 : r,t) and SH(r0 : r) is taken over in quantum theory by amplitudes, 
wavefunctions, or matrix elements such as the amplitude 〈r,t| r0,t0〉 of time-evolution and or the transition-
overlap amplitude 〈r |  r0 〉. Here, |〈 B |  A 〉|2 is the probability for a state-A to become state-B if forced to make a 
choice. Bracket 〈 B |  A 〉 is called a probability amplitude; past-to-future is read right-to-left like Hebrew. 
Probability amplitudes may be approximated by semi-classical relations similar to (7.6.7).

  
    

r1, t1 r0 , t0 = e
i S p r0 ,t0 :r1,t1( )/   (7.6.11a)   

    
r1 r0 = ei SH r0 :r1( )/   (7.6.11b) 

Restating Huygen's principle with semiclassical amplitudes gives a completeness or closure relation.

  
    

r1 ′r
′r
∑ ′r r0 ≅ ei SH r0 : ′r( )+SH ′r :r1( )( )/

′r
∑ = ei SH r0 :r1( )/ = r1 r0  (7.6.12)

Intermediate r'-path sums, as in Fig. 7.6.1, cancel by phase variation except on the optimal stationary-action 
path r1←r0. The sum over phase factors from r'-paths is well approximated by the amplitude for the stationary 
optimal path. Methods for summing over all paths (including deviant ones) are called Feynman path integration 
techniques. Often, this extra effort is not needed.
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Chapter 7.7 Action-Angle Variables : Semi-classical quantization

(a) 1-Dimensional vibration and rotation
 For a vibrating coordinate q it is convenient to define a single-period-action ΣH  as follows.
    

   
ΣΗ q0( ) ≡ SH q0 :q0( ) = p

q0→q0
∫ dq     (7.7.1)

This makes sense if the q-coordinate lies on a closed loop in its phase space as indicated in Fig. 7.7.1a. This 
example, a pendulum phase plot, has loops for energies below the separatrix where it can vibrate or swing 
starting at some amplitude q0=θ0 and eventually returning to that amplitude q0 after one full period T=τ. Above 
the separatrix, the pendulum angle is no longer bound. Then the pendulum ceases to be a vibrator and becomes 
a rotator whose angle increases more or less steadily: θ0→θ0+2π →θ0+4π and so on as in Fig. 7.7.1b. In this 
case we re-define the single-period action. 

    
  
ΣΗ p0( ) ≡ SH q0 :q0 + 2π( ) = p

q0

q0 +2π
∫ dq    (7.7.2)

In either case, the single-period action is a phase space area for one period as sketched in Fig. 7.7.1. The 
coordinate or momentum dependence of these single-period actions is actually somewhat redundant; ΣH 
depends on choice of path and not on any point on the path. Each ΣH path is a phase-space topography line of a 
particular energy or Hamiltonian value H=E, and that is the primary dependency of the ΣH actions.
 According to (7.6.5c) the energy or Hamiltonian dependence is related to the oscillation period.

    
 

dΣΗ
dH

=
dΣΗ
dE

= T single − period( ) = τ    (7.7.3)

The inverse of this is a frequency of vibration (or rotation).

    
  

dH
dΣΗ

= dE
dΣΗ

= 1
T single − period( ) = υ = ω

2π
  (7.7.4)

It is conventional to write this in the form of one of Hamilton's equations

    
   

dH
dΣΗ

= ω
2π

      becomes:     dH
dJ

= ω ≡ θ    (7.7.5a)

where the action-angular-momentum J is defined as follows.

    

   

J =
ΣΗ
2π

≡

1
2π

p
q0→q0
∫ dq   (for vibrator)

1
2π

p
q0

q0 +2π
∫ dq   (for rotator)

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

   (7.7.5b)

Action-momentum J is conjugate to an action-angle-variable or simply action-angle defined as follows.
      θ = ω   t + θ0       (7.7.6)
The other Hamiltonian equation is simple; H has no θ-coordinate dependence and so J is conserved.

    
   
dH
dθ

= 0 ≡ J       or:  J = const.      (7.7.7)
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Phase-space area

ΣH = ∫ p dq

Phase-space area

ΣH = ∫ p dq

(a) Vibrator

(b) Rotator

-π +π

p

p

q

q

+π

-π

 Fig. 7.7.1 Comparison of phase space area or action momentum for (a) Vibrator and (b) Rotator.

The simplest action Hamiltonian is the harmonic oscillator which is linear in its action momentum.
      Hharmonic = ω  J     (7.7.8)
The free-rotor is, perhaps, the next simplest action Hamiltonian. It is quadratic in action momentum.
      Hfree = B J2        (7.7.9)
These cases are sketched in part (a) and (b) of Fig. 7.7.2. In either case, the kinentic energy p2/2I  is quadratic in 
the original momentum variable p. Harmonic oscillator energy is quadratic in coordinate q, as well, for 
harmonic potential 1/2kq2. The free rotor has no potential so J=p.
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(a) Harmonic oscillator

(b) Free rotor

p

q

p

q

J= 1 2 3 4 5

1 2 3 4 5

Energy H=ωJ is linear
in phase-space area 2πJ

Energy H=ΒJ2 is quadratic
in phase-space area 2πJ

J=

Fig. 7.7.2 Comparison of phase space area or action for (a)Harmonic oscillator and (b) Free rotor.

 Phase space area ΣH = 2π J is a key quantity in quantum theory since each state is allowed a patch of 
phase space area that is an integer multiple of Planck's constant =6.62607E-34 Joule seconds. This is called a 
Bohr quantization relation. Using Planck's angular constant  = h/2π= 1.054572E-34 we have
      J = Area in (p,q)/2π = υ .     (7.7.10a)
The integer υ (υ = 0, 1, 2,...) is a quantum number. Bohr quantization is a result of requiring the quantum 
amplitude (7.6.11b) to be unity for each closed loop or full period, as follows.

   
    
1 = r0 r0 = ei SH r0 :r0( )/ = eiΣH / ,  or: ΣH = 2π υ = 2π J  (7.7.10b)
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(b) Multi-dimensional action angle analysis
 Once again we suppose that an N-dimensional Hamiltonian is separable, as in the example of (7.5.8) in 
Sec. 7.5.(c), into N independent 1-dimensional parts. Let the H-J partial differential equation

 

   

const. = E = H p1, p2 ,q1,q2 ,( ) = H
∂SH

∂q1
,
∂SH

∂q2
,q1,q2 ,

⎛

⎝
⎜

⎞

⎠
⎟

                =ε1 + ε2 +…                =h1
dsh1

dq1
,q1⎛

⎝
⎜

⎞

⎠
⎟ + h2

dsh2

dq2
,q2⎛

⎝
⎜

⎞

⎠
⎟ +…

  (7.7.11a)

separate into N ordinary differential equations 

 
   
const. = ε1=h1

dsh1

dq1
,q1⎛

⎝
⎜

⎞

⎠
⎟  ,      const. = ε2 =h2

dsh2

dq2
,q2⎛

⎝
⎜

⎞

⎠
⎟  ,         (7.7.11b)

with each contributing a term to the total characteristic action.

 
   
SH qA

1 ,qA
2 , : qB

1 ,qB
2 ,( ) = pλ dqλ = sh1 qA

1 : qB
1( ) + sh2 qA

2 : qB
2( ) +…

qA
λ

qB
λ

∫   (7.7.11c)

If each part was a bound system, that is a vibrator or rotator like those discussed in Sec. 5.7(a), then it has 
separate single-period-action-angles (Jm,θm) with the following action momentum Jm.

 
   
J1 =

Σh1
2π

= 1
2π

p1∫ dq1 ,    J2 =
Σh2
2π

= 1
2π

p2∫ dq2  ,         (7.7.12a)

The Hamilton's equations for each part are like those of (7.7.5) and (7.7.7).

 

   

∂H
∂ J1

= θ1 = ω1                ,    ∂H
∂ J2

= θ2 = ω2                  ,     

− ∂H
∂θ1

= 0 = J1                ,    − ∂H
∂θ2

= 0 = J2                 ,     
   (7.7.12b)

Because H=H(J1, J2, ...) is a function only of J's and not angles θm, both enjoy simple time behavior.

 
   

θ1 t( ) = ω1t +θ1 0( )          ,    θ2 t( ) = ω2t +θ2 0( )             ,      

J1 = const. = n1            ,    J2 = const. = n2                 ,      
   (7.7.12c)

 In the last line we have taken the liberty of imposing semi-classical Bohr quantization conditions 
(7.7.10) on the action momentum values. This would give the approximate quantum energy levels of this system 
when substituted into the Hamiltonian function of action momentum.
    En1n2... = H(n1,n2, ...)        (7.7.13)
 Given the intractible algebra of action calculus, we surmise that finding all the preceding quantities is, at 
best, a tall order, and at worst not possible. Analytic action angle solutions are possible only for a fairly select 
class of cases, most notably the Coulomb and harmonic oscillator potentials and field-free rigid symmetric 
rotors. Fortunately, numerical approximation methods again may come to the rescue as they did for the 
parabolic trajectory problem treated earlier in Sec. 7.6.
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(c) Action-color and Davis-Heller quantization
 The method of characteristics which found the SH(r0 : r) curves in the trajectory example of Fig. 7.5.2 
may be extended to find ΣH  and J values, as well. But, there are differences between open trajectory systems 
and closed systems of bound vibrators or rotators. Arbitrary energy and action are valid classical and quantum-
approximate values in the case of unbounded trajectories, but only certain quantizing values of energy and 
action make sense for bound or closed systems. Some scheme is needed to solve for the Bohr quantization 
conditions (7.7.10), (7.7.12c) or something equivalent to them.
 A colorful way to display action and its Bohr quantization is to numerically integrate Hamilton's 
equations and Lagrangian L and color the trajectory according to the current accumulated value of action

       SH(0 : r) = Sp(0, 0 : r, t ) + Ht =
  
 L dt
0

t
∫ + Ht  .

The hue should represent the phase angle SH(0 : r)/ modulo 2π as, for example, 0=red, π/4=orange, π/
2=yellow, 3π/4=green, π=cyan (opposite of red), 5π/4=indigo, 3π/2=blue, 7π/4=purple, and 2π=red (full color 
circle). Interpolating action on a palette of 32 colors is enough precision for low quanta.
 The colored paths display a confused gray mess if phases fail to interfere constructively. But, for select 
quantizing values of energy, there appear striking patterns of colors when Bohr quantization makes phases 
interfere constructively. Patterns are outlines of quantum waves based on (7.6.11b).

     
    

r1 r0 = ei SH r0 :r1( )/    (7.7.14a)

 This color-quantization technique was first done on a CRAY-Dicomed film system by Heller and Davis in 
1983. Now it can be done on practically any personal computing system. 
 A quantizing example for a 2-dimensional oscillator using the ColorU(2) program is shown in Fig. 7.7.3. 
Viewing this in gray-scale is possible since only two hues actually survive: red, representing a phase of 0, and 
cyan, representing a phase of π. The example is a standing wave mode in (x,y)-coordinate space, so the only 
possible wave amplitude is ±1, that is, complimentary hues red and cyan which appear as light and dark gray in 
a gray scale portrait. The remaining colors pile up on the nodal lines where the waves' many action phases are 
destructively interfering amplitude to near-zero values.
 An addition to the color quantization technique also displays the principle (time-dependent) action Sp(0, 
0 : r, t ) and the time-dependent wave from (7.6.11a)

   
    

r1, t1 r0 , t0 = e
i S p r0 ,t0 :r1,t1( )/ = ei SH r0 :r1( )/− iω⋅T    (7.7.15a)

where
         T = t1 - t0 ,   and: H = ω    (7.7.15b)

This gives an animated display of phase velocity (7.5.20a). It is done by rotating the color spectrum of the 
computer in accordance with the time-dependent phase angle H.t in (7.7.15). By making two of the entries in 
the phase-color palette to be black-and-white it is possible to display a wave front line which will march in step 
with the other hues in the palette and create the on-screen illusion of moving wave fronts.

HarterSoft –LearnIt©2013                                                          Unit 7Action and Functional Variation   43



  
Fig. 7.7.3 Phase-color 2-dimensional harmonic oscillator paths showing (2,2) quantum wave function.

 
Fig. 7.7.4 Phase-color trajectory  paths showing quantum wave fronts.

 An example of action-colored trajectories in Fig. 7.7.4 is to be compared with Fig. 7.5.2.
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(d) A "clockwork universe"
 A dream of the 1800's classical mechanics was a "clockwork universe." Hamilton, Jacobi and other 
contemporaries almost achieved this dream with their action-angle formalism. We say, "almost," because it 
works only for separable systems. The dream fails for many mechanical systems which are non-separable. 
(Some might say, this includes virtually all real systems.) Non-separable systems (including the ancient 
trebuchet) generally exhibit stochastic or "chaotic" behavior.
 Nevertheless, let us suppose we have a separable system that conforms to the 1800's dream and reduces 
to set of N action-angle equations like (7.7.12a-b). In other words, we are able to find a 2N-dimensional phase 
space ((J1,θ1), (J2,θ2), ...,(JN,θN)) in which all the momenta are constants Jm=const., and all the coordinates 
follow straight-line time trajectories of constant angular velocity ωm.
    θm(t)=ωmt+θm(0)       (7.7.16)
This is a Bunyanesque coordinate-momentum transformation! (Recall the mythical Paul Bunyan ox who was 
strong enough to straighten the crooked roads in Minnesota.) The action angles are a generalization of normal 
mode transformation of Section 4.3 that gives normal mode phase pairs (pm,qm). Each phasor moves like a 
clock at a normal mode eigenfrequency ωm. Together the clocks orchestrate all possible oscillator orbits. 
Together, N straight lines map onto all possible orbit curves.
 Perhaps, the great success of normal mode analyses set the stage for the Hamilton-Jacobi dream of a 
clockwork universe. Little did the dreamers know that their dream was to be realized in the following century 
by a new quantum theory. As shown in Section 2.5, a quantum Schrodinger equation (2.5.1) is equivalent to a 
classical harmonic oscillator Hamiltonian (2.5.3). Schrodinger eigentstates correspond to normal modes of an 
analogous oscillator. To each mode-m or eigenstate |εm〉 belongs aharmonic phasor clock Ψm of a complex 
exponential or probability amplitude.

      Ψm(t) = |Ψm(0)|e-iωmt = xm + i pm     (7.7.17a)
Each eigenstate represents one "note" in a quantum orchestra that "plays" all possible states; the probability for 
the m-th "note" or m-th energy eigenstate is Ψm*Ψm which is proportional to the m-phasor area.
     m-phasor area = π Ψm*Ψm = π(xm2+ pm2)     (7.5.17b)
 It is likely that the classicists might regard the quantum realization of their clockwork dream to be 
something of a Pyhrric victory. They might be dismayed by the sheer number of oscillators needed to accurately 
describe most systems. (Even the 2-dimensional oscillator problem such as in Fig. 7.7.3 with an action of 1 
Joule second would involve roughly 1033 clocks!) The classicist might also be dismayed by the seeming lack of 
precision in the probabilisitc nature of the quantum amplitudes (7.7.17) where the phase space area or action 
momentum 2πJ for the classical analog oscillator is just its probability. (Recall Einstein's plaintive quote, "God 
does not play dice with the universe!")   
 Many current physicists are classicists at heart. Virtually all physicists can at least appreciate the 
motivation for seeking a clockwork universe. However, such old classical myth suffers irreparably in the face of 
overwhelming evidence of just how "dicey" fundamental quantum processes really are.
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(e) Non-linear modes: Action Fourier analysis
 Despite the strong analogy between action-angle formalism and normal mode analysis, there needs to be 
emphasized some important differences. Normal mode analysis of Section 2.3 as well as the quantum analogy 
of Section 2.6 require harmonic oscillators which have linear (Hooke's law) spring force couplings. The word 
harmonic means all frequencies are independent of oscillator amplitude, and linear means if qm(t) and q'm(t) are 
each valid solution functions of the oscillator equations, then any multiples 2qm(t), 3q'm(t), etc., or any linear 
combination 2qm(t)+3q'm(t) of the solutions are valid, too.  Together, harmonic and linear force equations 
guarantee that each normal mode of the system is perfectly sinusoidal, that is, a simple sine (sin ωmt), cosine 
(cos ωmt), or exponential (e±iωmt) of a single mode frequency ωm. The general coordinate is a real linear 
combination of such modes.
     x(t)= Σm (am*eiωmt + ame-iωmt)     (7.7.18)
A force linear in coordinate x, such as Flinear(x) = kx, acting on sinusoidally varying coordinates preserves 
frequency spectrum {ω1, ω2, ..., ωN}by producing only those components already present.
    Flinear(x(t))= Σm (kam*eiωmt + kame-iωmt)     (7.7.19)
 In contrast, a nonlinear force such as Fnonlinear(x) = k x2 gives new frequency components.

 

   

Fnonlinear x t( )( ) = k x t( )( )2

                        = k
m
∑

′m
∑ am

* eiωmt + ame−iωmt( ) a ′m
* eiω ′m t + a ′m e−iω ′m t( )

                          = k
m
∑

′m
∑ am

*2ei2ωmt + am
* a ′m

* ei ωm +ω ′m( )t + am
* a ′m ei ωm −ω ′m( )t +…⎛

⎝⎜
⎞
⎠⎟

The new components {2ω1, 2ω2, ..., 2ωN} are called harmonic overtones or combination tones {ω1+ω2, 
ω2+ω3, ...} or difference tones {ω1-ω2, ω2-ω3, ...}. Each term drives the coordinates at these frequencies which 
then cause the non-linear force to make more harmonics of harmonics or combinations, and so on. Nonlinear 
forces with fractional power laws such as Fnonlinear(x) = j x1/2 may also generate subharmonic tones {1/2ω1, 
1/3ω1, ..., 2ωN}. Such a cacophony of frequencies often leads to chaotic motion.  
 The action-angle formalism is a generalization of the normal mode analysis to separable systems that are 
non-linear and anharmonic. An example of a nonlinear system is a pendulum, whose phase space is shown in 
Fig. 7.7.1 and Fig. 7.7.5. (Recall also Fig. 1.15.1.) A pendulum has a non-linear mgsinφ gravitational force law 
that is only approximately linear for small angle φ<<1. 
 As shown in Fig. 7.7.5b, the non-linearity makes pendulum frequency anharmonic, that is, amplitude-
dependent. As the amplitude approaches the separatrix (φ(0)→±π) the pendulum period gets longer (τ→∞), 
frequency slows (ω→0), and its trajectory becomes less sinusoidal. The result is a Fourier series of ω-overtones 
{ω , 2ω , 3ω , 4ω ,  ...}, that is, φ(t) is a real asinusoidal function of period τ=2π/ω.
   φ(t) = f1*eiωt + f1e-iωt + f2*ei2ωt + f2e-i2ωt + f3*ei3ωt + f3e-i3ωt + ... (7.7.20a)
The Fourier coefficients fk are expressed in terms of an inversion integral (Recall (4.6.5b).) 

 
 
φ t( ) =

k=−∞

∞
∑ fke−ikω t  where: 

  
fk = 1

τ
dt

−τ / 2

τ / 2
∫ φ t( )eikω t        τ = 2π /ω( )  (7.7.20b)
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The spectrum shown in Fig. 7.7.5d has a 3rd-overtone (three times fundamental) amplitude f3~-(1/3)f1, not 
unlike the square wave spectrum discussed in Unit 4. (Recall Fig. 4.6.2 and Fig. 4.6.11.) This is consistent with 
the non-sinusoidal time plot in Fig. 7.7.5d which is like a rounded square wave. Rounding reduces the f5 or f7 
components to values well below what they are for a truly square wave.
 Action angle coordinates are defined as in (7.7.12) by θ = ωt and dθ = ω dt to redo (7.7.20b).

 
 
φ t( ) =

k=−∞

∞
∑ fke−ikθ   where: 

  
fk = 1

2π
dθ

0

2π
∫ φ θ /ω( )eikθ =f−k

*         (7.7.20c)

The resulting action-angle Hamilton equation for coordinate derivatives follows.

   
  

∂H
∂ J

= φ t( ) = dφ
dt

= −iω k
k=−∞

∞
∑ fke−ikθ     (7.7.20d)

Pendulum momentum is asinusoidal, too, with its Fourier coefficients pk obtained similarly to above.
   pφ(t) = p1*eiωt + p1e-iωt + p2*ei2ωt + p2e-i2ωt + p3*ei3ωt + p3e-i3ωt + ...  

 
 
pφ t( ) =

k=−∞

∞
∑ pke−ikθ  where: 

  
pk = 1

2π
dθ

0

2π
∫ pφ θ /ω( )eikθ =p−k

*         (7.7.20e)

This leads to a Fourier formula for the single-period action momentum J.

   

  

J = 1
2π

pφ dφ
0

2π
∫ = 1

2π
pφ

dφ
dt

dt
0

τ
∫  

   = 1
2π ′k =−∞

∞
∑ p ′k e−i ′k θ⎛

⎝⎜
⎞
⎠⎟

−iω k
k=−∞

∞
∑ fke−ikθ⎛

⎝⎜
⎞
⎠⎟

dt
0

τ
∫  

    = − i k
k=−∞

∞
∑ p ′k fk

1
2π 0

τ
∫ e−i ′k +k( )θdθ= − i k

k=−∞

∞
∑ p−k fk

    = − i k
k=−∞

∞
∑ pk

* fk

  (7.7.20f)

Fourier coefficients are time independent quantities by definition, that is, they are conserved constants of the 
motion. Therefore, it is reasonable to expect that the conserved action-momentum J to be expressed in terms of 
Fourier coefficients. If the Fourier coefficients can be derived numerically, then so can the J values. Always test 

such calculations by reproducing the classical motion using the derived fk e-ikθ.
 Fourier theory applies also to multi-dimensional systems and is the basis of computer action angle 
quantization techniques developed by Ezra and others. However, this method runs into problems for cases in 
which the number of Fourier harmonics becomes large and unmanageable as happens in regions of the phase 
space where chaotic motion prevails.   
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(a) Low
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(~Linear)

(b) High
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(Non-Linear)
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(d) High Amplitude

(asinusoidal-anharmonic)

Single Fourier

component

Multiple Fourier

components

θ(t) θ(t)

θ(ω) θ(ω)

pθ(ω) pθ(ω)

 Fig. 7.7.5 Comparison of pendulum dynamics (a) Small amplitude.  (b) Large amplitude.
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