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CLASSICAL MECHANICS
with a

BANG!..
CLASSICAL MECHANICS

with a

BANG!.. ...(and a whimper)

Topics in Units 1-8

Unit 1. Review of velocity, momentum, energy, and fields
Introduction to geometry and algebra of mechanics fundamentals by plane geometry
Review of fields and their vector analysis by geometry and complex variables
Superball missile and neutron starlet dynamics. Coupled oscilllator and rotational motion.
Introduction to Hamiltonian, Estrangian, and Lagrangian contact mechanics of Action

Unit 2. Lagrangian and Hamiltionian mechanics
Generalized coordinate equations of motion. Pendulum and trebuchet motion
Sports kinematics vs. trebuchet dynamics. E&B Lagrangian and field orbits.

Unit 3. General Curvilinear Coordinate transformations
Riemann-Christoffel covariant tensor equations of motion and differential geometry
Effective potentials and geometry of constraints and Lagrange multipliers

Unit 4. Oscillation and waves
Lorentz resonance response and Fourier analysis
Normal modes and U(2) Euler angle geometry of pair resonance
Fourier and symmetry analysis of wave dispersion and parametric resonance

Unit 5. Orbits and scattering
Coulomb and central-force orbits and trajectory envelopes. Rutherford orbit geometry.
U(2) and R(4) geometry of oscillator and Coulomb dynamics
Rutherford, Stark, Zeeman, and 2-center orbits

Unit 6. Rigid and semi-rigid bodies
2-particle scattering.
Angular rotation and momentum of gyros, tops, spacecraft, and molecules
Euler-angle geometry and rotational energy surface analysis of soft rotors

Unit 7. Action and functional variation
Calculus of variation and Hamiltion-Jacobi equations
Geometry of contact transformations
Semiclassical action quantization by Davis-Heller phase color addition

Unit 8. Advanced Topics
Optical dispersion derivation of relativistic quantum mechanics
Chaotic motion. Optimal control theory
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Preface: A back-to-the-future look at the classics 
Before beginning a book on mechanics it should be noted that classical mechanics is out of date. For 

centuries, following work by Galileo and Newton, mechanics was physics. No classical descriptor was 

needed. Then along came the quantum revolution of the early 20th-century. After that there arose the need to 

distinguish classical mechanics from quantum mechanics.

While classical mechanics may be out of date, it’s not obsolete and never will be for things that go 

Bang! or Click! Our first examples, involving banging cars and balls, are easy classical problems but very 

difficult quantum problems. Detailed 21st-century quantum mechanical solutions at even a Joule of energy 

would require impossible 1040 byte computers. Classical mechanics, on the other hand, permits solution by 

classical Greek computers, that is, a ruler and compass. Quantum mechanics may be more fundamental and 

elementary but it is not easier since it involves an astronomical increase in number of variables. 

Our approach to classical mechanics combines Euclidian geometry and Newtonian calculus in ways 

that Newton did in his Principia. However, 21st-century computer graphics are much better at exposing 

hidden power of geometry than Newton’s tediously engraved 18th-century figures. Old fashioned printing led 

authors to overlap multiple geometric steps into indecipherable spider-webs that obscured their logic. This in 

turn led to a modern impression that the logic of algebra and calculus always trumps that of geometry.

For example, consider the Bourbakian society that arose in 1930’s in rebellion to Henri Poincare. (His 

work is used heavily throughout this book.)  The Bourbakians were a group of French mathematical purists 

who practically forbade geometric figures. This led to a gulf in syntax and pedagogy for both mathematics 

and physics, an unfortunate one that this book tries to cross.

A distinguishing feature of this book is its use of geometry, both Euclidian and Riemannian. Two 

centuries of mechanics books include few if any that clearly apply analytic geometry to gain derivations, 

solutions, and most important, an understanding of mechanics. Some little-known lectures by Richard 

Feynman (Six Easy Pieces (Persius 1997)), and books by Vladimir Moser and Frank Crawford are among a 

few that begin to revive this ancient art.

We should note that many geometric constructions in this book were found using computer 

animations and simulations. This is another feature of this book and useful tool for any serious student of 

physics. Modern theory courses should have a computer graphics lab for comparing numerical experiments 

to real experiments with tools to show the geometry of both classical and quantum mechanics.

Most of physics is understood by analogies that expose underlying connections between seemingly 

disparate objects or phenomena. Mechanical analogies or analogs have been sources of understanding since 

the Hellenic period and are a large part of the development in this book. Analogies are often based on a 

shared mathematical description like a differential equation or symmetry algebra that reflects an underlying 
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shared geometry. It is such connections that we treasure and develop in this text. Most important are 

mechanical analogies that shed light on the relation of classical physics to modern physics. With this one 

gains a better understanding of both. The final Unit 8 contains a novel development of this.

Thumbnail sketches of Unit topics: Review-Preview Unit 1
A geometric approach to classical mechanics is used throughout. Geometry helps to clarify the calculus and 

physics of mechanics and show the symmetry principles behind classical theory that also underlie quantum 

theory. Unit 1 begins using Hellenic plane geometry of Thales (~600BC) and Euclid (~300BC) in Ch. 1-11 and 

introduces Teutonic differential geometry of Gauss and Riemann (1800-1900) in its final Ch. 12.

	
 Between the Hellenic and Teutonic extremes lies analytic geometry of Galileo (1564-1642), Newton 

(1642-1727), and many others, that is the more familiar combination of geometry and algebra used throughout.

 	
 Ruler&compass constructions of collision mechanics and potentials start with 2-body collision (V1, V2) 

geometry of momentum lines and kinetic-energy ellipses . Ellipse secant-tangent-geometry elegantly clarifies 

axioms of classical mechanics (in Ch. 3 Unit 1 sketched↓below) and the role of momentum and energy.
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This is applied to a Superball pen-launcher from Ch. 4-5 of Unit 1 (above↑right: a spectacular and real 

experiment). Matrix operator geometry is introduced to solve multiple n-body collisions and related to 

supernovae dynamics, spinor-vector-tensor analyses, and potential theory applied in later Chapters 6-9.

	
 Later in Ch. 12 of Unit 1, ellipse-tangent-line geometry is used to relate Lagrangian L to Hamiltonian 

H (sketched below↓left) and derive the Poincare action Ldt=pdx-Hdt (below↓right) for advanced mechanics.
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 It is important to note that Unit 1 is both a geometric review of undergraduate mechanics and a 

preview of topics in Units 2 thru 8 that go on to graduate level applications. The geometry is so novel and 

powerful that one may jump outside the box and and derive advanced concepts in a fraction of the time they 

take without these graphical insights. For example, geometric oscillator and Coulomb potential models of 

Earth inside-and-out (sketched below from Ch. 9 of Unit 1) preview more detailed treatments in Unit 4-5. 

	
 	


Example of contacting line
and contact point

directrix
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Directrix

Sub-directrix
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2DHO
Parabolic potential
inside Earth

Unit 1
Ch. 9

Sophomore
physics
Earth field
model

2DHO

2-dimensional harmonic oscillator (2DHO) motion of “neutron-starlet” orbits inside Earth (sketched below 

from Ch. 9-11 of Unit 1) previews Unit 4 theory. It uses ellipse-tangent geometry (sketched below↓right).

	


r(t)
φ=ω tv(t)/ω

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

Time frame angle
φ=ω t

(Mean Anomaly)

Orbit and TangentsUnit 1 Ch. 9
2DHO Orbits

Unit 1 Ch. 11
2DHO Orbit
and tangent
geometry

Ψ1 Ψ2

Ψ1 - Ψ2
plot

MM

Identical masses coupled by identical springs (sketched above↑) are also 2DHO analogous to the inside-

Earth orbiter. The 2DHO force fields provide classical analogs of quantum phenomena discussed Unit 4. 

	
 General 2-dimensional conservative-field vector calculus is done elegantly using complex variables 

z=x+iy in Ch. 10 of Unit 1. Complex derivatives and integrals simplify field theory. Each function f(z) such 

as z, 1/z, z2, 1/z2, sin z, etc. defines a scalar-vector potential field, coordinate grid, mapping, and vector field. 

An example f(z)=1/z2 from Ch. 10 (sketched below ↓) represents a 2D dipole field.   

	


Scalar potentials
Φ=(a/r)cos θ=const.

a/Φ
θ

Vector potentials
A=(a/r)sin θ=const.

a/A

r

r=(a/Φ)cos θ

r=(a/A)sin θ

r

Field:
f*(z*)=1/z2*=ei2θ/r2
F(x,y)=(cos2θ,sin2θ)/r2
Potential:
φ(z)=1/ z
=(cosθ)/r+i(sinθ)/r
= Φ +i A

Unit 1 Ch.10
2D Dipole
field and
potential
coordinate
grid
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Thumbnail sketches of Unit topics: Advanced Mechanics Units 2 thru 8
One of the most important parts of advanced mechanics are its Generalized-Curvilinear-Coordinate (GCC)

grids and their Jacobian transformation analysis, the main topics of Unit 2 and Unit 3. GCC theory has Unit 1 

previews in Ch. 10 (sketched above↑) and in Ch. 12 that has a GCC grid made of a family of trajectories 

modeling the “Volcanoes of Io” or the “Atomic Fountains of NIST” (sketched below↓).
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Unit 1 Ch. 12
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y
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 Unit 2 redevelops Lagrange and Hamilton mechanics using an ancient war machine called the 

trebuchet (sketched below ↓ left) as the object of study. The trebuchet or ingenium, used between 3000 BC 

and 1500 AD, duplicates human motions of throwing, reaping, chopping, and digging that built our culture. It 

also duplicates quite instructively motions used in modern sports of baseball, tennis, and golf and it is shown 

how one may improve one’s swing in any such sport. (Also, it explains how to ring the bell at the fair!  After 

all this, how could one ever claim that classical mechanics has become culturally irrelevant?)
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Langrange
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Hamilton
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Unit 3
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Eφ
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Eθ

Locus
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orthogonal
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 Unit 3 redoes Lagrange-Hamilton mechanics using GCC manifolds (sketched above ↑ right) with 

covariant tensor notation of Riemann-Christoffel differential geometry. This is used for relativistic mechanics 

and general relativity. The advantage of the Riemann equations for both numerical simulations and deeper 

understanding of “fictitious” forces and constraints is discussed.
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 Unit 4 begins oscillation and resonance with a forced damped harmonic oscillator and Lorentz-

Green’s functions (Lorentz geometry is sketched below↓left. It is similar to dipole geometry shown earlier.)

	


Unit 4 Ch.2
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 As in Unit 1, phasor clock geometry is used with complex algebra (sketched above↑right). Fourier wave 

mode analysis is done for discrete phasors (below↓left) and for continuum wave revivals (below↓right). 
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Unit 4 Ch. 8
Quantum well Fourier states
and beat revival dynamics

Two-dimensional harmonic oscillator (2DHO) motion is reintroduced in Unit 4 by merging calculus, U(2) 

algebra, and elliptic geometry. It is directly and precisely analogous to equations of motion for quantum 

mechanics, spectroscopy, and optical polarization, a powerful tool in modern physics and astrophysics based 

on Stokes 1867 real optical “spin” vector (below↓left) and its Poincare complex orbit space (below↓right). 
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 Unit 5 treats orbits in central fields including a continuation of Unit 4 geometry of 2D harmonic 

oscillation and Coulomb orbits. Here geometry is particularly powerful in analyzing whole families of orbits 

including geometry (sketched below↓left) of Rutherford scattering that showed atoms have nuclei. 
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Ch. 12 orbits shown earlier generalize to constant energy Coulomb orbit geometry (sketched above↑right). 

	
 Unit 6 treats rotors and gyroscopic motion. The ellipse geometry of Unit 1 is again helpful and shows 

rotational mechanics from both Lagrangian and Hamiltonian viewpoints. A mechanical analog rotational 

computer (sketched below↓left) helps to visualize geometry and symmetry of Euler angle GCC.
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Rotational energy surfaces (above↑right) serve as a revealing phase space for non-rigid molecular rotors,  

common rigid rotors (below↓left) and very floppy systems like gyro-rotors (below↓right).
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 Unit 7 develops Poincare’s invariant action introduced in Unit 1 into Principal action, characteristic 

action, and Hamilton-Jacobi equations.  A numerical technique of coloring by action the 2DHO-trajectories 

of Unit 1 Ch.9 (below↓left) or “atomic-fountain” paths of Ch.12 (below↓right) gives quantum wave shapes.

	


Unit 7 Ch. 7
Color quantized 2DHO action

Unit 7 Ch. 7
Color quantized fountain

	
 This technique is known as Davis-Heller classical chromodynamics. This colorful wave geometry 

provides new viewpoints. One example, a colorful way in Unit 8 to get special relativity (SR) and quantum 

mechanics (QM) from wave interference geometry, uses thought experiments involving colliding Continuous 

Wave (CW) laser beams (sketched below↓left). This derivation of SR and QM takes a few strokes with a 

ruler&compass to construct relativistic dispersion in per-space-time ((ω,k)-dispersion plot below↓right) and 

reduces advanced mechanics of Lagrange, Hamilton, and Poincare action to a wavelike child’s play! 

	


Unit 8 Ch. 1

laser continuous wave

(CW) pair
K - K
dispersion

plot
600THz600THz
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ω

ck
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K←
K→

ω
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2ω
0
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Kgroup

600THz600THz

Unit 8 Ch. 3

 (The common acronym CW also stands for Colored Wave, Coherent Wave, and Cosine Wave, each 

representing important principles.) Both SR and QM are (1900-1905) theories about light waves, but it seems 

incredible that CW wave interference leads to such a simple reformulation with a theory of massive matter 

arising from simple properties of zero-mass or “light-matter” waves. But, there is that famous 1939 

experiment by Carl Anderson (1905-1991) where γ-photon-pairs undergo electron-positron pair-creation!    

	


e+-e− pair-production
e−e+

Feynman graphs
and

dispersion plots

γ-ray pair

ck

ω

-mc2/h

+mc2/h
Unit 8 Ch. 7
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 Feynman graphs (above↑right) for this incredible creation and related Compton effects appear in Unit 8.

	
 The Unit 8 development uses a simple effect wherein a pair of counter-moving green CW beams 

make a space-time coordinate grid (below↓left) from real zeros (white lines) of the em-field.

Unit 8 Ch. 2 CW Rest frame vs. CW Lorentz Frame
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Moving atom sees ↑green CW beams Doppler shifted to (infra)↑red or(ultra)↑blue making Lorentz grid. A 

“baseball diamond” ↑ (above left) appears in per-space-time plot for rest frame.  Space-time can also be 

mapped using pulse wave (PW) frequency comb structure shown below.

Unit 8 Ch. 2 PW Rest frame vs. PW Lorentz Frame
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Cartesian square grids ↑ appear in per-space-time plot while “baseball diamonds” appear in space-time.

	
 With wave-like intuition the science of mechanics begins to make more sense. The strange quantities 

given us by the classical masters such as momentum, energy, action, Lagrangian, Hamiltonian, force, and 

mass with all their rules of engagement can be reduced to simple relations of time and frequency (per-time) 

versus space and wave-vector (per-space) involving light waves constrained to travel at an invariant speed c. 

	
 That last “constraint” or axiom is a big deal! Much of the first part of Unit 8 is devoted to parsing the 

Einstein pulse wave (PW) axiom: “All light flashes go c.” using Occam’s Razor (See p. 16) to produce the 

Evenson laser wave (CW) axiom: “All colors go c.” Ch. 1 of Unit 8 compares these axioms. (sketch below)
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Unit 8 Ch. 1

Einstein

PW

Axiom

vs.

Evenson

CW

Axiom

It’s going c.

It’s going c.

(Of course)

It’s going c.

FFLLAASSHH!!

It’s going -c.
PPuullssee

WWaavvee

It’s going -c.

It’s going -c.

(Of course)

It’s going c.

It looks blue!
It’s going c.

It looks green.

(Of course)

It’s going -c.

It looks blue!

It’s going -c.

It looks red! It’s going -c.

It looks green.

(Of course)

It’s going c.

It looks red!

660000 TTHHzz

((ggrreeeenn))

LLaasseerr

ssoouurrccee

Sees Doppler blue shift Sees Doppler red shift

φ

φ

CW zeros precisely locate places where wave is not.

PW peaks precisely locate places where wave is.

Pulse wave (PW) train

Continuous wave (CW) train

(a) Einstein Pulse Wave (PW) Axiom: PW speed seen by all observers is c

(b) Evenson Continuous Wave (CW) axiom: CW speed for all colors is c

The simpler axiom gives a per-space-time geometry [energy E=hυ(per-time) vs. momentum cp=hκ (per-space)] 

(sketch below). So in summary: All of mechanics results from light whose colors march in lockstep. 

Energy

E=hυUnit 8 Ch. 5

Energy-momentum

(per-space-time)

geometry

Hamiltonian

vs.

momentum p

hyperbola

H(p)

Lagrangian

vs.

velocity u

circle

L(u)

Mechanics begins and ends not so much with a Bang!, but with a whimper. (after Robert Frost)
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The weapons of math instruction
When your physics fails (as in String theory) it could be you have lousy axioms. If so, it’s back to the 

drawing board. That’s how we start this course. It goes wa-aaay back to geometry of Thales (600BCE) and 

Euclid (300BCE). You should always ask what tools have survived the test of time and check them out.

Toolbox 1: Euclidian plane geometry (Rule and compass)

 Note that Toolbox 1 has a rule not the ruler. That’s in Toolbox 2. A rule is just a straightedge, a ruler 

without its inch or mm scale. Euclid’s pretty strict about this. Formal plane geometry is kind of a game to see 

how much you can do drawing lines and circles with just these tools. And a pencil…did I forget the eraser? 

 Toolbox 1 has limitations, at least by formal rules of Mr. Euclid. You may have heard that you can’t 

trisect an angle as Mr. Euclid wants it done, formally and exactly in a finite number of steps. That won’t stop 

us. We’ll do that and other “illegal” moves approximately and in as few steps as possible using tools below.

Toolbox 2: Navigational geometry (Set 1+ protractor, ruler, divider, parallel rule)

 These were the tools used by the Portuguese, Spanish, Dutch, French, and English navigators who 

were at least indirectly responsible for many of us living in the American continent. These tools were also 

used by weekend sailors until the Global Positioning System made obsolete all but six-packs of beer. 

Toolbox 3: Analytic geometry (Set 2+ graph paper, algebra, calculus, calculator)

 The idea is not to discard algebra and other such formalisms but to understand them better. So one of 

the first things we do with each geometric graph is figure it out using algebra. This is called analytic 

geometry and is one of the quickest ways to understand calculus and its application to physics. This leads to 

complex algebra and geometry that is very important to physics. As a crutch for the arithmetically and 

algebraically challenged we include scientific calculators. (Most of these have complex algebra capability.)

Toolbox 4: Computer geometry (Set 3+ high resolution graphics, C++  etc.)

 This is the “open” class of geometric analysis, and anything goes. A modern scientist without 

graphics programming is at a disadvantage. Current languages of greatest general usage, speed, and power 

are C++ and Objective C used to write simulations BounceIt, BandIt, etc. for this book. High-level languages such 

as Maple™, Mathematica™ are fine, too. But, by being jacks-of-all-trades they can become masters-of-few. 

Toolbox 5: You

 This is challenging stuff. Doing it will seem hard sometimes. Rome was not built in a day and neither 

was any understanding of Nature. So this book depends most on how much you like thinking and doing. 

 Ignorance about science is not a burden you must accept. It is a challenge you should overcome.
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(a) Toolbox 1. Euclidian Geometry

(b) Toolbox 2. Navigational Geometry

parallel rule, ruler, and protractor

rule and compass

(c) Toolbox 3. Analytical geometry

1/z=r-1 e-iθΘ

∫1/z dz=ln z
Rect xy- Polar rθ

Graph paper and calculator

Complex algebra and calculus

(d) Toolbox 4. Computer geometry...Anything goes!
Harter-Soft

Elegant
Educational Tools
Since 2001FaceIt BounceItBohrItBandIt

WaveItColorIt U2 OscillIt RelativIt

The Weapons of Math Instruction
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About the computer simulations: LearnIt and CodeIt
The first tier of computer programs used to make figures in this book and provide animated 

visualizations of physical phenomena or analogies thereof in this book is LearnIt series consisting of 

BounceIt, OscillIt, QuantIt, WaveIt, etc. listed in the table below. The idea was to make them like are analog 

computers that allow text figures to become dynamic thought experiments.

The suffix “It” attached to most of these programs is derived from the FaceIt interface invented by 

Dan Kampemier of FaceWare in Urbana, IL a worldwide programming project I joined in 1985 to 1993. A 

lot has changed since then! Now with T.C. Reimer begins re-application using X-Code, IOS, HTML, 

Mathematica, and others. One needs a graphical user/programmer interface (GUI or GPI) that can be easily 

updated with new menus, dials, text editors, spreadsheets, OpenGL, 3D stereo windows, etc. 

Academic application needs GPI to keep model, control, and view separate to avoid wasting time 

reinventing the wheel or debugging buttons in class. Teaching useful root-level object oriented programming 

along with physics is possible. Mixing serious academics with deep coding is still regarded as heresy, but 

sooner or later it needs to be part of serious science education.

GPI’s facilitate a tree of programming projects for a given course. Such project trees make up a 

CodeIt system. Students learn how to saw-off one or more branches of CodeIt trees to build their own 

applications as homework or lab projects. Eventually, they can build applications of sufficient complexity to 

aid in their thesis or dissertation research projects. Also, select CodeIt applications may be added to the 

LearnIt collection, a way for a student to first “publish” his or her best work. Each LearnIt program is 

supposed to have an accompanying expository text and/or on-line help hypertext.

Listed below are Units 1-8 with some LearnIt and CodeIt programs that apply to each.

Unit 1 Review of elementary mechanics of velocity, momentum, energy, and fields.
	
  BounceIt , AnalyIt, and BoxIt with help from CoulIt and ColorU(2).
Unit 2 Lagrange and Hamiltonian mechanics.
	
   TrebuchIt and BoxIt with help from Pendulum and Cyclotron.
Unit 3 Coordinates and transformations.
	
 CoordinIt and AnalyIt with help from TrebuchIt.
Unit 4 Oscillation and waves.
	
 OscillIt , WaveIt, ColorU(2), JerkIt, and BoxIt with help from CnvMolVibes.
Unit 5 Orbits and scattering.
	
 CoulIt and AnalyIt with help from CoulombOrbits.
Unit 6 Rigid and semi-rigid bodies.
	
 RotateIt (Others under development.)
Unit 7 Action , functional variation, and semi-classical mechanics.
	
 ColorU(2) and CoulIt. (Others under development.)
Unit 8 Relativitic mechanics and advanced topics.	
 https://www.uark.edu/ua/pirelli/php/title_page.php   or:           https://
www.uark.edu/ua/pirelli/php/pirelli_trail_map.php )
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About Logic: Some philosophy and neurophysiology concerning axioms
	
 This book is a geometric approach to classical mechanics. By geometry we mean both the Greek and 

German kind, that is, both the plane geometry of Euclid (~300BC) and the differential geometry of Gauss and 

Riemann (1800-1900). We begin with ruler&compass constructions of collision mechanics and potentials. 

Geometry helps clarify the logic of calculus and physics of mechanics and show the symmetry principles 

behind classical theory that underlie quantum theory. Then we we’ll do relativity and QM the same way.

	
 From the earliest Euclidean geometry through modern mathematics and physics we encounter axioms 

at the very beginning of each development. These are a priori assumptions that underlie all subsequent 

logical development. Logic relies on an axiom set. We hope to produce maximum truth, that is, ideas that 

will longest survive the test of time and experiment. We need to choose the best axioms to do that. But, how? 

	
 To parse this let us consider two extremes each written by a friar (churchman) who sought truth 

during the 1300-1400 late medieval period when there was precious little. On one hand we have William of 

Ockham (~1285-1349) now known for Occam’s razor. He wrote, “Pluralitas non est ponenda sineneccesitate” trans: 

(Plurality should not be assumed without necessity). The other is Martin Luther who wrote the following in The Lies 

of the Jew (1433). “Die verfluchte hure, vernunft.”  trans: (That damned whore, reason.)

 Martin was angry at Jews who refused to convert to his axiom set. He was also angry at Copernicus 

who was proposing a non-geocentric solar system that he thought contradicted his scriptural axiom set.

“The fool wants to turn the whole art of astronomy upside-down. However, as Holy Scripture(Joshua 10:10-15.) tells us, so did 

Joshua bid the sun to stand still and not the earth.....’’(Copernicus is)... "a fool who went against Holy Writ"

 So whose axiom set produced the most lasting truths?

 Here we are comparing two parts of human neurophysiological anatomy, the cerebral cortex (CC) and 

the lower limbic lobes (LLL) that include what we call reptilian “lizard-brain” and mammalian “ rat-brain” 

lobes. For most of history, humans are totally LLL-dependent. It’s our evolutionary residual unconscious 

operating system (Human DOS 1.0). LLL “boots-up from the box” while CC requires difficult education. 

 Humans attempts to develop the CC are so sporadic at first it is impossible to label its emergence. 

Traditionally one points to the Seven Liberal Arts as our break with pre-medieval superstition. The seven 

consisted of the Trivium: (Grammar, Logic, and Rhetoric), and the Quadrivium: (Arithmetic, Geometry, Astronomy, and 

Music). The term Liberal is interchangeable with Liberating and probably was used to designate a pathway to 

avoid slavery. It appears that the Trivium contains drivers of the creative results in the Quadrivium. Indeed 

the latter has grown to more like Seven Thousand Liberal Arts and Sciences in just a few centuries. It’s an 

explosion! You’ll have to excuse physics and chemistry for not making the first cut. Those alchemists were 

busy distilling gold from horse urine. (Nice try, but a little too stinky for polite liberal company.)
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 Occam was a CC user who studied all the ancient texts he could find. (A lot got burned when Bishop 

Cyril (later a saint) ordered Coptic Christians to destroy the Alexandrian Libraries and brutally murder the 

famous lady mathematician Hypatia in 415AD. (This is mentioned in Edward Gibbon's "The Decline and Fall of 

the Roman Empire." Less reliable accounts say Caesar accidentally destroyed the library in 48 BCE.) 

 Luther, on the other hand, was more anti-scholarly, at least with regard to Copernicus. His LLL 

attitude was less Seven Liberal Arts and more Seven Deadly Sins. These may also be divided into a Trivium 

and a Quadrivium, however now the latter (Greed, Envy, Lust, and Gluttony) are drivers of the former (Pride, Wrath, 

and Sloth), that is, Pride or “Gloating” if your Greed, Envy,..etc. yields success, or else Wrath or “Rage” if you are 

unsuccessful, followed by Sloth or “Depression.” These are just drives and responses of LLL acquisition 

processes involving short-term ebb and flow of our small 3-to-5-ring molecules called neurotransmitters. 

 So how creative is the LLL approach of Luther with its enormously complex and rigidly cumbersome 

axiom set? Can LLL’s claim thousands of new sins?  Well, perhaps we can credit modern LLL users (known 

as the rabid right) with two new sins, namely Torture and Terror that were recently declared quite legal. 

 However, these two are hardly new. The ancient churches have had them all along. They just did not 

classify them as sins per se, but rather as “parishioner management.”

In conclusion, let me argue in favor of the Occam Razor approach to logical quests and paraphrase it 

with the common suggestions “Keep it simple and make it powerful!” or “Assume the least, prove the most.” Occam’s 

razor is supposed find ways to cut down any axiom set or sine qua non (without which there is nothing). It is 

amazing that such a “cutting” idea actually works! Perhaps, by reducing logical clutter, we hack away 

unknowns and clear the way for new stuff. But, there is more to it than that.

Thought driven by a desire to undermine its own premises leads to a thought path that grows 

geometrically as the CC harnesses the LLL. It’s mind over matter! An exponential explosion of mathematics, 

science, and technology results. The CC’s “faith” in its axioms must be a temporary one. All logical laws are 

made to be eventually broken. (Including, presumably this one. Maybe, there is a TOE!) 

Of course, Occam’s idea was heresy and he was nearly “fired.” as were Copernicus, Galileo, Bruno, 

and most other CC pioneers following such thought progressions. (Bruno had to go to a 1600 church barbecue 

where he was the charcoal.) Hacking sacred Churchly axioms or mythos is always trouble. Occam’s idea is to 

always, “Hack the axioms to save man.” The Church says, “Hack the man to save axioms.” I’ll vote for Occam!

I hope these words (and equations combined with geometry) will serve you creatively.

William G. Harter

Fayetteville, Arkansas 

August 2012
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Unit 1 Classical Velocity, Momentum, Energy and Fields
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Hamiltonian plot
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W. G. Harter

Basic ideas of classical velocity, momentum, and kinetic energy (KE) are reviewed and 

previewed using geometry and super-ball collision experiments involving two different 

masses. The idea of potential energy (PE) and force is introduced by defining PE as the KE 

of “idler” balls that provide force fields for others. The two most famous PE functions, 

those of Coulomb and of a harmonic oscillator or linear (Hooke-Law) force are introduced. 

Elliptic orbit geometry in the latter serves to introduce quadratic forms and rotational 

Coriolis-centrifugal forces. This helps introduce more advanced ideas of Lagrange, 

Hamilton, and Poincare and generalized curvilinear coordinates for classical mechanics. A 

review of complex analysis of functions and fields shows how 2D vector calculus may be 

done with elementary calculus and applied to conformal potential field coordinates sets 

for use in later Units.  
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23
-Unit 1 - Review of Velocity, Momentum, Energy, and Fields

Perhaps the most common fundamental physics experiment is to collide particles against each other. 
That’s all they do at LHC (Large Hadron Collider) where protons are rammed head-on at speeds above 
0.999999c at several TeV (Trillion or Tera-electron Volts). Electron microscopes and laser spectral 
experiments are just particle crashes, too, involving molecules, atoms, electrons, and photons at intermediate 
energies ranging from keV (Thousand or kilo-eV) to about 1eV for one green light photon down to ultra-low 
energies measured in neV (Billionths or nano-eV) for collisions in BEC experiments. To study momentum 
and energy we make classical analogies to common (Let’s hope not for us!) freeway car crashes.

Chapter 1. Collision velocity change and slope geometry
Ka-runch! A 4-ton SUV going 60mph rear-ends a 1-ton VW going 10mph. See Fig. 1.1a. The SUV 

driver was busy texting a cell-phone and not watching the road. Both vehicles abruptly change speeds as 
seen in Fig. 1.1b-c. In order to calculate the speed changes we need to decide whether our collision is a “ka-
runch!” where the cars get welded into a single mass as in the top right of Fig. 1.1(c) or a “ka-bong!” where 
they bounce off with no damage (very unlikely) as in center Fig. 1.1b or else quite likely intermediate “ka-
whump!” collisions to be detailed later on. The technical term for ka-runch is a totally inelastic collision. 
We’ll study it first followed by ka-bong, or technically a perfectly elastic collision, and finally the generic 
range of ka-whumps or inelastic collisions that lie between the first two ideals or extremes. 

KKaa--bboonngg!!KKaa--bboonngg!! KKaa--rruunncchh!!KKaa--rruunncchh!!

Totally
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(a) Before collision...

(b) Collision!

(c) After collision?

Fig. 1.1 Time vs. space graphs of (a) SUV (going 60mph) and VW (going10mph), (b) collision, and (c) 
possible outcomes of two extreme cases: the inelastic “ka-runch!” and perfectly elastic “ka-bong!”
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This text uses of geometry to get quicker results and expose logic. First, let’s review some 
conventions regarding slope on graphs. Our first graph (Fig. 1.1 or Fig. 1.2a below) is a time vs. distance plot 
and speed is slope-from-vertical as favored in relativity theory and by Einstein’s math teacher, Herman 
Minkowski. In contrast, Newtonian calculus favors distance vs. time plots like Fig. 1.2b and speed is slope-
from-horizontal. Both our plots are scaled so a 1:1 ratio (45°slope=1/1) represents 60 mph = 1 mile/min. in 
Fig. 1.2a or 1 min./mile in Fig. 1.2b. Plot (a) compliments (b). One becomes the other by doing a mirror-
reflection across the 45° diagonal (1:1)-“SUV-line” that is the same in (a) and (b). Plot (a) is best for car 
motion since cars go horizontally. For (b) one might ask, “Do cars climb walls?!” (See review of slope.)
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-30 sec. 30 sec.

t=time

x=distance=

-.5
-6
-12
-18

.5mile

-24

-30 sec.

30 sec.t=time=

x=distance

(a) Time vs. space plot (Minkowski) (b)Space vs. time plot (Newton)
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( slope-to-horizon: 1 / 10 )
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Jet velocity = 600 mph
( slope-to-horizon: 10 / 1 )

SUV velocity = 60 mph
( slope-to-horizon: 1 / 1 )

VW velocity = 10 mph
( slope-to-horizon: 1 / 6 )

10
1

6
1

61

101

6

slope-to-horizon
=a/b

a=altitude

b=base

Fig. 1.2 Complimentary plots  (a) Minkowski time vs. space plots vs. (b) Newton’s space vs. time plots.

 Before proceeding with car-crash analysis, it is required we give full disclosure of an important part 
of physics that concerns its idealization and model building.
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Idealization and model building
Landscape 1.1 below applies explicitly to this Unit 1 but implicitly to this entire text and to all other 

physics texts. Scientific theory always requires an idealized model in which to develop its axioms and logic 
for its qualitative and quantitative thought (Gadaken) experiments. It’s an ancient tradition for physics.

The SUV and VW Idealized thought experiments

Idealization 1. Ignore background.
(No rolling friction, air resistance, etc.)

Idealization 2.Make each 1-dimensional.
(Cars “constrained” to ride on frictionless rail)

System now has
just two “dimensions”
or “degrees-of-freedom”

Landscape 1.1 Idealized model for collision model and thought experiments

Here is where we play “Let’s pretend.” We ignore most of the reality of the open road, most notably 
friction of the road surface-tire interface and air resistance. Also, we restrict the number of independent 
variables or dimensions. They are also called degrees of freedom. Here there is only one dimension for each 
car or two dimensions in all. It is as though we have re-framed the car crash as a perfect air-track with two 
bumper-cars floating on it. Models like this one are meant to be expanded. The next Landscape 1.2 begins 
this process by listing the most important classical degrees of freedoms for AMO physics.
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3 translation
dimensions

3 translation
dimensions

6 translational
degrees of freedom
for SUV and VW.

Translation (Each body has 3 translational degrees of freedom) (Intoduced in Units 1 and 2)

3 rotational
dimensions

yaw-pitch-roll
Euler angles

3 rotational
dimensions

yaw-pitch-roll
Euler angles

6 rotational
degrees of freedom
for SUV and VW.

Rotation (Each body has 3 rotationaldegrees of freedom) (Intoduced in Units 3 and 7)

SUV and VW system involves
12 rigid-body degrees of freedom

Summary of Classical Mechanical Degrees of Freedom

Vibration (Each body has many vibrational degrees of freedom) (Intoduced in Units 3-8)

An N-atom molecule has
3N-6 vibrational degrees of freedom

Landscape 1.2 Some idealized classical model degrees of freedom

Models of molecules, atoms, and even nuclei begin with classical models having 3 translational, 3 
rotational, and N vibrational degrees of freedom for every nucleon or nucleus and every electron in them. 

Classical translation-rotation-vibration degrees of freedom may be expressed in coordinates that are 
more convenient than the Cartesian coordinates (CC). These are known as Generalized Curvilinear 
Coordinates (GCC) and are essential in general relativity theory. A simple example, polar coordinates, are 
used to introduce GCC in Chapter 12. Other examples of Orthogonal Curvilinear COordinates (OCC) are 
derived in Chapter 10 in connection with complex field coordinates. 

In quantum mechanics, we find for each classical degree of freedom an infinite number (∞) of 
degrees of freedom. In fact, it’s two infinities (2∞) for each since they are complex dimensions. 

Now if you know everything about slope, you may proceed to Ch. 2 for more news on the car crash. 
But, there are some tricky and subtle things in this Review of slope... section that follows. These could bite you 
later! So it is definitely recommended reading. See if you can do exercises without peeking at answers.
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Review of slope geometry, sin, sec, tan and complimentary trig functions

Slope is defined as the ratio Δy/Δx of vertical altitude Δy per horizontal base Δx. This equals velocity 
v=Δx/Δt for a horizontal time-t-axis and vertical space-x-axis like Fig. 1.2b. So horizontal x-axis and vertical 
time-t-axis of Fig. 1.2a has slope=Δt/Δx=1/v inverse to Fig. 1.2b slope. The lowest slope=1/10 in Fig. 1.2a 
belongs to jet velocity v=600mph that is the highest slope=10/1 in Fig. 1.2b, and a low VW velocity of 
v=10mph has a steep triangle of slope=6/1 in Fig. 1.2a but in Fig. 1.2b that VW line is a low slope=1/6.

Each unit graph square in Fig. 1.2a has a horizontal scale factor of sx=0.1mile(per square) and a 
vertical scale factor of sy=6sec.(per square) and vice versa for Fig. 1.2b. If you multiply scale sx by factor fx 

and sy by fy then each graph slope Δx
Δy =(ny vert. squares)/(nx horiz. squares) changes to (fx/fy) Δx

Δy .

We do rescaling of dimensions to change units. For example, changing miles to feet in Fig. 1.2a uses 
factor fx =5,280 ft. per mile (or) and changing minutes to seconds uses fy =60. The scale ratio (fx/fy) is 88, that is, 
60mph equals 88 . SUV slope of 1 in Fig. 1.2b is 88 in a ft. vs. sec. plot. That’s too high to plot 60mph 
accurately but a ft. vs. sec. or ft. vs. min. plot will be more appropriate for parking lot speeds.

Slope angles, ratios, and areas
 Most of us learn to measure slope by degrees(°) of a slope angle σ. Greek “s” or sigma σ stands for 
sector slope. (We also use theta (θ) or phi (φ).) But, degrees are an arbitrary choice of 180° per (1/2)-turn or 
360° per full turn. A better unit is 1 radian=180/π~57.3°. A σ=1radian-sector on unit circle (r=1) (Fig. 1.3a) has 
unit arc-length (=σ·r=1) and unit sector area (A=σ·r2=1) based on π=3.14159…(pi), not an arbitrary number.

σ =1
radian

radius
r =1

Arc
length
 = r ·σ=1

(1/2)r2·σ+(1/2)r2·σ=1
Total Sector Area

r2·σ=1

(a) Unit angle σ=1 radian
=57.2957795...°(π/180°)

σ =π/2
radian

radius
r =1

Arc
length

 = r ·σ=π/2

(1/2)r2·σ+(1/2)r2·σ=π/2
Total Sector Area

r2·σ=π/2

(b) 1/4-circle angle σ=π/2 radian
=90°(π/180°)=1.570796...

Fig. 1.3 (a) Definition of unit angle (σ =1) on unit circle (r =1) (b) A quarter turn sweeps half the area. 

 The trick here is that the sector slope line sweeps out two pieces of the pie to make a whole pie or 
area pi=π if angle σ is π or 180°. The 1/4-circle angle σ=π/2 in Fig. 1.3b sweeps area πr2/2=π/2 of half a pie. It 
may not be how you serve pie, but it’s how mathematicians serve π. (There (or their) pie (or pi) are squared!)
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Actual slope is the tangent of angle σ written tanσ and so called since it is the length of a line tangent 
to or “touching” a unit circle from angle σ to x-axis. (See Fig. 1.4b.) Another triangular ratio is the sine or 
sinσ that stands (I’m guessing) for “slope over incline.” The tangent in Fig. 1.4 is an a:b ratio (a/b), but the sine 
is an a:r ratio (a/r) that civil engineers use to “grade” roads.

             percent-grade=100·(altitude Δy gained)/(distance Δr traveled) =100 sin σ 
High grades are good in school but bad for roads. An interstate highway would “flunk” anywhere its grade 
was above 5%. This changed in 2001 with the Bush administration’s “No Road Left Behind” policy.

Each triangle ratio switches places with its codependent ratio if you switch x-and-y-axes (or altitude-
and-base) or switch Fig. 1.2a Minkowski plots to Fig. 1.2b Newton plots. For example, a cotangent ratio is 

codependent to tan σ, and cosine ratio   radius
base =r

b=Δr
Δx= cosσ  is codependent to sin σ.

In comparing (a) vs. (b) in Fig. 1.2 we saw that a slope (like 6/1) in (a) is inverse slope (1/6) in (b). 

(That was for the 10mph VW.) In other words, any slope   b
a= tanσ in (a) becomes   a

b= cotσ = 1 / tanσ  in (b). Also 

any slope angle σ in (a) becomes a compliment  σ c = 2
π− σ  to angle σ in (b). (See Fig. 1.4a.)

From the two preceding paragraphs we deduce that any ratio like sinσ or tanσ for angle σ must equal 
its co-ratio for the compliment σc=π/2−σ, and vice versa.
    sinσ = cosσ c  ,      sinσ c = cosσ  ,      tanσ = cotσ c =1/ tanσ c  ,     tanσ c = cotσ=1/ tanσ   

Two other ratios use secant (or “sword-like”) lines that pierce the circle in Fig. 1.4b. The horizontal line is a 

secant ratio   base
radius=b

r =Δx
Δr = secσ = 1 / cosσ  and its co-ratio is a cosecant ratio 

  altitude
radius =a

r =Δy
Δr = cscσ = 1 / sinσ .

radius and
hypotenuse
r =√a2+b2

b=base

a=
altitudeσ

σc= −σ

σ =1

r =1

(b) Slope ratios for σ=1

base =rcosσ=0.5403

tangent=r tanσ=1.5574

σ

σ

secant =r secσ=1.8508

co-tangent
=r cotσ=0.6421

co-secant
=r cscσ=1.1884

σ =π/2

r =1

(c)...for σ=π/2

base=rcosσ=0

altitude=r sinσ=1

tangent=r tanσ=∞
σ

secant=r secσ=∞

co-tangent
=r cotσ=0
co-secant
=r cscσ=1

(a) Triangle with
slope angle σ=1

= negative-compliment to slope angle

σc

σc altitude=r sinσ=0.8415

σ

π
2 σc

π
2

π
2

r =1

Fig. 1.4 (a) Right triangle geometry for σ=1 slope (b) Triangle ratios for σ=1 and (c) σ=π/2.
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                        Right-handed Cartesian coordinates

Rene Descartes (1596-1650) is said to have invented (or discovered) the Cartesian 
graph and coordinate system. We usually call the two-dimensional (2D) version “XY-
coordinates” and three-dimensional (3D) versions are “XYZ-coordinates.” 

Four-dimensional (4D) space-time (xyzt)-Minkowski coordinates after Herman 
Minkowski (who was Einstein’s math professor)†came later (1905-1908). The 2D 
projection of one space dimension (x or y or z) and time scale-by-lightspeed (ct) is 
called a Minkowski graph. Lightspeed c=2.99792458 m/s has velocity units so ct has 
distance units like x or y or z.

Two-dimensional (2D) XY-graphs often draw the primary X or x-axis along the 
horizontal direction with x increasing to the right, and then place the secondary Y or 
y-axis perpendicular or normal to the X-axis with y increasing vertically. 

What (or which) physics variables should be “primary?” Well, that’s up to you. 
The choice between Minkowski(a) and Newton(b) in Fig. 1.2 is a matter of taste.

Y

O X

-1.0 -0.5 0.5 1.0

-0.5

-1.0

P = (0.8,0.7)
Q = (-0.6,0.4)

R = (-0.9,-0.3)
S = (0.5,-0.2)

1st quadrant2nd quadrant

3rd quadrant 4th quadrant

Y

X

1.0

0.0
0.0

1.0
Z

The graph above is called a right-handed coordinate system since it points like 
your thumb (X) and forefinger (Y) of your right hand as you extend to shake hands or 
hand someone a plate of escargot. (Descartes’ French cuisine is respected here.)

A toothpick sticking up from the escargot points in the Z or z-axis direction of a 
right-handed 3D Cartesian coordinate system as shown below.

x-axis

y-axis

z-axis zz-axis

† Minkowski (who was Polish) told Einstein (who was Swiss) that he was a “fat lazy boy.” Einstein was so 
insulted that he never used Minkowski plots. It is sad story since Herman’s graphs could have helped many more 
to visualize relativity by exposing its geometric structure. Eventually, we hope to make up for that sad mistake!

A. Einstein, Annalen der Physik 17, 891(1905).
H. Minkowski, Mathematisch-Physikalische Klasse, vol. 1, 53 (1908).
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Change and delta variables
The delta notation, such as Δx, Δv, Δt, and so forth, is confusing to one who has 

not had a calculus course (or has forgotten that stuff). Roughly speaking, the Greek 
upper case “D” or delta (Δ) stands for “difference” or differential, and Δx should be 
read as “change of x” or differential of x and thought of as a single entity.

It is a common mistake to read  Δx as “Δ multiplied by x” or “Δ times x ” since, 
after all, product p of quantities a and x is written p=ax or better p=a·x. Instead, the 
mathematical cognescenti think of Δ as an operation that acts on a variable x or 
whatever to give whatever change has occurred in that variable. 

When the letter Δ is used to denote an actual number or variable one should take 
care to write its product with another variable x as Δ·x or (better) x· Δ to avoid 
confusing it with Δx.

Slope and delta ratios
Slope ratio Δy/ Δx of a line or of a triangular hypotenuse is a key concept that is 

common to mathematics and physics beginning with Babylonian and Greek plane 
geometry of Euclid (300 BCE), and progressing through analytic geometry of 
Descartes (1620), the complex trigonometry of Euler (1700), the calculus of Newton 
(1720), the relativity of Einstein (1905), and the quantum mechanics of Planck 
(1900), Bohr (1920), Schrodinger (1925), and Dirac (1930). (That’s a short list. A full 
one could take pages.) Physics uses slope like soup uses water. It’s all based on slope 
and related triangular angles, areas, and ratios. We must study slope!

So far we have only talked about slope of straight lines in Fig. 1.1-2. For them 
triangle size or location makes no difference to ratio Δy/ Δx. All triangles in the figure 
(a) below are similar triangles, but triangles hanging on a curve in figure (b) are not.

(a) (b)

Δx

Δy

slopes Δy/Δx
are equal

slopes Δy/Δx
are not equal

Slope of a triangle hanging on a curve depends on location  x and base segment size 
Δx. Soon we will define slope of a tangent line to a curve in (b) by making its base 
segment Δx so small that the curve over it looks straight as in (a). Then tangent slope 
(to graph accuracy) only depends on location x on the curve and not on tiny Δx.
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 Fig. 1.4b has eight different but similar triangles with the same angles (σ,π/2,σc) as the triangle in Fig. 
1.4a. Can you spot them? Whether big or small, similar triangles share ratios (sine, cosine, or tangent) if (and 
only if) they share angles. To do geometry problems we look for “hidden” similar triangles and hidden right 
triangles that form similar rectangles. Right triangles have relation a2+b2=r2 of Pythagoras (~570 BC).
 One secret is to visualize sequences of scale change or rotation transformation as in Fig. 1.5 where 
each rectangle is rotated by 90° and shrunk by a factor cotσ=64.2%. Rectangle diagonals in Fig. 1.5a (and 
sides in Fig. 1.5b) give a power sequence (…tan1σ,tan0σ=1,(tanσ)-1=cot1σ,(tanσ)-2=cot2σ,(tanσ)-3=cot3σ,…).
 A power sequence is also called a geometric sequence since it is suggested by geometry. A rectangle 
sequence in Fig. 1.5a is lined up with the XY coordinates of the page, that is, each side has zero or infinite 
slope but the first diagonal (tanσ) has a negative slope angle of -σc = –1-radian or –57.3°. The sequence in Fig. 
1.5b begins with a rectangle side (tanσ) at angle –57.3°. Each sequential rotation in either figure is 90° 
clockwise around the original tangent point with rectangle size shrunk by factor cotσ=64.21% each time.

 

(a) Rectangle diagonal sequence
{...tanσ,1,cotσ,cot2σ,cot3σ,...}

tanσ

1

cotσ
cot2σ

cot3σ

(b) Rectangle side sequence
{...tanσ,1,cotσ,cot2σ,cot3σ,...}

tanσ
1

cotσ

cot2σ

cot3σ

Fig. 1.5 Geometric cotσ=0.6241 sequences of whirling rectangle segments based on slope angle σ=1.

Exercises for study of slope and trigonometry
1. Construct whirling square diagrams for 60° slope angle σ=π/3 without using protractor. First compare the 
precision of graph-derived values of sinσ,  cosσ, tanσ , etc. with algebraic and/or calculator-derived numbers.
Solution Hints:
Only certain angles have exact Euclid rule&compass construction and σ=60° is one of them. (But,  σ=1 isn’t!) 
If you could “straighten” the (=1)-arc of a (σ=1)-sector (Fig. 1.3a) to one (r=1)-side of an equilateral triangle, 
its slope angle would grow from σ=1=57.3° to σ=π/3=60° as shown in Fig. 1.6b. 

To construct a 60° slope a′ la Euclid, draw a radius-(r=1) circle by compass and use the same radius-r 
setting to strike an arc from X point-(x=1,y=0) to locate R as in Fig. 1.6b. So now, theoretically, arc-RX is 
=π/3=1.0472…long approximately but line-RX has length-(r=1) exactly. At 2-figure precision both have 
length 1.0, but at 3-figure precision, arc-RX length is 1.05, 5% greater than line-RX length 1.00.
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Whether a math or physics theory is “correct” or not depends on our level of precision. As we will 
see, it is pretty tough to get order-3 absolute precision (1 part in 1,000) with ruler and compass construction 
but order-2 is pretty easy. By taping fishing line onto arc-RX, we can see that it is about 5% shorter than a 
unit line, but measuring 4.7% is challenging and 4.72% requires tools most don’t have.

We easily get level-9 precision by poking sin(π/3) into a calculator (or sin60° if set for degrees)  to get 
sin(π/3)=0.866025403…. but only can estimate 0.86 or 0.87 in Fig. 1.6b graph as indicated by ??? marks.

To construct the tangent declination by compliment angle σc= π/2-π/3= π/6 (or 90°-60°=30°) we strike a 
unit arc off the –Y point to intersection point Q on the 4th quadrant-YQX of unit circle in Fig. 1.6c. The line 
OQ thru point Q is perpendicular or normal to original slope line OR since σc+σ is π/2(90°) for any σ. 

This line OQ drawn thru point R is the tangent decline we need for this problem. Just redo arc inter-
sector -YQO to make sector NPR centered at R instead of O. Then draw tangent line PR so it extends down to 
secant point S on the X axis and up along the cotangent line to the cosecant point on the Y axis.

Arc length

 = r ·σ=π/3

XO X

R
Y

radius

r =1

O

X

RY

radius

r =1

-Y

O

Q

radius

r =1

base =rcos =0.5000
π
3

altitude=r sin =0.8664
π
3

60° 60°

60°

60° 60°

r=1

b=1/2

a=√3/2

X

Y

σ=π/3
(60°)

S

???

???

???

???

Q

P

tangent=r tan =1.732
π
3

???

secant =r sec =2.0000

r cot =0.5774
π
3 ???

r csc =1.1547

σ=π/3
(60°)

π
3

π
3 ???

σc=π/6 (30°)

(c) Tangent declination σc= (30°) (d) Secants etc.

(a) Unit circle (b) Tangent slope σ= (60°)=1.0472..π
3

σc
σ

σc

σ=60°

σc=30°

π
6

R???

Y

N

90°

-Y

-X

Fig. 1.6 Details of a geometric construction of Fig. 1.5 for slope angle σ=π/3 (60°)
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 Segments OS and YR provide numerical estimates of calculated values sec(π/3)=2.000 and csc(π/3) =1.155 
along X and Y axes, respectively, in Fig. 1.6d. The value sec(π/3)=2 like its inverse cos(π/3)=1/2 is exactly 
rational, a nice feature of a (30°,60°,90°)-triangle with side ratios (b:a:r)=(1:√3:2) (It is a right triangle, so: 
a2+b2=r2.) The “30-60” is a famous right triangle students must learn. Others are “3-4-5” ((a:b:r)=(3:4:5)) and 

the “45” ( (45°,45°,90°)or(a:b:r)=(1:1:√2)). A “Golden” ratio   G =2
1 (1+ 5)  triangle is very cool (and rich).

Arc functions
So far we give an angle or unit-circle arc σ and construct or calculate trigonometric functions of σ 

including a=sin σ, b=cos σ, t=tan σ, 1/a=csc σ or their co-functions. Now consider the reverse or inverse case: 
we are given a, or b, or t etc. and must come up with an arc σ (or arcs σ1, σ2...) that gives a, etc. To do this we 
find arc-functions arc-sine, arc-cosine… or inverse trig functions sin-1, cos-1…as follows. 
 σ =arcsin(a)=sin-1(a), σ =arccos(b)=cos-1(b), σ =arctan(t)=tan-1(t),…
The exponential (-1)-notation seems to confuse sin-1(a) with (sin(a))-1=1/(sin(a)) that we do not want here. 
(However, it is conventional to write (sin(a))n=sinn(a) or any power but (-1).)
 Algebra of arc-functions is trickier than algebra of functions themselves. Geometric constructions of 
sin-1, cos-1…etc. are not so tricky but quite simple and revealing. To find sin-1(0.5), for example, we draw a 
horizontal line at y=0.5 and see where it intersects the unit circle. (Fig. 7a) Nothing to that! Except, we see 
there are two angles σ1=π/3 and σ2=2π/3 that give sinσ1=0.5=sinσ2. The same applies to cos-1(0.5) except now 
the angles are ±π/3. (Fig. 1.7b) Note the antipodal (±180°) angles that equal tan-1(0.5). (Fig. 1.7c)

X

a =0.5

Y

radius

r =1

O

150°

30°

(a) Find arc-sine σ=sin-1(0.5)

π
6

5π
6

X

b/r =0.5

Y

radius

r =1

O

-60°

60°

(b) Find arc-cos σ=cos-1(0.5)

+π
3

−π
3

σ2= X

a/b=0.5

Y

O

60°

(c) Find arc-tan σ=tan-1(0.5)

b=1

b =0.5

a/r =0.5

a =0.5

26.6°

σ1=0.464

-153.4°

σ1=σ1=

σ2=

σ2=0.464-π

10°

20°

Fig. 1.7 Geometric construction of arc-trig functions of 0.5= 2
1 . (a) sin-1( 2

1 )  (b) cos-1(  2
1 )  (c) tan-1( 2

1 )

2. Find arc-secant (say, sec-13.0) by geometry. Try it first without looking at the answer.
Solution Hints:
We need to find the tangent that goes from 3.0 to touch the circle. A circle of radius r=3.0 concentric to the 
unit circle has rectangle tangents of that size that we copy from x=3.0 to touch unit circle.
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1 2 30 1 2 30

30°

-30°

60°

-60°

90°

-90°

120°

150°

-120°

-150°

10°

20°

40°
50°

70°80°

1 a=2 30b=4

√ab=√8

Fig. 1.8 Geometric construction of arc tangent, arc secant, and geometric-mean square-root.

Or else we simply draw rectangle diagonal thru unit circle. This involves Thales’s Geometric Mean (GM) 
construction in Fig. 1.9a of a product square root √(a·b). In Fig. 1.8 it is √8=2.82… the desired tangent. The 
special case of the Golden Mean is shown in Fig. 1.9b. The whirling rectangle in Fig. 1.5 is a whirling square 
in Fig. 1.10 if the rectangle tangent and cotangent are Golden Means 1.618.. and -0.618.., respectively. 

AM=(a +b)/2
= 3

a =1 b=5

GM=√(a·b)
= √5

90°

a =1 b=5

a

GM

GM

b

GM
a

b
GM=

(a) Thales Mean Geometry GM=√a·b (b) Golden Mean G+=1+√5
2

Geometric Mean:
GM=√(a·b)
Arithmetric Mean:
AM=(a+b)/2
Difference Mean:
DM=(a-b)/2

DM=(a-b)/2
=2

2

1+√5

Fig. 1.9 Thales construction of geometric-mean, square-root, and Golden Mean.

(G+=1.618...)-slope
multiplier line

G+

(G-=-0.618...)-slope
divisor line

(b) with unit square cut-out (c)“Whirling-square”
(Log-spiral approximated
by circular quadrants)

G+

(a) Golden rectangle

1 1

1

11

G-

Fig. 1.10 (a) Golden Rectangle, (b) Golden slope geometry, and (c) Whirling Square like Fig. 1.5.
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35
Know your calculator and ATAN, too! (atan2(y,x))

Scientific calculators do not always give the solution you want for arc-function 
sin-1(a), cos-1(b), or tan-1(b/a). For one thing, they never give an angle in the 3rd 
quadrant (minus-x,minus-y) so you could be wrong at least 25% of the time.

But it is worse than that. “Blind” arc-calculations are wrong half the time.
As you vary altitude a=y from (+1) to (−1) values in Fig. 1.7a the 1st arc-solution 

σ1= sin-1(a/r) sweeps the unit circle in the right-half plane while its x-reflection is the 
2nd solution σ2 is in the left-half plane. The calculator ignores σ2.

As you vary base b=x from (+1) to (−1) values in Fig. 1.7b the 1st arc-solution σ1= 
cos-1(b/r) sweeps the unit circle in the upper-half plane while its y-reflection is the 2nd 
solution σ2 is in the lower-half plane. Again, the calculator ignores σ2.

Varying either altitude a=y or base b=x from (+1) to (−1) in Fig. 1.7c gives a full 
range of solutions σ1= tan-1(a/b) but a calculator cannot distinguish between the first 
solution and the 2nd antipodal solution σ2= tan-1(-a/-b) since a/b=-a/-b.

So the calculator plays it safe and gives the acute angle solution in the arc-range –
90° and +90°, that is  (  2

−π ≤ σ ≤  2
+π ) . The obtuse angle solution is ignored for ranges +90° 

to +180°   (2
nd quadrant :  2

+π < σ ≤ +π )  or -90° and -180°   (3
rd quadrant :  2

−π > σ ≥ −π )  

A correct solution is the sure-fire atan2(y,x) function that requires you to give both 
the altitude a=y and the base b=x (with correct signs, of course) so it knows which 
quadrant you’re in. The atan2, built into calculators gives what is called the rect-to-
polar coordinate conversion often labeled by a   (x, y) → (r,θ ) -button.

 Plug in x and y and out comes   r = x2 + y2 and   θ = tan−1
x
y . The θ is our σ. 

Trig function plotting exercises (And, how we trisect angles) 
3. Use ruler&compass to plot y=cos(x) and y= cos-1(x)=arccos(x). Do y=sin(x) and y=sin-1(x). Begin by 
constructing a 12-pt “clock” circle. Repeat using 45° diagonals to make a 24-hr clock and project the 24 
points horizontally for y=cos(x) and vertically y=cos-1(x)=arccos(x). Shift plot by 3 hours (90°) for sine and 
arc-sine functions. Each “hour” is angle 15° or π/6. Sine curves allow “forbidden” constructions such as 
cycloids and angle-n-sections. In quantum physics sinusoidal waves are really important curves!
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Exercise 1.1.4 
Construct both Golden angles associated with the Golden Ratios G+ and G-  and measure their slopes in 
degrees on protractor graph paper below. (Also available online.) Can you find a simpler (Pythagorean) 
construction of √5 ?

Exercise 1.1.5
 Construct whirling rectangle diagram like Fig. Fig. 1.5 but for Golden slope angle to give whirling square 
sketched in Fig. 1.10. Use protractor graph from Ex. 1.1.3 to measure angles of slopes obtained this way.

30°

-30°

60°

-60°

90°

-90°

120°

150°

-120°

-150°

10°

20°

40°
50°

70°80°

©2012 W. G. Harter Chapter 1. Slope and trigonometry 36

36



37

Chapter 2. Velocity and momentum
Recall the car-crash problems discussed first in Chapter 1 regarding Fig. 1.1. The first one involves a 

text-messaging driver of 4-ton SUV going 60mph SUV rear-ending a dawdling 1-ton VW going 10mph. (Fig. 
1.1b.) What final velocity or velocities do the cars have? You may have been taught to analyze collisions by 
solving momentum and energy formulas in a resulting quadratic equation. Fig. 2.1 shows an easier geometric 
solution using a single line on graph paper. Moreover, its logic is clear enough to derive those formulas!
 As sketched in Fig. 1.1b, the answer depends on whether it’s“Ka-Runch” or “Ka-Bong” or some more 
generic noise like “Ka-whump”. By“Ka-Runch” we mean the cars crumpled enough to become crunched into 
one hunk of metal weighing 5 tons. (4+1=5) This is a simple problem that is solved by drawing a line of 

slope (–4/1) on a velocity vs. velocity graph from before-crash-point (VSUV
INITIAL= 60,  VVW

INITIAL= 10)  to where that 

line intersects the red 45° (VSUV=VVW)-line at the after-crash-point (VSUV
FINAL= 50,  VVW

FINAL= 50).  (Fig. 2.1)
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Fig. 2.1 Anatomy in velocity space of a “Ka-runch!” that is an extreme inelastic collision.

 The logic behind a (VSUV=VVW)-line is that crunched vehicles have equal velocity. The logic behind a 
Ka-Runch-line of slope (–4/1) is subtler. It is due to Newton’s 1st axiom or “law” that says Nature conserves so-
called momentum, a sum of products of each mass with its velocity. It’s a law we can live with but, why?

Momentum exchange: a zero-sum game
During the car crash the velocity coordinate pair (VSUV ,VVW) change very rapidly in moving from 

initial point I at (60,10) to final point F at (50,50) in Fig. 2.1. The Ka-Runch takes less than a second. In that 
time, SUV is losing only one unit of velocity for every four units gained by VW since SUV is four times 
heavier than VW.  Newton writes this as a total momentum conservation equation.

  PSUV +PVW =MSUV·VSUV+ mVW·VVW = PTotal =constant  (2.1)
Checking (2.1) with Fig. 2.1 gives a total momentum PTotal =250 that SUV and VW have together.
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 4·60+1·10 =4·VSUV+1·VVW =4·50+1·10 = PTotal =250   (2.2)
The change of PTotal must be zero (ΔPTotal =0) before, during, and after the crash. It’s a zero-sum game.

   MSUV·ΔVSUV+ mVW·ΔVVW = ΔPTotal =0    (2.3)
Dividing by SUV change-of-velocity (ΔVSUV) and VW mass (mVW) gives the slope relation in Fig. 2.1. 

    MSUV

mVW

+
ΔVVW
ΔVSUV

= 0   or:  ΔVVW
ΔVSUV

= −
MSUV

mVW

   (2.4)

           PTotal is also conserved in an ideal Ka-Bong of Fig. 2.2. Here cars bounce off each other without 
damage. That’s unlikely at 60mph speeds! So Fig. 2.2 is rescaled to units of feet per minute. Then initial 

 VSUV
IN =60 feet per minute=1ft. per sec. is more like a parking lot speed. (Insurance claims are a lot less!) The 

VW is bumped from an initial  VVW
IN =10 ft per min to  VVW

FIN =90 ft per min=1.5 fps=1.02 mph. To find  VVW
FIN in Fig. 

2.2, draw an arc from initial I-pt (60,10) to hit final F-pt (40,90). Arc-center is Center of Momentum COM pt-
(50,50) on the 45° line. (It’s the final point if cars get “stuck” to each other as in a Ka-Runch like Fig. 2.1.)
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 Fig. 2.2 Anatomy in velocity space of a “Ka-Bong!” that is an extreme or ideal elastic collision.

The Ka-Bong in Fig. 2.2 is like the Ka-Runch in Fig. 2.1 followed by an equal but opposite rebound or 

hcnuR-aK (un-crash) that undoes the “damage” by the Ka-Runch. Now you might ask, “Is this possible outside 
of the cartoon world or a video game?” Well, certainly not at high speeds and not quite at low speeds.

 Only in a quantum nano-world do perfectly elastic processes exist. Any classical collision, however 
gentle, is audible, visible, and disturbs or exchanges many atoms, electrons, and photons. This is called 
“wear&tear” or entropy growth. (Usually one ignores it until it has gone too far. Then it fills landfills!)
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Even gentle bumps like the one starting at initial pt-I in Fig. 2.2 cannot quite go exactly to final pt-F 

on the COM circle, but collisions with no appreciable damage pass as (almost) elastic or time reversible 
bumps. A video of the Fig. 2.2 I→F bump played backwards looks like an F← I bump that is quite ordinary. 
But reversed video of the Fig. 2.1 crash looks like a crazy “un-crash” as ruined cars get reborn like new.

Deducing (perfect?) conservation from (ideal?) symmetry 
Newton’s momentum or P-conservation axiom or “law” is one of the most strictly enforced laws in classical 
physics. (It’s also quasi-conserved in quantum physics that so often seems to get away with utter mayhem!) 
Momentum is like some kind of fluid that you might buy and sell but cannot create or destroy. In our car 
bumps or crashes the zero-sum-rule says, “Whatever P the VW gains (or loses) the SUV loses (or gains.)”

A classical law without classical proof remains an axiom until deeper theory may rule on it. Quantum 
theory has ruled and can shed some light on origin and properties of this mysterious “P-fluid.” It also shows 
how to cheat P-conservation and other classical “laws” a little. This will be discussed in later units.

In the meantime it is possible to relate P-conservation to more fundamental axioms that are called 
symmetry principles. Symmetry is a grown-up geometry that is also very useful in the quantum world. Most 
immediately, symmetry helps deduce principles of energy E and E-conservation as discussed below.

Symmetry means “same-etry” or “similarity” or “smoothness” and other “s” words like simplicity. 
One fancy technical term is isotropy or isometry with iso meaning same. For example, the most symmetric 
ball would be a sphere that is isotropic by having the same radius everywhere. A most-isotropic (or most-
symmetric plane) is flat and bump-free. Some would say symmetry means Beauty, but others might say it 
means Boring. Think of a seemingly endless Kansas prairie for either response.

Symmetry can refer to sameness in time as well as in space and often the two are related. (Think of 
driving across Kansas.) The idea of being time reversible is an example from the preceding page. Another is 
Galileo’s relative-velocity symmetry or Galilean relativity. Both are involved in Fig. 2.2 and Fig. 2.4 below.

Galilean time-reversal symmetry
Suppose a traffic cop is going 50mph in a lane adjacent to the one occupied by the SUV and VW. He or she 
records (using radar) the SUV coming up at 60mph, and puts on the blue-light to stop it for exceeding the 
20mph limit in a school zone. Then Ka-Runch! as SUV+VW become a single 5-ton hunk going 50 mph, the 
same speed as the cop. (The cop can just reach across to hand SUV a cyber-ticket for (1) speeding in a school 
zone, (2) improper following, and (3) driving while faxing. c-tickets are costly even for rich SUV-ites!)
 The VVW vs. VSUV graph for the Ka-Runch is shown in Fig. 2.3 as viewed by the 50mph cop. It is the 
same as Earth-frame-view in Fig. 2.1 except the cop’s speed of 50mph is subtracted from both V-scales. The 
cop sees a final 5-ton SUV-VW hunk going 0 mph relative to cop-frame or COM frame of SUV+VW.
 The VVW vs. VSUV graph for the Ka-Bong in Fig. 2.4 is also viewed in the 50mph cop-frame or COM-
frame. Again, it’s just Fig. 2.2 with 50mph subtracted off V-scales. Cop or COM-frame view shows simplicity 
and symmetry. Velocity values simply change sign as the Ka-Bong crosses the whole COM-circle diameter.

Initial I-pt (10,-40) →  (reflection thru COM pt-(0,0)) →  final F-pt (-10,40) 

Reversing time (Δt→−Δt)  makes (-)velocity (V =Δt
Δx→−Δt

  Δx = −V )  and reflects I-pt and F-pt into each other.
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Initial I-pt (-10,40) →  (reflection thru COM pt-(-0,-0)) →  final F-pt (10,-40) 

That is just Fig. 2.4 with blue time-direction arrows reversed. (INITIAL I switches places with FINAL F.)
 Elastic collisions (Fig. 2.4) are symmetric and balanced to t-reversal, but inelastic Ka-whump’s are 
unbalanced if they stop short of the COM circle. A Ka-Runch (Fig. 2.3) is unbalanced to the extreme.
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Fig. 2.3 COM-frame or 50mph cop-frame view of a “Ka-runch” inelastic collision of Fig. 2.1.
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Fig. 2.4 COM-frame or 50mph cop-frame view of a “KaBong” elastic collision of Fig. 2.2.
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 This is a common situation in physics. The real (or generic) world lies between extreme ideals that 
are easiest to quantify. On one hand, we’ll say a Ka-whump that ends up close to its inital COM-circle is elastic 
or Ka-Bong-like and, on the other hand, a Ka-whump that stops near its COM-point is inelastic or Ka-Runch-like.

Galilean relativity and spacetime symmetry
Galileo grew up in Renaissance Italy as it flourished from its sea trade. Perhaps, watching ships of trade 
glide smoothly in the harbor led him to ideas about relativity of velocity. In any case he wrote about 
comparing what a sailor sees in a ship-frame with what is seen in the Earth-frame. He noted how apparent 
velocity of an object decreases by subtracting the velocity of the observer’s frame.
 Subtraction of the cop’s velocity Vcop=50 from Earth-frame velocity (VSUV,VVW)=(60,10) of SUV and 
VW in Fig. 2.2 gives their initial velocity (60,10)-(50,50)=(10,-40) in cop-frame. (Fig. 2.4) Such a 
subtraction (or addition if the cop goes the other way) is a Galilean relativity transformation. Fig. 2.4 is a 
redrawing of Fig. 2.2 with new (VSUV,VVW) scales, each reduced by 50mph. Or else, start with Fig. 2.2 and 
slide each velocity point down 45°-line by 50mph, (COM /cop-frame Earth-relative velocity) as in Fig. 2.5a.

It is a kind of “slide-rule” in Fig. 2.5b that quantifies several Galilean frames. The initial VW frame 
(VW(I)) is found where the 45°-I-line hits the horizontal (VVW=0) axis. VW starts in frame-VW(I) and is hit by a 
(VSUV=50)-SUV that knocks VW into a new frame-VW(F) of final VVW=80 as SUV slows to a final VSUV=30.

Next a final SUV frame (SUV(F)) intersects the 45°-F-line on the vertical (VSUV=0) axis where a final 
point-FSUV(F) (VSUV,VVW)=(0,50) results if initially a (VSUV=20)-SUV Ka-Bongs a (VVW=-30)-VW at point-ISUV(F).
 Note that seven Ka-Bong lines in Fig. 2.5 show seven different-frame views of the same Ka-Bong. In 
four frames, one car has V=0 either before or after the Ka-Bong. One frame, the COM has VCOM =0 before and 
after. That COM-frame is balanced to velocity reversal (+V ↔−V ) . Other frames have distinct V-reversed 
twins with INITIAL I and FINAL F switched, such as symmetry twins ISUV(F)↔ FSUV(I) and FSUV(F)↔ ISUV(I) on 
each side of the central COM-frame in Fig. 2.5b.
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Fig. 2.5 Galilean transform of  “KaBong” in Fig. 2.2 to (a) COM-frame and (b) to other frame views.
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Geometry of Balance: Center of Momentum (COM) and Center of Gravity (COG)
The uniqueness and constancy of a COM for the SUV and VW is connected with underlying space-time 
symmetry or geometry of spatial balance in Newton’s equation (2.1) repeated here in different forms.
  PTotal =PSUV +PVW =MSUV·VSUV+ mVW·VVW = MTOTAL·VCOM=constant  (2.5a)
Total momentum is a product of VCOM and total mass MTOTAL=MSUV+mVW of a 5-ton SUV-VW “hunk”. This 
holds whether the “hunk” forms permanently in a Ka-Runch or the cars bounce off in a Ka-Bong or Ka-whump. 
Both PTotal =MTOTAL·VCOM and VCOM are constant throughout the collision regardless of “auto-elasticity.”

   VCOM =
MSUV ⋅VSUV +mVW ⋅VVW

MSUV +mVW
=weighted  average
of  VSUV  and  VVW

    MSUV :mVW =
constant
MTOTAL

   (2.5b)

Weighted average VCOM of (VSUV,VVW) is fixed as V go from initial to in-between to final values. Collisions in 
Fig. 2.1 thru Fig. 2.5 all have VCOM=50 in the Earth frame. The 4:1-weighted average of each coordinate pair 
(40,90), (50,50), (60,10), (70,-30),etc. on the slope-(-1:4)-line (in Fig. 2.6a below) is VCOM=50.
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Fig. 2.6 Geometry of (a) 4:1-weighted velocity average (b) 4:1-weighted coordinate average.

 Balance between velocity VSUV and VVW in (2.5b) relates to balance between position xSUV and xVW.

   xCOM =
MSUV ⋅ xSUV +mVW ⋅ xVW

MSUV +mVW
=weighted  average
of  xSUV  and  xVW

    MSUV :mVW     (2.5c)
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As SUV and VW close, collide, bounce, or stick, the Center of Mass xCOM stays at a constant velocity VCOM. 
In the COM frame that velocity is zero as sketched in the lower part of Fig. 2.6b. The weighted average xCOM 
in (2.5c) of coordinates xSUV and xVW is also a Center of Gravity and is cartooned by a 4:1 Greek balance.

Exercise 1.2.1 
Redraw Fig. 2.5 for initial speeds (VSUV=40,VVW=10) with the SUV only twice the mass of the VW. 
(Hummer-Lite) Include also a line describing the frame in which the SUV is initially stationary and another 
for which the SUV is finally stationary.
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Chapter 3. Velocity and energy

We noted that reflection symmetry or balance in space is connected with momentum or P=m·V 
conservation. Uniformity or “sameness” of coordinate and velocity space means the SUV can lose a unit of 
momentum only if the VW gains that unit, and vice versa. Momentum is a zero-sum game that does not 
depend on whether the two protagonists bounce elastically or crumple in-elastically during their collisions.

Time symmetry and energy conservation
Now we consider symmetry or balance in time. This is connected with a something called energy that  

also plays a conservation zero-sum game but, unlike momentum, requires elastic (Ka-Bong!) collisions. While 
momentum conservation is axiomatic, energy conservation is derived by algebra or geometry. Let’s do that.

Time symmetry
 Symmetry balance in Fig. 2.6 is between pairs of velocity values (VSUV,VVW) or spatial coordinates 
(xSUV,xVW) of the colliding SUV and VW. Weighted average (2.5b) equals the same VCOM for the initial pair 

(VSUV
IN ,VVW

IN ) , the final pair (VSUV
FIN ,VVW

FIN ) , or a pair (VSUV (t),VVW (t)) at anytime t. (Recall (2.1) and (2.5), too.)

  PTotal = MTotalVCOM = MSUVVSUV
IN +MVWVVW

IN = MSUVVSUV
FIN +MVWVVW

FIN = etc.   (3.1)

We subtract IN’s from FIN’s to isolate SUV terms from VW terms and redo zero-sum relation (2.3).

  0 = PTotal −MSUVVSUV
IN −MVWVVW

IN = MSUV (VSUV
FIN −VSUV

IN )+MVW (VVW
FIN −VVW

IN )   (3.2a)

 0 = MSUV ⋅ (ΔVSUV )       +MVW ⋅ (ΔVVW )   (3.2b)

(Ch.1 reviews Delta notationΔV=VFIN −V IN .) Here is another way to write the zero-sum relation.

    MSUV (VSUV
FIN −VSUV

IN ) = MVW (VVW
IN −VVW

FIN )     (3.3) 

 Now consider balancing IN vs. FIN pair (VSUV
IN ,VSUV

FIN ) for SUV or (VVW
IN ,VVW

FIN ) for VW. Elastic (Ka-Bong!) 

cases in Fig. 2.2 or Fig. 2.6 show how VCOM is a balanced IN-vs.-FIN pair-average of both SUV and VW.

    VCOM =2
1 (VSUV

FIN +VSUV
IN ) =2

1 (VVW
FIN +VVW

IN )     (3.4)

This is an algebraic statement of a time reversal symmetry axiom or IN vs. FIN balance mentioned earlier. For 
ideal elastic (Ka-Bong!) collisions, IN and FIN points balance around the COM point. Switching past and future 
gives a similar Ka-Bong and not a miraculous “un-crash” where VFIN ends up further from VCOM than VIN was.

Kinetic Energy conservation
A definition of energy emerges from multiplying space and time balance equations (3.3) with (3.4) 

  2
1 (VSUV

FIN +VSUV
IN )MSUV (VSUV

FIN −VSUV
IN ) =2

1 (VVW
FIN +VVW

IN )MVW (VVW
IN −VVW

FIN )

    2
1MSUV (VSUV

FIN )2 −2
1 MSUV (VSUV

IN )2 =2
1 MVW (VVW

IN )2 −2
1 MVW (VVW

FIN )2
  (3.3)·(3.4)

Then adding the (-)-terms to both sides isolates IN-terms. A FIN-sum is proved to equal an IN-sum.

                  2
1MSUV (VSUV

FIN )2 +2
1 MVW (VVW

FIN )2 =2
1 MVW (VVW

IN )2 +2
1 MSUV (VSUV

IN )2    (3.5a)

This derives a second quantity 1/2M·V2 (or just M·V2) whose conserved sum is assured by the axiom (2.5a) 
(conserved sum of momentum M·V) and t-reversal axiom (3.4). (M·V is conserved by x-reversal symmetry.)
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This 1/2M·V2 is kinetic energy (KE) and it is conserved by a relation like (2.5a) for momentum P=M·V.

      constant = KETotal = KESUV
FIN +  KEVW

FIN   =    KESUV
IN + KEVW

IN        where: KE =2
1 M ⋅V 2   (3.5b)

      constant =   PTotal  =     PSUV
FIN +  PVW

FIN     =       PSUV
IN +  PVW

IN          where:  P =   M ⋅V      (2.5a)repeated 

Conservation holds for any overall factor so the factor-1/2 in (3.5a) looks fortuitous. But, KE is defined later 
by integral KE = V ⋅dP∫ or area KE=1/2 P ⋅V =1/2M·V2 of a triangle with base P=M·V and altitude V. Thus (3.3)·(3.4) 

is product V ⋅ΔP = V ⋅dP∫ =1/2M·V2 of Δpand V-average V =(V IN +VFIN )/2 .  Fig. 3.1 below also verifies the 1/2.
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Energy
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(KE=7,250)
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Kinetic

Energy
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(IE=6,250)

Momentum
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line

(50,50)

(40,90)

M
SUV
=4M

SUV
=4

m
VW
=1m

VW
=1

V
SUV

Fig. 3.1 Elastic KE-ellipse hits (PTotal)-line at IN and FIN pts. Inelastic IE-ellipse hits only at VCOM pt.

Geometry of kinetic energy ellipse and momentum line
 First, P-conservation relation (2.5a) is rearranged to show its geometry.

    mVW ⋅VVW +MSUV ⋅VSUV = (MSUV +mVW )⋅VCOM  becomes:   VVW −VCOM = −
MSUV
mVW

(VSUV −VCOM )  (3.6a)

The VSUV-vs-VVW-plot of (3.6a) in Fig. 3.1 is a line of slope –MSUV/mVW thru the COM-point (VCOM ,VCOM).

   y-y0=m·(x-x0)    where: 
(x, y)   =    (VSUV ,VVW )
(x0 , y0 ) = (VCOM ,VCOM )
⎧
⎨
⎪

⎩⎪
and: m = −

MSUV
mVW

  (3.6b)

Then KE conservation relation (3.5a) is rearranged by placing KE and masses into denominator.

2
1MSUV ⋅VSUV

2+2
1 mVW ⋅VVW

2= KE   becomes:    VSUV
2

2 ⋅KE
MSUV

⎛
⎝⎜

⎞
⎠⎟

+ VVW
2

2 ⋅KE
mVW

⎛
⎝⎜

⎞
⎠⎟

= 1   (3.7a)

The VSUV-vs-VVW-plot (3.7a) in Fig. 3.1 is KE-ellipse (3.7b) of x-radius a and y-radius b to match (3.7a).
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   x2

a2
+
y2

b2
= 1      where: 

(x, y) =             (VSUV ,VVW )

(a,b) = ( 2 ⋅KE
MSUV

, 2 ⋅KE
mVW

)

⎧

⎨
⎪

⎩
⎪

    (3.7b)

Fig. 3.1 also shows an inelastic Ka-runch-IE-ellipse inside and a small KE-ellipse seen in the COM-frame. 
Elastic KE (VSUV=60, VSUV=10), inelastic IE(50, 50), and ECOM(10, 40) in COM frame is worked out for Fig. 3.1.

  2
14⋅602+2

1 1⋅102=7,250  2
14⋅502+2

1 1⋅502= 6,250  2
14⋅102+2

1 1⋅402= 1,000  (3.8)

The difference in energy between the two extreme types of collision, Ka-Bong and Ka-runch, is 1,000 units in 
the Earth frame and 1,000 units in the COM frame. But, only in the COM frame does the Ka-runch! take all the 
kinetic energy and leave both cars standing still. Galilean symmetry has “cost” of damage be the same in all 
frames. A generic Ka-whump will only lose some fraction of ECOM=1,000 inelastic crumpling.
 A fine point of Fig. 3.1 geometry deserves notice. The tangent slope to the IE-ellipse at pt-(50, 50) on 
the 45°(slope-1)-COM-line is that of the momentum line, namely –MSUV/mVW=-4. Conversely, slope of dashed 
tangent lines to the ECOM(10, 40)-ellipse on (slope=-MSUV/mVW)-line is that of the COM–line, namely slope-1. 
This beautiful duality is an important part of mechanics, both classical and quantum. Here it has IN and FIN 
points stay on a (slope=-MSUV/mVW)-line even as they coalesce to a tangent point of non-collision! Head-on 

(VSUV
IN = 3,VVW

IN = -4) collisions are plotted in Fig. 3.2 below showing increasing inelasticity in parts (b) and (c). 

(These involve a M1=6ton SUV satisfying Bush gas-hog entitlement.) The final KE-ellipse shrinks from the 
initial elastic Ka-Bong ellipse to a smaller inelastic Ka-whump ellipse (Ewhump=231/3 in Fig. 3.2b is chosen 
arbitrarily) and to the totally inelastic Ka-runch-ellipse (IE=14 in Fig. 3.2c). 
 The generic “in-between-ideals” or Ka-whump cases will each have two possible final F-points where 
the momentum line cuts the Ka-whump ellipse. The top Fwhump point represents the partial rebound. Below is its 
symmetry point FPass-thru that represents cars passing through each other. Fortunately, that’s not a usual 
highway event (and not very survivable). But in a quantum wave world it is the most common case.
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Fig. 3.2 (V1=3, V2=-4) collisions. (a) Elastic (Eloss=0). (a) Generic (Eloss=112/3). (a) Inelastic (Eloss=21=ECOM).
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Introducing vector and tensor geometry of momentum-energy conservation
We now introduce a generalization of classical energy-momentum using vector-tensor or matrix notation 
prevalent in the modern physics. Equations (3.1) thru (3.8) are dressed up in matrix notation starting with 
P=M·V definitions. Modern physicists use inertia M-tensors to hold mass coefficients M1, M2...etc.

    

PSUV = MSUVVSUV

PVW = MVWVVW

⎫
⎬
⎪

⎭⎪
denoted :


P =


M i

V or :

PSUV

PVW

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

MSUV 0

0 MVW

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

VSUV

VVW

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (3.9a)

Later we will need to upgrade to a full matrix of n2 inertial coefficients Mjk for any dimension n. 

    

P1 = M11V1 + M12V2

P2 = M21V1 + M22V2

⎫
⎬
⎪

⎭⎪
   denoted :


P =


M i

V or :  

P1

P2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

M11 M12

M21 M22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

V1

V2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	
   (3.9b)

Fig. 3.3 plots (3.10) below. (Recall Fig. 3.1 plot of (3.1) with 45° diagonal VCOM so: V1
COM =V2

COM =VCOM .)

 PTotal = M1V1
IN +M2V2

IN = M1V1
FIN +M2V2

FIN = M1V
COM +M2V

COM = MTotalV
COM   (3.10)

A product of total momentum PTotal and VCOM  is expressed by tensor quadratic forms v•M•u as follows.

  V
COMPTotal =


VCOM i


M i

V IN =


VCOM i


M i

VFIN =


VCOM i


M i

VCOM =VCOMMTotalV

COM  (3.11a)

It helps to write this out with the numbers appearing in the original Fig. 3.1 starting with   V
COM = 50 .

 

   

50PTotal = 50 50( ) i 4 0
0 1

⎛

⎝⎜
⎞

⎠⎟
i 60

10
⎛

⎝⎜
⎞

⎠⎟
= 50 50( ) i 4 0

0 1
⎛

⎝⎜
⎞

⎠⎟
i 40

90
⎛

⎝⎜
⎞

⎠⎟
= 50MTotal50 = 12,500

= 100 ⋅125 = 100 ⋅125 = 50 ⋅250

  (3.11b)

(3.11) says momentum PTotal =250 is the same at IN, FIN, and COM. Now use T-symmetry:    

VCOM =(


V FIN+


V IN )/2

 

    

V COM PTotal =

V FIN+


V IN

2
i


M i

V IN =


V FIN+


V IN

2
i


M i

V FIN =


V FIN+


V IN

2
i


M i


V FIN+


V IN

2

V COM PTotal −

V FIN i


M i

V IN

2
=

V IN i


M i

V IN

2
=

V FIN i


M i

V FIN

2
=

V IN i


M i

V IN

4
+

V FIN i


M i

V FIN

4

 (3.12a)
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Fig. 3.3 Generic collision geometry. (Recall Fig. 3.1.) 
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Line-2 of (3.12a) uses transpose symmetry (Mjk =Mkj) of the M-matrix so that    

V FIN i


M i

V IN =


V IN i


M i

V FIN . 

  

    


V FIN i


M i

V IN =


V IN i


M i

V FIN

40 90( ) i 4 0
0 1

⎛

⎝⎜
⎞

⎠⎟
i 60

10
⎛

⎝⎜
⎞

⎠⎟
= 60 10( ) i 4 0

0 1
⎛

⎝⎜
⎞

⎠⎟
i 40

90
⎛

⎝⎜
⎞

⎠⎟

= 100 ⋅105 = 100 ⋅105 = 10,500

    (3.12b)

In our case (M12 =0=M21) and that implies kinetic energy     KEElastic= 2
1 Vi


Mi

V  is the same at IN and FIN. 

 

    

V COM PTotal −

V FIN i


M i

V IN

2
=


V IN i


M i

V IN

2
=


V FIN i


M i

V FIN

2
= KEElastic

12,500 − 10,500
2

=
60 10( ) i 4 0

0 1
⎛

⎝⎜
⎞

⎠⎟
i 60

10
⎛

⎝⎜
⎞

⎠⎟

2
=

40 90( ) i 4 0
0 1

⎛

⎝⎜
⎞

⎠⎟
i 40

90
⎛

⎝⎜
⎞

⎠⎟

2
= KEElastic

12,500 − 5,250 = 7,250 = 7,250

 (3.12c)

However, kinetic energy     IE = 2
1 Vi


Mi

V in Fig. 3.1 is reduced by 1,000 at COM. That is calculated from (3.12c).

 

    

KEInelastic =
1
2

V COM PTotal =

VCOM i


M i

VCOM

2
=

V IN i


M i

V IN

4
+

V FIN i


M i

V IN

4
= 1

2
KEElastic +


V FIN i


M i

V IN

4
12,500

2
= 6,250 = 3,625 + 2,625 = IE

  (3.13)

That difference is inelastic “crunch” energy  KE − IE  or, for elastic cases, potential energy of compression.

  
    

KEElastic − KEInelastic =

V IN i


M i

V IN

4
−

V FIN i


M i

V IN

4
1,000 = 3,625 − 2,625 = KE − IE

     (3.14)

Potential energy is given by spatial tensor quadratic forms such as     PEElastic= 2
1 r i

K i
r=V (r) detailed later. Tensors 

probably get their name from this application to tension and stress energy.
 You should note that the less motivated development between (3.1) and (3.5) is improved by a tensor 
development from (3.11) thru (3.14). The former does not suggest the (3.3)·(3.4) product as easily as the latter 
suggests the rearrangements going from (3.11) to (3.12) or (3.13). Also arithmetic is displayed clearly and is 
easier to enter in a computer program involving a full M matrix of any dimension. Finally, (3.12) shows 
clearly that kinetic energy is conserved if and only if M is transpose-symmetric (Mjk =Mkj).
 Tensor forms describe quadratic curves such as ellipses in Fig. 3.1 and the following. 

  

 

1= r i

M i
r = x y( ) i 1/a2 0

0 1/b2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x2

a2
+ x

2

b2
    (3.15)

Geometry of tensor operator forms is beautiful and powerful for mathematics and physics as will be shown 
in later chapters. In quantum theory they define expectation r M r  and transition r M s  amplitudes.

Momentum vs. energy (Bang! for the $buck$!): Standard (mks) units
What are momentum P and energy E, really? A flippant answer is Bang! for the $Buck$. We pay a lot of bucks 
in order to get some bangs in our autos, for example. A less flippant answer based on space-time relativity 
and quantum wave theory must wait until later. But, we can discuss relations involving P=M·V and E=M·V2/2 
and review proper meter-kilogram-second (mks) units to replace haphazard geometrical units used so far. 
Velocity is V meters per second (m·s-1) and Momentum is P=M·V kilogram meters per second (kg·m·s-1).
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Energy is E=M·V2/2 kilogram (meters per second)2 (kg ·m 2·s-2). The E unit is such a mouthful that 
there is a famous name for it: 1 (kg ·m 2·s-2) = 1 Joule = 1 J.

Our collision analysis did not mention the Force F that SUV or VW feel during their encounters. 
Force is the rate of being banged in bangs per second, or units of momentum delivered per second, or in 
(mks), F kilogram meters per second per second (kg·m·s-2). The F unit is another mouthful with a very 
famous name: 1 (kg ·m ·s-2) = 1 Newton = 1 N. Note: 1 Joule = 1 Newton ·meter = 1 N·m is a common unit of 
Work, that is, “Force-times-Distance.” Also, 1 Joule per meter = 1 J·m-1 = 1 Newton is a “potential force” unit.

Another important unit is that of power Π, the rate of $bucks$ paid per second, or in (mks), Π Joule 
per second. The famous-name power unit is 1 Watt = 1 Joule per second = 1 J·s -1. 

Here is a list of geometric slope and area definitions of important classical mechanical quantities. 

Velocity V is slope V = Δt
Δx  on graph x(t) of position x vs. time t.  Position x(t) is area  V dt∫  of V(t) vs. t.

Force F is slope F= Δt
ΔP  on graph P(t) of momentum P vs. time t. Momentum P(t) is area  F dt∫  of F(t) vs. t.

Force F is slope F= Δx
ΔE  on graph E(x) of energy E vs. position x. Energy E(x) is area  F dx∫  of F(x) vs. x.

 Power Π is slope Π = Δt
ΔE  on graph E(t) of energy E vs. time t. Energy E(t) is area  Πdt∫  of Π(t)  vs. t.

These and other relations (in calculus form) are collected below in preparation for discussion later on. 

Quick review of kinetic relations and formulas 
The suffix kinetic refers to energy connected directly to velocity of motion (“kinos” means moving). 

Kinetic energy KE is distinct from potential energy (PE is “stored” energy) or entropic energy (entropy is 
chaotic or “trashed” energy like heat) that is reviewed later in Ch. 6 and Ch. 7.
 We now give a quick algebraic run-down of energy-related formulas to be introduced with more 
detail and geometry in Ch. 7. (See (7.5a) to (7.5d) in particular.) Readers with calculus or physics knowledge 
may use this to review to connect our geometrical developments with the more conventional ones. 

Relations of energy W and space x
Energy or work may be defined by a delta-work product ΔW=F·Δx of force F and distance-Δx-pushed. 

More precisely, W is an integral   F ⋅dx0
Δx∫ , the area of a Fvs.x work-plot. Power, a time rate

 
Π= Δt

ΔW  of energy 

production, is the product Π=F·V of force and velocity
 
V = Δt

Δx= dt
dx . So,  ΔW =Π⋅Δt or   W = Π⋅dt= F·V ⋅dt= F·dx∫0

Δt∫0
Δt∫ .

Relations of momentum P and time t 
Momentum may be defined by a delta-momentum product ΔP=F·Δt of force F and time interval Δt. 

More precisely, P is an integral   F ⋅dt0
Δt∫ , the area of a Fvs.t plot. Force, a time rate

 
F= Δt

ΔP= dt
dP  of momentum 

production, is a product F=M·a of mass and acceleration
 
a= Δt

ΔV . (F=M·a is called Newton’s “2nd Law.”)

With 
 
F= dt

dP , energy integral   W = Π⋅dt0
Δt∫ = F ⋅V ⋅dt0

Δt∫  is 
  
W = F ⋅V ⋅dt0

Δt∫ = dt
dP ⋅V ⋅dt0

Δt∫ = V ⋅dP∫ , the area under a 

V vs.P plot where P=M·V is momentum. For a single mass M this area is kinetic energy: 
 2
1 M·V2.
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Table 3.1 of kinetic relations

 
Positionor space

x = V ⋅dt∫
 

Velocity or time-rate

of position :V =
dx
dt

          
Accelerationor time-rate

of velocity :a = dV
dt

  

Work or Energy
E = Π⋅dt∫ = F ⋅dx∫
   = F⋅V ⋅dt∫

   = V ⋅dP =2
1M ⋅V 2∫

     

Power or time-rate

of Energy :Π = dE
dt

       

 

Impulseormomentum

P = F ⋅dt∫  M ⋅V

 

      

Forceor time-rate

of momentum :F = dP
dt

= M ⋅a

 

 (3.16a)   (3.16b)    (3.16c)    (3.16d)  
 

Exercise 1.3.1
Plot a  (VSUV-1,VSUV-2)=(60,10) collision like Fig. 3.1 but with an identical M=4 SUV replacing the VW.
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Fig. 3.4 Galilean Frame Views of collision like Fig. 2.5 or Fig. 3.1 with Bush SUV. (a) Earth frame view 
(b) Initial VW frame (VW initially  fixed) (c) COM frame view (d) Final VW frame (VW ends up fixed)
Fig. 3.5  Momentum (P=const.)-lines and energy (KE=const.)-ellipses appropriate for Fig. 3.4.	
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v1

v2

VIN
1,-1

VIN
v,0

VFIN
1,-1 VFIN

v,0

VIN
C0M

VFIN
C0M= -VINC0M

VIN
0,V

VFIN
0,V

VFIN
1,1 =VIN

1,1

Exercise 1.3.2. Ch. 1-5 contains geometric description of 1D-2-body collisions. Most examples originate 
from initial velocity vectors V1,-1

IN = (1,-1)  for which m1 and m2 have equal speeds (in this case unit speed).

This exercise is intended to help match algebra and geometry by asking for the simplest formulas for the 
various velocities in a figure above that are final elastic results of the following initial velocity vectors.
 a. V1,-1

IN = (1,-1)    b. Vv,0
IN = (v,0)    c. V0 ,V

IN = (0 ,V)    d. VCOM
IN = (vx

COM ,vy
COM )

Derive the IN and FIN components of all vectors in terms of masses m1 and m2 only assuming the same total 
KE as V1,-1

IN = (1,-1) has. (Check your results against figure in which ratio 2=m1/m2 holds.) 

Indicate where the time reversed vector T·VIN of each VIN lies.
Give a formula for the orange (dashed) and green (solid) tangent line slopes in terms of m1 and m2.
…and compare to slope of the black line connecting major and minor radii in terms of m1 and m2.
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Exercise 1.3.3. Quick construction of Energy ellipses
Graph paper facilitates construction of energy ellipses given the two radii a and b in (3.7). The first step is to 
draw concentric circles of radius a and b. Then any radial line OBA “points” to a point E on the ellipse.
Ellipse point E lies at the intersection of a vertical line AE thru radial intersection A with circle a and a 
horizontal line BE thru radial intersection B with circle b. 
Graph grid “finds” E for a radius OBA, no need to draw AE or BE. You can pick x and find y or vice-versa.

O

A

B

E

ab O ab

Exercise Fig. 3.6 Ellipse construction
Ellipse coordinates (xE=a·cos σ, yE=b·sin σ) are rescaled base and altitude (xr=r·cos σ, yr=r·sin σ) of Fig. 1.4.

O

A

B

E

ab
σ

yE=bsinσb

xE=acosσ

σ

yE=bsinσ

xE=acosσ

σ
xE=acosσ

Exercise Fig. 3.7  Complimentary analytic ellipse geometry
 Verify that the values (x =a·cos σ, y =b·sin σ) satisfy an ellipse equation (3.7b). 
A dual or complimentary (gray) ellipse results if compliment angle σc=π/2−σ is used so x and y values switch.
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Chapter 4. Dynamics and geometry of successive collisions
Mechanics gets difficult for many collisions, dimensions, or masses. A single one-dimensional two-mass 
(1D-2-body) collision occupies Ch. 2-3. Now we do more dangerous things such as an X2-super bouncer 
from Project Ball, a 1969 class project. (Am. J. Phys. 39, 656 (1971)) See product liability disclaimer in Fig. 4.1.

Caution: Product Liablility Disclaimer

This ballpoint pen could be hazardous to your health!

The experiments which are the subject of this discussion are

both spectacular and potentially dangerous, and care to

protect one’s eyes should be taken. The simplest experiment

involves sticking a ball point pen into a superball or other

hard rubber ball and dropping the two onto a hard floor.

If done correctly the pen will eject the ball with such force

it may stick in the ceiling of the room. Obviously you want

to be careful with this weapon. And, this goes doubly and triply

for the more advanced models that may be developed in the

course of studying this stuff. It is recommended that

experimenters wear safety glasses when doing these experiments

with pens. (We could just say don’t use pens, but that‘s an easy

way to do this experiment and probably the way most people

will go about it.) Some of the tangential experiments associated

with this development are less hazardous. To measure the

potential force function of a ball one may simply paint the ball

and measure the spot size as a function of drop height h.

The saggital approximation d=r2/2R allows one to
quickly convert spot radius r to penetration depth x for a
superball of radius R as shown in the figure. Equating this
to Mgh gives the ball potential energy function V(x).

M1=70gmM1=70gm

M0=10kgM0=10kg
bounce
plate
bounce
plate

RR
rr
d

Superball
penetration
depth
r2
2Rd=

SuperballSuperball

ballpoint
pen

M2=10gm

ballpoint
pen

M2=10gm

The X-2
pen-

launcher

The X-2
pen-

launcher

Fig. 4.1 The X2-pen launcher with product liability disclaimer. 

 At first, the X2 looks like a 1D-2-body device. A superball(©™Whammo Corp.) of mass M1 =70gm 
launches a ballpoint pen of mass M2 =10gm. But, it has a 3rd body, bounce plate mass-MO=10kg shown by a 
rectangle in Fig. 4.1. Actually the third body most responsible for this experiment is good old Mother Earth 

of massM⊕ = 6·1024 kg . (Earth massM⊕  and solar mass M = 2·1030 kg  are good-to-2-figure numbers for 

astrophysicists to remember. More precisely: M⊕ = 5.9742·1024 kg and  M = 1.9891·1030 kg .) 

 Collisions of very large with very small masses beg thorny questions (Like, “What IS mass?” or how 
do we deal with it?) As a mass ratio M1/ M2 approaches zero or infinity the slope of the P-conservation line 
in (V1,V2)-space (Recall Fig. 3.2.) approaches infinity or zero, respectively, as drawn in Fig. 4.2(a-b).

Geometric construction in Fig. 4.2a of final velocity for an elastic collision is a vertical reflection thru 
the COM point (V1=V2) on the P-line if M1>> M2 or else a horizontal reflection in Fig. 4.2b if M1<< M2. 
Inelastic final points approach the COM point more closely if inelasticity is significant. (Recall Fig. 3.2.)
 You should understand how a relatively large mass may give huge momentum to a smaller one but 
transfer only tiny amounts of energy. Each P-line in Fig. 4.2 is part of a KE-ellipse. In the COM frame (where 
the COM point is at origin) the P-line sits on top of an entire E-ellipse as the ratio M1/ M2 approaches (a) 
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infinity or (b) zero. I visualize COM P-lines as ultra-thin ellipses between I0 and F0 and other P-lines in Fig. 

4.2 as segments of a KE-ellipse that has (a) a huge V2-axis 2E / M2 or (b) a huge V1-axis 2E / M1 .
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(+) side of a
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ellipse

(-) side of a

very tall

ellipse

top of a very long ellipse

Fig. 4.2 Extreme mass-ratio collisions (a) M1/ M2 approaches infinity. (b) M1/ M2 approaches zero.

 Fig. 4.2a reflects our common experience of a bouncy ball of mass M2 hitting the Earth of mass M⊕

with velocity –V0(point I0) and being reflected with velocity +V0(point F0). While standing in the Earth 
frame, one is very nearly in the COM frame, too. Earth’s COM velocity is a tiny fraction M 2 /M⊕of the 

apparent ball velocity V0. For super-balls of mass M2=60gm, the fraction M 2 /M⊕  is 0.06/(6·1024)=10-26.

Bounce momentum absorbed by Earth is 2 M2V0 (or M2V0 if the ball goes “Ka-runch!”) but Earth 

absorbs at most a tiny KE of 2
1M⊕(V0M 2 /M⊕ )

2 , that is, a fraction 10-26 of ball KE: 2
1M2 (V0 )

2 . Moreover, for 

elastic collisions, Mother Earth returns all the KE to M2 but she absorbs double momentum P=2 M2V0.
However, common experience does not prepare us for X2 easily rebounding M2 with more than twice 

its drop velocity in Fig. 4.3. (As we’ll see that means M2 rises to more than four times its drop height!) 

M1

m2
BANG!
M1

(Bigger
BANG!)

(Still
Bigger
BANG!)

m2

M1
M1

m2

Bang1!

Bang2!
M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-Body
Supernova
Superballs

m2

Fig. 4.3 n-Body collision experiments. (a) X-2 drop. (b) Independent collision model. (c) Ball towers.
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Independent collision  models (ICM)
To compute final velocities of M1 and M2 it helps to idealize the collision of three bodies M1, M2, and M⊕ as 

a sequence of two separate 2-body collisions that are completely determined by P and KE conservation. First  
M1 bounces off EarthM⊕ . Only then does M1 knock M2 to a faster speed as in Fig. 4.3b. The first collision is 

labeled Bang-1(01) in Fig. 4.4a followed by Bang-2(12) in Fig. 4.4b. The first Bang-1(01) between EarthM⊕  

and M1 has a horizontal line like the I0F0 line in Fig. 4.2b. The second Bang-2(12) between mass M1 and M2 
has a line of slope -M1/ M2 =-7 for a M1 =70gm and M2 =10gm (that of a superball and pen, respectively). 
The Bang-2(12) line is like the IF line in Fig. 3.1 or Fig. 3.2.
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1.0

1.0

-1.0

0.5
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m1 Velocity axis

Vym1

1.0

1.0

0.5
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Vym2

m1 Velocity axis
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(0,0) (0,0)
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-1.0

Bang-2
(12)

INIT point at

(+1.0,-1.0)

Bang-2
(12)

FINAL point

(0.5,2.5)

(a)
Bang-1(01)

(b)
Bang-2(12)

Bang-1
(01)

FINAL point

(+1.0,-1.0)

Fig. 4.4 (V1-V2)-plot of 2-Bang collision. (a) M1 bounces off floor. (b) M1 hits M2 head-on.

This approximation is called an independent collision model (ICM) and is one secret to analyzing such 1D-3-
body bang-up that otherwise has too many unknown velocities to be found by just two equations ΔP=0 and 
ΔKE=0 alone. ICM is exactly true if we initially separate M1 and M2 so three M1, M2, and M⊕ never 

collectively bargain for available momentum and energy. ICM also applies to n-ball towers in Fig. 4.3c. They 
give very high-energy ejections and serve as classical models for supernovae. (N-body bangs are in Ch.8.) 
 Velocity geometry suggests a family of X2 solutions as shown in Fig. 4.5 for a range of mass ratio 
M1/M2. This is an advantage of geometric solutions. Just a few points in Fig. 4.5a show all elastic (V1-V2) 
points lie on the 45°-line CPL. Extreme or optimal cases are located in Fig. 4.5b. 
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 Extreme and optimal cases
First, the upper limit for elastic final velocity is V2=3·V0 at pt-I for infinite mass ratio M1/M2→∞ . If 

no energy is lost, a particle of dust on a superball could be ejected three times the speed that the ball hits the 
floor. (And, it could go nine (9=32) times the drop height. However, the elastic ICM model is not so good for 
tiny M2 due to weak molecular forces. So bouncing balls don’t embed dust in ceilings. (But in a vacuum...!)

Second, an optimal performance case is shown by pt-M where the collision achieves a 100% transfer 
of energy to projectile M2. The M-point is the intersection of the CPL line with the V2-axis on which the M1-
ball velocity is zero. (V1=0) There mass ratio is M1/M2=3.0, the slope of the M-line.
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(a) (b)

-1.0
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Fig. 4.5 X2-Final (V1,V2) (a) Final point locus. (b) Infinite ratio pt. I and maximum transfer pt. M.

 Another singular point U is for unit ratio M1/M2=1, a familiar ratio for players of billiards or pool. U 
undergoes inversion of velocities (+1,-1)-> (-1,+1). (Its COM point lies at origin.) If the U-line is boosted by 
(-1) to (0,-2)-> (-2,0) it is like a straight elastic pool shot. A 100% of KE transfers from a moving ball to an 
equal sized ball that was stationary. The same process at half that speed is (0,-1)-> (-1,0) shown by the 
Galileo-shifted line U1-> U2 in the lower left hand side of Fig. 4.5b.
 Points D between U and M have ball M1 knocked to negative velocity by the down-coming M2. Then 
M1 hits the floor (Earth) at velocity –v to rebound at +v. For unit ratio case U, M1 and M2 rebound quite like a 
rigid body. Below U, ball M1 rebounds at a speed faster than M2 to hit M2 again. In cases of low mass ratio, 
(M1/M2<<1) mass M1 must hit M2 many times to turn it around. We will study this effect shortly.
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 Integrating velocity plots to find position
It is important to see how velocity values of Fig. 4.4b are turned into space-time position plot lines. Consider 

the first collision (Bang-1(10)) in Fig. 4.6a and corresponding space-time paths in Fig. 4.6b. Initial velocity 

Vy1(0)=-1.0 gives a slope (distance)/(time) of an M1 path but doesn’t tell where is the path or particle. The 

same for velocity Vy2(0)=-1 of M2 in Fig. 4.6a. The paths need location, location,…

Initial position values such as (y1(0)=1, y2(0)=3) locate the paths as shown in Fig. 4.6b. Each path 

keeps its slope until a collision (Bang-1(10)) between M1 and the floor occurs at y1(t=1) where its path and the 

floor intersect. Then, according to Fig. 4.6a, M1 bounces its slope from Vy1=-1 up to Vy1=+1. Meanwhile, the 

upper path (M2) maintains its down slope of Vy2=-1 until it intersects the rising path of M1.
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Fig. 4.6 Plots of 1st collision (Bang-1(10)). (a) Velocity-velocity plot. (b) Space-time plot.

 At time (t=2) there is an intersection of paths and the 2nd collision (Bang-2(12)) between M1 and M2 at 
space-time point (y1(2)=1, y2(2)=3). This gives Vy1=0.5 and Vy2=2.5 in Fig. 4.4b or in Fig. 4.7a-b below. 
Then to keep M2 from flying away we install an elastic ceiling at y=7. 
 The game becomes more interesting as Bang-3(20) between the ceiling (part of Earth M⊕ ) is shown in 

Fig. 4.7b by a vertical arrow (like an IF line in Fig. 4.2a) reflecting M2 to speed Vy2=-2.5. Then M2 has 
Bang-4(12) between M1 and itself that sends it back to the ceiling at a blistering speed of Vy2=+2.7  as M1 
returns more slowly toward the floor with velocity Vy1=-0.5.

The high speed of M2 lets it go to the ceiling for Bang-5(20) and return to knock M1 down once more 
(Bang-6(12)) before M1 hits the floor at Vy1=-0.9. (Bang-7(10)) Then M2 having lost speed to Vy2=+1.5 hits the 
ceiling (Bang-8(02)) and returns for Bang-9(12) with M1 rising at Vy1=+0.9.

Masses are treated as point-masses moving along straight lines between collisions in space-time 
plots. This is an ideal gravity-free ICM approximation with only straight lines in VV-plots. So we may derive 
motion without having to integrate the kinetic equations at the end of Ch. 3.
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For comparison, a force-law simulation using BounceIt of the bang sequence of Fig. 4.7 is shown in 

Fig. 4.8. It has finite radius balls instead of ideal point particles, yet compares quite well. (So far as it goes.)

  
Fig. 4.8 BounceIt x-vs.-t simulation to compare with Fig. 1.4.7d up to Bang-6. (V1/V2 =7/1.)

Fig. 4.7c and BounceIt V1-V2 simulations in Fig. 4.9 build an ellipse out of multiple IF lines. (This is a 

quite non-traditional ellipse construction!) Ellipse radii (a,b) follow from KE conservation equation (3.7b). 

KE(unitV1,V2 ) =2
1 M11

2 +2
1 M 21

2 =2
1 ·8 

M1=7
M 2 =1

⎧
⎨
⎪

⎩⎪

minor radius a = 2·KE /M1 = 8 = 2.828

major radius b = 2·KE /M 2 = 8 / 7 = 1.069
 

As time increases (Fig. 4.9a to Fig. 4.9c) the ellipse may fill with IF-lines that are dense (ergodic) or else just 

retrace sets of paths as in Fig. 4.9b. (Ch. 5 treats non-ergodic paths.) High sensitivity-to-initial-conditions-or-

parameters (STICOP) means tiny ICOP variation has big effects. Extreme STICOP gives stochasticity or chaos.

Vector notation and space-space plots

Balance equation (3.4) concisely sums up preceding constructions or plots of elastic collisions. 

 
V1

FIN +V1
IN( ) / 2 =VCOM

V2
FIN +V2

IN( ) / 2 =VCOM
 or:

V1
FIN = 2VCOM −V1

IN

V2
FIN = 2VCOM −V2

IN
  (3.4)repeated

More concise notation uses vector equations or arrays. 

 
v1
FIN = 2VCOM − v1

IN

v2
FIN = 2VCOM − v2

IN
  is written: 

v1
FIN

v2
FIN

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

2VCOM − v1
IN

2VCOM − v2
IN

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2 VCOM

VCOM

⎛

⎝
⎜

⎞

⎠
⎟ −

v1
IN

v2
IN

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (4.1)

It saves writing two (=)’s and two (-)’s. Also, each column vector may be labeled by a “fat” letter.

 
 
vFIN = 

v1
FIN

v2
FIN

⎛

⎝⎜
⎞

⎠⎟
=vFIN ,        VCOM = VCOM

VCOM

⎛
⎝⎜

⎞
⎠⎟

=

VCOM  ,        vIN = 

v1
IN

v2
IN

⎛

⎝⎜
⎞

⎠⎟
=v IN  .   (4.2)

The Gibbs vector form of equation (3.4) or (4.1) uses fat-v and/or over-arrow-  

� 

 v . 

   vFIN = 2 VCOM – vIN ,    or:      VCOM =
vIN + vFIN

2
.   (4.3)
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Fig. 4.9  BounceIt V1-V2 simulation up to (a) Bang-15 (b) Bang-150 and (c) beyond.
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Fig. 4.10 Vector collision velocity diagrams (After equation (4.3) and virtually identical to Fig. 3.3.)

Note vector VCOM bisecting the (vIN+ vFIN)-parallelogram diagonal as per T-symmetry relation from 

(3.12a) and Fig. 3.3. Here vectors v=(v1, v2) denote two particles each in one-dimension. More common is 

vector v=(vx, vy) (or v=(vx, vy, vz)) for one particle in two-dimensions (or three dimensions).

Fig. 4.11 shows how velocity v(n) vectors find results of Bang-1(01) and Bang-2(12) collisions in Fig. 

4.7. What’s new is a space-space y2 vs. y1 or position-vector y(n)-plot whose paths are spatial-trajectories or 

just plain trajectories. Space-time paths are found in Fig. 4.6 and Fig. 4.7 by transferring velocity slopes over 

to the space-space or space-time plot, but vectors in Fig. 4.11 simplify this process. Again, ideally small 

masses called point masses are assumed.
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As the construction steps in Fig. 4.11 show, one easily transfers each velocity vector v(n) from the V2 

vs.V1 plot so it points away from start point y(n) in the y2 vs. y1 plot. Step-0 does this by drawing initial 

velocity v(0)=(-1,-1)  to point away from our given initial position y(0)=(1,3). Then you extend that v-vector 

until it hits the floor (as v(0) does at y(1)=(0,2)), or else hits the collision line (y2=y1) (as v(1) does at y(2)=

(1,1)), or else hits the ceiling (as v(2) does at y(3)=(2.2,7).). Each such “hit” is a Bang, Bang-1(01) at y(1), 

Bang-2(12) at y(2), or Bang-3(20) at y(3). Then from each Bang-n position point y(n) is drawn the next v(n)-

velocity vector from the V2 vs.V1 plots. This process continues in exercises that lead to Fig. 4.12 and beyond.
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Fig. 4.11 Vector collision velocity diagrams with Velocity-Velocity space and space-space.
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Fig. 4.12 Vector collision diagrams continued with velocity-time and space-time plots added.
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Help! Iʼm trapped in a triangle.

The trajectory in these figures is confined to the triangle above the 45°-collision line. Our model 

keeps m2 above m1. The right-hand “ceiling” in the figures never is hit because m1 always is knocked down 

by m2 before it touches the ceiling, and m2 never sees the floor because m1 is in the way. (Modern physicists 

beware! Quantum theory doesn’t encourage this feature. Quantum objects pass easily through each other! )

Two balls in 1D vs. one ball in 2D

For ball-Earth collisions involving ceiling or floor, the paths bounce in the space-space plot as though 

they’re inside a box. Only one component V1 or V2 changes each time and only by changing ±sign. Off the 

floor: (V1 ,V2) changes to (-V1,V2) , off of ceiling: (V1,V2) changes to (V1,-V2). It is like a single particle 

bouncing around a pool table. Here (V1,V2) acts like (VX ,VY) in two dimensions, so two particles in one-
dimension use graphs similar to one particle in two dimensions, an interesting analogy in quantum theory.

Angle of incidence=Angle of  reflection (or NOT)

When paths bounce off the floor and ceiling in the space-space plot, the angle of incidence equals the angle 

of reflection just as light rays reflect off mirrors. (Newton imagined little light corpuscles bouncing around.) 

It is customary to measure path angles from the normal or perpendicular to a mirror so a normal bisects the 

angle between the incident and reflected paths. 

For m1-m2 Bangs off the 45°-collision line, the bisecting line has the slope -M1/M2=-7. It is like 

having mirror facets at slope M2/M1=1/7 along the 45°-collision line. For equal-mass-(M1=M=M2) balls, or 

one ball in two dimensions, the bisecting line slope at the 45°-collision line is –1 or -45° and the collision 

line acts like a unit-slope mirror on a triangular billiard table. It is not quite that simple ifM1 /M 2 ≠ 1 . 

Consider the two collisions Bang-3(20) and Bang-4(12) in Fig. 4.12. Velocity v(2) bounces off the 

ceiling in Bang-3(20) into v(3), whose velocity slope is close to the mass-ratio M1/M2 which is 7:1 here. So 

the next collision Bang-4(12) bounces v(3) off the diagonal into v(4) which is close to –v(3). It’s followed by 

another ceiling bounce Bang-5(20) into v(5) heading down for another collision Bang-6(12).

Bang force

Lower Fig. 4.12 has a velocity vs. time plot next to a space-time plot. (A y-t plot in gray is under the V-t plot, 

too.) Each Bang means a change in velocity for any particle involved in the collision. By Newton’s 2nd law 

(3.10c) each change in velocity, v to v+Δv, or better, each change in momentum, mv to m(v+Δv), requires a 

force impulse F·Δt= m(Δv) on each mass that changes. Shortly, we study ways to deal with this F.
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Kinematics versus Dynamics
The velocity-velocity (v1,v2) plots, such as the left side of Fig. 4.12, fall in a category known as 

kinematics, or momentum analysis, which is concerned with how things are going, where they’re headed, or 

what is their velocity or momentum and energy. (kinos means movement.)

In contrast, the space-time plots, such as the right side of Fig. 4.12, fall in a category known as 

dynamics, or coordinate analysis, which is concerned with how things are located, where they are, or what 

are their coordinate or position and time schedules. (dynos means change.) We introduced the space-space 

(x1,x2) plot, another geometric or trajectory representation of dynamics.

Before going on, let’s compare how kinos and dynos play out in classical Newtonian physics versus 

their corresponding roles in quantum physics. This is a preview for later Unit 4, Unit 7, and Unit 8. 

Dynos and Kinos: Classical  vs. quantum theory
In Newtonian physics, a precise position plot (yk vs. time) lets you find a precise velocity plot, too, 

and, a velocity plot (Vk vs. time) lets you find a position plot if you know starting position values. (We did 

just that in Fig. 4.7 and Fig. 4.11.) In calculus, finding position from velocity values is called integration, and 

finding velocity from position values is called differentiation. Of the two, the latter is formally easier but 

numerically and experimentally more sensitive to imprecision and noise.

In quantum physics, having a precise velocity plot renders a position plot meaningless and vice-

versa! Werner Heisenberg was the first to state this quantum idea, now known as Heisenberg’s Principle. If 

you know momentum exactly, that means a uniform wave is everywhere, and all positions are equally 

possible. If you know position exactly, that means every momentum is possible, implying a “wave-bomb” 

about to blow up the universe! (Neither of these extremes really exist and fortunately so for the last one.)

All this sounds crazy to most of us who are born-and-bred Aristotelean-to-Newtonian students. It is 

difficult enough to go from Aristotle’s what-you-see-is-what-you-get (WYSIWYG) universe to Newton’s 

corpuscular one. A quantum universe is yet another step removed on the WYSIWYG scale.

A way to see the quantum universe (Perhaps, it is the way.) is to learn about wave kinematics and 

dynamics without Newtonian corpuscles and see how waves mimic corpuscles and do so quite cleverly. The 

quantum universe is a WYDAWYG (waves-you-don’t see-are-what-you-get) world!

So our plan is to cast classical Newtonian kinematics and dynamics in a form that carries over into 

vibration and wave kinematics and dynamics. It is done by analogy with classical waves such as sound 

waves, water waves, and (most important) light waves. Many classical wave analyses invoke corpuscles 
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(including, for Newton, light waves) so these analogies, like any analogy, need critical use of an Occam’s 

razor that must be sharpened. Above all, symmetry (and same-try) principles must be taken seriously.

 IF-ellipse geometry of Ch. 3 relates velocity, momentum and energy, and Ch. 4 derives space-time 

paths. Later this relates Lagrangian and Hamiltonian mechanics and finally leads to geometries of relativity 

and quantum mechanics. Then space-space and space-time plots relate to modern physics in subtle ways.

Exercise 1.4.1: Construct a history of a 4:1 mass ratio bounce. x1(0)=1.5, x2(0)=3.0, v1(0)=-1, v2(0)=-1

Ceiling height=7.0.(For bottom row: Ceiling height=6.0 ) The 4:1 mass ratio case is surprisingly periodic.

Exercise 1.4.2: Complete Fig. 4.7 and Fig. 4.11 by constructing more steps using same ceiling height=7.0. 
Continue until you reach the “gameover” point of last possible M1-M2 collision assuming the floor is open 
after Bang-1 so both masses fall thru indefinitely. When and where do they last collide? 

Note, position y(n)-vectors of the Bang-n points are not drawn in Fig. 4.12 to avoid clutter.
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Chapter 5 Multiple collisions and operator analysis

Analysis of many collisions with very different masses requires an advanced kind of geometry and 
algebra involving matrices and symmetry operators. Similar analysis is needed for quantum theory so this is 
a good opportunity to learn about these concepts using a more “down-to-Earth” classical bang physics.  

Doing collisions with matrix products
Fig. 5.1 shows a big mass m1=49 bang a little mass m2=1 more than ten times off the ceiling before 

being halted. This tests our collision precision! To check our results we use our previous vector equation 
(4.1) to make a matrix equation in (5.1) with 

� 

V COM = m1v1 + m2v2( ) /M  and total mass M = m1+ m2.

  
v1
FIN

v2
FIN

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

2VCOM − v1
IN

2VCOM − v2
IN

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(4.1)repeated
v1
FIN

v2
FIN

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

2 m1v1 +m2v2

m1 +m2

− v1

2 m1v1 +m2v2

m1 +m2

− v2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

 = 1
M

m1v1 −m2v1 + 2m2v2

2m1v1 +m2v2 −m1v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 (5.1a)

(Let v1
IN =v1 andv2

IN =v2 here.) Vector equation (5.1a) is converted to matrix equation  vFIN =Miv in (5.1b).

      v1
FIN

v2
FIN

⎛

⎝⎜
⎞

⎠⎟
= 1
M

m1 − m2 2m2

2m1 m2 − m1

⎛

⎝⎜
⎞

⎠⎟
v1
v2

⎛

⎝⎜
⎞

⎠⎟
   (5.1b)

Each IN-to-FIN bang is a  vFIN =Miv IN operation (5.2a). Matrix product  MiN (5.4b) is bang-M following bang-N.

     
 
Miv =

A B
C D
⎛
⎝⎜

⎞
⎠⎟
a
b

⎛
⎝⎜

⎞
⎠⎟
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Aa + Bb
Ca + Db
⎛
⎝⎜

⎞
⎠⎟

(5.2a)   
 
MiN =

A B
C D
⎛
⎝⎜

⎞
⎠⎟
a c
b d

⎛
⎝⎜

⎞
⎠⎟
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Aa + Bb Ac + Bd
Ca + Db Cc + Dd
⎛
⎝⎜

⎞
⎠⎟

 (5.2b)

Matrix M operates column-by-column on another matrix N as it does on a vector v. The off-the-ceiling matrix 
C = ( 0

1  -1
0 )  changes (v1, v2) to (v1, -v2) (Odd-n Bang-n(02)) A 2-ball collision matrix M (Even-n Bang-n(12)) and 

ceiling bang C act p-times in matrix products  v
FIN − p = (CiM)p iv = (CiM)i(CiM)i(CiM)i…(CiM)iv  to give Fig. 5.1.

   
   

C iM = 1 0
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⎟
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⎜
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⎟
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 (5.3)

(5.4) shows (p=5) double-bangs 
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 or 11 bangs in all.
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⎠
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Even after 9 bangs, big m1 still has a small upward velocity v1=0.2925.
After Bang-11(02) big m1 is nearly stopped and little m2 is coming down at v2=-7.071 with all the energy!
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v1
FIN−11

v2
FIN−11

⎛

⎝
⎜
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⎞
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⎟
⎟
=

v1 = 0.0100
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      (5.5)

Look out below! As m1 turns back it crosses v1=0 axis in Fig. 5.1a. The greatest curvature (acceleration and 

force) for the path of m1 is between Bang-8 and Bang-14 in Fig. 5.1b just when m2 is busiest. 
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Fig. 5.1 Multiple Bangs of the m1=49 and m2=1 superball system. (a) V vs V plot. (b) Y vs time.
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Big m1 is repelled down by repeated m2 hits and gains speed as m2 loses it. If no floor intervenes to 

rebound m1 there comes a final bang that leaves m2 slower than m1 who falls away so m2 can’t hit it again.  

(Exercises 5.1 and 5.2, ask you to find this a game-over point for various cases.)

However, if a floor intervenes, then a 2nd floor-bounce matrix F= ( 0
−1  +1

0 ) changes (v1, v2) to (-v1, v2) 

and bounces ball-m1 back up to start the whole process over again. Ball-m1 does another similar up-down trip  

but not exactly the one shown in Fig. 5.1. Below we consider how such processes may be perfectly periodic.  

Except for floor bounces, the m1-ball in Fig. 5.1 experiences a smoother flight than in Fig. 4.7 where 

a more massive m2-ball jerks it severely. A smaller mass m2 has less momentum-per-bang and gives a quasi-

continuous force field for m1. We will derive a funny kind of force and potential field theory from this.

Rotating in velocity space: Ticking around the clock
Here is an example of geometry and slope ratios being helpful. If you view the ellipse in Fig. 5.1a 

lower-edge-on (and do the exercise to finish it!) you may see it as a circular clock with each double-bang 

(odd-bangs 1,3,5,…) rotating the v-vector like a clock hand ticking equal-angle jumps around a dial. 

You can make an energy ellipse (2E=m1v12+ m2v22) like Fig. 5.1(a) sketched in Fig. 5.2(a) into an 

energy circle (2E =V12+V22) like Fig. 5.2(b) by rescaling velocity (v1, v2) to (V1 = v1·√m1, V2 = v2·√m2).

 V1=v1·√m1,   V2=v2·√m2    where: 2E=m1v12+ m2v22=V12+V22      (5.6)
Big-V variables replace little-v’s by setting (v1 =V1/√m1, v2 =V2/√m2) in matrix relation (5.1).
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(5.7)

Clearing scale factors √mk gives the following big-V matrix relations to replace (5.1) above.
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The trick is to notice a Pythagorean relation x2+y2=1 for the circular bang-matrix components. 
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M
⎛
⎝⎜

⎞
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2

+
2 m1m2

M
⎛

⎝⎜
⎞
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2
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m1 +m2

= 1       (5.10a)

The matrix can be defined using sinθ  and cosθ shown for m1=49 and m2=1 and angle θ =16.26° in Fig. 5.2(c).

     Define :  cosθ ≡ m1 −m2

M
⎛
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⎞
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2 m1m2

M
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A 1-Bang matrix is a reflection by θ. Our 2-Bang matrix is a rotation by angle -θ =-16.26° in V space.
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⎞

⎠
⎟⎟

(5.11)   V1
FIN2

V2
FIN2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosθ sinθ
− sinθ cosθ

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛

⎝
⎜

⎞

⎠
⎟ =

0.96 0.04
−1.96 0.96

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛

⎝
⎜

⎞

⎠
⎟ (5.12)
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Fig. 5.2 Velocity-velocity clocks. (a) Energy ellipse (As in Fig. 5.1) (b-c) Energy bang-clock angles
 (d) Velocity-squared E-plot.  (e) Mass-scaled V-squared E-plot.  (f) Integral right triangles

Matrix (5.12) reduces N-double-bang chains like (5.4). N products of matrix (5.9) are done if θ =16.26° in 

(5.12) is replaced by Nθ =81.30° to give (5.13) below. (We take N=5 double-bangs to check against (5.5).)

  
 

V1
FIN2N

V2
FIN2N

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= (CiM)N iV =

cosNθ sinNθ
− sinNθ cosNθ

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛

⎝
⎜

⎞

⎠
⎟ =

cos5θ sin5θ
− sin5θ cos5θ

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛

⎝
⎜

⎞

⎠
⎟ =

0.1512 0.9885
−0.9885 0.1512

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛

⎝
⎜

⎞

⎠
⎟ ( for : N = 5)     (5.13a)

Relating V’s to v’s by (V1=v1√m1, V2=v2√m2) gives (5.5). Note  (CiM)N follows initial floor F: (v1, v2)=(1,-1).
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FIN2N

v2
FIN2N

⎛

⎝
⎜
⎜

⎞
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⎟
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m
1
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−
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1

m
2
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⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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⎛

⎝
⎜

⎞

⎠
⎟ =

cos5θ 1
7

sin5θ

−7sin5θ cos5θ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
v1

v2

⎛

⎝
⎜

⎞

⎠
⎟ =

0.1512 0.1412
−6.9194 0.1512

⎛
⎝⎜

⎞
⎠⎟

1
−1

⎛
⎝⎜

⎞
⎠⎟
=

0.010
−7.071

⎛
⎝⎜

⎞
⎠⎟
for :

N = 5
m1
m2

= 49

⎧

⎨
⎪

⎩
⎪

    (5.13b)

Without 2nd floor-bounce-back operation F, this sequence ends at “game-over” point near bang-21. 

(See exercise 5.1.) Matrix group products clarify collision sequences so they may be “engineered.”

Statistical mechanics: Average energy
If two balls of mass m2=1 and m1=7 bounce back and forth between wall the small ball goes faster on 

the average than the bigger one. How much faster? Let’s assume that arrows on the scaled velocity clock in 

Fig. 5.2(b) get uniformly distributed around its circle after many collisions. (Fig. 5.2(b) shows only m1-m2-

bounce arrows. m2-ceiling-bounce-arrows fill up the upper half.) A ball’s velocity and momentum must sum 

and average to zero otherwise it will not stay in the region between the floor and the ceiling.
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But, what is average squared-velocity v2 of each ball? An energy plot in the space (V1)2 vs (V2)2 of 

scaled velocity-squared helps to answer this. The result is a 45° line shown in Fig. 5.2(e). In other words 

points on the circle in Fig. 5.2(b) get mapped onto the 45° line in Fig. 5.2(e) by KE conservation.

     (V1)2 + (V2)2 = 2 KE = m1(v1)2 + m2(v2)2 

The average of all points on the 45° line is its bisector.

    (V1)2 = KE = (V2)2   or:   m1(v1)2 = KE = m2(v2)2    

This gives the average velocities or root-mean-square-speeds v1rms and v1rms of m1 and m2.

  v1
rms = KE /m1     v2

rms = KE /m2     (5.14)

Each ball, regardless of mass, gets equal share (50% if there are just two) of the total energy. So, if m1 is 7 

times m2 then the mean speed of m2 is √7=2.65 times faster than that of m1. The 1st bang in Fig. 4.4 gives 2.5.

Bonus: Rational right triangles
Geometry often offers interesting numerics. In this case, the general right triangle in Fig. 5.2(c) 

makes integer or rational fraction solutions to the Pythagorean sum a2+b2=c2 such as the famous 

(a=3,b=4,c=5) right triangle. Perfect-square mass values (m1 and m2=1, 4, 9, 16, 25, 36, 49, 81, 100,…) will 

give integral valued right triangle altitude a=√(4 m1·m2), base m1-m2, and hypotenuse m1+m2. Examples in Fig. 

5.2 are (a=14,b=48,c=50) for (m1=49, m2=1) and (a=12,b=5,c=13) for (m1=9, m2=4).

Reflections about rotations: Itʼs all done with mirrors
In 1843 Hamilton discovered his quaternion algebra {1,i,j,k}, a mathematical jewel. In 1930 Pauli found 

related spinor matrices {1,σX, σY, σZ}. We label Pauli matrix σZ as sigma-A=σA (A for Asymmetric) and σX as 

sigma-B=σB (B for Balanced). They are Hamilton’s k and i with an imaginary factor i= −1 attached.

  σ A =
1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
=σ Z =ik   (5.15a)   σB =

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
=σX =ii   (5.15b) 

Other matrices, sigma-C=σC (C for Circular) and sigma-0=σ0(0 for “Origin”) are products like σAσB or σA2.

   σ AσB =
1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
⋅
0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
=

0 1
−1 0

⎛
⎝⎜

⎞
⎠⎟
=iσC =iσY =− j  (5.15c)  σ Aσ A = σBσB = σCσC =

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟
= σ0 =1=1    (5.15d)

Hamilton’s {i,j,k} square to -1. (i2=j2=k2=-1) That is like i 2= −1 . But, Pauli-σ’s square to +1. (1=σX2=σY2=σZ2.) 

We now relate σ-matrices to simple super-ball collision reflections and rotations shown in Fig. 5.2. 

For example, the σA is our “ceiling bounce” C in (5.3) and our “floor bounce” F in (5.3) is just - σA. 
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σ A =
1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

= C   (5.15a)    −σ A =
−1 0
0 1

⎛
⎝⎜

⎞
⎠⎟
= F  (5.15b) 

A geometric view of σA (or - σA) is mirror reflection thru Cartesian x (or y) axes in Fig. 5.3a while σB (or - σB) 

is reflection thru mirror planes tilted at angle π/4 (or −π/4) between x-y axes in Fig. 5.3b. General reflection σφ 

thru a mirror plane tilted at angle φ/2 (Fig. 5.3c) is a sum (5.15c) of σA cosφ and σB sinφ. We now verify this.

   
  
σφ = σ A cosφ + σB sinφ =

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

cosφ +
0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

sinφ =
cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟

  (5.15c)

 Like all reflections, σφ must square-to-one. (σφ2=1) It does so because σA2=1=σB2 and σAσB =-σBσA. 

We test σφ on unit vectors x̂ = 0
1( )  and ŷ = 1

0( )  and see that matrix algebra checks with geometry in Fig.5.3c.

 
   
σφ ix̂ =

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
i

1
0

⎛
⎝⎜

⎞
⎠⎟
=

cosφ
sinφ

⎛
⎝⎜

⎞
⎠⎟

  (5.16a)  
   
σφ iŷ =

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
i

0
1

⎛
⎝⎜

⎞
⎠⎟
=

sinφ
− cosφ

⎛
⎝⎜

⎞
⎠⎟

   (5.16b)

Geometry Fig. 5.3d also shows that a product σ2σ1 of any two reflection matrices is a rotation matrix R.

In Fig. 5.3d  σφσA is right-hand rotation R+φ but σAσφ=R−φ in Fig. 5.3e is left-handed. Rotation angle φ 

is twice the angle φ/2 between mirrors. Direction of rotation σ2σ1 is from 1st mirror (of σ1) to 2nd mirror (of σ2).

   
 
σφ iσ A =

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
i

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
=

cosφ   - sinφ
sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟

    (5.17a)  
 
σ A iσφ =

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
i

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
=

cosφ   sinφ
-sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
  (5.17a)

For example, rotation σBσA is by +90° and σAσB is by -90°. Rotation σA(-σA)=(-σA) σA is by ±180°.

Through the clothing store looking glass
The rotation in V1 vs V2 space of Fig. 5.2b is a product of ceiling bounce and m1-m2 collision that are each a 

reflection. An even simpler example of paired-reflection rotation is a clothing store mirror in Fig. 5.4a. It lets 

you swing two mirrors like doors to view multiple images of yourself. If you set the angle between mirrors to 

φ/2=30° as in Fig. 5.3 d-e or to 60° as in Fig. 5.4a then you see yourself rotated by twice that angle. Images 

are turned 120° counter-clockwise in the right mirror and clockwise (-120°) in the left mirror of the latter. 

 The sketches in Fig. 5.4a oversimplify the actual images shown by photos of a real mirror pair. The 

single reflections for σA are not shown in the sketch but clearly visible in photos where the σA and σφ images 

both have backwards text and a left hand image of the original right hand. This is corrected in the (-120°)-

rotated σAσφ image and the (+120°)-rotated σφσA image. 
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Fig. 5.3 Mirror-reflection geometry (a)±σA, (b) ±σB, (c) σφ. Right-and-left-handed rotation (e) σφσA (f) σAσφ. 

 A special case is rotation σA(-σA)=(-σA) σA by ±180° due to setting mirrors at exactly φ/2=90° as in Fig. 

5.4b. The result is known as a corner-reflector image. Wherever you stand while viewing a 90° corner you 

see your image centered and rotated±180° to face you but it is not reflected. A 90° corner image is as others 

see you, complete with a readable monogram on your jacket and your right hand on the right side. 

How fundamental are reflections?
A product of two reflections is a rotation Rφ=σ2σ1, but two rotations just give another rotation Rφ+θ= RφRθ and 

never a reflection. This makes reflections more basic and productive than rotations.
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Fig. 5.4 Mirror reflections and their rotations with relative angle: (a) 60° (b) 90° (corner reflector images).

 On the other hand, you cannot do a reflection of a real solid object without entering an Alice-in-

Wonderland looking-glass-world. Moving every atom in a classical object to a reflected position (without 

destroying it) is unthinkable! Yet, we easily rotate semi-solid objects (like your eyeballs while reading this).

 Waves, on the other hand, are very un-solid and do reflection effortlessly. Rotation takes twice the 

effort as seen in the looking glass images of Fig. 5.4. This is one reason reflection operations are so basic to 

the study of wave mechanics, quantum theory, and relativistic symmetry as we will see in later Units. They 

are elementary symmetry generators in a 1D world. A 1D translation by distance a is two reflections by 1D 

mirrors separated by distance a/2.
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 Symmetry operation R or σ is defined by what it does to unit vectors x̂ = 0
1( ) and ŷ = 1

0( )as σφ (5.16) is 

done in Fig. 5.3c. That matrix does that same operation to any and all vectors v = v2

v1( ) = v1x̂ + v2ŷ  in the space.

  
 
σφ iv = v1σφ ix̂ + v2σφ iŷ = v1

cosφ
sinφ

⎛
⎝⎜

⎞
⎠⎟
+ v2

sinφ
− cosφ

⎛
⎝⎜

⎞
⎠⎟
=

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
v1

v2

⎛

⎝
⎜

⎞

⎠
⎟   (5.18)

A way to distinguish rotation and reflection operators is by the determinant det|M| of their matrices.

  det |M|= det a b
c d

⎛
⎝⎜

⎞
⎠⎟
= a·d − b·c    det

ux vx
uy vy

⎛

⎝
⎜

⎞

⎠
⎟ = ux ·vy − vx ·uy = u v sin∠u

v

A determinant of matrix M quantifies the space (area in this case) enclosed by vectors in M‘s rows or 

columns (u and v enclose a parallelogram in this case).  

 A rotation determinant is +1, but a reflection determinant is –1. Reflected area or angle in Fig. 1.3 is 

negative. 

  det Rφ = det
cosφ sinφ
− sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
= cos2 φ + sin2 φ = +1    det σφ = det

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
= − cos2 φ − sin2 φ = −1

Determinants track the multiplication of matrices. The determinant of a product is a product of determinants.

     det|M·N|= (det|M|)(det|N|)= det|N·M|

Thus, two reflections each with det|σ|=-1 form a product of det|σ1 σ2|=(-1)(-1)=+1, that of a rotation. This also 

shows a product of rotations cannot make a negative-det-matrix and so cannot be a reflection.

Exercise 1.5.1 Gameover 49:1 
Complete Fig. 5.1 (for m1:m2=49:1) up to the gameover point where sequence would end without 2nd floor 
bounce. Compare geometric results to analytic matrix analysis.
If the floor is open after the initial bounce of m1, what mass-ratio near that of Fig. 5.1( m1:m2=49:1) would 
cause m1 and m2 to drop away with the same final velocity.

Exercise 1.5.2 Bigger bangs 100:1
(a) Construct a plot for m1:m2=100:1 to the “gameover” point after which the bigger ball would need a floor 
bounce to continue hitting the small one.  Such a large mass-ratio favors a rescaled (Estrangian) √m1v1 vs. √m2v2 
circle–plot. You may use that instead of a plot like Fig. 5.1.
(b) Compare the accuracy of your geometric results with an analytic calculation like (5.2) or (5.13).
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Solutions to 1.5.1
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Chapter 6 Introducing Force, Potential Energy, and Action
Analysis of force is one of the trickier parts of Newtonian mechanics and one that Aristotle seems to 

have not done so well. We, like Aristotle, feel we know force after being pushed and pulled around by it most 

of our conscious lives. Aristotle related force directly to mass and its motion. If he ever wrote equations then, 

perhaps, Aristotle’s equation would be F=MV. 

NOT! MV is momentum, not force. Galileo and Newton may be the first to realize that force should be 

equated to a change in momentum. A famous equation F=Ma equates force to mass or inertia M times 

acceleration a, the rate of change of velocity. (It is called Newton’s 2nd law or NEWTON-TWO. Recall (3.16d).)

    F =dt
dP= Mdt

dV = M ⋅a                     (6.0)

m
1

Low energy

“Cool“

(a) Uncompressed

(Large Y-space)

Yy
1
=H-Y

mm
22

High energy

“Hot“

(b) Compressed

(Small Y-space)

Y

mm
22mm

22mm
22mm

22mm
22m

1
mm
22

mm
22

mm
22

mm
22

Small momentum transfer

“Low pressure“

Big momentum transfer

“High pressure“

V2 small V2 large

Fig. 6.1 Big mass m1  feels “force field” or “pressure” of small ball rapidly bouncing to and fro.

MBM force fields and potentials

Motion of m1 in Fig. 5.1b suggests a kinetic model and a potential force field. Boltzman uses this to 

derive gas force laws for volume, temperature, and pressure. As a big m1-ball squeezes space (volume) for a 

tiny m2-ball in Fig. 6.1, the speed v2 and energy 1/2 m2v22 of m2 increases. So does the momentum transfer 

rate or bang-force on m1. Energy is related to temperature and bang-force is related to pressure. A furiously 

bouncing m2 is like a single-atom gas getting hot when its Y-space is compressed as in Fig. 6.1b. 

Fig. 6.1 Big mass-m1 ball feeling “force-field” or “pressure” of small ball rapidly bouncing to-and-fro.

A “double-whammy” hits the m1-ball as it closes in with velocity v1 toward m2 and wall (Y=0): 

(1) Bang rate B with m2 increases with shrinking distance 2Y traveled by m2 between m1 and wall. 

(2) Increased velocity v2 (due to v1) increases momentum m2v2 and ΔP transferred to m1 by each bang.

(3) Increased velocity v2 (due to v1) increases bang rate even more. It’s really a triple whammy!
 If m1 is huge (say 1kg) compared to atom or molecule m2 (say (2/3)·10-27kg for an H-atom), the speed 

v1 of the macro-mass m1 may be negligible compared to typical atomic speeds v2 of 103 m/s. Then we ignore 

effects (2) and (3) due to tiny v1 in a so-called isothermal model. An adiabatic model includes them.
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Isothermal model force laws
Atom m2 in Fig. 6.1 travels distance 2Y back & forth between m1 and ceiling at Y for each bang m1. If 

v1 is slow, the time Δt between bangs is 2Y divided by velocity v2 of m2. Bang rate B is the inverse: B=1/ Δt.

 Δt = 2Y /v2 (seconds per bang)  (6.1a)   B =1/Δt = v2 /2Y (bangs per sec)  (6.1b)

Each head-on bang of big m1 on small m2 changes velocity of m2 from −v2 to +v2FIN as shown in Fig. 6.2.

 (for: m1>>m2):   v2FIN = v2+2v1   (≈ v2 for: v2>>v1)  (6.2) 

Added speed for m2 is 2v1, twice that of incoming m1. (V-V-plot Fig. 6.2 assumes large-m1.) The change ΔP 

of momentum m2v2 is the difference between FIN value +m2v2FIN and IN value −m2v2.

   ΔP = (+m2v2FIN)–(−m2v2)=2m2v2+2m2v1  (≈ 2m2v2 for: v2>>v1)  (6.3)

So, if “atomic” velocity v2 is large compared to v1 it gives a bang-force F=B· ΔP = ΔP/Δt on m1.

     BP= ΔP/Δt =F = 2m2v2(v2 /2Y) = m2v22/Y    (6.4) 

So a force field F=2·KE/Y on m1 due to m2 is proportional to KE=1/2m2v22 or temperature T of m2. Boltzman’s 

constant k of proportionality (KE=kT) gives an isothermal force law FY=2kT. It is a 1-D version of Boyle’s 

ideal gas law: PV=2kT. Here a ceiling tries to keep energy or “temperature” of m2 constant in spite of m1.

Start at
(+v1,-v1)

(a) After 2 Bangs

Start at
(+v1,-v1)

v(1)

v(2)

(b) After 4 Bangs

v(3)

v(4)

V1 axis

V2
axis v(2)

v(1)

Increase
by

≈2 v1

Increase
by

≈2 v1

Double-Bang Sequences
for m1 >>m2

V1 axis

V2
axis

Fig. 6.2 Large mass-ratio (m1/m2>>1) bounce sequence. (Compare to Fig. 4.2a.)
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 Adiabatic model force laws
An elastic ceiling can’t give or take energy so each m1 bang adds velocity 2v1 to v2 at rate B=v2 /2Y (6.1). As 

m1 closes at speed v1 it reduces distance 2Y that m2 travels. So bang rate B grows due to more v2 and less Y.

   
dv2
dt

= 2v1B                        = 2v1
v2
2Y

,      y =v1t=H-Y,         dy
dt

= v1 = −
dY
dt

      (6.5a)

We cancel time and v1 to show this force is inverse-Y- cubed, a lot “harder” than inverse-Y in (6.4).

   
dv2
dt

=
dY
dt

dv2
dY

= −v1
dv2
dY

⎛

⎝⎜
⎞

⎠⎟
= 2v1

v2
2Y

,    
dv2
v2

= −
dY
Y

,   v2 =
const.
Y

=
v2
INY (t=0)
Y

,      F=
m2v2

2

Y
=m2

const.( )2
Y 3

(6.5b)

This is called an adiabatic or “fast” force law. Collisions are so fast that an isothermal-seeking 

“Robin Hood” in the ceiling hasn’t time to steal m2’s energy when it’s judged too energy-rich or give energy 

back when m2 becomes energy-poor. So m2 can get hotter and hit m1 harder and more often as gap Y shrinks.

Conservative forces and potential energy functions
Either force law (5.9) and (6.5) actually conserves the energy of the big-m1 ball in the long run. By 

that we mean that m1 will come out with practically the same energy that it had when it went in. 

The adiabatic case is easier to see. Each bang conserves energy as demanded by the kinetic energy 

(KE) conservation relation (3.5a). Little-ball velocity v2=const./Y from (6.5b) is used here.

  
  
E = 1

2
m1v1

2 + 1
2

m2v2
2 = 1

2
m1v1

2 + 1
2

m2
const.

Y
⎛
⎝⎜

⎞
⎠⎟

2
=const.   (6.6)

The first term is m1’s kinetic energy KE1. The second term, which is really m2’s kinetic energy, is called m1’s 

potential energy PE1 or just plain PE, and it is labeled U(Y) since it varies according to height Y of m1 only.

 

� 

E = KE1 + PE =
1
2m1v1

2 + U (Y )      where:   PE =U (Y ) =
1
2 m2

const.
Y

⎛ 
⎝ 

⎞ 
⎠ 

2
  (6.7)

The PE is energy that m1 lends to m2 each time m1 moves a distance ΔY closer so m1 does a little bit of 

work ΔW on m2. Work is defined as force times distance. (ΔW=F·ΔY) Power, the rate of work done, is defined 

as force times velocity. Here distance is a small ΔY and the force F in (6.5b) is m2 const.2/Y3. But “work” 

force might be plus-or-minus (±)m2 const.2/Y3. Which sign? (+) or (−)? Conflicting sign conventions make 

force-physics confusing. The sign depends on how force and direction are defined. (It’s all relative!)
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Is it +or-? Physicist vs. mathematician and the 3rd law
A physicist’s force Fphys is what is felt by a free object (Here that’s m1.) whose motion is driven by 

force field F=Fphys. A mathematician’s force Fmath is what is needed to hold back the object in the force 

field. (How apropos! A physicist lets it go but a constipated mathematician holds it back!) They differ by (±) 

sign only, that is, Fmath =-Fphys, and Fmath is the equal-but-opposite force by an object (m1 here) on its field or 

force agent(s) (m2 here). (This is essentially Newton’s 3rd law. (NEWTON-THREE) )

Force is momentum flow. Momentum is stuff that’s conserved, so the flow rate Fphys of this stuff into 

an object m1 must be balanced by an equal-but-opposite negative flow, Fmath =-Fphys, out of the forcing agent

(s) (m2 here), and, vice versa, whatever flows out of m1 flows into m2. Momentum p=mv and force F are both 

vector quantities and a ±sign gives direction to-or-fro, another confusing (±) sign to bother us. But, whatever 

the flow rate Fphys seen by m1, then m2 sees the opposite rate Fmath =-Fphys.

Let’s define positive Y and F direction to be away from the wall in Fig. 6.1. So incoming m1 has 

negative velocity v1=-ΔY/Δ t , but after m1 reverses V=ΔY/Δ t is positive. Positive V=-v1 (increasing Y) and 

positive Fphys means both momentum and energy of m1 are being increased by force Fphys. Each bit of energy 

or work ΔW=FphysΔY gained by m1 is energy lost by the force-field’s potential “bank” that is m2. (ΔU=- ΔW)

 ΔW=F phys ⋅ΔY=-ΔU      where:  F phys= F(Y )=m2
const.( )2
Y 3

      (6.8)

In other words, power Π =Fphys.V into m1 is power (- ΔU/Δ t ) out of the field. (V=ΔY/Δ t is velocity of m1.)

 

� 

Π = F phys ⋅V = - ΔU
Δt = -ΔU

ΔY
ΔY
Δt = -ΔU

ΔY V     where:  F phys = -ΔU
ΔY     (6.9)

But is this consistent? Does force Fphys in (6.8) really equal minus the slope of potential (6.7)? 

� 

F phys = m2
const.( )2

Y3       
consistent

with:
      F phys = -ΔU

ΔY = - d
dY

1
2 m2

const.
Y

⎛ 
⎝ 

⎞ 
⎠ 

2
= m2

const.( )2

Y 3  (6.10)

It checks!! Note that F=- ΔU/Δ Y needs that 1/2 on kinetic energy 1/2 m2v22. (Recall discussion of (3.5).)

Isothermal “Robin Hood”and “Fed rules”
The isothermal case is a weird one. The little “force-field agent” m2 maintains it kinetic energy at 

around the same initial value 1/2 m2v22 no matter how much the big mass m1 loses or gains kinetic energy.

It’s as though a “Robin-Hood” in the ceiling acts like a big Federal Reserve Bank. (“The Fed.”) 

Whatever energy m2 earns from m1 is taken and stored away if its over initial deposit 2
1 (m2v22)=T, but if m2 
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deposits falls below that value, the Fed makes up the difference. This energy or deposit limit is determined 

by a prevailing allowed “temperature” of the ceiling or the current money supply. (I’m not making this up. 

It’s what happens in nature and very roughly what happens in our economy. It becomes a problem if the Fed 

stops being a Robin Hood and becomes a robbing hood!) 

Under ideal conditions, force agent m2 makes a much “softer” 1/Y force field F=m2v22/Y given by 

(5.9). Definition (6.9) of force F as negative-U-slope -ΔU/Δ Y then gives a logeY=lnY potential. 

� 

F phys = m2
v2

2

Y = -ΔU
ΔY            implies:          U = -m2v2

2 ln Y( )   (6.11)

It may seem weird that we can define a useful potential while energy-funds are being siphoned in and 

out. Nevertheless, the ceiling “Robin Hood” is true to his word. (Analogy with “The Fed” ends here!) He 

puts back all the energy that m1 gave up to m2 (the potential U) on the way in, so that, except for small-

change or “tips” left with m2 after the final parting collision, m1 recovers the energy it originally had. Such a 

force field, if determined by such a reliable potential, is also a conservative one. We discuss later the details 

of what is needed for general multi-dimensional fields to be labeled “conservative.”

Oscillator force field and potential

 Consider a mass m1 between two walls and two little speeding m2 masses as in Fig. 5.5. m1 feels a 

force like that of an oscillator. As m1 moves distance x off center the left wall space expands to Y+x and the 

right wall space shrinks to Y-x. Two opposing forces (6.11) then are unbalanced. (Only x2, x4,… terms cancel.)

     Ftotal =
f

1+ x
−

f
1− x

= f 1− x + x2 − x3...⎡⎣ ⎤⎦ − f 1+ x + x2 + x3...⎡⎣ ⎤⎦ = −2 f ·x − 2 f ·x3 −  

Here we let Y=1 be a unit interval and assume an isothermal kinetic constant k ≡ 2 f = 2m2v2
2  for each side. For 

small x (x<<1) the force Ftotal has a linear or Hooke’s law form, and the potential Utotal is quadratic. 

 
 
Ftotal  −k·x = −

∂Utotal

∂x
    

 
Utotal 

1
2
k·x2 = − Ftotaldx∫    (6.12)

 Harmonic oscillator (HO) linear forces and quadratic potentials are, perhaps, the most useful ones in 

AMO physics because they approximate any stable system. Normally, they are analogized by a mass on a 

spring, rubber band, or pendulum, only rarely (if ever) in a context like Fig. 6.3. HO motion is sinusoidal 

y(t)=Asin(ωt +ϕ )  with angular frequency ω = k /m1 and period τ =2π /ω independent of the oscillator 

amplitude A or phase ϕ . The calculation of period for Fig. 6.3c is left as an exercise.

 The 2nd most useful field is probably the Coulomb potential U=-k/r and force F=k/r2. (See Ch. 7 for 

electrostatics and Earth gravity, which also have 2D HO potentials at their cores.) After that, the 2D 

Coulomb U=k·ln(r) and F=k/r is an important field shown in Unit 10. (The latter is like (6.11). A pair of 

them underlies Fig. 6.3 for the isothermal case.)

You should be warned that an oscillator like Fig. 6.3 is not as simple as it might appear, and as we 

will see, neither are springs, rubber bands, or pendulums. Also, balls bouncing against moving objects are 
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particularly dicey devices. A simple model with one ball and one oscillating wall is called a Fermi oscillator, 

and is quite chaotic.  The thing in Fig. 6.3 can be even more devilish if m2 is not very small. Caveat emptor!

mm22 mm22

(Y-x)

mm22mm22mm22mm22mm22mm22m1mm22 mm22

mm22mm22mm22mm22mm22mm22 mm22 mm22 mm22 mm22 m1

(Y+x)
x

x=0
YY

“Hot““Cool“

“Medium“ “Medium“

x =0

x

Utotal(x)

Potential
Utotal

Ftotal(x)

Force
Ftotal

“High pressure““Low pressure“

“Medium pressure“ “Medium pressure“

(a) Off center x>0: Negative restoring force

(b) Equilibrium x=0: Balanced

YY

Fig. 6.3 Oscillator force and potential (a) Off center with (-)force (b) On center at equilibrium. (c) Quasi-

harmonic oscillation of M=50 in adiabatic force of two m=0.1 masses of speed v0=20 and range Y0=3.
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The simplest force field F=const.

We have mentioned power-law forces Fadiab=k/y3=ky-3 (6.5), FCoul=k/y2=ky-2, FisoT=k/y=ky-1 (6.4), and 

lastly Fosc=-ky (6.12), but have forgotten the simplest, namely zero power law Fconst=k =ky0. This last one is 

like a constant near-Earth-surface gravity force 
  
F=

 
−∂y
∂U =mg =-m|g| on a mass m. ( (-) sign  for downward.) 

Acceleration of gravity near Earth’s surface is nearly -10 meters per second per second and very nearly –9.8. 

(g=-9.7997m/s2) Terrestrial objects experience this whether they are bundled together or not. 

All power-law forces F=kyp have power-law potentials U=-∫F·dy=-kyp/(p+1), except for p=-1 where 

FisoT=k/y has a logarithmic UisoT=-k ln(y). (6.11) Earth-surface potential
  
U = mgh  is linear in height y=h. This 

we use to compute height of a superball toss by equating its floor level KE=1/2mV2 to maximum PE=mgh.

 
  
ghmax =2

1 V floor
2  (6.13a)    

  
V floor = 2ghmax   (6.13b)

Ejection height goes as the square of ejection velocity. A 3-fold velocity gain means 32=9-fold height gain. 

Introducing Action. It’s conserved (sort of)

It is remarkable that a bouncing mass has a physical property called action   S = P·dx∫  that is more or 

less constant even if its position x momentum P and kinetic energy KE are driven crazy. Action is defined by 

the area of a one-cycle loop swept out in a momentum vs position phase-plot (P vs x). That is analogous to an 

energy or power-plot of force vs position (F vs x) whose loop area   F·dx∫  is work per cycle.

Conservation of momentum and conservation of energy are each a rigorously obeyed axiom or 

theorem for an isolated classical system. However, conservation of action is “more or less” or “sort of” and 

“it depends” for a driven system. The concept of action is both subtle and deep and it lies at the heart of 

quantum theory and accounts for a lot of how we affect and are affected by the world around us.

Here we use a geometric construction of a bouncing ball trajectory to quantify action conservation or 

lack thereof. We suppose the little mass m2 is caught as before in Fig. 5.1 and Fig. 6.1 between a rock and a 

hard place, that is, bouncing between a big mass m1 (moving in at a constant velocity v1= 1 from the left) and 

a hard elastic wall. The big ball path is indicated in Fig. 6.4 by a line of slope=1= v1 that hits an initially 

fixed m2 following a vertical line (slope=0=v2) that then gets knocked up to a line of slope=2=v2 (after Bang

(1)). Throughout the imagined collision sequence we suppose the big ball is so much more massive that its 

change in velocity is not noticeable. This is in spite of the fact that it is absorbing more and more momentum 

from the little ball with each bang. (Surely, something in it is going to break eventually!)

Each time the small ball is banged elastically by the big one it picks up two more units of velocity v1 

that it maintains, apart from change in sign, through its subsequent bang with the elastic wall. Each time it 

returns for more, is banged again, and increases its speed by two units. (Recall Fig. 6.2.)
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The horizontal dashed lines in Fig. 6.4 indicate the range Δx available to the small ball at each instant 

of its bang with the wall. Note that the product of the range Δx and the speed v2 is a constant three units even 

as spatial range Δx rapidly decreases and the velocity range Δv=2|v2| increases just as rapidly.

      Δx v2 =3.0 = Δx Δv/2  

This is an example of conservation of action mentioned before. If we define the small ball’s “range of 

velocity” by Δv=2|v2| then this relation takes the form of a weird kind of uncertainty relation, that is, it looks 

like Heisenberg’s famous minimum uncertainty relation Δx Δp ==(constant) for position and momentum. It 

happens that the two are related even though the constant used by Heisenberg is an unimaginably tiny Planck 

constant (~10-34Js) compared to a constant 3.0 appearing above. (Ours has gadzillions of wave quanta!)
The geometry behind this relation is exposed in Fig. 6.4 (b). It is obtained by considering 

intersections between lines of integral speeds or slopes v2 =±1, ±2, ±3, ±4, ±5, ±6, ±7,… that are relevant to 

the bang sequence. They are also relevant to quantum theory where the speeds of a particle in a box are 

indeed quantized to integers times a tiny number. (This is where that tiny  comes in.) That is simply a 

reflection (pun intended) of the fact that mutually reflecting waves require that an integral (or half-integral) 

number of the wavelengths fit perfectly between mirroring containment walls or cavities.

Now we might ask if the action area Δx Δv in Fig. 6.4c-e stays the same if the big-ball speed v1 varies. 

Action variance was argued hotly by Einstein and the “quantum gang” at the1920 Solvay Conference. They 

imagined a hotel chandelier being dragged up or down by a clerk holding its support cable upstairs. They 

concluded that if the clerk could not detect the swinging pendulum phase or frequency, then he would 

seldom be able to change its action. However, if he could synchronize his oscillations then he could drive the 

chandelier exponentially to destruction. We shall review this important and explosive process known as 

parametric resonance in later units. It is fundamental to mechanics and particularly quantum wave 

mechanics. Action and its wiggly antics deserve our attention.

Monster mass M1 and Galilean symmetry (It’s deja vu all over, again.)
 “Monster mass” M1 bongs hapless m2-atoms in Fig. 6.4 using Galilean symmetry. To show symmetry we 

imagine two head-on monster M1‘s going at ±V1=±1 in Fig. 6.5. A mirror image of Fig. 6.4 lies in extended 

m2-path lines. The red paths of even integral velocity v2=0, ±2, ±4,… are copies of Fig. 6.4 paths. Odd integral 

velocity v2=±1, ±3,… paths mesh with even ones to make a full grid. Any initial v2 between ±V1 has a path on 

the grid. A blue path is drawn thru a series of bongs with v2=-0.2,+2.2,-4.2,+6.2,...in Fig. 6.5.
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Fig. 6.4 Bang sequence for small ball between big ball and wall. (a) Spacetime paths. (b-c) Geometry of 
constant product Y·VY of velocity and coordinate ranges. 
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Fig. 6.5 Symmetric pair of head-on V1=±1 monster-m1-masses pong tiny-m2-atoms to higher speeds. 

 Monster M1/m2-ratios have simple V1-v2-plots shown in Fig. 6.6a. (Recall Fig. 6.2.) Wall M1 simply 

adds twice its speed (2V1) to incoming speed v2 of atom m2 as M1 bounces m2 out at that speed vFIN2=vIN2+2V1. 

Monster M1 is the COM so its path bisects in-and-out paths as it balances vIN and vFIN paths of atom m2. (In its 

COM frame each bong is simply a change of sign for velocity. Recall balance in Fig. 2.6.) 

 The geometry of adding slope 2V1 to speed v2 is shown if Fig. 6.6a. It is based on the unit square and 

unit velocity V1=1. Incoming -vIN2 is an altitude of a right triangle with vertical base V1=1, and it is reflected 

thru the square diagonal to +vIN2 then added to 2V1 to give sum vFIN2=vIN2+2V1 as long side of the triangle  

with right side vertical base V1=1 in Fig. 6.6a. The hypotenuse is the final path with final slope vFIN2. Each m2-

path and slope originates or terminates at base pt-B− or else pt-B+ . These are ends of the double-unit square 

bisected by unit slope path of M1 terminating at B0. Fig. 6.6.c shows quadrilateral B−B+A+A− bisected by M1 

path B0CA0. Similar triangles explain multiple coincidences.
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Fig. 6.6 Bisection geometry of Fig. 6.5. 

Fig. 6.7 contains time plots for paths in different Galilean reference frames. An excerpt plot in Fig. 6.7a 

shows how Fig. 6.4 (copied in Fig. 6.7b) appears to a frame traveling at V=1 with each velocity in Fig. 6.7b 

reduced by V=1 in Fig. 6.7a. Also shown in Fig. 6.7a is the extension of lines connecting the two plots and 

this highlights this remarkable symmetry. All collision times in Fig. 6.7a match perfectly with ones in Fig. 

6.7b though all velocities are shifted. Galileo’s symmetry wouldn’t have it any other way. 
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Fig. 6.7 (a) Galilean frame shift by frame velocity V=1 of collision sequence in Fig. 6.4 (shown in (b)). 
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Exercise 1.6.1 Suppose Fig. 6.3 shows a mass m1=1kg ball trapped between two smaller mass m2=1gm balls 
of high speed (v2(0)=1000m/s for x=0) that provide m1 with an effective force law F(x) based on isothermal 
approximation (6.11) while assuming m1 moves only moderately far or fast from equilibrium at x=0. 

(a) A further approximation is the one-Dimensional Harmonic Oscillator (1D-HO) force and PE in (6.12). If 
each mass m2 start in an interval Y0=1m, derive approximate 1D-HO frequency and period for mass m1.

(b) What if the adiabatic approximation is used instead? Does the frequency decrease, increase, or just 
become anharmonic? Compare isothermal and adiabatic quantitative results for m1=1kg ball being hit by two 
m2=1gm balls each having speed of v2(0)=1000m/s as each starts bouncing in a space of Y0=1m on either side 
of the equilibrium point x=0 for the 1kg ball. 

(c) How does the frequency decrease or increase in isothermal case versus the adiabatic case if we shorten the 
run interval Y0=1m to one-quarter meter?…What if we reduce the mass ratio m1/ m2 by one-quarter?

(d) Derive the adiabatic frequency for the case M=50kg in adiabatic force of two m=0.1kg masses of initial 
speed v0=20m/s and range Y0=3m. Compare with Fig. 1.6.3c.

Exercise 1.6.2 The moving ballwall-trapped-ball constructions in Fig. 6.4 involves a plot of a ballwall 
coming in with unit slope (velocity). Consider a construction where it has a velocity of 1/2 and intercepts a 
trapped ball of velocity –1 at space-time point (x=-2, t=4) that is 2 units from the fixed wall. Construct five 
or more back-and-forth collisions and comment on what, if any, differences exist with Fig. 6.4. If you can, 
also construct one or two prior collisions (before t=4).
Evaluate approximate or average action values as described in class or after Fig. 6.4 in Unit 1.

©2012 W. G. Harter Chapter6. Force and Potential Energy 90

90



91

Chapter 7 Interaction Forces and Potentials in Collisions
 Derivation of force field potentials in Ch. 6 used elementary bangs by tiny m2’s on a big M1. (Ch.5) 
We predicted elementary bangs between a ball and floor, ceiling, or another ball without knowing potentials. 
However, three (or more) objects having a ménage a trois are not so easy to predict, and outcomes of 3-body 
interactions depend more sensitively on whatever interaction potential or force law couples the participants.

Geometry of superball force law
 When a superball or any elastic sphere hits the floor or ceiling it dents itself and, maybe it dents the 
surface it’s hitting a little bit, too. But, if the floor, wall, or ceiling is much harder than the ball, we might 
assume only the ball develops a “flat-tire” as shown in the Figure 7.1a below.

x 2R - x

R

r

(a) (b)

Fig. 7.1 Superball collides with solid wall. (a) “flat” (b) Saggital (“Bow”) mean geometry

 The radius r of the ball’s “flat” is indicated by an altitude in Fig. 7.1b and is the geometric mean of 
the depression distance x and the remainder 2R-x of the ball diameter. (Recall Thales geometry in Fig. 1.9a.)

     r = x 2R − x)( )     ≈ 2Rx    for :   x << R( )    (7.1a)

Solving approximately for depression x gives the Saggital (“bow”) formula. (It’s used for thin arc lenses.)

     

� 

x ≈ r2

2R        for:   x << R      (7.1b)

How much force F(x) is needed to depress the ball by distance x?
 The answer is, “It depends.” A hollow rubber ball or balloon with pressure P pushes back with force 
equal to product P·A of pressure and area of contact A=πr2. It is a linear (Hooke) force law of a spring.
    Fballoon(x) = P·A = P πr2 ≈ 2πPRx      (7.2)
(Recall (6.12) and Fig. 6.3.) Another example is gravity inside the Earth. (See (9.4) or Fig. 9.6 in Ch. 9.)
 However, the pressure and force in a solid ball varies non-linearly with x. Even if force varies only 
linearly with volume of the x-dent in Fig. 7.1b, it’s still non-linear in x. As seen in (7.4) below, sector volume 
varies roughly as quadratic x2 function. Superballs involve even higher power laws. (Superpower!)
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Volume(X) = πr2dx0
X∫ = πx 2R − x( )dx0

X∫

                 = 2Rπxdx0
X∫ − πx2dx0

X∫ = RπX 2 −
πX3

3
≈

RπX 2    for : X << R( )
4
3
πR3    for : X = 2R( )

⎧

⎨
⎪

⎩
⎪

 (7.4)

(Here we check that our integral gives the whole ball volume 4πr3/3 for x=2R. That’s the equivalent of 
crushing the superball into a black hole (or black spot). It’s likely to complain before we get that far!)

Dynamics of superball force: The Project-Ball story
 One of the interesting things to come out of Project Ball was the superball’s peculiar force law 
behavior. The USC mechanical engineering department took an interest in this crazy project when it showed 
up on NBC News “Ray Duncan Reports.” They offered to measure the superball force curve on a precise 
tension meter. But, that curve never worked. It didn’t predict the bounces the students were observing. 
Nothing was making any sense even though we had a big analog computer working it all out. 
 That was a low point in the project. Even with all this fancy experiment, computers, and theory, I 
looked like I didn’t know what the heck I was doing. So, what’s new? That’s science most of the time! But, 
to make things worse we got kicked out of the Project Ballroom, the old basement Lab 69 that we’d squatted 
in. It was up to be repainted so we had to drag all our stuff out of there and store it down the hall.
 Well,  after that I had to do something with the students so I arranged for a visit to Whammo Mfg. 
Co. in San Gabriel, California, where superballs and other goofy stuff was made. The Whammo man said 
maybe we could talk business about selling our super-elastic toy. So, a day or so later, with $$-signs in our 
eyes, we piled into our cars and drove down to the plant. 

The trip to Whammo
 By the time we got there, the inventors were on an all-day “alpha-wave break.” That’s a 60’s fad 
where you try to increase your creativity by looking at your brain waves. I said, “Maybe, I could use some of 
that stuff!” But, the company lawyer wanted to show us around. After awhile, he said he thought our 
invention was cool, but its product liability potential looked too high to make a commercial toy. 
 We all must have looked pretty sad after hearing that. So he went in a back room and dragged out a 
big collection of superballs that had been rejected for one reason or another. “Here, take as many as you 
want!” We thanked him and loaded the balls into some boxes and headed back to USC.
 When we got back to Rm 69, the painters were done but the paint wasn’t quite dry. So I said, ”Let’s 
drop off our new balls so we’re ready for tomorrow.” The students took “drop” to mean literally and dumped 
them out of the boxes into the empty room. Right away the balls bounced into the wet paint and made lots of 
little polka-dot spots all over the floor and wall. What fun! What a mess.

Eureka! Polka-dots save Project Ball
 But, suddenly, it occurred to me what was wrong with our force analysis and how we might fix it. 
The engineers had carefully and slowly produced a static or isothermal force curve, but what we really 
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needed was a fast-response or adiabatic force curve. I thought, “Maybe that force law can be told by the 
polka-dots!” 
 From a polka-dot radius r made by a superball of mass M and radius R dropped from a height h we 
could relate gravitational potential energy Mgh to an adiabatic superball potential energy U,  and then find a 
U(x) curve for each value of x=r2/2R in formula (7.1b) by plotting height h against x given by dot radius r. 
Then the adiabatic force curve F(x) can be found from the slope dU(x)/dx of a U(x) curve. 
 Just as the adiabatic F=1/Y3 in (6.5) force curve is steeper and curvier than the isothermal F=1/Y in 
(6.4) so was the polka-dot bounce curve steeper than what we had been using. We stuck our new F(x) on the 
analog computer’s diode function generator and started getting good predictions. Now we could work out the 
deadly Model-X3, a 3-ball super tower! (This is described later in Chapter 8.)

The “polka-dot” potential
 First, let’s look carefully at this “polka-dot” potential theory. What we did, like most of physics, was 
an approximation. Using gravitational potential to estimate superball U(x) is a neat trick only if the superball 
forces are large and quick compared to the gravitational force or weight mg of the ball. 
 Fig. 7.2a shows a massive (Bowling-ball sized) superball at its (V=0) drop point h, where potential 
energy is mgh. Kinetic energy rises from zero as the ball falls and flattens on the floor until it passes a point 
where the upward floor force cancels the ball’s downward weight mg. That point-xstatic of static equilibrium 
is at the bottom of the total potential energy curve in Fig. 7.2b. The ball would sit still if put gently at xstatic 
with no kinetic energy. It’s a point of zero slope since total force F(xstatic) is zero there.
 After passing xstatic the ball slows down due to upward force. (That’s positive F(x) for x<xstatic.) 
Finally it stops at its maximum penetration point xmax where the total energy line intersects the total potential 
line in Fig. 7.2c. Now the ball’s initial gravity potential mgh0 has been converted completely into potential 
energy U(xmax)  due to compressing rubber a distance xmax. (We’re ignoring tiny frictional heat.)
 In the example, the ball’s weight is almost as large as the inertial bang-force driving the ball into the 
floor. An indication of this is how flat the ball is in Fig. 7.2 b when its weight and compressive force are 
equal. A standard superball sits stiffly on a table with no noticeable depression, and mg is a tiny part of the 
total force. It’s so stiff that its bang force is several times its weight and lasts only a few hundredths of a 
second. Very stiff rebounding potentials are shown in the later Fig. 7.3 and Fig. 7.4 b in which gravity is a 
negligible force and stiff rebound forces dominate during the collision.

By comparison, the ball in Fig. 7.2 is heavy and its potential is not so stiff. Instead it is so soft it has a 
big “flat” if sits still with zero KE at xstatic just as it does when passing that point in Fig. 7.2 b. The collision 
shown in Fig. 7.2 a-c is less like a bang and more like a lingering smooch! Similarly soft collision energy for 
a linear rebound force and quadratic potential is shown in parts (d) and (e) of Fig. 7.4.
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Fig. 7.2 Geometry of ball hitting floor (a) Ball is dropped. (b) Ball at max speed. (c) Ball at low point.
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Force geometry: Work and impulse vs. energy and momentum
 TV daredevils jump off 30-meter towers and belly-flop into kiddy-pools that are less than 1 meter 
deep. What a way to earn a buck! And, how do they ever survive such stunts? 
 Two important physical quantities tell about survival chances. The first is the product F˙x of force-
times-distance, or, more precisely, the integral ∫Fdx of force over distance. The second is the product F˙t of 
force-times-time, or, more precisely, the integral ∫Fdt of force over time. (Recall the fundamental Galileo-
Newton relations (3.16) and (6.0).) 
 The first quantity ∫Fdx is work done or energy -U(x) acquired. U(x) is area under an -F vs. x plot.

  

� 

Work = W = F (x)dx∫ = Energy acquired = Area of F (x) = −U (x)  (7.5a)

If energy is stored as potential energy U(x), then force -F(x) is the slope of a U(x) plot at point x. 

     

� 

F(x) = −
dU (x)
dx

      (7.5b)

(Recall the discussion of force and potential leading up to (6.10).)
 A second quantity ∫Fdt is impulse done or momentum P(t) acquired and area under an F vs.t plot.

  

� 

Impulse = P = F (t)dt∫ = Momentum acquired = Area of F(t) = P( t)  (7.5c)

If momentum is stored in kinetic velocity V(t)= P(t)/M then force F(t) is slope of the P(t) plot at time t. 

     

� 

F(t) =
dP(t)
dt

      (7.5d)

The time equation (7.5c-d) is just Newton’s 2nd law given by (6.0). The space force law (7.5a-b) is just the 
slope rule first stated (with the physicist’s minus-sign) in (6.9). Both laws deal with conserved stuff. If you, a 
daredevil, acquire x of this stuff (energy or momentum) sooner or later you are going to have to find 
something or someone help you get rid of x. Or else!
 A daredevil falling 30 meters acquires energy equal to gravity force (body weight Mg) times thirty 
meters. Fig. 7.3a-b plots a constant F=-Mg and a linear potential U(y)=Mg y from y=30 to y=0. The 1m 
kiddy-pool must get rid of the 30Mg (Newton meters) of energy in one meter, by applying a force of 30Mg 
(Newtons) steadily over the entire meter from y=0 to y=-1. (That’s a 30g~300ms-2 deceleration. Human 
survivability is somewhere around 50g.) An alternative is to get rid of that energy in the concrete below the 
pool in about 1millimeter, a 30 thousand g deceleration. (That is not survivable!)

Kiddy-pool versus trampoline
 Suppose the daredevil falls onto a special trampoline that applies exactly the same constant force as 
the kiddy-pool, but stores the energy as potential instead of dissipating it all by dousing the audience with a 
huge splash. (Recall Ka-Bong! versus Ka-Runch!  in Ch. 1.) The trampoline could then toss the daredevil back 
up to the 30 m tower to do the fall over again. (My gosh! What a daredevil has to do to satisfy a sated TV 
audience these days!) Such a potential is plotted by a steep-slope line U(y)=-30y in Fig. 7.3b.
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Fig. 7.3 Force and potential plots. (a-b) Strong (30g) deceleration. (c-d) Medium (6g) deceleration.

 Suppose the Americans for Humane Daredevilry (AHD) demand that the deceleration distance be 
increased from 1 meter to 5 meters. (That’s what Olympic divers get for a 10 m fall.) As shown in Fig. 7.3c 
this reduces the deceleration by a factor of 5 from 30g to only 6g. (A walk in the park!)  The sloping U(x) 
lines are tallying the area-accumulation under the F(x) lines. Starting on the right hand side, U(x) drops by 30 
units in 30 meters in Fig. 7.3b to correspond to the –30 units of area under the gravitational F=-1 unit line 
for the same distance in Fig. 7.3a. The daredevil’s kinetic energy must increase by 30 units to conserve total 
energy. So trampoline or pool is hit at 24 meters per sec. or 55 mph. (Recall (6.13).)
     1/2 M V2=30 Mg  or:  V=√(60g) = √588=24.2m/sec. 

Getting rid of this 30 J potential deficit means climbing a steep 30 J high slope between y=0 and -1 in Fig. 
7.3b or a medium slope of the same height between y=0 and –5 in Fig. 7.3d. Both cases have the same +30 J 
area under a force line, but having 5 meters instead of just one reduces the force to 30/5=6. 
 Time functions F(t) and MV(t)=P(t) relate to F(x) and U(x) using Newton II: F=MdV/dt in (7.5d).

     

� 

−U (x) = F(x)dx∫ = M
dV
dt

dx∫ = M
dx
dt
dV = MVdV =∫∫ M

V 2

2
− const.  or: 

� 

M
V 2

2
+U(x) = const.   (7.6a)

        P(t) = F(t)dt∫ = M dV
dt

dt∫ = MdV =∫ MV + const.                    or: P(t)−MV (t) = const.   (7.6b)

The first relation is total energy conservation (KE+PE=const.) first stated in (6.6) and (6.7).
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Linear force law, again (But, with constant gravity, too)
Let’s imagine the AHD demands further protection of daredevils from themselves by outlawing constant-
force targets that turn on a full force suddenly upon entry. Claiming that “high-jerk” is bad, the AHD requires 
linear-force targets, instead. Physicists comply happily since a harmonic-oscillator linear-force-quadratic-
potential (6.12) is the favorite force law. It also describes inside-Earth oscillation in Chapter 9.
 Plots of linear-force-quadratic-potentials are shown in Fig. 7.4. Just like the preceding Fig. 7.3, a 
constant gravitational force Fgrav=-Mg is present both in and out of the (y<0)-region where the linear F=-ky 
force and the U(y)=1/2ky2 potential exist as a sum of constant and linear forces for (y<0).

  FTotal = Fgrav + Ftarget = −Mg       
−Mg − ky

y ≥ 0( )
y < 0( )

⎧
⎨
⎪

⎩⎪
 UTotal =Ugrav +Utarget =

Mg y            

Mg y + 1
2
ky2

y ≥ 0( )
y < 0( )

⎧
⎨
⎪

⎩⎪

     (7.7a)      (7.7b)
If a linear potential b·y is added to a quadratic a·y2 potential we get the same parabolic curve U=a·y2, but that 
curve is shifted to the left by yshift=-b/2a and down by Ushift=-b2/4a as follows.

  

� 

UTotal (y) = ay2 + by = a y +
b
2a

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2
−
b2

4a
= a y − yshift( )2 +Ushift   (7.8a)

  

� 

yshift = −
b
2a

,         Ushift = −
b2

4a
= −a

b
2a

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2
= −U yshift( )   (7.8b)

The nose or tip of the parabola, which is the equilibrium resting point, follows an upside-down copy of the 
U-parabola itself! This important geometric fact is shown in Fig. 7.4. The geometry does not reveal itself 
until we look in Fig. 7.4e at a “soft ball” that is soft enough to clearly show its gravitational shifts. A hard 
superball is more like Fig. 7.4b that barely shows such a small shift. 
 Hardball total potential is u(y)=8y2+y with a total force function f(y)=-16y-1 in graph units of Fig. 
7.4(a-b). A medium total potential is u(y)=y2+y with a total force function f(y)=-2y-1 is plotted in Fig. 7.4(c-
d). The latter clearly shows the equilibrium or lowest “sag” point of zero force. The softball total potential is 
u(y)=(1/4)y2+y with a total force function f(y)=-(1/2)y-1 in Fig. 7.4e. The hardball potential requires about 6 
meters (Y=-6 or y=-0.6) to cancel the energy from the 30 meter fall (from Y=30 or y=3) and maximum force 
of about F=10. This is much more than the constant F=6 that stopped the same daredevil in 5 meters in Fig. 
7.3c because a linear force has only the area under a triangle which has a factor of 1/2. Here 1/2(F=10)(Y=-6) 
gives the necessary energy of 30 Joules. So the AHD ruling has actually increased the maximum force on the 
daredevil! (But, only during the final milliseconds is F large.)
 Note that the focus of the U(y) parabola is on the y-axis because we plot gravity with slope=1. Can 
you find a geometrical a way to locate that focus given some allowed stopping distance?
 Parabolic geometry of an oscillator potential subject to a uniform (or nearly uniform) force field is an 
important one in physics. Electronic charges pinned to an atomic potential well behave like oscillators in an 
electric field of a passing light wave. Generally the light wavelength of 0.5 micron (0.5E-6m) is several 
thousand times as long as the atomic radius of a few Angstrom (1E-10m). So the effective potential is a rigid 
parabola like Fig. 7.4e shifting to and fro and up and down at some frequency.
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 As we mentioned, superball force function is non-linear; approximately Fball(y)~y4 plotted in Fig. 7.2 
and Fig. 7.5 below. Compare this to the linear balloon-like force curve Fballoon(y)~y1 in Fig. 7.4e above. 
(Recall (7.2).) Fballoon(y) is a pair of straight lines bent at contact point y=0, while Fball(y) has a long flat 
region below y=0. For either case, the force integrals ∫Ftotal(y)dy and the areas they represent cancel between 
any two points y=h and y=ymax that have the same potential energy U(h)=E=U(ymax). If that energy is the 
total energy E then these points y=h and y=ymax are classical turning points. The mass M stops with zero KE 
(no speed) to turn around and fall backward or forward, respectively, into the potential valley lying between 
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h and ymax. PE curve Utotal(y) near bottom (ystatic) in Fig. 7.2-5 is nearly parabolic as is U(x) in Fig. 6.3. The 
difference for Fig. 7.4 is that all of the Utotal(y) curves are perfectly parabolic for y<0. (See exercise 

1.7.1.) 

Utotal(y)=-Mgx+Uball(y)

Total Energy E=Mgh

Ftotal(y)=-Mg+Fball(y)

Ftotal(h)

y=hystaticymax
-Mg

Force F(x)
and
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Utotal(ymax)=∫ Ftotal(y) dy +
ymax

ystatic
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cancel

y

h

 Fig. 7.5 Force and potential for soft nonlinear (F=ky4) superball dropped from height h
 

Why super-elastic bounce?
 Super-elastic bounce involving two balls was introduced way back in Fig. 4.5 and “explained” by the 
2-Bang model sketched there. Is that the only explanation? Certainly not! Is it even right? Well, yes and no. 
Here is a chance to discuss how science works or doesn’t work. It is, after all, a human endeavor. (To err is…)

RumpCo versus Crap Corp

 Let’s imagine a big scientific fight between two research groups something like real ones I’ve seen. 
We’ll imagine it’s about superball dynamics. On one side is a small but creative group working for the 
Rumpany Company® that first discovers the effect and explains it with the 2-Bang model. But their small 
budget limits them to things you can do cheaply with a ruler and compass. 

On the other side is the huge Crap Corporation®. With unlimited military contracts, CrapCorp can afford 
any kind of computer or lab equipment. They hear about RumpCo’s discovery and decide to develop and sell it 
to the Army as a bomb detonation system. 
 I hope you’ll excuse a scatological nomenclature and contempt for shortsighted and mindless goals 
often associated with post-modern cash-flow-science. My allegorical objective is to encourage curiosity-
driven-science that is now becoming regarded as quaint. I do believe that humans are capable of creating 
much more than fertilizer and should be strongly encouraged to do better. If earning gets in the way of 
learning, then humans do poorly. I have watched big labs in government, industry, and university die of a 
pernicious groupthink fueled by the acquisitive rather than the inquisitive human drives. People lose their 
ability to reflect and become happy to merely genuflect. A novel Radiance by Carter Scholz (Picador 2002) is a 
“Star Wars” romaine a’clef exposing foibles of scientists at Livermore and Los Alamos.
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 On one side of our allegory is poor but resourceful little RumpCo full of ideas but nowhere to go. Their 
2-Bang model of super-elastic bounce is simple, elegant, but appears wrong. The powerful CrapCorp, on the 
other hand, knows where it’s going and what’s right. It has every resource imaginable. Except wisdom.
 CrapCorp’s first move is to discredit RumpCo’s work. They set up a computer that uses lab observed 
potential functions to fully analyze a 2-ball bounce. Let’s compare two competing vu-graphs side-by-side.
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Fig. 7.6 RumpCo theory versus CrapCorp’s simulation. (RumpCo) Finite initial gap (CrapCorp) NO gap

 One thing is clear. CrapCorp does fancy-schmancy vu-graphs! They resemble wedding invitations. 
And, while CrapCorp’s 10-figure precision is dubious, we note their V1=0.62  and V2=2.29  disagree with 
RumpCo’s predictions (Recall Fig. 4.4.) of final V1=0.5 and V2=2.5 by a little. Furthermore, RumpCo uses an 
independent 2-ball bang model. They assume or idealize an initial gap separating mass m1 from m2 so 
Bang-1 of m1 with the floor is independent of Bang-2 between m1 and m2. So V1 and V2 result from 2-body 
energy-momentum conservation. RumpCo’s results are not sensitive to force functions.
 CrapCorp can compute the difficult 3-body collision between m2 , m1, and m0 (the Earth) all together 
just like what’s really happening on the floor. CrapCorp ‘s curvy V1 vs. V2 plot in Fig. 7.6 is very sensitive to 
each force function F(y) between each pair of colliding bodies. When (and if) CrapCorp values check out with 
experiment, they’ll happily sneer at the primitive pair of straight lines in the RumpCo velocity plot.

Does RumpCo have nearly the right (V1,V2) for wrong reasons? Not entirely. The reason a 2-Bang 
model works at all is that the force function for these balls is highly non-linear. A quartic function F(y)=y4 
has a flat bottom as noted before Fig. 7.5. That allows the floor-m1 collision to nearly finish before the m1-m2 
bang really gets going even though the balls are in contact all during the collision. 
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 Realizing this, the RumpCo researchers suggest that CrapCorp try a linear force F(y)=y1 simulation to 
see if super-elastic bounce disappears. They do, it does, and the rest is history. As seen in Fig. 7.7, m1 and m2 
bounce up in unison. It’s a pax de deux. Super-elastic bounce goes away!
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Fig. 7.7 Linear force kills super-elastic bounce. (Collaborative effort.)

The two groups decide to stop feuding and join forces. A corporate merger results in a multi-national 
conglomerate Carumpany Ltd. based in the Caymans. They lived happily ever after. (Well, sort of.)

Seatbelts and buckboards
Another important physics lesson from this section is, “Fasten your seatbelts…tightly!” To avoid great and 
damaging force you need to avoid non-linear force functions and fasten yourself with linear ones that can 
start working off your kinetic energy and momentum most immediately after a collision. The non-linear 
force with its “flat” region applies little or no force at first but then has to make up for its procrastination 
with deadly high force after it’s too late. Note how nonlinear force in Fig. 7.5 finishes much higher than the 
linear force in Fig. 7.4. Even worse is having no seatbelt at all. That’s like a very non-linear force of, say, F
(x)=kx100. It’s a flat gap with a practically vertical wall waiting to crush you!
 One of the most dangerous vehicles in the Wild West of the early US was the buckboard, a wagon 
with no suspension except for a set of springs right under the rider’s seat. When the buckboard hit a bump it 
generally lived up to its name. Unfortunate riders ended up like a little m1 superball knocked skyward by a 
big m2 wagon. A safer and more comfortable ride is had in a car with a body as much heavier than the wheels 
and suspension as possible. So-called “Monster trucks” have the worst kind of ratio possible for stability.
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Friction and all that “dirty” stuff
 Slowly we have put back some of the “real-world” features of the superball collisions that our 
idealized “Bang-Bang” models of Ch.4 ignored in order to make the problems more easily solvable. The 
effects of gravity during collision have been introduced and applied to interacting zero-gap superballs.
More such effects will be studied in what follows since interacting linear forces are very common in nature 
and there are ways to make them easily solvable, too. The oscillating neutron star in Ch. 9 provides a taste of 
what is to come in the study of waves and oscillation in Unit 4 and orbits in Unit 5. 
 But even the neutron star model neglects what is the bane of the purist physicist, the dreaded 
frictional forces. These are among the most neglected and poorly treated physical effects in physics. If 
anything goes wrong with a theory, we just blame it on friction! Often we have little choice in this matter.
 Friction is a result of having more particles than we’d like to admit. Consider one m1=72 gram 
superball. That’s about a mole of Carbon C6 rings and a mole has 6.02E23 (That’s Avogodro’s number.) of 
these C6 molecules. So we’re dealing with not one mass m1 particle but an enormous heap with an 
unimaginably huge number 60,200,000,000,0000,000,000,000 of particles that individually are (mostly) 
friction-free and well behaved, but their mob-behavior is just plain abominable! 

You’ve got to get down to at least the individual molecular level before “internal-friction” is pretty 
much a non-existent phenomena and pure quantum wave mechanics rules. So what we call “frictional loss” 
is simply the best accounting we can do of 60.2 gazillion chiseling thieves stealing bits of energy that turn up  
later as “heat.” In conservative economics the effect is known as “supply side” or “trickle-down.” Let’s see if 
we can account for energy chiseled by just three thieves. (And, then we’ll hire more thieves until we 
bankrupt the whole operation!)
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Important atomic and molecular force geometry
1.1.2 A most important mechanics problems is that of atomic oscillators affected by electric fields since it is basic to all 
spectroscopy. A useful approximate model is potential Vatom(x)=k x2/2 function of center x of charge Q where k is a spring constant 
of atomic polarizability. A uniform electric field E is assumed to apply a force F=Q·E to the charge by adding a potential VE(x) to 
Vatom(x). (Give VE(x)=______ and FE(x)=_____)
Consider the resulting potential Vtotal(x) for an atom for unit constants k=1 and Q=1. Derive and plot the new values for 
equilibrium position xequil(E), energy Vequil(E), dipole moment pequil(E). Plot Vtotal(x) for field values of E=-2,-1, 0, 1, and 2.
Does charge oscillation frequency ωequil(E) change? If so express in terms of ωequil(0) and E?
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Chapter 8 N-Body Collisions: Twoʼs company but threeʼs a crowd
 Without knowing force and potential effects on superball collisions, it is often impossible to even 
approximately predict the outcome for N=3, 4, or more balls. But, if all N masses have independent one-on-
one collisions with the floor, the ceiling, and each other, prediction can be done “Bang-by-Bang” as in Ch.5. 
Difficulty arises when three or more collide at once. Then prediction may need precise and detailed treatment 
of their interactive force laws. Elastic binary or one-on-one collisions in one dimension are solved 
completely by momentum conservation alone as we’ve done since Ch. 4. But, as we’ll see, anything more 
complicated may require more work, and often it requires a lot more work!

The X3: Three-ball towers
 One of the goals of Project Ball at USC was to optimize final velocity for superball towers with three 
or more balls stacked up like a pyramid as in a multi-stage rocket. One dumb idea was a cheap satellite 
launcher. It’s dumb because, even if you could achieve 8 km/s (See discussion in Ch. 9.), you’d burn it up in 
the atmosphere. (Well, OK, but on the moon…?)
 Actually we were happy just to break the theoretical 2-ball limit of 3.0-times-initial. (Recall 
discussion of the INF limit in and after Fig. 4.5.) As seen in Fig. 8.1a that is done quite easily by a 3-stage 
tower which achieves a velocity that is V3=3.41 times initial drop-speed (Vn(0)=1 for n=1,2,3).
 An even better final speed of V3=3.62 is had in independent collisions caused by setting initial gaps 
between the falling balls as shown in Fig. 8.1(b) so each collision can be completed before the next one 
begins. Then the result becomes independent of the force law governing the detailed trajectory within each 
collision, and a geometric construction in Fig. 8.1(b), based on momentum conservation, finds velocity 
accurately if collisions are independent. This requires force non-linearity or large initial gaps that are enough 
to reduce or eliminate N-body contact effects for N>2.
 Conversely, zero initial gaps often reduce the final velocity maximum below independent collision 
values. This is particularly true if the force law is linear as shown in Fig. 8.1(c). The 3-ball linear case comes 
out very much like the linear case for a 2-ball tower in Fig. 7.7. No single mass gains much speed over its 
neighbors. Super-elastic bounce is essentially squelched. 
 The American Journal of Physics† paper produced by Project Ball contains a discussion of attempts to 
optimize super-elastic bounce in towers of 3 or 4 balls. Progress was made but the theory needs work. As we 
will see later, this dynamics is somewhat analogous to wave motion in a varying channel. An early AJP 
paper†† has an analogy between a trumpet and a chain of sliding balls whose masses increase geometrically. 
It’s also analogous to tsunami wave build-up. A rule-of-thumb is that optimum-velocity chains satisfy a 
geometric-mean mass relation m2=√( m1 m3) as is approximately so in Fig. 8.1. Later on, some of this 
technology was developed into a toy by Stirling Colgate (astrophysicist and toothpaste heir) and company. 
† Class of WGH, Am. J. Phys. 39, 656 (1971).
†† J. B. Hart and R. B. Herrmann Am. J. Phys. 36, 46 (1968).
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(a) Quartic Force
F(y) = k y4

(b) Independent Collisions (Independent of Force Law)

(c) Linear Force
F(y) = k y
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Final Velocities

Fig. 8.1 Dropped 3-ball tower. (a) Quartic force (b) Independent (Finite gap) (c) Linear force.
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Geometric properties of N-stage collisions
 The 3-stage collision construction in Fig. 8.1b uses earlier construction of Fig. 4.4. It begins after the 
lowest mass m1=100 has rebounded from the floor to the Bang(2)12 START point (V1=1,V2=-1) where it 
meets mass m2=30 and bangs up to Bang(2)12 END point (V1=0.77,V2=2.1) on a slope 100/30 line.
The second velocity (V2=2.1) of mass m2=30 is then transferred (See gray arrows.) to the first component of 
Bang(3)23 START point (V2=2.1,V3=-1). There m2 meets mass m3=10 and bangs it up to Bang(3)23 END point 
(V2=0.54,V3=3.62) on a slope 30/10 line, giving final top m3 velocity V3=3.62.
 A 4-stage collision tower sequence with nearly the same mass ratios is constructed in Fig. 8.2(a). 
Here each mass m1, m2, and m3, is exactly 3-times the one above it, and the top mass m4 gets the biggest 
boost of nearly 5.8. Recall Maximum Energy Transfer (MET) case in Fig. 4.5 where a mass ratio of three (m1/
m2=3) leaves the lowest ball stopped (V1=0). In Fig. 8.1b m1 is nearly stopped. (V1=0.077). 
 The same arrangement with a higher mass ratio mk/mk+1=7 is constructed in Fig. 8.2b. Here the top 
mass m4 gets a boost of over 9.0. That is a kinetic energy boost factor of (V4)2=81 and an altitude bounce of 
four or five hundred feet if dropped from arm’s length. (Friction is being seriously neglected!)

Supernovae super-duper-elastic bounce (SSDEB)
 Imagine dropping two towers like the ones in Fig. 8.2a-b from either side of a tunnel through the 
Earth so the two lowest m1-masses run into each other at the center. If the resulting collisions were elastic, 
they could send the other masses to infinity with energy to spare! Later we see escape from Earth’s surface 
takes only three times the energy it takes to sit there. (Starlet escapes!) Energy factors for a conservative 3:1-
tower are 22=4, 3.52=12.3, and 5.82=34.8 and more than enough for a free ride to kingdom come. 
Astrophysical modeling of Type-II supernovae reveals just such a high speed SSDEB when a star, like a 
spherical layer-cake with lighter elements above heavier ones, collapses. Boom! It appears that most of our 
Earth and bodily stuff has come along on such a ride! As Carl Sagan remarked, we are of blown-up stars.

Newton’s balls
 Novelty stores have simple examples of multistage collisions made by hanging identical ball bearings 
in line as sketched in Fig. 8.2c-d. These are also common lecture demos, and they have been called 
“Newton’s balls.” That can at least elicit some giggles from otherwise boring lectures.
 Few teachers explain the details of the cool pop-up-single in Fig. 8.2d. In fact, it won’t work unless 
all the collisions are independent, and this requires non-linearity of the sphere-on-sphere force function, as 
we saw in Fig. 8.1. Cooler still, is an elastic 4-ball column-bounce in Fig. 8.3c. N-balls need N(N+1)/2(=10 if 
N=4) independent bangs to get all N balls back with the same speed. Given this, it seems a wonder that solid 
objects can bounce elastically. (In fact, they cannot, quite!)
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Fig. 8.2  4-ball towers. Mass-ratios mk/mk+1 (a) 3, (b) 7,  (c-d) 1. Independent bangs used for all.
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Friction, again: Inelastic energy-momentum quadratic equations
 Perhaps, you noticed that FINAL velocity values could be found from INITIAL values by two 
different ways. Back in Fig. 2.1 we noted an easy way using a momentum conserving straight line and a 
circle through VCOM from vIN to the answer vFIN. But, Fig. 3.1 showed another way using an energy-
conserving ellipse to connect vIN to the answer vFIN. The first way uses simple linear equations and the 
second way uses more complex quadratic equations.
 Why are there two ways? Often this means that situations exist where both are needed. Here friction 
or inelastic collisions make total kinetic energy decrease. (Recall our 60.2-gazillion thieves? They’re baa-
ck!) Such a situation is plotted in Fig. 8.3b with the energy decrease indicated by a smaller ellipse inside the 
initial ellipse in Fig. 8.3a. This similar to an earlier Fig. 3.2. 
 The idea is that momentum conservation is still true even if the two masses are exerting sticky, 
energy-wasteful, forces on each other. No matter how wasteful those inter-particle forces may be, they still 
must obey Newton’s 3rd axiom demanding equal-and-opposite forces on each other. So the final answer for 
vFIN must be at an intersection of the old momentum line with a new and smaller ellipse.
 However, intersecting an ellipse and a line uses a quadratic equation. And, in Fig. 8.3, there appear 
two solutions to the quadratic equation. One uFIN we want is near the old energy-conserving vFIN. But, the 
other one that we now don’t want is a uIN, which is nearer to the old vIN.
 Let’s look at a quadratic equation for u1FIN. There are two given constants KE(u) and MVCOM.

      

� 

m1u1 + m2u2 = MVCOM = pu = const . (8.1)  

� 

1
2
m1u1

2 +
1
2
m2u2

2 = KE (u) = ku  (8.2)

The COM momentum pu in (8.1) is a constant during the entire collision. Not so for the kinetic energy ku in 
(8.2). It’s just a given loss parameter that is quite difficult to predict. We first solve pu for u2.

    

� 

u2 =
pu − m1u1

m2
       (8.4a)

Then we insert the u2 result into ku equation (8.2) to get the needed quadratic equation for just u1. 

 

� 

1
2
m1u1

2 +
1
2
m2

pu −m1u1
m2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

= ku  or: 

� 

m1
m1 + m2
m2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ u1
2 − 2pu

m1
m2

u1 +
pu2

m2
− 2ku = 0   (8.4b)

The solution isn’t pretty but its ± gives both u1FIN and u1IN shown in Fig. 8.3b. 

  
u1 =

2 pu m1 / m2( ) ± 2 pu( )2 − 4 m1 / m2( ) m1 + m2( ) pu
2 / m2( ) − 2ku

⎡
⎣⎢

⎤
⎦⎥

2 m1 / m2( ) m1 + m2( ) = V COM ±
pu

2 − m1 / m2( ) m1 + m2( ) pu
2 / m2( ) − 2ku

⎡
⎣⎢

⎤
⎦⎥

m1 / m2( ) m1 + m2( )
      (8.5a)     (8.5b)
The unwanted (+) solution u1IN (given that we started with v1IN) means the two balls “wiffle” through each 
other. In classical physics, only u1FIN makes sense starting with v1IN and only u1IN makes sense starting with 
v1FIN. In quantum theory, masses can “wiffle.” Then both solutions make sense (sort of).
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Geometric derivation of elastic and inelastic energy ellipses
 Can you do quadratic solutions (8.5) with a ruler and compass? At first this seems difficult, but the 
energy ellipse construction in Fig. 3.7 and geo-mean square root construction in Fig. 1.9a can be used. 
 As shown in Fig. 3.6, an ellipse has two radii, a major radius a giving x-coordinate x=acosθ, and a 
minor radius b giving y-coordinate y=bsinθ. The Cartesian ellipse equation (3.7) is satisfied by these x and y, 
and polar angle parameter θ is eliminated. (x and y may switch places.)

   

� 

x2

a2
+
y2

b2
= 1 =

m1
2 ⋅ KE

V1( )2 +
m2

2 ⋅ KE
V2( )2    (3.7)repeated

Velocity values x=V1 and y=V2 have equal magnitude for initial Bang(0) (V1=-VIN, V2=-VIN) or Bang(1) (VIN,-VIN), 
and for a totally inelastic final state (V1=VCOM, V2=VCOM). The geometry needed to solve for the initial elliptic 
radii (aIN, bIN) in Fig. 8.3a or totally inelastic radii (aCOM, bCOM) in Fig 8.3c is described in Fig. 8.4. Then an 
energy ellipse in (V1, V2)–space such as in Fig. 8.3b may be derived for any radii (aFIN√R, bFIN√R) where the 
energy retention ratio R= KEFIN/ KEIN ranges from R=1 down to Rmin=(aCOM/a)2=(bCOM/b)2 as (aFIN, bFIN) range 
from initial radii (aIN, bIN) to totally inelastic (aCOM, bCOM) at minimum KE allowed by momentum conservation.

The roots (8.5) are two points where energy ellipse and momentum line intersect. For totally inelastic 
collision they coalesce and the momentum line is tangent at (VCOM, VCOM) as in Fig. 8.3c. The slope m1/m2=a2/
b2 of the momentum line is fixed no matter how much energy is wasted. So is ellipse aspect ratio a/b=√(m1/
m2). Square root construction (from Fig. 1.8) finds a/b from a2/b2 in Fig. 8.4a-c. 

The construction begins by boxing the momentum line in the 1st quadrant and doubling it using a 
semi-circular arc around its upper left hand corner. An extended box including the arc is drawn in Fig. 8.4b. 
The center of the extended box is the center of a second arc that finds the square root √(m1/m2) of the 
momentum line slope in Fig. 8.4c that is the desired ellipse aspect ratio a/b of all possible energy ellipses for 
the masses m1 and m2. The basis of this construction is the mean geometry of Fig. 1.9a.

Location of radii aCOM and bCOM in Fig. 8.4d uses vertical and horizontal projections of pt-(VCOM, VCOM) 
to the (√(m1/m2)=a/b)-line. This is helped by the fact that pt-(VCOM, VCOM) lies on the ellipse and on the 45° line so 
that its x-coordinate (x=acosθ) and y-coordinate (y=bsinθ) are equal. Thus angle parameter is tan-1a/b= θ, the 
a/b line slope. So x and y projections of (VCOM, VCOM) onto the θ−line yield hypotenuse lengths aCOM and bCOM in 
Fig. 8.4d. Concentric circles of radii aCOM and bCOM let us construct the ellipse as in Fig. 3.7.

Initial pt-(VIN, VIN) gives initial elliptic radii aIN and bIN in Fig. 8.4e. Square-radii ratio (aCOM/ aIN)2=(bCOM/

bIN)2 or ratio (aCOMbCOM)/(aIN bIN) of the two ellipse areas lets us find the lowest possible kinetic energy retention 
ratio Rmin. You should prove (geometrically and algebraically) that minimum ratio is given as follows. 

Rmin =
VCOM

V IN
=
m1 −m2
m1 +m2

 (8.6a)    
m2
m1

=
V IN −VCOM

V IN +VCOM
=

1− Rmin
1+ Rmin

 (8.6b)
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Ka-Runch-Ka-Runch-Ka-Runch-Ka-Runch-…:Inelastic pile-ups

N-body collisions described so far have been mostly elastic. That’s not true for California freeway pile-ups. 

California pile-up chains start when a cell-phony driver enters a fog at 60 mph and rear-ends a vehicle or 

vehicles that have slowed down or stopped. Cars drive bumper-to-bumper so dozens may be involved.

 Pile-up mass grows with each car added to it by a series of inelastic “Ka-runch” collisions like Fig. 2.1 

of Ch. 2. Cars may be added to a pile-up’s rear or to its front or even to both ends. Fig. 8.5 shows a single 60 

mph car piling up a line of five stationary cars and, vice versa, Fig. 8.6 shows a line of five 60 mph cars piling 

up on a single stationary car. Each pile-up collision loses as much energy as it can while keeping momentum 

constant. It makes the smallest ellipse that touches the momentum line in Fig. 3.2c and Fig. 8.3c.

 In each case the sequence of velocity-velocity slopes is an arithmetic progression 1:1, 2:1, 3:1, 4:1,… 

similar to velocity sequences in Fig. 6.4 and Fig. 6.5. Both have lines that intersect on a single point and 

inverse or complimentary slope sequence 1/1, 1/2, 1/3, 1/4,…, known as a harmonic progression.

 The incoming car in Fig. 8.5 has momentum PIN=mv=60 and energy KEIN= 2
1 mv2=1800 with v=vIN=60. 

The final pile-up mass M=6 has the same momentum PFIN=MV=60 but reduced velocity V=vFIN=10 and 

energy KEFIN= 2
1 MV2=300 down by 1500 units. (These are (very) Old English units with unit mass (m=1 ton) 

cars.)

 The incoming cars in Fig. 8.6 together have momentum PIN=5mv=300 and energy KEIN=5 2
1 mv2=9000. 

The final pile-up mass M=6 has the same momentum PFIN=MV=300 with increased velocity V=vFIN=50 but 

reduced energy KEIN= 2
1 MV2=7500. The same energy deficit of 1500 units is seen in Fig. 8.5 and Fig. 8.6.

 Of these two equal-energy-loss nightmares the latter is worse since it began with five times the 

kinetic energy and still has 7500 units to dissipate. Worse nightmares combine the two as shown in Fig. 8.7. 

This a particularly troubling set of nightmares since there are many possible outcomes that have different 

orders of combination with differing results.

 How would you like to be an insurance adjustor for that one? 
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Ka-pow-Ka-pow-Ka-pow-Ka-pow-…:Rocket science
An N-body model of rocket propulsion is made by “time-reversing” pile-ups. Let us imagine a line of N=11 
equal (m=1)-masses separated by explosive charges that go “pow!” in just the right sequence to blow one 
fuel-pellet at a time backwards off the rear end of a rocket and propel the remaining rocket mass forward.
 Fig. 8.8 is a velocity-velocity plot of seven such “pow!”-blasts after which a rocket with just three 
masses numbered 8, 9, and 10 speeds off the page to the right. Presumably, the payload of this rocket is the 
ball labeled 10 at the head of the line. For N=11 balls, there are ten pow(b)-blasts numbered by b=0 to 9.
 The velocity unit in Fig. 8.8 is the relative exhaust velocity Δve=-1 of each pow(b)-blast. The 0th-blast 
at the bottom of Fig. 8.8a starts with eleven stationary balls and blows ball-0 away from the line of ten balls 
1-2-3…8-9-10. To conserve momentum (initially zero) the 10-ball rocket of mass (M=10m=10) has final 
velocity ΔVM=+1/10 to cancel momentum ΔP0=m·Δv0=-1 of fuel-pellet ball-0 in a zero-sum pow(0)-blast.

m·Δv0+10m·ΔVM(0)=0       (8.7a)
The 0th-blast line begins at the origin (VM=0,ve=0) of the VM-ve-plot in Fig. 8.8b and extends one unit 

down and 1/10th unit right to point (VM(0)=1/10,ve=-1). Pow(0)-line slope is mass ratio (-m/M=-1/10). It is a 
COM line of a time reversed totally inelastic collision. (You might call it a super-elastic collision.)
 The 0th,1st,2nd,3rd,…, or 9th blast blows off fuel pellet-ball b=0, 1, 2, 3…, or 9, respectively. Each blast 
gives a larger rocket velocity boost ΔVM(1)=1/9, ΔVM(2)=1/8, ΔVM(3)=1/7…ΔVM(b)=1/(10-b) since rocket mass 
is less by m=1 after each blast but the exhaust momentum impulse m·Δve=-1 is the same each time. 
  m·Δv1+9m·ΔVM(1)=0  m·Δv2+8m·ΔVM(2)=0 …   m·Δvb+(10-b)m·ΔVM(b)=0 (8.7b)
 The harmonic progression 1/10,1/9,1/8…1/5,1/4,1/3,1/2,1 in Fig. 8.8a contains momentum impulse 
terms ΔVM(b) in a 10-term harmonic series 1/10+1/9+1/8…1/5+1/4+1/3+1/2+1. Rocket velocity after its bth pow
(b)-blast is a partial sum of the first b+1 harmonic terms. The (VM ,ve)-plots in Fig. 8.8b show this.
 0th: V(0)=1/10=0.1   1st: V(1)=1/10+1/9=0.211  2nd: V(2)=1/10+1/9+1/8=0.336
 3rd: V(3)=V(2)+1/7=0.478 4th: V(4)=V(3)+1/6=0.646 5th: V(5)=V(4)+1/5=0.846
 6th: V(6)=V(5)+1/4=1.096 7th: V(7)= V(6)+1/3=1.429 8th: V(8)=V(7)+1/2=1.929

On its 9th and final pow(9) the rocket is boosted by a whole unit exhaust velocity to V(9)=V(8)+1=2.929. 
A 10-blast rocket exceeds exhaust velocity (|ve|=1) on its 6th pow(6)-blast with V(6)=1.096. This is 

labeled in extreme lower right hand side of Fig. 8.8b. In COM frame, exhaust mass 6 thru 9 end up moving 
forward but in rocket frame each exhaust mass leaves moving backward at exactly ve=-1 until another blast-
boost hits the rocket. Exhaust masses numbered 0-9 separate from each other and from payload mass-10. 
Total COM momentum is always zero, and so all eleven balls always “balance” at COM origin.

N-blast velocity is a logarithm function if N is large. Momentum is still conserved for each blast.

  M·ΔV=-ve·ΔM     becomes:   M·dV=-ve·dM  or:  dV = −ve  M
dM   (8.8a)

We integrate this from initial rocket mass MIN to final payload MFIN and from rocket VIN to final VFIN.

  dVVIN

VFIN∫ = −ve  M
dM

VIN

MFIN∫   becomes:   VFIN −VIN = −ve lnMFIN − lnMIN⎡⎣ ⎤⎦=ve lnMFIN

MIN⎡
⎣⎢

⎤
⎦⎥

 (8.8b)

This is the famous rocket equation. (Its predictions discourage interstellar travel. See exercises.)
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Fig. 8.8 Rocket science by harmonic series geometry.
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Exercise 1.8.1 Maximum Energy Transfer (MET Limit)
Suppose each ball has just the right mass ratio with the one above it to pass on all its energy to the next in line. Construct v-v 
diagrams, velocity at each stage, and mass values for
(a) N=2, (b) N=3, (c) N=4, (d) Give algebraic formulas for general N.

Exercise 1.8.2 Absolute Maximum Velocity Limit (INF Limit)
Suppose each ball is very much larger than the one above so as to approach upper limit. Construct v-v diagrams , limiting 
intermediate velocity values and limiting top value for (a) N=2, (b) N=3, (c) N=4, (d) Give algebraic formulas for general N.

Exercise 1.8.3 Rocket Science and Backside of exponentials
 Compare discrete-blast rocketry in eq.(8.7) or Fig. 8.8 with continuous-blast “rocket science” of eq.(8.8) and study logarithmic-
exponential geometry of the latter. 
(a) In particular, when do blasted exhaust particles end up going in the same direction as the rocket in the initial (lab) frame where 
the rocket starts out with zero velocity?
(b) Plot exponential y=ex and y=logex functions on same graph and draw tangent-triangle whose hypotenuse is tangent to a curves 
and intercepts x or y axes at -2, -1, 0, 1, 2,.. Give the base and altitude coordinates of the tangent point in each case.
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Chapter 9 Geometry and physics of common potential fields
Physical and geometric aspects of elementary force and potential fields are introduced in this section. Most 

important are oscillator and Coulomb fields that will later occupy Unit 4 on resonance and Unit 5 on orbits. 

Geometric multiplication and power sequences
The most common power-law potentials are U(x) = Ax2 (Oscillator potential) in Fig. 9.1, U(x) = Ax 

(Uniform field potential) , and U(x) = Ax-1 (Coulomb potential) Fig. 9.5. Power-law potentials and force laws 

have simple geometric constructions. Exponential or logarithmic fields (shown in Ch. 10) do not. 

Multiplicative power operations are done using a staircase of similar triangles as shown in Fig. 9.2. A 

geometric progression {1=s0, s=s1, s2, s3,…} and an inverse progression {1=s0, 1/s=s-1, s-2, s-3,…} lie on either 

side of the unit stair step 1=s0. A slope or scale factor s=2 or s=1/2 is used in Fig. 9.2a or Fig. 9.2b. They 

resemble perspective drawings of school hallways. (Elementary School is (a) and High School is (b).) Each 

stair zigzags between slope-1 line-(y=x) and slope-s line-(y=s·x) or between line-(y=-x) and line-(y=x/s). The 

line-(y=s·x) and line-( y=x/s) are perpendicular or normal to each other. So are line-(y=x) and line-(y=-x).

A two-step triangle in Fig. 9.1a gives each point on the oscillator potential, a parabola y=x2. To find 

where the parabola hits vertical line-(x=2.2), for example, we go up that line to the 45° line-(y=x) and then go 

across to vertical line-(x=1). A dashed blue line is drawn from origin thru that point to an arrow intersecting 

line-(x=2.2) at pt-(x=2.2, y=2.22) on parabola-(y=x2). A similar zigzag gives pt-(x=-2, y=4) or any point on the 

parabola (y=U(x)=x2) below.

1

y = x

(a) Oscillator potential U(x)=x2

F(-1.5)

(b)Hooke-Law FFoorrccee FF((xx)) ==--22xx

x=0 1 2

FF((--00..55)) ==11
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FF((00)) ==00
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−ΔUUFF((xx))
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1
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2

Fig. 9.1 Geometric construction of U(x)=x2 potential and Hooke’s force law F(x)=-2x. 
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The physicist Force =-Slope rule (6.9) is drawn using force triangles in Fig. 9.1a. Force is linear in x, 

that is, F=-2x, and that is minus the slope of x2. A line of slope –2 in Fig. 9.1b plots F(x). Force vector F 

scaled by 1/2 gives a force vector shown in Fig. 9.1a equal and opposite to coordinate x. Each force triangle 

has base F/2, an altitude that is a constant 1/2, and a hypotenuse normal to the parabola tangent. It is similar to 

the tangent triangle with base ΔU and altitude Δx (center of Fig.9.1) that shows force=-slope (  F(x)=−Δx
ΔU ).

y=2x

y=− x12

y=−2x

y= x12

y=x

y=-x

y=x

y=-x

s3

s2

s

1/s
1/s2
1/s3
-1/s3
-1/s2

-1/s

-s

1/s1/s2 s s2

-1/s2

-1/s

-1/s3

-s

s
s2
s3

1/s

-s3
-s2

1/s 1/s2s

1

1

1

-1

-1

0

0 1

(a) Slope factor s=2 (b) s=1/2

90°90°

90°
90°

Fig. 9.2 Geometric sequences and “staircases” for slope or scale factor (a) s=2, and (b) s=1/2 . 
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Parabolic geometry

A parabola U(x)=Ax2 has a focal point at y=U=A/4 where vertical rays meet if reflected by parabola 

tangents as in Fig. 9.3b. A parabolic radius is its half-width λ at the focus. For y=x2 we have λ=1/2. (Note 

how F(±0.5) vectors point at the focus in Fig. 9.1a.) An old name for λ is latus rectum. A circle through the 

focus about any parabolic point will be tangent to a line called the directrix located at a distance λ from the 

focus. Focus and directrix define a parabola that passes midway between them thru the tip-point M of the 

parabola where its focal radius and equal distance-to-directrix both reach their minimum value λ/2.

 

(a) Parabolic Reflector y=x2

y=1

y=2

y=3

y=4

y=5

(b)Parabolic geometry

λ

λ

Directrix

Latus
rectum

reflects
into
focus

Vertical
incoming
ray

Distance
to
Focus

Distance =
to

directrix

M
λ/2
λ/2

Fig. 9.3 Parabola and analytic geometry (a) Rays converging on focus. (b) λ-geometry of tangent reflection.

Directrix is a so named because it “directs” both the rays and wave phase of an optical reflector. 

Since the focal radius (length of each sloping ray line in Fig. 9.3a) equals the perpendicular directrix 

distance (length of corresponding dashed vertical line), waves are guaranteed to be plane waves. Also, the 

equality of angle of incidence and reflection off the parabola bisecting the dashed and solid lines, guarantees 

vertical parallel rays for all which leave the focus and bounce off the inside of the parabola. It also 

guarantees that parallel vertical rays bouncing off the outside will go away from the focus. Either side of a 

parabolic surface converts plane waves to spherical ones or vice-versa.

 To better understand the parabola’s geometric optics we draw examples of the tangent-kite for four 
different tangent slope values. The blue kite of slope=2 in Fig. 9.4a and yellow kite of slope=5/2 in Fig. 9.4b 
have equal focal radius and perpendicular distance-to-directrix forming the major iscosoles triangle of the 
kite. A minor iscosoles triangle (upside down in Fig. 9.4) shares a base with the major one. Their 
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perpendicular bisector is the tangent line. The bisection point is slope
  dx
dy=λ

x =2 p
 x in units of λ as indicated by 

vertical arrows.

p=λ/2

y =-p
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p
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Circle
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Fig. 9.4 Parabola and geometry of curvature and slope of tangent-kites.

 A singular case is the red kite of slope=1 that is square. Lesser slope=1/2 gives a rhomboidal green kite 
with one side on the vertical parabolic axis instead of on the horizontal directrix. Points of slope=±1 on the 
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(4py=x2=2λy)-parabola lie on either side of its focus at distance λ=2p from it. λ=2p is also the (minimum) 
radius of curvature of the parabola at its tip (minimum y at x=0) that lies a distance  λ/2=p below the focus.

Coulomb and oscillator force fields
Our atoms and molecules depend on the electrostatic Coulomb field to have stable chemistry and biology. 
Like charges repel and opposites attract with a force that varies inversely with the square of distance r 
between them. A simple version of the electric Coulomb force law (axiom) is: 

 F(r) = 1
4πε0

qQ
r 2   where : 1

4πε0

= 9,000,000,000 Newtons ⋅meter ⋅ square
per square Coulomb

  (9.1)

The units and notation are standard but the size of this is mind boggling. It’s nine billion Newtons for just 

two charge-units a meter apart. (To be precise it’s 8.99·109 Nm2/C2.) OK, a 1N is only about  4
1 lb, but are you 

able to hold up a billion sticks of butter? Also, you have thousands of Coulomb charge units in each fingertip  
with only a centimeter separation so add another factor of (100)-squared. Make that ninety trillion Newtons 
for each Coulomb or about a million trillion Newtons trying their darndest to blow your pinkie to bits!

But, still we’re underestimating this monster force. Most of the electronic charge in the world is 
crammed into atoms and molecules with at most a nanometer (10-9 meter) across and some are an Angstrom 
(10-10 meter) or a tenth of a nano. So put on another factor of (10-9)-squared or million-billion trying to undo 
your pinkie, that’s a trillion-trillion-billion. Does your manicurist know about this? 

Sometimes these forces get loose as in a TNT blast, but usually, tiny nuclei with an equal positive 
charge hold down potentially rebellious electrons. Still, what’s holding nuclei together? Nuclear radii are 
femto-meters (10-15 meter) or Fermi. (Note: both fm and Fm are abbreviations for 10-15m=10-13cm.)

Oops! That’s another factor of (10-15)2 or another million-trillion-trillion to increase our stress level. 
Nuclear charge is 105 times more pent-up than its atomic electronic counterpart with a grand total of about a 
trillion-trillion-trillion-trillion Newtons hankering to blow up your fingertip nuclei. Cancel the manicure!

When nuclei do blow up, the result is more than 105 times more devastating than TNT bangs. We 
don’t use force to estimate the devastation of a nuclear fission bomb or the yield of nuclear power plant fuel. 
Rather we use electric potential energy, that varies as 1/r not 1/r2. (Slope of a U(r)=1/r-curve is F(r)=1/r2.)

   

� 

U(r) =
1

4πε0

qQ
r   where: 1

4πε0
= 9,000,000,000 Joule

per square Coulomb  (9.2a)

Energy or (Force)-times-(distance)-unit is Joule or Newton. meter (N·m). Like superball potential field U(r) in 
(6.9), force F(r) (9.1) is a (-)derivative of potential U(r) that in turn is (-)integral of force F(r). (Recall (7.5.)

   F(r) = −
dU(r)
dr

= −
qQ
4πε0

d
dr
r −1 = qQ

4πε0
r −2       (9.2b) 

U(R)=− F(r)
∞

R

∫ ·dr= qQ
4πε0

r −1 ∞
R =

qQ
4πε0

R−1       (9.2c)

Potential nuclear energy yield is about a million times greater than for the same number of chemical energy 
sources since femto-meter nuclei are a million times smaller (RNUC~10-15) than nano-meter molecules 
(RMOL~10-9). Nuclear forces would then be a trillion times greater than typical atomic and molecular forces.
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Fig. 9.5 plots attractive Coulomb force F(r)=-1/r2 and potential U(r)=-1/r of negative charge -q to a 
positve +Q nucleus. (Negative force points toward the +Q origin (x=0).) It uses zigzag geometry of Fig. 9.4.
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through (x,-1) intercept to (+1,-1/x) intercept.

Transfer laterally to draw (x,-1/x) point.

Step2 : Follow line from origin (0,0)

through (x,-1/x) point to (+1,-1/x2) intercept.

Transfer laterally to draw (x,-1/x2) point.

FF((xx))==--11//xx22
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11
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Step3 :(Optional) Display Force vector

using similar triangle constuction based

on the slope of potential curve.

Fig. 9.5 Attractive Coulomb force F(x) and potential U(x) curves. (F(x) vectors drawn at 1/4-scale.)

Could the Coulomb F(r)~1/r2 force field be derived like the superball force F(Y)~1/Y3 in (6.10) by 
counting momentum bangs? Indeed, if a charge ejected a cloud of little “bang-balls” then the number of 
bangs scored at distance r would vary inversely with area 4πr2 of a radius r sphere. But, that idea doesn’t 
explain very well attraction of a charge +Q to a –q or of a mass M to a mass m in Newton’s gravity law.
   Fgrav(r) = -GMm / r2 , where: G=0.000000000067 N m/kg2     (9.3)
Gravity is universally attractive (no “negative” matter readily available) but much weaker than the electric 

one since G constant 6.672E-11 ( 3
2 ·10−10 in mks units) is smaller (by 1020 times!) than the 9·10+9  in (9.2). 
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As of this writing it is still a mystery why these are so different. We really do not yet understand 

either of these forces at a fundamental level. They are still very much in the axiom box.

Tunneling to Australia: Earth gravity inside and out
 Imagine x=1 in Fig. 9.5 is the Earth radius R⊕=6.4E6m. The F(r) plot shows gravity falling off for 
r>R⊕or x>1. But it’s wrong for subterranean radii (r<R⊕) unless Earth is compressed. F(r)=-1/r2 doesn’t 
apply everywhere unless Earth is squashed to a 10 millimeter radius “black hole.” (More on this later.)
 If you were to be at sub-R⊕ levels all Earth mass at radii above your radius r can be completely 
ignored in figuring your weight! As you might expect, you’re weightless at the center (r=0) since the pull of 
all Earth’s mass exactly cancels there. But, so also does your attraction to a spherical mass shell cancel 
anywhere inside it. One could float weightlessly anywhere therein regardless of the shell’s size or weight.
 Such a cancellation is a geometric peculiarity of an inverse square law. (It also underlies a Gauss law 
explanation of why you’re safe inside a car struck by lightning.) Any direction you look inside a uniform 
mass shell has a mass element m whose force is cancelled by another element M behind. (See Fig. 9.6.) 

The shell tangent to the m-point you’re facing intersects the tangent to the M-point behind you to 
make an isosceles triangle whose sides make an angle Θ with your line of sight along the base. This means a 
narrow cone of sight will include shell mass m=Ad2 at a distance d in front of you and shell mass M=AD2 at 
a distance D directly behind you, where the angular factor A~1/sinΘ is the same for both. That assures 
perfect cancellation of gravity m/d2 in front with -M/D2 behind you. This applies for all directions in Fig. 9.6.

d

D

You are
Here!

Shell mass element

Shell mass element
M =(soid-angle factor A)D2

Gravity at r
due to shell mass elements
G M - G m
D2 d2

D2 - d2

D2 d2
( )A = 0

B

Θ

Θ

r

m =(solid-angle factor A) d2

M

m

=
(...and
weightless!)

You are
Here!

O
dΩ
sinΘ

A=

Fig. 9.6 Equal-opposite attraction. Geometry for you floating weightless inside a spherical shell. 

A mass m at radius r inside Earth feels gravity attraction GmM</r2 where M< is Earth mass inside the radius r 
indicated by the dashed circle in Fig. 9.6. If Earth is uniform density ρ, then that inside-mass is M<=4 ρπr3/3. 
Force law r-2 cancels all but one r of the r3 in mass M<. We then get a linear force law. 
     Finside(r)=GmM</r2=m(G4πρ /3) r=mg(r/R⊕)=mgx   (9.4a)

(Earth surface gravity: g= G R⊕4πρ /3=9.8ms-2)   (9.4b)
The linear force law (9.4) is like that of a harmonic oscillator in Fig. 9.1b and so the inside-Earth potential 
must be a parabola like Fig. 9.1a. Force F(1)=-1 is continuous as we cross x=1 and so must be the slope of 
potential U(x) as U changes from –1/x2 to parabola. Terrestrial beings such as ourselves live in a nearly-
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constant-field ( dx
dF 0 )-region near x=1. In Fig. 9.7 we find the potential parabola geometrically by its focal 

point and directrix using the tangent at x=1. Recall a tangent at x=λ=2p in Fig. 9.4a has slope=1 or 45°. So 
does the parabola at x=1 in Fig. 9.7 below have a slope of (+1) and a force of (-1) (That’s –mg in mks units.)

Example of contacting line
and contact point

directrix
distance

Directrix

Sub-directrix

focal distance =

2.00.5 x=1(0,0)

-1

-2

UU((xx))==--11//xx

FF((11..00))

FF((xx))==--11//xx22
((oouuttssiiddee EEaarrtthh))

FF((xx))==-- xx
((iinnssiiddee EEaarrtthh))

FF((11..44))
FF((22..00))

FF((22..88))

FF((00..88))

FF((00..44))

FF((--11..00))
FF((--11..44))

FF((--22..00))

FF((--00..88))

FF((--00..44))

-0.5-1.5

Directrix

Latus
rectum

λ

Focus

UU((xx))==((xx22--33))//22

Parabolic potential
inside Earth

Fig. 9.7 Construction of Earth gravitational fields inside and outside.( units of x: R⊕,; F: mg; U: mgR⊕)

A parabola tangent bisects the angle between the line to the focus and the directrix drop-line as in Fig. 

9.4. Twice 45° gives 90°. The focus is λ=1.0 units straight across and the directrix is λ=1.0 units below as 

shown in Fig. 9.7 (lower-left). Using this we may construct the parabola by rotating a square corner of a 

piece of graph paper around the focus so the corner touches a line halfway to the directrix. (We can call this 

half-way line the sub-directrix. It is the line of tangent intersections indicated by arrows in Fig. 9.4.) 

The parabola so constructed is y=x2/2 –3/2. That is the interior potential UIN(x) (-1<x<1). It meets the 

curve y=-1/x that is the exterior potential UEX(x) (1<x<∞) at x=1 where they are equal (UIN(1)=-1=UEX(1)) as 

is slope, which is the force (FIN(1)=-1=FEX(1)). (However, the slope of the force curve takes a big jump!)

Adding a constant to a potential won’t alter slope or force. We added    2
−3  to   2

x2 to make it equal    x
−1  at x=1. 
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To catch a falling neutron starlet

The “glue” that holds in the rebellious nuclear proton charge is called nuclear matter, a mix of 

neutrons, mesons, and their ingredients. Let’s imagine a fingertip (1cc) of neutrons as densely packed as they  

are in a nucleus or neutron star and estimate how such a neutron starlet might travel through Earth.  First, we 

find the density of nuclear matter. Let’s say a nucleus of atomic weight 50 has a radius of 3 fm, so it has 50 

nucleons each with a mass 2·10-27kg. (It’s actually more like 1.67·10-27, but roughly 2·10-27.) 

That is 100·10-27=10-25 kg packed into a volume of 4π/3r3= 4π/3 (3·10-15)3 m3 or about 10-43 m3. That 

gives a whopping density of 10-25+43 = 1018kg per m3 or a trillion kilograms in the size of a fingertip. 

That’s a pretty heavy fingertip! Its weight mg is ten trillion Newtons. (Well, actually 9.8 trillion 

Newtons. No need to exaggerate here!) In spite of this, its gravitational attraction to nearby rocks on the 

Earth is comparatively moderate. A (10cm)3 1kg rock would cling to the starlet with a force of about 

Frock=Gm(1kg)/r2= 100Gm = 100(6.7E-11)1E12 = 6,700 N,  (m=Mstarlet=1012kg)

or less than a ton and small change for a starlet weighing billions of tons and cutting into the Earth like a 

bullet going through cotton candy. Let’s see what speed it might gain falling from the surface.

Starlet energy is assumed constant since friction would be tiny compared to its enormous weight.

  E = KE + PE = 1/2 m v2 + U(x) =1/2 m v2 + 1/2 mg (x2 –3)=const.     (9.5)

Let it be released at Earth surface (x=1) with zero velocity. This sets the energy constant. 

  E =1/2 m02 + 1/2 mg (12 –3)=const.=- mg        (9.6)

At Earth center (x=0) we solve for the velocity there. (The starlet mass m cancels out.)

  E =1/2 mv2 + 1/2 mg (02 –3)=const.=- mg   or: v2 = g ,     (9.7a)

   v = √g   (In mks units: v2 = gR⊕ ,  or : v0 = √(g R⊕)=8 km/s)   (9.7b)

v0 = 8 km/s is also Earth’s minimum orbital insertion speed. A mass dropped down the tunnel flies with the 

same x-coordinate as one shot with the speed v0 into circular orbit. One flies above the other and they meet 

each other on the other side 42 minutes later as shown in Fig. 9.8. We now show this synchrony of orbital 

timing holds for all pairs of starlets sent from anywhere inside the Earth!

v0
v0

θ

θ=π/2

θ=π

v0

v0

v0 42
minutes
later...

Fig. 9.8 Neutron starlet penetrates Earth as satellite orbits to meet 1/2-way around in 42 minutes. 

©2012 W. G. Harter Unit 1 Review of Velocity, Momentum, Energy and Fields         

127



This synchrony involves a physicist’s most favored type of potential energy U=1/2kx2. When PE=U is 

a square like kinetic energy KE=1/2mv2 we have a wonderful symmetry between position x and velocity v.

     E=KE +PE= const. = 1/2mv2 + 1/2kx2 

We make any constant-sum-of-squares into a Pythagorian relation 1=sin2θ+cos2 θ just as we did to analyze 

the sum (5.10) of super-ball KE. Here (9.5) is a sum E=KE+PE and the constant k is starlet weight mg.

1=(m v2/2E) + (k x2/2E) =sin2θ+cos2 θ     (9.8a)

Position x and velocity v are then expressed in terms sine and cosine of a phase angle θ .

     x= √(2E/k) sinθ  (9.8b)     v= √(2E/m) cos θ  .  (9.8c)

Velocity v is proportional to cosθ and θ has a constant angular velocity ω= dt
dθ  so that θ=ω·t+α. (α=θ0=const.)

v= dx
dt
= dx
dθ

dθ
dt
= dx
dθ

ω=ω 2E
k
cosθ= 2E

m
cosθ  (9.9a)    where: ω =

dθ
dt

=
k
m

  (9.9b)

Angle θ is a polar angle in (x,v/ω)-phasor-space of Fig. 9.10a. (x,v/ω)-orbits are circular-clockwise (ω=−|ω|) if 

positive phasor v-axis is up and positive-x axis is to the right. Earth xy-orbits may be elliptical with a polar 

angle φ that can orbit either way in Fig. 9.10. Each spatial dimension x and y has a constant sub-total energy.

     KETotal=ey+ey    where:   ex=const.= 1/2mvx2 + 1/2kx2 and: ey=const.= 1/2mvy2 + 1/2ky2 (9.10)

Equal constants (ex=ey) give the circular orbit in Fig. 9.8. Frequency ω (9.9) is independent of energy value 

ex or ey and so orbit and x-tunnel motion each have frequency ω=√g, but tunnel motion, with same ex but zero 

ey, has half the energy. All motions of the starlet inside the Earth have the same 84-minute period. That is a 

fundamental harmonic period of a uniform Earth and approximates behavior of the real Earth. 

To depict the force vector F on the starlet simply draw an arrow from it to origin as in Fig. 9.9a since 

F is proportional to coordinate vector -r. (In Fig. 9.7, F is equal to –r.) It’s projection on x or y-axes are the 

forces components driving the 84-minute oscillations along x or y-axes. Perhaps, there is a starlet deep below 

us swishing out 84-minute elliptical orbits as in Fig. 9.9b.

 

Fx

v0
Fy

F=-r
(a) (b)

Fig. 9.9 Force and orbits inside Earth. (a) F is minus the coordinate vector (b) Typical orbits.
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 Starlet escapes! (In 3 equal steps)
Imagine starlet-m has decayed to where it sits at the bottom of the U(x)=1/2mg(x2–3) curve in Fig. 9.7. How 

much energy does it take for it to escape from Earth center and go back whence it came? The plot of U(x) in 

Fig. 9.7 and discussions above suggest three equal steps of 1/2 that bring energy -3/2 at x=0 up zero at x=∞ 

Step-1 is to drag or shoot the starlet-m to the Earth’s surface. That takes energy ΔE1=1/2. (That’s 
1/2mgR⊕ in mks units.) Shooting radially at velocity v0 = √(gR⊕) given by (9.7b) would do this first step. It 

would then come to rest (momentarily) at the Earth surface at r=R⊕.

Step-2 is to launch starlet-m into a minimal circular orbit from the Earth’s surface. That takes dollop 

of energy ΔE2=1/2 equal to the first. (Again, that’s 1/2mgR⊕ in mks units.) Shooting tangentially with minimum 

orbital insertion velocity v0 = √(gR⊕) given by (9.7b) does this second step.

Step-3 involves a final energy jump ΔE3=1/2 equal to each of the first two by increasing from the 

orbital insertion velocity v0 = √ (gR⊕) to the escape velocity Ve from Earth’s surface r=R⊕. 

    Ve = v0√2= √ (2gR⊕) =11.3 km/s=7 mile/s   (9.11a)

In terms of fundamental potential Ugrav(R⊕)= -GMm /R⊕ at a planets surface r=R⊕ the escape velocity is

    Ve = v0√2=√ (2GM/R⊕) .    (9.11b)

Orbital threshold velocity v0 of radius R⊕ is √2=0.707 or about 71% of the escape velocity Ve from there.

No escape: A black-hole Earth!
By uniformly compressing Earth, we imagine extending the region of the Coulomb potential –1/r in Fig. 9.5 

to lower values of r while making the harmonic potential U(r)= 1/2kr2 inside the body occupy a smaller and 

smaller radius R⊕ and take on narrower, deeper, and more negative energy values. 

The plot in Fig. 9.5 maintains its shape but we rescale to accommodate a squashed Earth. The escape 

velocity in (9.11b) grows as we consider a decreasing squashed-planet radius R⊗. Finally there comes a 

particular radius R⊗ where the escape velocity (9.11b) is the speed c of light.

     c =√ (2GM/R⊗)     (9.12a)

That radius is called the Schwarschild radius or “black hole” radius since light cannot escape.

     R⊗ = 2GM/c2      (9.12b)

For the earth of mass M⊕ = 6·1024 kg the radius R⊗ is about nine mm, or the size of a fingertip. It is 

hard to imagine our world so squashed! Things may be collapsing all around, but please, not that much. 
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Oscillator phasor plots and elliptic orbits
The oscillator functions in (9.8) suggest a coordinate-velocity plot or phase-space plot. By (9.9) the 

phase angle θ=ωt+α is a product of angular frequency ω and time. To get a circle starting on the x-axis, we 

set initial phase to α=θ0=π/2 and plot (x= X cos ωt, v/ω= -X sin ωt) for the “clock” or phasor plot in Fig. 9.10a.

So that positive v versus x defines its 1st quadrant, a phasor rotates clockwise like a clock hand so angle 

θ=−|ω|t has a minus sign. (This is quite apropos since our clocks now are waves and harmonic oscillators.)

Each dimension x and y has its phasor plot as indicated by Fig. 9.10b. In other words there are four 

phase-space or phasor dimensions (x , vx/ω , y , vy/ω) being plotted. Here the frequency ω for each dimension 

x and y is identical due to symmetry or isotropy of the Earth model. But, initial phases αx and αy of x and y are 

independent. In Fig. 9.10b we set x-oscillator phase to 2 o’clock (on a 16-hour clock) and y-oscillator 2 hours 

ahead to 4 o’clock so the ellipse orbit is clockwise and have a left-handed symmetry. Setting x to be 2 hours 

ahead of y makes the same orbit but it will go counter-clockwise and have a right-handed symmetry.

The x versus y plot with x always two hours or 45° behind y, is an inclined elliptical xy-orbit path in 

Fig. 9.10b. It might represent a typical neutron starlet path in the Earth. Or else, it might represent an optical 

polarization ellipse described in Unit 2. Below is a discussion of some special cases of orbit ellipses.

0 1
2

3

4

5

6

78-7
-6

-5

-4

-3

-2
-1

0
1

2

3 4 5

6

7
8

-7
-6

-5

-4-3

-2
-1

(2,4)
(3,5)
(4,6)

(5,7)

(6,8)

(7,-7)

x-position

x-velocity vx/ω

position

x

velocity vx/ω

(a) 1-D Oscillator Phasor Plot

(b) 2-D Oscillator Phasor Plot

Phasor goes

clockwise

by angle ω t

ω t

(8,-6)
(9,-5)

y-velocity

v
y
/ω

(x-Phase 45°

behind

the y-Phase)
y-position

φ counter-clockwise

if y is behind x

clockwise

orbit

if x is behind y

(1,3) Left-

handed

Right-

handed

(0,2)

Fig. 9.10 Oscillator plots. (a) 1D-HO phasor plot. (b) Isotropic 2D-oscillator phasors and xy-path.
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First we verify by algebra that orbits in Fig. 9.10 and Fig. 9.11 are ellipses. Fig. 9.11a has x running 

90° behind y with a relative phase lag Δα=αx−αy=π/2 that is 4 hours or 1/4-period behind in phase on a 16-hour 

clock. We say such a 90°-lagging-x-motion is in-quadrature to y-motion. It gives an un-tilted ellipse with a 

left-handed orbit, and if ex=a=b=ey then it gives a circular orbit or left-circular polarization. (See Fig. 9.11a 

on right.) For right-handed orbits x-motion and x-motion switch leads to Δα=αx−αy=−π/2.

In-quadrature xy -motion is a cosine and sine projection on a-side and b-side of an ellipse, 

respectively, based on expressions (9.8).

x = a cos ω t ,   (9.13a)    y = b cos(π/2-ω t) = b sin ω t . (9.13b)

Squaring and adding cosine and sine expressions gives a standard xy-ellipse equation.

� 

x 2 / a2 + y2 /b2 =1      (9.13c)

Zero phase lag Δα =0 or in-phase motion gives linear polarization in Fig. 9.11b. In the case of Fig. 

9.11b where x and y-motions are in-phase we have

x = a cos ω·t ,   (9.14a)     y = b cos ω·t .   (9.14b)

Combining these two gives a trajectory that follows a straight line of slope (b/a) seen in the figure.

       y = (b/a) x      (9.14c)

Lag Δα =±π or pi-out-of-phase is a linear polarized motion, too. 

x = a cos ω·t ,   (9.15a)     y = -b cos ω·t .  (9.15b)

It is simply a horizontal mirror reflection of the in-phase path. 

       y =-(b/a) x      (9.15c)

In each of the figures we could imagine three starlets going in unison. The first starlet obeys the y-

equation (9.13b) with x=0. The second starlet obeys the x-equation (9.13a) with y=0 and tunnels as in Fig. 

9.8. A third starlet obeys both the x and y equations like the starlet orbiting above the tunneling one(s). 
In a linear force field F=-kr all Cartesian components oscillate sinusoidally at the same frequency.

   F=-kr  implies : Fx=-kx ,    Fy=-ky ,    Fz=-kz           (9.15)

Neither the coulomb field F=-kr/r3 nor any other power-law field F=-krrp is so convenient! 

As shown in Unit 5, negative energy orbits in Coulomb fields are also elliptic, and elegant ruler & 

compass geometry gives them, too. However, Coulomb ellipses are symmetric about origin only for circular 

orbits. All other Coulomb orbits are eccentric since they orbit about an off-center focal point and not the 

ellipse center of symmetry that lies at origin (r=0) for any Hooke’s law oscillator orbit of a starlet.
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Fig. 9.11Fig. 9.11 Two 1-D oscillator phasor plots combine to give 2D-oscillator xy-trajectory.
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Exercise 1.9.3.  Tunnels to UK (5600 miles away as an earthworm crawls) are shown below. One high-road 
is a direct route. The other low-road turns around at the Earth center. Travel and turn-around are assumed 
frictionless and survivable. (a) How long is each trip? Discuss. 

ArkUK High-road tunnel

Low-road tunnel

(a) Hi-road & low-road (b) Lot s o f roads

AB A

B1B2B3
B4

(b) A network of subways leaving Ark. at time t=0. What curve (like the dots) describe each moment? 

Exercise 1.9.4.  Consider competing tunnels between points A-to-B separated by R√2~ 5600 miles (thru 
Earth) or Δφ=90° of longitude and 6 Time Zones. The preceding problem asked you to compare the high-
road or direct-route to the low-road or via-Earth-center-and-back-route. Here we consider middle-road routes 
such as in Fig (a) below.  (a) Find the fastest 2-straight-section middle road A-to-B by geometry or algebra. 
How much faster is it?  (Give answer for local travel:Δφ=1°, long distance:Δφ=90° and for general Δφ.) 
(b) How long does it take to go from A-to-B on slow-roads (“V”-road and “U”-road) in Fig. (b).  

Exercise 1.9.5. Construct 24-point neutron-starlet orbits (One point for every hour assuming a 24-hour 
orbital period.) inside a uniform asteroid with x-component oscillation amplitude exactly equal to that of y 
and the x-component phase fixed relative to that of y as follows:
(a) x is in phase with y. (b) x is behind y by 1 hour. (c) 2 hours. (d) 3 hours. (e) 4 hours. (f) 5 hours. (g) 6 
hours. (h) 7 hours.
Do the orbits change if we replace behind by ahead in (a) to (h)? Discuss or describe.
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(Scale of ball-towers greatly magnified)
Super-Duper-Nova Model      

1.9.6 Identical ball towers are dropped toward each other from opposite sides of Earth into a center-of-Earth tunnel. How many can 

bounce back up to surface and how many of those reach escape velocity for: 
(a) N=2 case: m2 = 1, m1=2. (b) N=4 case: m4 = 1, m3=2, m2=4, m1=8.
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Chapter 10 Calculus of exponentials, logarithms, and complex fields
A logarithmic potential curve U=ln(y)=logey was given by (6.11).  Our first example is the flip or 

inverse exponential curve y=eU since that function is so important for making the complex phasor e-(iω+Γ)t. 

Also, the population growth function y=et=exp(t) is one of the most used if not the most useful of 

transcendental functions. Roughly, transcendental means not expressed by finite algebra or constructed by 

Euclid’s strict rules. (However, like transcendental spirituality, it is easily approximated!) Later in this 

section we will prove that the exponential is the only function that is equal to its slope or derivative.

 

� 

d
dx f (x) = f (x)          if and only if :      f (x) = ex     where: e = 2.7182818... (10.1)

In other words, if ex is a force or potential curve then F(x) and U(x) are similar, in fact, identical.

  Fmath(x) 

� 

=
dU
dx = U(x). if and only if: U(x)=ex    (10.2a)

For physicist’s definition (6.9) of force, e-x is the one for which potential and force are identical.

 Fphys(x) 

� 

= −
dU
dx  = U(x). if and only if: U(x)= e-x   (10.2b)

For now we use these slope-function relations to construct the exponential curve approximately. 

Starting from origin (x=0) we use the fact that any positive number to zero power is 1. (e0=1) From that 

point we draw a right triangle made of a unit altitude, a unit base, and a hypotenuse line of slope-1 as 

indicated in Step-0 of Fig. 9.12. The hypotenuse line gives approximately the points just above and just 

below x=0.  Then subsequent steps move the right triangle Δx to a point on the previously constructed line to 

make the next line. Since the slope is equal to the new function value, the base stays fixed at 1, but the 

altitude grows with the function value and makes the new line and a new point up the ex-curve.

This approximation is a rough one. It underestimates a concave curve and overestimates convex ones 

because it puts the next point x+Δx on a tangent from the previous point x. That’s OK only if the curve is 

pretty straight and tangent slope is about the same at x+Δx. A better approximation uses the tangent halfway 

between neighboring tangents and extends that new slope to x+Δx to find the next point.

Now if you rotate your y= ex-graph by 90° you get a logarithm U(y)=-ln(y) graph as shown in Fig. 

10.1 (lower right). Each U(y)-curve-normal defines a unit-altitude triangle whose base is the force F(y)=1/y.
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The story of e : A tale of great interest
Long ago banks would pay simple interest at some rate r such as r=0.03 (3%) based on a 1 year 

period. You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). If 

you put in $1.00 at rate r=1 (like Israel and Brazil that once had 100% intrest.) you got $2.00 at t=1year.

 

Step-0 (y0=1) Unit slope
right triangle

Step-1 (y1)- slope
right triangle

Step-2 (y2)- slope
right triangle

Base of triangle always equals 1
1 1 1

y0=1
y1 y2

Step-3 (y3)- slope
right triangle

1

y3

Approximating y=ex

Approximating
Potential U(y)=-ln y

and
FFoorrccee FF((yy)) ==11//yy

F(1)

F(2)
F(3)

1

1
1

F(0.4)
1

U(y)

FF((yy))

y=0 1 2 3

FF==11

FF==22

FF==00

U=1

U=2

U=0

Rotate graph paper by 90°

Force F(y) is base of triangle if altitude is 1
and hypotenuse is 90° to U(y) curve

Δx=0.2 Δx=0.2 Δx=0.2

Fig. 10.1 Rough constructions (a) exponential curve y=ex=exp(x). (b) Log potential. (c) 1/y-Force.

Later on fancy banks would pay semester compounded interest p(2
t ) = (1+ r·2

t )p(0)  at the half-period 

2
t and then use p(2

t )  during the last half to figure final payment. Now $1.00 at rate r=1 earns $2.25.

p 2
1

(t) = (1+ r·2
t )p(2

t ) = (1+ r·2
t )·(1+ r·2

t )p(0) =2
3 ·2
3 ·1=4

9= 2.25  

Fancier banks would pay trimester compounded interest p(3
t ) = (1+ r·3

t )p(0)  at the 1/3rd-period 3
t  or 1st 

trimester and then use that to figure the 2nd trimester and so on. Now $1.00 at rate r=1 earns $2.37.

p 3
1

(t) = (1+ r·3
t )p(23

t ) = (1+ r·3
t )·(1+ r·3

t )p(3
t ) = (1+ r·3

t )·(1+ r·3
t )·(1+ r·3

t )p(0) =3
4 ·3
4 ·3
4 ·1=27

64= 2.37

Still fancier banks would pay quarterly, monthly, weekly, daily, and so on. The race was on to give better 

earnings at a given interest rate r. Let’s compare some different earnings on $1.00 at rate r=1. At first it looks 

like you gain a lot by compounding more often. Then earnings slow to a halt just shy of $2.72.
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p1
1

(t) = (1+ r·1
t )1 p(0) = 1

2( )1·1= 12= 2.00
p 2
1

(t) = (1+ r·2
t )2 p(0) = 2

3( )2·1=49= 2.25
p 3
1

(t) = (1+ r·3
t )3 p(0) = 3

4( )3·1=2764= 2.37
p 4
1

(t) = (1+ r·4
t )4 p(0) = 4

5( )4·1=256625= 2.44

	


 Monthly:       p12
1

(t) = (1+ r·12
t )12 p(0) = 12

13( )12
·1= 2.613 

 Weekly:        p 52
1

(t) = (1+ r·52
t )52 p(0) = 52

53( )52
·1= 2.693

 Daily:      p 365
1

(t) = (1+ r·365
t )365 p(0) = 365

366( )365
·1= 2.7145

 Hrly:  p8760
1

(t) = (1+ r·8760
t )8760 p(0) = 8760

8761( )8760
·1= 2.7181

That halting point is Euler’s growth constant e=2.718281828459… that we’re after. Let's try huge 

numbers (m) of multiplications in p1/m (1) = (1+m
1 )m . (Get out a calculator. Rule & compass is useless now!)

  p1/m(1) = 2.7169239322  for m = 1,000
  p1/m(1) = 2.7181459268  for m = 10,000
  p1/m(1) = 2.7182682372  for m = 100,000
  p1/m(1) = 2.7182804693  for m = 1,000,000    (10.3)
  p1/m(1) = 2.7182816925  for m = 10,000,000
  p1/m(1) = 2.7182818149  for m = 100,000,000
  p1/m(1) = 2.7182818271  for m = 1,000,000,000
The solid figures represent numbers that stay the same as we raise m. It’s still a torturous way to find e. We 

do a Billion (That’s “B” as in “Boy!”) multiplications (m=109) just to get 6 solid figures beyond 2.71. 

 A better way expands binomial e = limm→∞ (1+m
1 )m or its power ert = limm→∞ (1+m

1 )mr ⋅t  for all rates r 

and times t. We let mr·t=n and m =n/r·t to simplify it for huge multiplication numbers m or n.

   er·t = limm→∞ (1+m
1 )mr·t = limn→∞ (1+n

r·t )n      (10.4)

A binomial expansion (See page 119) turns exponential function er·t into a power series in y =n
r·t  with x=1.

(x + y)n = xn + n ⋅ xn−1y + n(n −1)
2!

xn−2y2 + n(n −1)(n − 2)
3!

xn−3y3 + ...+ n ⋅ xyn−1 + yn

We actually save work as multiplication number n gets huge! (“Huge” means “as close to ∞ as you like.”)

 (1+ r ⋅ t
n

)n = 1+ n ⋅ r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟
+
n(n −1)

2!
r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟

2

+
n(n −1)(n − 2)

3!
r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟

3

+ ...
(Note factorials: 0!=1=1!,
2!=1·2, 3!=1·2·3,  etc.)

   

Huge n makes n(n-1) cancel n2 , and n(n-1)(n-2) cancel n3 , and so on. The exponential er·t series is born. 

  er ⋅t = 1+ r ⋅ t + 1
2!

r ⋅ t( )2 + 13! r ⋅ t( )3 + ... = r ⋅ t( )p
p!p=0

o
∑  (10.5a)  e = 1+1+ 1

2!
+
1
3!

+ ... 1
o!

=
1
p!p=0

o
∑  (10.5b)

Let’s try it out for r·t=1 to evaluate e to order-o. (The precision order o is the power of highest term used.)
  Precision order: (o=1)-e-series = 2.00000 =1+1
     (o=2)-e-series = 2.50000  =1+1+1/2
     (o=3)-e-series = 2.66667  =1+1+1/2+1/6
     (o=4)-e-series = 2.70833  =1+1+1/2+1/6+1/24
     (o=5)-e-series = 2.71667  =1+1+1/2+1/6+1/24+1/120  (10.6)
     (o=6)-e-series = 2.71805  =1+1+1/2+1/6+1/24+1/120+1/720
     (o=7)-e-series = 2.71825
     (o=8)-e-series = 2.71828
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Nine terms in series (10.5) give 5-figure accuracy (10.6) and do the work of a million products in (10.3). 

That’s a million reduced to 8 sums and half-dozen or so divisions. It’s a big savings of arithmetic labor!

Derivatives, rates, and rate equations
Binomial expansions provide ways to find calculus formulas for slope or velocity introduced geometrically in 

Ch. 1. Soon we will do the same for curvature or acceleration and other higher order calculus concepts.

Suppose someone gives you a plot of formula like x(t)=t2 or x(t)=sin4t or an exponential plot of x(t)=et 

that we just did in Fig. 10.1. You should be able to estimate its slope at any point from its x versus t graph. 

However, a binomial expansion may let you find an exact formula for its slope. 

Consider a parabola x(t)=t2 for example. Let’s find the slope Δt
Δx of a line that goes through point x(t) 

and a point x(t+Δt) =(t+Δt)2 that is a tiny time interval Δt later. Binomial expansion gives Δx=x(t+Δt)-x(t).

   Δx=x(t+Δt)-x(t)=(t+Δt)2-t2=t2+2t·Δt+(Δt)2-t2=2t·Δt+(Δt)2  

 Slope ratio Δt
Δx follows. If  Δt is tiny we ignore it. Then tangent slope v(t) =dt

dx  is the 1st derivative of x(t)=t2.

Δx
Δt

= 2t·Δt + (Δt)
2

Δt
= 2t + Δt   (10.7a)   dx

dt
= v(t) = 2t = d

dt
t2   (10.7b)

This checks the geometry of parabola 2λy=x2 in Fig. 9.4. Slope is dxdy =2λ2 x =λ
x , twice the x-value in units of 

2λ. Consider an n-power curve x(t)=Atn. Binomial expansion of Δx=x(t+Δt)-x(t) has n terms, most in +…+.

   Δx=x(t+Δt)-x(t)=A(t+Δt)n-Atn=Atn+Antn-1·Δt+…+A(Δt)n-Atn=Antn-1·Δt+…+A(Δt)n 

If  Δt is tiny, only 1st term Antn-1 in slope ratio Δt
Δx  is not tiny-tiny. That 1st term is 1st derivative of x(t)=Atn.

Δx
Δt

= A nt
n−1·Δt + ... + (Δt)n

Δt
= Antn−1 + ... + A(Δt)n−1  (10.8a)   dx

dt
= v(t) = Antn−1 = d

dt
Atn  (10.8b)

Series for x(t)=Aet is unchanged (for r=1) by dt
d . It does kill term number-∞, but ∞!

1 r∞t∞  is tiny-tiny-tiny anyway.

  

d
dt
ert = d

dt
1+ d

dt
rt + d

dt
1
2!
r 2t2 + d

dt
1
3!
r3t3 + d

dt
1
4!
r 4t4 + ...             (From (10.5a) and linearity)

         =  0 +   r     +   2
2!
r 2t    +  3

3!
r3t2   +  4

4!
r 4t3    + ...             (From (10.8b) )

         =  0 +   r     +       r 2t     +  1
2!
r3t2   +  1

3!
r 4t3    + ...             (Factorial n!=n·(n-1)·(n-2)·...·1 )

         =    r  (   1    +       rt       +  1
2!
r 2t2   +  1

3!
r3t3    + ...) = rert   (From (10.5a) again)

 (10.9)

For 100% intrest (r=1), growth rate-of-Aet equals Aet. Otherwise, growth rate of Aert is proportional to Aert. 

To state that the growth rate of a function x(t) equals a constant “intrest rate” r times current value of x(t) is to 

write a differential rate equation whose “solution” is x(t)=Aert. (The constant A is “initial capital” A=x(0).)

   Rate equation :   dx
dt

= r ⋅ x(t)  has solution :     x(t) = x(0)ert    (10.10)

It is Malthus’s population explosion equation for positive rate r>0! It is radioactive decay equation for r<0.
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The binomial expansion
High school algebra courses generally contain a treatment of the binomial theorem that is used for our er·t 

expansion after equation (10.4). In case your course missed that (or you weren’t paying attention!) we’ll take 

a close look at this remarkable formula. The binomial algebra and related Pascal triangle geometry is the 

basis of so much mathematics and physics that it deserves a book chapter of its own.

 First it helps to work out the first few binomial series (x+y)0, (x+y)1, xy2 (x+y)2, (x+y)3,… by simply 

multiplying them together as we did for the er·t series that started this discussion. The first examples (x+y)0=1 

and (x+y)1=x+y are easy since the 0th and 1st powers of a number n are defined to be 1 and n, respectively. The 

square of a binomial is simple enough, too.

    (x+y)2=(x+y)·(x+y)=x2+xy+yx+y2= x2+2xy +y2    (1)

You might find it helps to make a table of product terms to do algebraic multiplication of this sort. 

Just make a box and write one factor ((x+y) in this case) on top and the other ((x+y) again) along the left.

  

x + y

x x2 xy

+ y yx y2

= x2 + xy + yx + y2 = x2 + 2yx + y2  (2)

The just multiply each thing on top by each thing on the left and add them up to get (1). Try it with (x+y)3. 

   

  

(x + y)3 =      

x2 +2xy + y2

x x3 2x2 y xy2

+ y yx2 2y2x y3

     = x3 + 3x2 y + 3xy2 + y3   (3)

We can continue this process to get (x+y)4, (x+y)5,…and so forth.

  

  

(x + y)4 =      

x3 +3x2 y +3xy2 + y3

x x4 3x3y 3x2 y2 xy3

+ y yx3 3x2 y2 3xy3 y4

     = x4 + 4x3y + 6x2 y2 + 4xy3 + y4  (4)

  

(x + y)4 =   

x4 +4x3y +6x2 y2 +4xy3 + y4

x x5 +4x4 y +6x3y2 +4x2 y3 +xy4

+ y yx4 +4x3y2 +6x2 y3 +4xy4 + y5

  = x5 + 5x4 y +10x3y2 +10x2 y3 + 5xy4 + y5  (5)

After awhile, you might notice a pattern in the numbers or coefficients Bpq of the various power terms xpyq 

where the powers p and q must add up to the power n=p+q of (x+y)n being calculated. These Bpq are called the 

binomial coefficients of xpyq and a triangular array pattern in Fig. 1 is called Pascal’s triangle.

 This pattern is like a Ponzi scheme since every number in it except the pinnacle B00=1 is the sum of 

one or two numbers that lie above it and to either side. (This sum is going on in (2) thru (5) above.) So the 

pinnacle position q-p=0 on the central vertical triangle axis ends up with the biggest number Bpq for each 

power-row n=p+q. At n=p+q =10th row, pinnacle B5,5 accumulates 252 from 11 spots –5<q-p<+5.
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Table 1. Binomial combinatorial coefficients up to power n=10

  

Bp,q
n= p+q q− p= −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

p+q= 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

 Gamblers may recognize B55=252 as the number of ways you can get exactly 5 x-cards and 5 y-cards 

from an n=20 card deck of 10 x-cards and 10 y-cards. More simply, B55=252 is the number of ways to get 

exactly 5 heads and 5 tails from an n=10 coin tosses, or x5y5 from an (n=10)-power binomial.

 (x+y)(x+y)(x+y)(x+y)(x+y)(x+y)(x+y)(x+y)(x+y)(x+y)=(x+y)10=x10+…252x5y5+…y10  (7)

As you go down the line of 10 factors (x+y) you must pick x or y from each factor (x+y) to make just one 

(n=10)-power term xpyq with n=p+q. There are 210 =1024 such terms. (Just add up the 10th row of Table 1.)

 (1+1)10=210=110+…252·1515+…=1+10+45+120+210+252+210+120+45+10+1=1024  (8)

Check the other rows, too. (It’s a good to know powers-of-2 in a binary age!)

  22=4, 23=8, 24=16, 25=32, 26=64, 27=128, 28=256, 29=512, 210=1024,…  (9)

 Now suppose, instead of just two things x or y, you could choose n different things {a,b,c,…,x,y,z,..} 

from each of the n factors in (7). Then the number of ways you may get a given term a·b·c·…·x·y·z·.. having all 

n different things is the number n!=n·(n-1)·(n-2)·…·2·1 of permutations of n things. Each permutational 

reordering gives another equal term (a·b=b·a). 

So, n! is the “n-nomial coefficient” for a term with n-different factors. However, if we are counting 

terms xpyq like a binomial series has with only two different things, the p! permutations of the x things and  

the q! permutations of the y things do not count as new terms. Then n! divided by p! and q! gives Bpq. 

    Bp,q
n =

n!
p!q!

= Bq,p
n  examples: B1,9

10 =
10!
1!9!

= 10,     B2,8
10 =

10!
2!8!

=
10·9

2
= 45,  ...

This gives binomial series that follows (10.4) and the Gauss-binomial distribution plotted below.

e-x
2/5

(x)!(10-x)!
Comparing: and: 10!/252

-4 -3 -2 -1 0 1 2 3 4
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General power series approximations
Are power series like (10.5) useful for functions other than exponentials? Well, Mr. Maclaurin and Mr. 

Taylor thought so. Series that bear their names are de rigeur in good math books. (And, in this one, too!)

 Let’s start with a general power series like (10.5) but with arbitrary constant coefficients c0, c1, etc.

  x(t) = c0 + c1t + c2t
2 + c3t

3 + c4t
4 + c5t

5 + ...+ cnt
n +      (10.11a)

We derive c0 by setting time t to an initial time t=0. (Like C-programmers, we count “uh-zero, uh-one, uh-two,..”)

     c0 = x(0)        (10.11b)

So the 0th coefficient c0 is initial position x(0). Now we use (10.8b) to find a derivative of each term.

  v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +    (10.11c)

Rate of change of position x(t) is velocity v(t). Setting t=0 derives c1.

     c1 = v(0)        (10.11d)

So the 1st coefficient c1 is initial velocity v(0). Now find a 2nd derivative using (10.8b).

  a(t) = d
dt
v(t) = 0 + 2c2 + 2·3c3t + 3·4c4t

2 + 4·5c5t
3 + ...+ n(n −1)cnt

n−2 +    (10.11c)

Change of velocity v(t) is acceleration a(t). Set t=0 to get c2.

     c2 = 2
1 a(0)        (10.11d)

So the 2nd coefficient c2 is half the initial acceleration a(0). Now a 3rd derivative:

  j(t) = d
dt
a(t) = 0 + 2·3c3 + 2·3·4c4t + 3·4·5c5t

2 + ...+ n(n −1)(n − 2)cnt
n−3 +   (10.11e)

Change of acceleration a(t) is jerk j(t). (Jerk is a NASA sanctioned term!) Set t=0 to get c3.

     c3 =3!
1  j(0)        (10.11f)

So the 3rd coefficient c3 is initial jerk j(0) over 3! Now a 4th derivative:

  i(t) = d
dt
j(t) = 0 + 2·3·4c4 + 2·3·4·5c5t + ...+ n(n −1)(n − 2)(n − 3)cnt

n−4 +    (10.11g)

Change of jerk j(t) is inauguration i(t). (If NASA can be silly, so can we!) Set t=0 to get c4.

     c4 =4!
1  i(0)        (10.11h)

So the 4th coefficient c4 is initial inauguration i(0) over 4!. Now a 5th derivative.

  r(t) = d
dt
i(t) = 0 + 2·3·4·5c5 + ...+ n(n −1)(n − 2)(n − 3)(n − 4)cnt

n−5 +    (10.11i)

Change of inauguration i(t) is revolution r(t). (Ooops! Politically incorrect!) Quick set t=0 to get c5.

     c5 =5!
1  r(0)        (10.11j)

That’s enough iterations to show the Maclaurin series of any function x(t) that has decent derivatives.

  x(t) = x(0)+ v(0)t +2!
1 a(0)t2 +3!

1 j(0)t3 +4!
1 i(0)t4 +5!

1 r(0)t5 + ...+n!
1 x(n)tn + …  (10.12a)
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By “decent” we mean the non-exploding types that we can deal with. The following is a list that shows some 

of the notations used for the higher order derivatives discussed so far.

  

 

v(t) = d
dt
x(t) = x(t)

a(t) = d
dt
v(t) = v(t) = d2

dt2
x(t) = x(t)

j(t) = d
dt
a(t) = a(t) = d2

dt2
v(t) = v(t) = d3

dt2
x(t) = x (t)

i(t) = d
dt
j(t) = j(t) = d2

dt2
a(t) = a(t) = d3

dt2
v(t) = v (t) = d4

dt4
x(t) = x (t)

   (10.12b)

The “dot” notation writes n-derivatives of x(t) by puttting n-dots over x. This may help prevent writer’s 

cramp. But, j-dot looks, well, kind of jerky. It’s common to use primes ( ′y =dx
dy , ′′y =

dx2
d 2y ,etc. ) for x-derivatives.

 How good is a power series (10.5) at faking x=et beyond t=1listed in (10.6)? We plot various orders 

of approximation in Fig. 10.2. The 1st order (2-terms of (10.5a)) is just a straight line of slope 1. A 2nd order 

(3-term) parabola, 3rd order cubic, 4th order quartic, etc. each peel off x=et in sucession. All meet at (t=0,x=1).

quadratic
(parabola)

cubic

quartic
x(t)=et

line
constant

Fig. 10.2 Comparing x=et with its nth-order approximate power series.
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Sine-wave power series
A severe test of power series is their ability to fake sine waves. The derivative and rate equation for the sine 

function x(t)=sinωt uses expansion x(t+Δt)=sinω(t+Δt). To expand sin(a+b) or cos(a+b) we use Fig. 10.3.

 sin(a+b)= cosa sinb + sina cosb  (10.13a)  cos(a+b)= cosa cosb - sina sinb  (10.13b)

a
b

a

a cosa·sinb

sina·cosb

sina·sinb
cosa·cosb

sin(a+b)=
cosa·sinb+sina·cosb

cos(a+b)=cosa·cosb-sina·sinb
   Fig. 10.3 Geometry of sine and cosine expansion identities.

Expansion of Δx=x(t+Δt)-x(t) for sine or cosine is easy since sinω·Δt=ω·Δt and cosω·Δt=1 for tiny Δt.

sinω (t + Δt) - sinω⋅t
= cosω⋅t sinω⋅Δt + sinω⋅t cosω⋅Δt - sinω⋅t
= cosω⋅t  (ω⋅Δt) + sinω⋅t  (1)        - sinω⋅t

  
cosω (t + Δt) - cosω⋅t
= cosω⋅t cosω⋅Δt − sinω⋅t sinω⋅Δt - cosω⋅t
= cosω⋅t   (1)       − sinω⋅t  (ω⋅Δt) - cosω⋅t

= (ω⋅Δt) cosω⋅t      (10.14a)  = −(ω⋅Δt)sinω⋅t      (10.14b)

We will need the sine and cosine slope (derivative) formulas that follow from this.

d
dt
sinω⋅t = sinω (t + Δt) - sinω⋅t

Δt
      d

dt
cosω⋅t = cosω (t + Δt) - cosω⋅t

Δt
  

              =ω⋅cosω⋅t   (10.15a)                 = −ω⋅sinω⋅t   (10.15b)

A list of series coefficients cn =n!
1
d tn
dn x  in (10.12) for sine x=sin ωt and cosine x=cos ωt is worked out below. 

 

c0 = x(0) = sinω ·0 = 0
c1 = v(0) = +ω ·cosω ·0 = +ω

c2 =
a(0)
2!

= −
ω 2

2!
·sinω ·0 = 0

c3 =
j(0)
3!

= −
ω3

3!
·cosω ·0 = −

ω3

3!

c4 =
i(0)
4!

= +
ω 4

4!
·sinω ·0 = 0

c5 =
r(0)
5!

= +
ω5

5!
·cosω ·0 = +

ω5

5!

  

c0 = x(0) = cosω ·0           = 1
c1 = v(0) = −ω ·sinω ·0     = 0

c2 =
a(0)
2!

= −
ω 2

2!
·cosω ·0 = −

ω 2

2!

c3 =
j(0)
3!

= +
ω3

3!
·sinω ·0 = 0

c4 =
i(0)
4!

= +
ω 4

4!
·cosω ·0 = +

ω 4

4!

c5 =
r(0)
5!

= −
ω5

5!
·sinω ·0 = 0

A sine derivative repeats after four orders: …sin t, cos t, -sin t, -cos t, (again) sin t, cos t, -sin t, -cos t, (etc.) .
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The resulting sine and cosine series show this repeat-after-4-pattern of factors 0,1,0,-1 of   n!
(ωt)n terms.

 sinωt = 0 +ωt + 0 − (ωt)
3

3!
+ 0 + (ωt)

5

5!
+ 0 − ...   cosωt = 1+ 0 − (ωt)

2

2!
+ 0 + (ωt)

4

4!
+ 0 − ...

     (10.16a)      (10.16b)

The sine is an odd function to time reversal (sin(-t) =-sin(t)), but cosine is even (cos(-t) =+cos(t)). Thus sine 

has only odd powers p=1,3,5,… of time and cosine has only even powers p=0,2,4,…. Series plots (10.16) in 

Fig. 10.4 have highest power or order o=1st,2nd,3rd,4th,etc. Number n of terms is     2
o+1 for sine and     2

o+2  for cosine.

cubic

1st
5th

3rd

7th
9th 13th

15th

11th

17th
(b) x(t) =sin t

quadratic
(parabola)

2nd 4th

6th

8th 10th

12th

14th

16th

18th

20th

(a) x(t)=cos t

quartic

Fig. 10.4 Comparing (a) x=sin t and (b) x=cos t with their nth-order approximate power series.

It takes a 9th (for sin t) or 10th (for cos t) order series of 5 terms to get one full oscillation with 5% or 

better precision. Then 10 terms gives two oscillations, and so on. Fig. 10.4 shows that precision breaks down 

quite explosively. Polynomials are exponentially degrading approximations of wave motion. 
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Euler’s theorem and relations
Sine, cosine, and ert power series (10.16) and (10.9) lead to an 18th Century crown jewel of mathematics. It is 

due to a close relation of these series and the functions they represent. It is hard to imagine, but exponential 

intrest rate growth and simple harmonic oscillation are related. As it turns out, the relation is quite imaginary!

 Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number r=iθ. 

Imaginary number i = −1  has powers with a repeat-after-4-pattern: i0=1, i1=i, i2=-1, i3=-i, i4=1,etc... It fits 
the pattern leading to cosθ and sinθ series (10.16). Series (10.9) with imaginary rt=iθ joins the (10.16) series.

 

eiθ = 1+ iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ ...        (From series (10.9))

      = 1+ iθ −
θ2

2!
  − iθ

3

3!
  + θ

4

4!
   + iθ

5

5!
 − ...        (i = -1 imples: i1=i, i2 =-1, i3=-i, i4 =+1, i5=i,...)

      = 1− θ
2

2!
+
θ4

4!
− ...

⎛

⎝
⎜

⎞

⎠
⎟ + iθ − iθ

3

3!
+ iθ

5

5!
− ...

⎛

⎝
⎜

⎞

⎠
⎟     (To match series (10.16))   

 eiθ  =       cosθ                +           i sinθ                            Euler - DeMoivre Theorem   (10.17)
The resulting Euler-DeMoivre Theorem is a beautiful identity and a very powerful tool as we shall see. First 

and foremost it is a complex wave phasor function ψ = Ae−iωt that we will use in Unit 4. (Note: θ =-ω·t.)

   ψ = Ae−iωt = Acosωt − i Asinωt = Reψ + i Imψ =ψ x + iψ y    (10.18)

Fig. 10.5a plots eiθ  in the complex plane, a real-vs-imaginary graph. Fig. 10.5b showsψ = Ae−iωt  as a 

complex phasor clock. Real part Reψ =x(t) is position. Imaginary part is ω-scaled velocity Imψ =v(t)/ω. 

Conversion of polar-to-Cartesian (10.19a) and vice-versa (10.19b) is on scientific calculators. (Recall cautions at 

end of Ch. 1.)

 

  
(x, y) form
Cartesian

ψ x = Reψ (t)  = x(t) =   Acosω t

ψ y = Imψ (t) = v(t)
ω

= −Asinω t

⎧
⎨
⎪

⎩⎪
  (10.19a)  

  
(r ,θ )
form

Polar r = A =|ψ |= ψ x
2 +ψ y

2

θ = −ω t=arctan(ψ y /ψ x )

⎧
⎨
⎪

⎩⎪
(10.19b)

Real part Reψ is the “is” (that Clinton sought in 1997) and Imψ is what Reψ is “gonna-be” in 4
1 -cycle (as in 

“gonna be in trouble!” A mantra,“Imagination precedes reality by one quarter” works here as in US corporate 

world.) Euler expo-sinusoidal identities relate cosθ, sinθ, and e±iθ. A conjugate ψ* reflects i with –i.

 
  

ψ = re+iθ = re−iω t = r(cosω t − i sinω t)

ψ * = re−iθ = re+iω t = r(cosω t + i sinω t)
 (10.20a)  

  

cosθ=2
1 (e+iθ + e−iθ )

sinθ=2i
1 (e+iθ − e−iθ )

 (10.20b)

A special case is e-iπ=-1. (We’ll also use a real π-exponential: e-π=0.04321.) Other special cases are noted.

� 

e−iπ = −1= e+iπ , 

� 

e
+iπ
2 = i = −e

−iπ
2 , 

  
e
+iπ

4 =
2

  1 (1+ i) = −e
−i 3π

4 = −e
+i5π

4 .  (10.21)
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eiθ=x+iy

x=
θ

y=sin θ
e±iπ=-1

e+iπ/2=+i

e-iπ/2=-i

e+iπ/4=(1+i)/√2

e+i5π/4=e-i3π/4

= -(1+i)/√2

imaginary
axis

real
axis

imaginary
axis

real
axis

Magnitude or Modulus
A = |ψ | = √ ψ*ψ

A
−ω t

Phase angle or Argument
θ=−ω t = ATAN[v(t)/ωx(t)]

x(t)

Re ψ
x(t) = Acosω t

Im ψ
y(t)=v(t)/ω= -Asinω t

Re ψ

Im ψ (The “Gonna’be”)

(b) Quantum Phasor Clock ψ = Ae-iωt = Acosω t−i Asinω t=x+iy

Ψ

(The “Is”)v(t)
ω

(a) Complex plane and unit vectors

POLAR

COMPONENTS

CARTESIAN

COMPONENTS

e-iπ/4=(1-i)/√2

1

cos θ

Ae-iωt

Fig. 10.5 (a) Complex plane. (b) Phasor clock. Cartesian form uses (Reψ, Im ψ). Polar form uses (|ψ|,θ).

Wages of imaginary intrest: Phasor oscillation dynamics

By now bankers should know what happens when you use imaginary intrest. The accounts oscillate up and 

down and the imagineering bankers oscillate in and out of the slammer. (At least that was the way until 2001 

when the Bush administration passed the No Banker Left on His Behind Act that also outlawed reality.)

 Consider exponential rate equation (10.15) with negative imaginary rate r=-iω.

  Imaginary rate equation :   dx
dt

= −iω ⋅ x(t)  has solution :   x(t) = x(0)e−iωt   (10.22a)

It becomes a real 2nd order equation if we apply the derivative operation to both sides. 

   d
dt
dx(t)
dt

=
d2x
dt2

= −iω ⋅
d
dt
x(t) = −iω ⋅ (−iω ·x(t)) = −ω 2x(t)    (10.22b)

It is the Newton-Hooke simple harmonic oscillator equation, but it has the same solution as (10.19) above.
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  Newton − Hooke HO equation :  d2x
dt2

= −ω 2x(t)  has solution :  x(t) = x(0)e−iωt   (10.23a)

It combines Newton’s force law F=m·a=m x  and Hooke’s force law F=-k·x. The ω value repeats (9.9b).

   m d2x
dt2

= −k·x(t)  has angular  frequency :  ω =
k
m

    (10.23b)

What Good Are Complex Exponentials?

Complex Exponentials are used to describe oscillation, resonance, waves and fields. We don't use 
them just to be cute! Let’s look at some compelling reasons for using imaginary or complex arithmetic. 

Complex numbers provide "automatic  trigonometry"

If you have trouble remembering trigonometric identities then this is a good reason all by itself to use 
complex numbers. For example, if you're taking a test and you can't remember what is cos(a+b), then just 
factor ei(a+b) = eiaeib, expand exponentials into eia = cos a + i sin a and multiply them out.

   ei(a+b) = eiaeib

 cos(a+b) + i sin(a+b) = (cos a + i sin a) (cos b + i sin b)
 cos(a+b) + i sin(a+b) = [cos a cos b - sin a sin b]+i[sin a cos b + cos a sin b] (10.24a)

That’s two trig identities for the price of one! The real part gives the cosine relation (10.13b).
  cos(a+b) = [cos a cos b - sin a sin b]      (10.24b)

The imaginary part gives the sine relation (10.13a).
  sin(a+b) = [sin a cos b + cos a sin b].      (10.24c)

Complex exponentials Ae-iωt tracks position and velocity using Phasor Clock.
Recall discussion of phasor diagram in Fig. 10.5b. Real and imaginary give phase: position and velocity.

Complex numbers add like vectors.

Physics of wave interference involves the addition or subtraction of oscillating signals. If the signals 
are represented by complex numbers then you simply add (or subtract) their Cartesian components. 

  zsum = z + z' = (x + iy) + (x' + iy') = (x + x') + i(y + y')
  zdiff  = z − z' = (x + iy) − (x' + iy') = (x − x') + i(y − y')

Before adding, convert z and z' to Cartesian (x,y) form if given in polar form z=reiφ and z'=r'eiφ'. Radius r of 
a vector z is its magnitude or complex absolute value |z|. Square |z|2 is proportional to energy or intensity.

  |z| = r = √(x2 + y2) = √([x - iy][x + iy]) = √(z*z)
We write |z|2 as product of z and its complex conjugate z* = x - iy =re-iφ to derive radius |zsum| of a vector 
sum zsum or radius |zdiff| of a difference zdiff. It is an easy way to get the well-known cosine laws.

� 

zSUM = z + ′ z ( )* z + ′ z ( ) = reiφ + ′ r ei ′ φ ( )*
reiφ + ′ r ei ′ φ ( ) = re−iφ + ′ r e− i ′ φ ( ) reiφ + ′ r ei ′ φ ( )

           = r2 + ′ r 2 + r ′ r ei φ − ′ φ ( ) + e−i φ − ′ φ ( )( ) = r2 + ′ r 2 + 2r ′ r cos φ − ′ φ ( )
 (10.25a)

� 

zDIFF = z − ′ z ( )* z − ′ z ( ) = r2 + ′ r 2 − 2r ′ r cos φ − ′ φ ( )      (10.25b)
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Vector diagrams of sum, difference, and product of complex z and z′ are shown in Fig. 10.6.

x=Re z

y=Im z φr

(a)

z

(b) z z+z
φ

z

(c) z

z•z
φ

φ+φ

z
z z−z

Sum
Differenceand

Productφ z
z

x=Re z

y=Im z

φ φ

Fig. 10.6 Parallelogram diagonals are sum zsum=z+z' and difference zdiff=z-z' vectors.

Complex products provide 2D rotation operations.
A product zz' of two complex numbers expressed in Cartesian form as z = x + iy and z'= x'+ iy' is 
   z z' = (x + iy) (x' + iy') = [xx' - yy'] + i[xy' + yx'].

It is simpler if the numbers are expressed in polar form as z = r eiφ and z' = r' eiφ'.
   z z' = ( reiφ )( r'eiφ' ) = r r' ei(φ+φ').      (10.26)
Note that multiplication results in addition of exponents and a sum of polar angles. Radii multiply to 

give a product rr' but angles add to give a sum (φ + φ'). You might imagine z rotating vector z' by φ radians or 
that z' rotates z by φ' radians. Consider in detail a rotational operator eiφ on a vector z =(x + iy).

  eiφ·z = (cosφ + i sinφ)·(x + iy)= x cosφ − y sinφ + i(x sinφ + y cosφ )  (10.27a)
Ch. 5 2-by-2 rotation matrix Rφ (Fig. 5.3d) acts on a 2D vector r to give results precisely similar to eiφ·z.
    

 
R+φ ir = (x cosφ − ysinφ)êx + (x sinφ + ycosφ)ê y   (10.27b)

     
 

cosφ − sinφ
sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
i
x
y

⎛
⎝⎜

⎞
⎠⎟
=               

x cosφ − ysinφ
x sinφ + ycosφ

⎛
⎝⎜

⎞
⎠⎟

    (10.27c)

Complex products set initial values
Phase angle -ωt of phasor e-iωt rotates clockwise with time. Multiplying e-iωt by a complex amplitude 

A =|A|eiρ sets its phase back by angle ρ and its radius to |A|. Amplitude A is the initial value x(0)=|A|eiρ.
x(t)=Ae-iωt = x(0)e-iωt = |A|eiρe-iωt = |A|e-i(ωt-ρ)   (10.28) 

Such products set initial values of oscillator clocks. A positive angle ρ is a phase lag since it moves the 
phasor counter-clockwise and sets its clock back. A negative angle ρ=−|ρ| gives a phase lead.

Complex products provide 2D “dot”(•) and “cross”(x) products.
 Consider any two vectors A=Ax+iAy and B=Bx+iBy and their “star” (*)-product A*B.

  
A* B = (Ax + iAy )*(Bx + iBy ) = (Ax − iAy )(Bx + iBy )

         = (AxBx + AyBy )+ i(AxBy − AyBx ) = A •B + i | A ×B |Z⊥(x ,y)

   (10.29)

Real part is scalar or “dot”(•) product A•B. Imaginary part is vector or “cross”(×) product, but just the Z-
component normal to xy-plane. To better understand this math trickery, we rewrite A*B in polar form.

  
A* B = ( A eiθA )*( B eiθB ) = A e−iθA B eiθB = A B ei(θB −θA )

         = A B cos(θB −θA)+ i A B sin(θB −θA) = A •B + i | A ×B |Z⊥(x ,y)

  (10.30a)

This matches standard 3D definitions of dot(•) and cross(×) products in Appendix 1.A of this Unit.
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 A •B = A B cos(∠A

B )      | A ×B |= A B sin(∠A
B )    (10.30b)

Expansion (10.24) of Δ-angle a + b = ∠A
B = θB −θA  relates reiθ forms (10.30) to xy-forms in (10.29).

 
 A •B = A B cos(θB −θA)

= A cosθA B cosθB + A sinθA B sinθB
  

| A ×B |= A B sin(θB −θA)

= A cosθA B sinθB − A sinθA B cosθB

=          AxBx              +       AyBy    (10.30c) =          AxBy            −       AyBx     (10.30d)

Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field
 By relating (z,z*) to (x=Rez,y=Imz) we may define a z-derivative dz

df and “star” z*-derivative dz*
df .

  z = x + iy

z* = x − iy
  

x =2
1 (z + z∗)

y =2i
1 (z − z∗)

  dz
df =   ∂z

∂x
∂x
∂f +∂z

∂y
∂y
∂f  =2

1
∂x
∂f −2

i
∂y
∂f

dz*
df =∂z*

∂x
∂x
∂f +∂z*

∂y
∂y
∂f =2

1
∂x
∂f +2

i
∂y
∂f

  (10.31)

Derivative chain-rule shows real part of dz
df has 2D divergence ∇•F and imaginary part has curl ∇×F.

  dz
df =dz

d ( fx + i fy ) =2
1 (∂x

∂f −i∂y
∂f )( fx + i fy ) =2

1 (∂x
∂fx + ∂y

∂fy )+2
i (∂x

∂fy − ∂y
∂fx ) =2

1∇•F +2
i |∇×F|   (10.32)

Now we can invent source-free 2D vector fields that are both zero-divergence and zero-curl by taking any 

function f(z) and conjugating it (change all i’s to –i) to give f*(z*) for which dz
df * = 0 . For example, if f(z)=a·z 

then f*(z*)=a·z*=a(x-iy) is not a function of z so it has zero z-derivative, hence zero ∇•F and zero |∇×F|.

 F=(Fx,Fy)=(f*x,f*y)=(a·x,-a·y) has zero divergence:  ∇•F=0 and has zero curl: |∇×F|=0.  (10.32)

A plot of vector field F=(f*x,f*y) =(a·x,-a·y) in Fig. 10.7 shows a divergence-free laminar (DFL) flow field.

Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
 Any DFL flow field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.

   F= ∇Φ	
 	
 	
 	
 F= ∇×A 	
 	
 	
 	
 	


There is a complex potential φ(z)=Φ(x,y)+iA(x,y) whose z-derivative is f(z) and it comes with its complex  

conjugate  φ*(z*)=Φ(x,y)-iA(x,y) whose z*-derivative is the f*(z*) that we use to plot DFL flow fields F.

   f (z) = dz
dφ   (10.33a)    f ∗(z∗) = dz∗

dφ∗   (10.33b)

Derivative dz∗
dφ∗  by (10.31) has 2D gradient ∇Φ = ∂x

∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

of scalar Φ and curl∇×A = ∂y
∂A

−∂x
∂A

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  of vector A.

 
dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A    (10.34)

Some more math trickery has “vector-A” be just a “Z-component” A=Azez normal to the complex (x,y)-plane. 

So A(x,y)=Az(x,y) is treated as a single function of (x,y) like scalar Φ(x,y). Also, a mathematician definition for 

force field F=+∇Φ replaces our usual physicist’s definition F=-∇Φ of (6.9). (No annoying (-)-sign now!)
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 To find φ=Φ+iA we integrate f(z)=a·z to get φ and isolate real (Reφ=Φ) and imaginary (Imφ=A) parts.

   
φ =          Φ        + i  A = f ⋅dz∫ = az ⋅dz∫ =2

1 az2 =2
1 a(x + iy)2

  =2
1 a(x2 − y2) + i  axy

   (10.35a)

Note: either part gives the whole F field. Factors  (2
1 ,2

1 ) in (10.34) could be  (3
1 ,3

2 ) or (4
1 ,4

3 ) or any (f,j) with f+j=1.

   ∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F  (10.35b)    ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

∂y
∂axy

−∂x
∂axy

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

ax
−ay

⎛

⎝
⎜

⎞

⎠
⎟= F    (10.35c)

Scalar static potential lines Φ=const. and vector flux potential lines A=const. define a field-net in Fig.10.7.

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

 Fig.10.7 Complex field f(z)=z of F=(x,-y) vectors on potentials of static Φ=(x2-y2)/2 and flux A=xy.

Complex integrals ∫  f(z)dz  count “flux”( ∫Fxdr) and “vorticity”(  ∫F•dr) 
 Integral f(z) (10.35a) between point z1 and point z2 in Fig. 10.8 is potential difference Δφ=φ(z2)- φ(z1) 

between the end-points. In DFL fields, Δφ is independent of the integration path z(t) connecting z1 and z2.

  

   

Δφ = φ(z2 ) −φ(z1) = f (z)dz
z1

z2
∫ = Φ(x2 , y2 ) − Φ(x1, y1) + i[A(x2 , y2 ) − A(x1, y1)]

                                             Δφ =               ΔΦ             + i            ΔA

  (10.36)

The real part ΔΦ of Δφ is work     Fidr1
2∫ done pushing r up a hill in Fig. 10.8. (Now force F= ∇Φ  points up-

slope.) Since F=(f*x, f*y) is plotted using f*(z*), we set f(z)=(f*(z*))* to get real and imaginary parts of f(z)dz.
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f (z)dz∫ = f ∗(z∗)( )∗ dz∫ = f ∗(z∗)( )∗ dx + i dy( )∫ = fx
∗ + i f y

∗( )∗ dx + i dy( )∫ = fx
∗ − i f y

∗( ) dx + i dy( )∫

             = ( fx
∗dx + f y

∗dy) +∫ i ( fx
∗dy − f y

∗dx)∫

             =         Fidr       ∫ + i F × driêZ∫ =         Fidr       ∫ + i Fidr × êZ∫

             =         Fidr       ∫ + i   FidS∫                  where:      dS = dr × êZ

 (10.37)

z2

z1 z1

z2

Fig. 10.8 Stereo-3D view of Fig. 10.7(φ(z)=z2/2) plots static potential Φ normal to xy-axes.

Real part     Fidr1
2∫  sums F projections along path vectors dr to get ΔΦ in (10.36). Imaginary part     FidS1

2∫ = ΔA  

sums F projection across dr that is, it sums flux thru surface elements dS=dr×eZ normal to dr to get ΔA. 

 One power-law field f(z)=azn lacks a power-law potential  φ(z)= n+1
  a zn+1 . It is   f (z)= z

a= az−1 . Its integral is 

a logarithmic potential φ(z)=a·ln(z)=a·ln(x+iy). (Recall (6.11).) Use ln(a·b)=ln(a)+ln(b), ln(eiθ)=iθ, and z=reiθ.

  φ(z) = Φ + iA = f (z)dz∫ = z
a dz∫ = a ln(z) = a ln(reiθ ) = a ln(r)+ i aθ    (10.38)

Potential a·ln(z) is the field of a line of charge q if a=q is real and a line of current J if a=iJ is imaginary. Fig. 

10.9a is a diverging F-field of unit charge (q=1) and Fig. 10.9b is a curling F-field of unit current (J=1). Line 

charge F-field is like an electric E-field. Line current F-field is like a magnetic B-field of a wire, a vortex.

 F-field and radial streamlines (A=θ =const.) diverge normal to equal-Φ circles (Φ=r =const.) in Fig. a. 

F-field and circular streamlines (A=r =const.) curl clockwise normal to radial equal-Φ lines (Φ=θ =const.) in 

Fig. b. (The clockwise (-i)-sense of rotation results from plotting f*(z*)=-i/z* as our (*)-convention requires.) 

 Stereo-3D potential plots of real-line-source field shown in Fig. 10.10a show mathematical structure 

of its Φ and A potentials that lets us compare them to imaginary-line-source potentials in Fig. 10.10b. Real 
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part Φ=ln(r) of (10.38) for real (a=1)-source in Fig10.10a is a surface like a morning-glory. Blue-(A=θ=const.) 

-streamlines stream down its throat normal to (Φ=r =const.) level circles. 

Field:
f*(z*)=1/z*=eiθ/r
F(x,y)=(x,y)/r2
Potential:
φ(z)=ln z
=ln r+iθ
= Φ +i A

Field:
f*(z*)=-i/z*=-ieiθ/r
F(x,y)=(y,-x)/r2
Potential:
φ(z)=i ln z
= θ +i ln r
= Φ +i A

(b) Unit Z-line-vortex field f(z)=i/z(a) Unit Z-line-flux field f(z)=1/z

Fig. 10.9 Fields due to a unit Z-line-source normal to center. (a) Real source a=q=1. (b) Imaginary a=iJ=i.

 Below that Φ-vs-(x,y)-plot is a 3D A-vs-(x,y)-plot for the same real source in Fig. 10.10a. Imaginary 

part A=θ of (10.38) gives radial steps that are level lines of a single helix or helicoid. Red-(Φ=r =const.)-lines 

stream up its spiral staircase normal to (A=θ=const.) steps. At the top step A=θ=π , above the –X-axis, is a 

“waterfall” of red lines falling by ΔA=2π straight to bottom helical step A=θ=-π. This 2πi-fall of complex 

potential φ(z) by Δφ=iΔA=2πi at θ=±π equals the loop integral of f(z) from θ=-π to θ=+π.

    
 
Δφ = iΔA = f (z)dz∫ = z

dz∫ = 2πi     (10.39)

Imaginary part ΔA of a loop integral counts real source (“flux”) since loop flux is Im   f (z)dz∫  in (10.37). Real 

part ΔΦ= Re    f (z)dz∫ = Fidr∫  counts imaginary source (“vorticity”) since only that makes work around a loop, 

that is, perpetual motion! In Fig. 10.10b, Φ and A switch roles to make imaginary-line-source-potentials.
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Field:
f*(z*)=1/z*=eiθ/r
F(x,y)=(x,y)/r2
Potential:
φ(z)=ln z
=ln r+iθ
= Φ +i A

(a) Unit Z-line-flux field f(z)=1/z

Φ(x,y) Φ(x,y)
1-pole(flux) 1-pole(flux)

A(x,y) A(x,y)1-pole(flux) 1-pole(flux)

Fig. 10.10(a) Real unit line-source (a=1) with diverging F-field resembling E-field of electric line-charge.
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Field:
f*(z*)=-i/z*=-ieiθ/r
F(x,y)=(y,-x)/r2
Potential:
φ(z)=i ln z
= θ +i ln r
= Φ +i A

(b) Unit Z-line-vortex field f(z)=i/z

Φ(x,y) Φ(x,y)
1-pole(vortex) 1-pole(vortex)

A(x,y) A(x,y)1-pole(vortex) 1-pole(vortex)

Fig. 10.10(b) Imaginary line-source (a=i) with curling F-field resembling B-field of electric line-current.

©2012 W. G. Harter Chapter10. Calculus of exponentials, logarithms, and complex fields 154

154



155
Complex derivatives give 2D multipole fields
 Of all integer-power-law field functions f(z)=zn of z, only a/z =az-1 has a non-power-law multi-valued 

integral and potential φ(z)= az−1dz∫ = a ln z (10.38) and non-zero flux-work-loop integral  az
−1dz∫ =2πia (10.39). 

This f(z)=az-1 is a 2D line monopole field and φ(z)= a ln z is its monopole potential of source strength a.

 f 1- pole (z)= a
z
=
dφ1- pole

dz
 (10.40a)  φ1- pole (z)= a ln z    (10.40b)

 Now let these two line-sources of equal but opposite source constants +a and –a be located at z=±Δ/2 

thus separated by a small interval Δ. This sum (actually difference) of f1-pole-fields is called a dipole field. 

 f dipole (z)= a
z + 2

Δ
−

a
z − 2

Δ
=

−a ⋅ Δ

z2 − 4
Δ2

   φdipole (z)= a ln(z − 2
Δ )− a ln(z + 2

Δ ) = a ln
z − 2

Δ

z + 2
Δ

If interval Δ is tiny and is divided out we get a point-dipole field f2-pole that is the z-derivative of f1-pole.

f 2- pole = −a
z2

=
df 1- pole

dz
=
dφ2- pole

dz
(10. 41a)  φ2- pole = a

z
=
dφ1- pole

dz
  (10. 41b)

A point-dipole potential φ2-pole (whose z-derivative is f2-pole) is a z-derivative of φ1-pole. Pair (10. 41) looks like a 

Coulomb force (9.1) and potential (9.2) of 3D point monopoles. However, 2D dipole field (10. 41a) is quite 

different as is 2D potential (10. 41b) whose Φ=const. and A=const. lines make a circle-net in Fig. 10.11.

 
φ2- pole =

a
z
=

a
x + iy

=
a

x + iy
x − iy
x − iy

= ax
x2+y2

+ i −ay
x2+y2

=
a
r

cosθ − i a
r

sinθ

                                                     = Φ2- pole + i A2- pole

 (10.42)

(Note that complex z=x+iy is cleared from the denominator by using z*=x-iy to give real r2= z*z=x2+y2.)

 

Scalar potentials
Φ=(a/r)cos θ=const.

a/Φ
θ

Vector potentials
A=(a/r)sin θ=const.

a/A

r

r=(a/Φ)cos θ

r=(a/A)sin θ

r

Field:
f*(z*)=1/z2*=ei2θ/r2

F(x,y)=(cos2θ,sin2θ)/r2
Potential:
φ(z)=1/ z
=(cosθ)/r+i(sinθ)/r
= Φ +i A

Fig. 10.11 Dipole F-field f(z)=1/z2 and scalar potential (Φ=const.)-circles orthogonal to (A=const.)-circles.

©2012 W. G. Harter Unit 1 Review of Velocity, Momentum, Energy and Fields        

155



Φ(x,y) Φ(x,y)

Fig. 10.12 Stereo 3D plot of dipole φ(z)=1/z scalar potential Φ(x,y) with A-streamlines between poles.

Complex power series are 2D multipole expansions
A z-derivative turns 1-pole fields into 2-pole fields in (10. 41). It makes a copy of 1-pole in (10. 40) with a 

sign change and puts the (-)copy very near the original. What if we put a (-)copy of a 2-pole near its original? 

Well, the result is 4-pole or quadrupole field f4-pole and potential φ4-pole, each a z-derivative of f2-pole and φ2-pole.

f 4- pole = a
z3

=
1
2
df 2- pole

dz
=
dφ4- pole

dz
(10.43a)  φ4- pole = −

a
2z2

=
1
2
dφ2- pole

dz
  (10.43b)

Fig. 10.13 shows 4-pole structure. Two +∞-poles loom above Y-axis and two -∞-poles lurk below X-axis . 

The F-field vectors and their A-streamlines are shown running at 90° to Φ-equipotential lines in Fig. 10.13.
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X X

Φ(x,y) Φ(x,y)
4-pole 4-pole

Fig. 10.13 Stereo 3D plot of quadrupole φ(z)=1/z2 scalar potential Φ(x,y) with A-streamlines between poles.

Field:
f*(z*)=1/z3*=ei3θ/r3

F(x,y)=(cos3θ,sin3θ)/r3
Potential:
-2φ(z)=1/z2

=(cos2θ)/r2+i(sin2θ)/r2

= Φ +i A

Fig. 10.14 F-field f(z)=1/z3 of 4-pole with scalar (Φ=const.)-equipotentials normal to (A=const.)-streamlines.
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 A field f(z) with sources only at origin (z=0) or at infinity (z=∞) may be given by power series that 

generalize Maclaurin series derived in (10.11) by using both positive and negative powers z±n. Series Σa±nz±n 

is called a Laurent series or multipole expansion (10.44) of a given complex field function f(z) around z=0. 

All field terms am-1zm-1 except 1-pole  z
a-1 have potential term am-1zm/m of a 2m-pole at z=0 (z=∞) for m<0 (m>0).

     

 

f (z) = ...a−3z
−3  +   a−2z

−2  +    a−1z
−1 +     a0    +      a1z    +     a2z

2   +    a3z
3   +    a4z

4  +    a5z
5  + ...

          22-pole      21-pole       20 -pole      21-pole     22-pole     23-pole     24 -pole    25-pole    26-pole    
              at z=0        at z=0          at z=0        at z=∞     at z=∞      at z=∞      at z=∞     at z=∞     at z=∞   

φ(z) = ...
a−3
−2

z−2 +  
a−2
−1

z−1 +   a−1 ln z  +     a0z   +    
a1
2
z2   +  

a2
3
z3   +   

a3
4
z4   +  

a4
5
z5 +  

a5
6
z6  + ...

(10.44)

The unique 1-pole(20-pole)φterm   a−1ln z is not a constant a-1z0=a-1. (Constantφ has no field:  f =dz
dφ =dz

da−1 =0 ) Also a 

1-pole at z=∞ gives zero field near z=0. However, a 21-pole at z=∞ gives a constant field f(z)=a0 near z=0. A 

quadrupole (22-pole) at z=∞ gives the linear field f(z)=a1z shown if Fig. 10.7, but a 22-pole at z=0 gives the 

field a-3z-3 in Fig. 10.14. Octupoles (23-poles) at z=∞ (or z=0) give a2z2 (or a-4z-4), and so on for m=4,5,…

Complex 1/z gives stereographic  projection
 The potential φexpansion is most useful for revealing multi-pole structure. A negative power φterm a-

m-1z-m/m belongs to a 2m-pole at z=0. A positive power φterm am-1zm/m belong to a 2m-pole at z=∞. Pole field 

geometry involves mapping z-points onto a sphere so z=0 is its North Pole and z=∞ is its South Pole in Fig. 

10.15. There a stereographic projection maps a point z=x+iy on the z-plane tangent to North Pole into a point 

w=1/z=u+iv in the inverse w-plane tangent to the South Pole. The map geometry uses an inscribed rectangle. 

A pair of red unit circles |z|=1 and |w|=1 map into each other. Any point z inside the |z|=1 circle maps into a 

point w outside the |w|=1 circle as shown and vice-versa outside z maps to inside w.
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z=x+iy
=1/w

w=u+iv
=1/z

1

N

S

z-plane

w-plane

|w|=cot θ/2=|z|-1

|z|=tan θ/2=|w|-1

1
2

1
2

θ/2

θ/2

θ/2

cos θ/2

sin θ/2

θ

N

S

sin2 θ/2

cos2 θ/2

 Fig. 10.15 Stereographic projection of z-plane through a unit-diameter sphere to inverse 1/z=w-plane.

Replacing z with w=z-1 in (10.13) switches positive multi-pole-m terms in potential φ with negative ones.

φ(z) = ...
a−3
−2

z−2  +
a−3
−2

z−2  +  
a−2
−1

z−1  +   a−1 ln z   +     a0z    +    
a1
2
z2    +  

a2
3
z3    + ...  (from (10.44))

φ(w) = ...
a−3
−2

w−2 +
a−3
−2

w−2 +  
a−2
−1

w−1 +   a−1 lnw +     a0w  +    
a1
2
w2   +  

a2
3
w3   + ... (with z=w-1)

        = ...
a2
3
z−2    +

a1
2
z−2     +     a0z

−1 −   a−1 ln z  +    
a−2
−1

z  +    
a−3
−2

z2  +  
a−3
−2

z3  + ... (with w=z-1)

But, the unique monopole source term stays put with only a sign change (  lnz
1 = − ln z ) as seen in Fig. 10.16a. 

Constant field f=a0 in (10.44) appears if there is a dipole at the South Pole and, vice-versa, a dipole field at the 

North Pole appears to be a constant field near the South Pole as seen in Fig. 10.16b. 

 Of all 2m-pole field terms am-1zm-1, only the m=0 monopole a-1z-1 has a non-zero loop integral (10.39). 

    f (z)dz∫ = a−1z
−1dz∫ = 2πia−1      a−1 =2π i

 1 f (z)dz∫

This m=1-pole constant-a-1 formula is just the first in a series of Laurent coefficient expressions.

 
a−3 =2π i

 1 z2 f (z)dz∫  ,  a−2 =2π i
 1 z1 f (z)dz∫  ,  a−1 =2π i

 1 f (z)dz∫  ,  a0 =2π i
 1 f (z)

z
dz∫  ,  a1 =2π i

 1 f (z)
z2

dz∫  ,   
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(+) monopole field
at North Pole

is (-) monopole field
near SouthPole

N

S

dipole field centered
at North Pole

is constant field
near SouthPole

N

S

(a) (b)

Fig. 10.16 Projective sphere view of North Pole (z=0) sources. (a) monopole (b) dipole.

         Cauchy integrals

Source analysis starts with 1-pole loop integrals    z−1dz∫ = 2π i  or, with origin shifted    (z − a)−1dz∫ = 2π i . 

They hold for any loop around point-a. A continuous function f(z) is just f(a) on a tiny circle around point-a.

 
 

f (z)
z − a

dz∫ =
f (a)
z − a

dz∫ = f (a) 1
z − a

dz∫ = 2πif (a)   (10.45a)         
 
f (a) = 1

2πi
f (z)
z − a

dz∫    (10.45b)

The f(a) result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

   

df (a)
da

= 1
2π i

f (z)
(z − a)2

dz∫  , d2 f (a)
da2

= 2
2π i

f (z)
(z − a)3

dz∫  ,  d3 f (a)
da3

= 3!
2π i

f (z)
(z − a)4

dz∫ , , d n f (a)
dan

= n!
2π i

f (z)
(z − a)n+1

dz∫

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a. 

 
 

f (z) = an
n=−∞

∞
∑ (z − a)n           where :  an =

1
2πi

f (z)
(z − a)n+1

dz∫ =
1
n!

dn f (a)
dan

    for :  n ≥ 0
⎛

⎝
⎜

⎞

⎠
⎟   (10.45c)

If the function f(z) has no poles inside the contour then only positive powers n>0 are needed in its expansion 

and the series above reduces to a Taylor series or (if a=0) a Maclaurin series like (10.12) derived previously. 

There the nth expansion coefficient an is given by nth derivative of f(z) as in (10.45c) above. Otherwise, 

negative powers are needed with coefficients given by nth order pole loop integrals above.

 This represents just a “tip of an iceberg” for an enormous subject of complex analysis. We shall use 
only tiny portions of this grand mathematical subject, and later we will consider generalizations of complex 
numbers to hyper-complex quaternions and spinor operators in Unit 4. This takes the analysis from a 2D 
framework into a 3D and 4D description that is more like the space-time we seem to live in.
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Non-analytic fields: Source distributions
	
 What kind of field do you get if there is a continuous distribution of charge or current sources? Such 
a field is described by non-analytic functions of z and z*. Each field may have a non-analytic complex 
potential function φ(z,z*)=Φ(x,y)+iA(x,y), a non-analytic force field function f(z,z*) = fx(x,y) + ify(x,y) , and 
a non-analytic source function s(z,z*) = ρ(x,y) + i I(x,y). The source function is a new concept which we 
have avoided since analytic fields are source-free except at singularities. The following source definitions are 
made to generalize the f* field equations (10.33) based on relations (10.31) and (10.32).

  
  
2 df ∗

dz
= s∗(z,z∗)   (10.46a)   

  
2 df

dz∗
= s(z,z∗)   (10.46b)

The complex field equations for the potentials are like (10.33) given before but with an extra factor of 2.

  
  
2 dφ

dz
= f (z,z∗)   (10.47a)   

  
2 dφ∗

dz∗
= f ∗(z,z∗)  (10.47b)

Source equations (10.46) expand like (10.32) into a real and imaginary parts of divergence and curl terms. 

	

  
s∗(z,z∗) = 2 df ∗

dz
= ∂

∂ x
− i ∂

∂ y
⎡

⎣
⎢

⎤

⎦
⎥ fx

*(x, y)+ if y
*(x, y)⎡

⎣
⎤
⎦ = ρ − i I  ,     where: fx

*= fx ,  and: f y
*= − f y 	
 	
 (10.48a)

   

=
∂ fx

*

∂ x
+
∂ f y

*

∂ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ i

∂ f y
*

∂ x
−
∂ fx

*

∂ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ∇• f *⎡
⎣

⎤
⎦ + i ∇× f *⎡

⎣
⎤
⎦Z

    (10.48b)

The real part is a Poisson equation. The imaginary part is a Biot-Savart equation.
	
 	
   ∇ • f * = ρ 	
 (10.48c)	
 	
 	
 	
    ∇× f * = − I  	
 	
 	
 (10.48d)

One describes a scalar source or charge density ρ and the second one describes a vector source or current 
density I. For analytic fields the sources are concentrated into singular points. Non-analytic quantities allow 
for sources that are spread out into continuous 2-D distributions.
 The field equations (10.47) also expand into real and imaginary parts that are x and y components of 
vector gradient of Φ and curl of ΑZ based on potential φ = Φ + iA or φ*= Φ - iA. Here we treat AZ=ΑZeZ  as a 
vector function of x and y normal to the complex (x,y) plane.

  
  
f *(z,z*) = 2 dφ*

dz* = ∂
∂ x

+ i ∂
∂ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Φ− iA( ) = fx

* + if y
*      (10.49a)

  
  

= ∂Φ
∂ x

+ i ∂Φ
∂ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ ∂ A

∂ y
− i ∂ A

∂ x

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ∇Φ⎡⎣ ⎤⎦ + ∇× AZ⎡⎣ ⎤⎦     (10.49b)

If the source function is non-zero then vector field f* may have two distinct parts, a gradient of a scalar 
potential called the longitudinal field  fL

* and a curl of a vector potential called the transverse field fT
* .

  f
* = fL

* + fT
*  (10.50a)   fL

* = ∇Φ  (10.50b)   fT
* = ∇× A  (10.50c)

For source-free analytic functions these two fields are identical. (Recall that (10.35b) equals (10.35c).) There 
it seems redundant to have potentials Φ and Α give the same field. Here they may give quite different fields. 
Consider a non-analytic field f(z) = (z*)2 or f*(z) = z2. By (10.47) the source function is as follows.

  

s*(z,z*) = 2 df *

dz
= 4z = 4x + i4y,

or :     ρ = 4x,      and :    I = -4y.
    (10.51)
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The non-analytic potential function follows by integrating (10.47a) to give (10.49). 

	
 	


  

φ(z,z*) = 1
2

f (z)dz∫ = 1
2

(z*)2 dz∫ = z(z*)2

2
= (x + iy)(x2 − y2 − i2xy)

2
,

or : Φ = x3 + xy2

2
, and : A = − y3 − yx2

2
.

	
 	
 	
 (10.52)

The longitudinal field  fL
* is quite different from the transverse field  fT

* . 

    

   

fL
* = ∇Φ = ∇ x3 + xy2

2

⎛

⎝
⎜

⎞

⎠
⎟ =

3x2 + y2

2
xy

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,     fT
* = ∇× A = ∇× − y3 − yx2

2
ez

⎛

⎝
⎜

⎞

⎠
⎟ =

∂A
∂y

− ∂A
∂x

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
−3y2 − x2

2
xy

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.  (10.53)

The longitudinal field  fL
*  has no curl and the transverse field  fT

*  has no divergence. The sum field has both 

making a violent storm, indeed, as shown by a plot of  fL
*+ fT

* in Fig. 10.17.

   

    

f* = fL
*+ fT

* =
3x2 + y2

2
xy

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+

−3y2 − x2

2
xy

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= x2 − y2

2xy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,     ∇if*=∇ifL
*=4x=ρ,     ∇×f*=∇×fT

*=4y=- I .  (10.54)

Fig.10.17 Force field vectors for non-analytic function f(z) = (z*)2
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 Consider a simple non-analytic field f(z) =k·z* or f*(z) =k·z. The source function follows by (10.47).

  

s*(z,z*) = 2 df *

dz
= 2k,

or :  ρ = 2k,   and : I = 0.
     (10.51)

The non-analytic potential function is found by integrating (10.47a).

	
 	
 	


  

φ(z, z*) = 1
2

f (z)dz∫ = 1
2

k⋅z* dz∫ = k⋅ z*z
2

,

or : Φ = k⋅ x2 + y2

2
, and : A = 0.

	
 	
 	
 	
 	
 (10.52)

Again, the longitudinal field is quite different from the transverse field which is zero here.

   
   
fL

* = ∇Φ = ∇ k⋅ x2 + y2

2

⎛

⎝
⎜

⎞

⎠
⎟ = k⋅

x
y

⎛
⎝⎜

⎞
⎠⎟

,         fT
* = ∇ × A = ∇ × 0·ez( ) = 0

0
⎛
⎝⎜

⎞
⎠⎟

.   (10.53)

The result is a constant-density (that is, constant-divergence) scalar source of a linear radial force field that 
results from a 2D isotropic harmonic oscillator (IHO) that is like the inside-Earth potential in Fig. 9.7.

	
 	
 	
 	

    
∇ifL

* = ∇i
k⋅x
k⋅y

⎛
⎝⎜

⎞
⎠⎟
= 2k

	
 A companion non-analytic field is f(z) = ik·z* or f*(z) = -ik·z. Its source function follows.

   

  

s*(z,z*) = 2 df *

dz
= −2k⋅i,

or : ρ = 0, and : I = 2k.
     (10.54)

Its non-analytic potential function is found by integrating (10.47a).

	
 	
 	


  

φ(z,z*) = 1
2

f (z)dz∫ = i
2

k⋅z* dz∫ = k⋅i z*z
2

,

or : Φ = 0, and : A = k x2 + y2

2
.

	
 	
 	
 	
 	
 (10.55)

Now the longitudinal field is zero and the transverse field is a constant-curl rigid rotation field.

   

   

fL
* = ∇Φ = ∇ 0( ) = 0

0
⎛

⎝⎜
⎞

⎠⎟
,      fT

* = ∇× A = ∇× k⋅ x2 + y2

2
·ez

⎛

⎝
⎜

⎞

⎠
⎟ =

∂A
∂y

− ∂A
∂x

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
k⋅y
−k⋅x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,   where:∇× fT
* = −2k.  (10.56)
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Exercises 
Construct dipole function geometry of Fig. 10.11.
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Chapter 11. Oscillation, Rotation, and Angular Momentum
We last left the neutron starlet orbiting on an ellipse inside the Earth in Fig. 9.10 according to

x = a cos ω t 	
 (9.13a)repeated	
 	
 	
   y = b sin ω t 	
(9.13b) repeated

Here we show a Kepler construction for such an orbit that works for any ellipse. (It is like Fig. 3.6.) We also 

expose more geometry of velocity-velocity KE-ellipses used to introduce Lagrangian, Hamiltonian, action, 

and contact transformations in the following Chapter 12. That leads to more efficient ways to treat orbits.

Keplerian construction of elliptic oscillator orbits
To be historically correct, Kepler was concerned with elliptic orbits that lie outside of the Earth not 

the inside-Earth orbits in a linear force law F(r) = -kr that we plotted. As we will show in Unit. 5, outside 
orbits in a Coulomb force law F(r) = -kr-2 also have elliptic orbits, albeit with origin r=0 at a focal point. 
That’s a little more complicated. So, we first study the easier inside-Earth orbit ellipses that have r=0 
centered. This gives some properties of their country cousins who live well outside the city limits.

Elementary ellipse construction

Fig. 11.1 shows an easy 4-step construction for points on a (major-radius=a, minor radius=b)-
ellipse. Note that you don’t have to draw OA first. Pick a vertical (AX) or a horizontal (BR) line first and then 
find the others including the OA radius that goes with your choice. Given x or y, you find t or vice versa.

The big a-circle acts like a clock dial. The x-shadow or projection of the clock dial is x = a cosω t and 
every mass that starts at x=a at zero-x-velocity will forever live in the shadow of the tip of the clock hand. 
This includes any ellipse with semi-major axis a, but arbitrary semi-minor axis b. 

The ellipse in Fig. 11.1 has b=1 and a= 2.2. The speed of the orbiting mass can be estimated by the 
space between positions at equal time intervals. Speed is smaller as the mass rounds the long end of the 
ellipse than it is as it zips by the minor axis. In fact we shall show that it is exactly 2.2 times faster, a result 
that is attributed to Johannes Kepler and is the result of the conservation of angular momentum.

As mentioned before after Fig. 9.8, all orbits have the same period, and the mass that tunnels through 
the Earth center at the bottom of Fig. 11.1 has exactly the same x-equation x = a cos ω t as the ellipse-
following mass above it. They differ only in their y-equation y = b sin ω t ; in the first case the tunneling 
mass has b=0. A circular orbit would have b=a, but its x-equation would be the same. Note how the radius 
vector r of the mass lags behind the ω t-clock-hand at first, but then at the b-axis low point (perigee) of the 
orbit it catches up and passes until the clock hand catches it again at the other a-axis high point (apogee or 
“up-ogee”). This leap-frog motion relates to one of Kepler’s most famous laws and the conservation of 
angular momentum as will be reviewed shortly. 
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Fig. 11.1. Harmonic force-field elliptical orbit construction. 
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F = -kr

orbital velocity=V

(b) “Carnival kid” orbiting in
space attached to a spring

centrifugal
force=+kr
=+mω2r

ω t

centripetal
force=

(due to spring)

Carnival kid
says:

“This is awful!
I can hardly
hold onto
this darn
spring.”

F = -kr

orbital velocity=V

(a) “Earthronaut” orbiting
tunnel inside Earth

centrifugal
force=+kr
=+mω2r

ω t

centripetal
force=

(due to gravity)

Earthronaut
says:

“This is great!
I’m weightless.”

Fig. 11.2 Two different systems with identical oscillator orbits. (a) Inside Earth, (b) Mass on spring.

Orbiting versus rotating: Centripetal versus centrifugal

Imagine an “Earthronaut” orbits inside the Earth in a linear gravity field F=-kr, as sketched in Fig. 

11.2(a). (Recall “starlet” in Fig. 9.9.) Let’s compare to a kid rotating in a carnival ride at one end of a spring 

as the other end pivots frictionlessly about a fixed point. (See Fig. 11.2(b).) Each m does the same orbit, but 

there’s a big difference. You’d notice it if you were the mass m.

The Earthronaut feels weightless like astronauts in orbit. But the rotating kid feels a great outward 

pull, a centrifugal or center-fleeing force F=+kr. Stop the rotating “carnival kid” and the centrifugal force 

goes away. If the kid lets go he feels weightless in space. Stop the orbiting Earthronaut and the inward tug 

F=-kr by the centripetal or center-pulling force of gravity returns as the Earthronaut resumes weighing 

mg=kr. Earth gravity is no longer cancelled by inertial reaction force and he cannot let go of g.

An orbiting Earthronaut feels weightless because the two forces, outward centrifugal F=+kr and 

inward centripetal F=-kr , cancel to zero for body mass m or any part of it. On the other hand, the carnival 

kid feels stretched out by two equal and opposite forces, again an outward centrifugal F=+kr pulling the kid 

up opposes an inward centripetal F=-kr provided by the spring that the kid is holding onto. 

In each case, outward centrifugal F=kr is due to rotation at angular rate ω around a circle of radius r 

at velocity V= ω r. The angular rate ω is the Earth or spring oscillator frequency from (9.9) or (10.23).

	
 	


� 

ω =
k
m

 	
 (11.2a)	
	
 or: 	
 	
 	


� 

k = mω 2 	
 (11.2b)

Centrifugal force formulas that result are among the most famous formulas in rotational mechanics.

	
 	
 	
 Fcentrifugal = k r = mω2 r = m V2/r 	
 where: V= ω r 	
	
  (11.3a)

Removing the mass m gives the also-famous centrifugal acceleration formulas.
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 acentrifugal = ω2 r = V2/r 	
 	
 where: V= ω r 	
	
  (11.3b)

Circular curvature

A geometer likes to imagine fitting a curve by circles at each point with smaller circles fitting more 

curvy points. These so-called circles of curvature become bigger circles as a curve straightens out. A 

geometer-physicist does the same, but imagines driving at a constant speed V along the curve with an 

accelerometer to measure transverse centrifugal acceleration acentrifugal. By (11.3b) the accelerometer reads 

V2/rcurv outward from a curve if the car is rounding a circle of radius rcurv = V2/ acentrifugal with its center that 

distance inside the curve. The acentrifugal-reading is inversely proportional to radius of curvature for fixed 

linear velocity V, but directly proportional to it for fixed angular velocity ω.

	
 	
 	
  rcurv = V2/acentrifugal= acentrifugal /ω2  	
 where: V= ω rcurv 	
 	
  (11.3c)

It is a strange but useful view of a curve! The physicist imagines riding a carnival Merry-Go-Round 

whose rim speed V is constant but whose radius and center keep changing! If the road straightens to veer the 

other way, the Merry-Go-Round center becomes infinite and reappears on the other side.

Note that road speed V is constant in the physicist’s image. There’s no acceleration along the road, 

only perpendicular to it. However, in real orbits around planets or springs, velocity V holds constant only for 

circular orbits or, ever so briefly, at special points on elliptical ones. One special point is a low point or 

perigee. Another is a high point or apogee. (Think “ap” means “up” in space lingo.) 

An astronaut in an elliptic orbit or a mass on an elliptic oscillator orbit like Fig. 11.1 will increase 

speed (accelerate) as it “falls” from the high-point apogee on the x-axis toward the low-point perigee on the 

y-axis. Then it will decrease speed (decelerate) as it rises back to apogee. Only at apogee or perigee is the 

speed momentarily constant. Then, and only then, is force and acceleration perpendicular to the flight path. 

In between, the F=-kr vector makes an angle θ with velocity V that is not 90° so the work (dW= F•dr= |Fdr| 

cosθ) or power (P= F•V= |FV| cosθ) is non-zero so kinetic energy varies.

	


apogee
(x=a, y=0)aphelion=a

perigee
(x=0,y=b)

θperhelion=b
mass gaining speed

as it falls

Velocity
V

θVelocity
V centripetal force F=-kr

Negative power
( F•V=|F||V|cos θ <0)

Positive power
( F•V=|F||V|cos θ >0)

mass losing speed
as it rises

Fig. 11.3 Elliptic orbit force, velocity, and power variation.

©2012 W. G. Harter Chapter11. Oscillation, Rotation, and Angular Momentum 170

170



171
More inertial forces: Coriolis and tidal forces

Carnival kid would feel even more forces on an elliptic orbit, though the Earthronaut may still be 

nearly weightless. Gravitational force is balanced by centrifugal force and, between apogee and perigee, by 

another kind of inertial force called the Coriolis force that opposes orbital velocity. 

To visualize Coriolis force imagine what you would feel walking along a radial railing toward the 

center of a Merry-Go-Round rotating to your right as in Fig. 11.4(a). The railing pushes you left (against the 

rotation) to slow you down to zero speed when or if you get to the center of the Merry-Go-Round. The 

Coriolis force is proportional to your radial walking speed. Stop walking inward and all you feel is the usual 

centrifugal force pulling back out along the radial railing path. Walk back out and Coriolis pushes you to the 

right to get you up to the Merry-Go-Round rotation speed at each point.

Coriolis forces can make you dizzy and nauseous. Centrifugal force is steady as long as you are fixed 

to the Merry-Go-Round. But, if you just turn your head, the fluids in your inner ear get a kick perpendicular 

to the direction of motion and they’re not used to that. 

Fig. 11.4(b) shows centrifugal and Coriolis forces of an inward falling orbiting mass analogous to 

that of the Merry-Go-Round. The Coriolis force acts oppositely to orbital velocity V on the way in and then 

acts with V on the way out in Fig. 11.4(c). At apogee or perigee in Fig. 11.4(d) there is centrifugal-centripetal 

force but no Coriolis force since the mass momentarily stops its radial motion.

The Earthronaut may not feel centrifugal or Coriolis forces if every atom almost perfectly balances 

inertial force by equal and opposite gravitational force to make a feel-force-free orbit. But, “almost” is not 

zero! Suppose our astronaut is on a 1 kHz neutron star orbit. (That’s ω=2000π.) He (or she) is toast and jelly 

due to what is called tidal force. Only the astronaut’s center-of-gravity is right on a feel-force-free elliptic 

orbit. For the rest that’s the wrong ellipse! The poor astronaut’s left and right hands (and ears and other 

bilateral pieces of anatomy) try to change places 2000 times per second as disparate free-fall orbits crisscross 

back-and-forth twice each period. Really barf!

The k-constant or spring constant for an oscillator tidal force felt by a neutron-astronaut (who will be 

reduced to a “neuternaut” by one orbit) is given by (11.2b).

 k=mω 2= m6.282 E6  (N/m) 	
 for: ω=2000π  	
 	


That is almost 40 million Newtons (10 million lbs. or 5 thousand tons) for each kilogram of mass a meter off-

center or 50 tons of pressure just on a 1 cm-sized fingertip. 

Quite a number of astrophysical effects are due to tidal forces like ocean tides. The Moon presents 

one face because its tides due to Earth have wasted as much of its rotational energy as possible. So it’s 

locked relative to Earth with only slight (but interesting) nutational wobbling due partly to its eccentric orbit.
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Velocity

V

centripetal force F=-kr

centrifugal force

Total inertial force F=+kr

Coriolis force

centrifugal force
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radial
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Coriolis force

(depends on

radial path

speed)

Rotational

velocity

V=ωr

circle

of

curvature

Velocity

V

centrifugal force is

Total inertial force F=+kr

circle

of

curvature

(a) Centrifugal and Coriolis

Forces on Merry-Go-Round

(b) Centrifugal and Coriolis

Forces on Oscillator Orbit

(Falling phase)

(c) Centrifugal and Coriolis

Forces on Oscillator Orbit

(Rising phase)

centrifugal force

Velocity

along

radial

path

Coriolis force

centripetal force F=-kr

Velocity

V

centripetal force F=-kr

centrifugal force

Total inertial force F=+kr

Coriolis force

circle

of

curvature

(d) Centrifugal Force

on Oscillator Orbit

(apogee and perigee)

Velocity

V

centripetal force F=-kr

centrifugal force is

Total inertial force F=+kr

Fig. 11.4 Centrifugal and Coriolis forces. (a) Simple Merry-Go-Round. (b-d) Various orbital phases.
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Vector analysis and geometry of elliptic oscillator orbit

An ellipse orbit is characterized using vectors r, v, and F= ma that are arrows in Fig. 11.4. First, there 

is the location, position, or radius vector r that we found in (9.13).

	
 	
 	


   

r =
rx
ry

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= x

y
⎛

⎝
⎜

⎞

⎠
⎟ =

acosω t
bsinω t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
	
 	
 	
 	
 	
 (11.5a)

Second, there is the rate, speed, or velocity vector v that is a 1st time derivative

� 

d
dt

cosωt
sinωt

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = ω

− sinωt
cosωt

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ .

	
 	
 	


� 

v =
vx
vy

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ =
−aω sinω t
bω cosω t

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

dr
dt

= ˙ r 	
	
 	
 	
 	
 	
 (11.5b)

Unit-m force F is proportional to 2nd derivative (Change-of-velocity is acceleration a) and is just -ω2r.

	
 	
 	

 

F
m

= a =
ax
ay

⎛

⎝
⎜

⎞

⎠
⎟ =

−aω 2 cosω t
−bω 2 sinω t

⎛
⎝⎜

⎞
⎠⎟
= dv
dt

= v = r = d 2r
dt2
	
 	
 	
 	
 (11.5b)

Then the 3rd derivative (Change-of-acceleration is jerk j), is just -ω2v,

	
 	
 	
 	

 
j =

jx
jy

⎛

⎝
⎜

⎞

⎠
⎟ =

+aω 3 sinω t
−bω 3 cosω t

⎛
⎝⎜

⎞
⎠⎟
= da
dt

= a = v = r = d 3r
dt3
	
 	
 	
 	
 (11.5c)

and finally the 4th derivative (Change-of-jerk is inauguration i), equals the r-vector with a scale factor ω4. 

	
 	
 	
 	

 
i =

ix
iy

⎛

⎝
⎜

⎞

⎠
⎟ =

+aω 4 cosω t
+bω 4 sinω t

⎛
⎝⎜

⎞
⎠⎟
= dj
dt

= j = a = v = r = d 4r
dt4
	
 	
 	
 (11.5d)

Linear Hooke force F=-kr gives F=ma=-kr then a=-ω2r then j= -ω2v, and so on. The 5th derivative 

(Change-of-inauguration is revolution) is just ω5v. As plotted in Fig. 11.5, the four vectors r, v/ω, a/ω2, and 

j/ω3 follow each other on one ellipse orbit of Fig. 11.1 taking turns to slow down then to speed up. 

r(t) φv(t)/ω

90°

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

r(t)
φ=ω tv(t)/ω

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

90°

Time frame angle

φ=ω t
(Mean Anomaly)

(a) Orbits (b) Tangents

Fig. 11.5 Harmonic oscillator orbit ellipse (a) All derivatives follow same orbit. (b) Related tangents.
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Each of the four vectors r, v/ω, a/ω2, and j/ω3 in Fig. 11.5 has a time-phase angle or mean anomaly value 

φ=ωt that is spaced at π/2 intervals ωt, ωt+π/2, ωt+π, and ωt+3π/2, respectively, as listed below. 

 
r(t) = acosωt

bsinωt
⎛

⎝⎜
⎞

⎠⎟
 

       =
acosφ
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⎞

⎠
⎟

(11.6a)    
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⎜
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(11.6b)    
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(11.6c)     
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 (11.6d)

Matrix operations and dual quadratic forms 

Ellipse equation 

� 

x2

a2
+
y 2

b2
= 1 may be written using a matrix 
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 (11.7)

Function r•Q•r is a quadratic form QF. QF’s are useful to mechanics and their powerful geometry will be 

demonstrated for orbit ellipses and later for KE ellipses. First note that if a matrix 

� 

Q = 1 / a2 0
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⎛ 
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 (11.8a)

p is perpendicular, that is, orthogonal to the velocity vector v= r  (11.5b) as seen here and in Fig. 11.6.

 

r • p = 0 = rx ry( ) • px
py

⎛

⎝
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  where:
rx = −a sinφ
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px = (1 / a) cosφ   
py = (1 / b) sinφ     

(11.8b)

These p-vectors define their own ellipse r•Q-1•r=1 of an inverse quadratic formQ-1F. Its radii are inverse (1/a,

1/b) of the original Q-ellipse radii(a,b) in (11.7). The Q-1F-ellipse is the dashed oval in Fig. 11.6. 
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 (11.9)

Inverse operation Q-1•p on perpendicular p returns the radial position vector r on the Q-ellipse.
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 (11.10a)

r is orthogonal to the Q-1F-ellipse tangent p , just as p is orthogonal to the QF-ellipse tangent r  in (11.8b).
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(11.10b)
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Vectors p and r maintain a unit mutual projection, that is, dot-products p•r and p • r  always equal 1.

	


� 
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 (11.10c)

Fig. 11.6b shows a geometric-algebraic symmetry where ellipse plots are scaled by geometric mean S=√(ab) 

so that each scaled major radius aS=a/S is the inverse of its minor radius bS=b/S and aS bS=1. 

	
 aS=a/S=√(a/b)=1/bS	
 (11.11a)	
 	
 	
 bS=b/S=√(b/a) =1/aS	
  	
 (11.11b)

Then inverse ellipse r•Q-1•r=1 is an axis switch ( aS  bS ) or 90° rotation of ellipse r•Q•r=1 by symmetry. 
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Fig. 11.6 Ellipse vectors and tangents for quadratic forms. (a) Ellipse vectors. (b) Tangent geometry.

Slope multiplication and eigenvectors

MatrixR =  0
1/a

1/b
 0( ) or R−1 = 0

a  b
0( )  acting on a vector r = y

x( )  multiplies its slope x
y  by a/b or b/a respectively. 

	
 R • r = 1 / a 0
0 1 / b

⎛
⎝⎜

⎞
⎠⎟
x
y

⎛
⎝⎜

⎞
⎠⎟
=

x / a
y / b

⎛
⎝⎜

⎞
⎠⎟

 (11.12a)	
 	
 R−1 • r = a 0
0 b

⎛
⎝⎜

⎞
⎠⎟
x
y

⎛
⎝⎜

⎞
⎠⎟
=

a ⋅ x
b ⋅ y

⎛
⎝⎜

⎞
⎠⎟

 	
 (11.12b)

MatrixQ = R2 =  0
1/a2

1/b2
 0( )or Q−1 = R−2 = 0

a2

 
b2
0( )  multiplies slope by a2/b2 as in (11.8a) or b2/a2 as in (11.10a). 

	
 Q • r = R2 • r = x / a2

y / b2
⎛
⎝⎜

⎞
⎠⎟
= p  	
 (11.13a)	
 	
 Q−1 • r = R−2 • r = a2 ⋅ x

b2 ⋅ y
⎛
⎝⎜

⎞
⎠⎟

 	
 (11.13b)

Only vectors of slope zero or infinity, such as â = (01 ) or b̂ = (10 ) , are immune to slope-change by R or R-1.

	
 R−1 • â = a 0
0 b

⎛
⎝⎜

⎞
⎠⎟
1
0

⎛
⎝⎜

⎞
⎠⎟
= a

1
0

⎛
⎝⎜

⎞
⎠⎟
= a ⋅ â  (11.14a)	
 	
 R−1 • b̂ = a 0

0 b
⎛
⎝⎜

⎞
⎠⎟
0
1

⎛
⎝⎜

⎞
⎠⎟
= b

0
1

⎛
⎝⎜

⎞
⎠⎟
= b ⋅ b̂  (11.14b)

They are called eigenvectors of R-1 or any power R p = {R2 = Q,R3 ,R4 = Q2 ,R5 ,R6 = Q3 ,R7 ,...} of R or R-1. 
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R−2 • â = Q−1 • â = a2 ⋅ â  	
	
 (11.15a)	
 	
 R−2 • b̂ = Q−1 • b̂ = b2 ⋅ b̂  	
	
 (11.15b)

R2 • â = Q • â = (1 / a2 ) ⋅ â  	
 (11.15c)	
 	
 R2 • b̂ = Q • b̂ = (1 / b2 ) ⋅ b̂  	
 (11.15d)
These special vectors are operator Rp’s own base vectors for any power p. Eigenvector is German for “own-

vector.” Base vectors â and b̂ define a Qp-and-Rp-ellipse’s own major and minor axial directions. The axial 
radii a and b are the eigenvalues of R-1 in (11.14). Powers ap and bp are eigenvalues of R-p.

Geometric slope series
Each action of R (or Q) on vector r grows its slope by a/b (or a2/b2) so it approaches eigenvector b̂ = (10 )  while 

R-1 and Q-1 make it approach eigenvector â = (01 ) . Each slope polar angle φk plotted in Fig. 11.7 is obtained 

from its neighbors φk-1 and φk+1 by inscribing a rectangle between r=a and r=b with its main diagonal on the  

φk line. Lower and upper corners on the cross-diagonal give radial position r(φk-1) on the Q-ellipse and 

perpendicular p(φk+1) on the Q-1-ellipse, respectively, following Fig. 11.1 and (11.13).

	
 	
 	
 	
 p(φk+1)=Q•r(φk-1)	
 where: tan(φk+1)= (a/b) 2 tan(φk-1)  	
 	
 (11.16)

For the kth triad, angle φk =ωtk is the “timer” angle and polar angle of main diagonal while φk-1 is the polar 

angle of radial position r(φk-1) and φk+1 is the polar angle of perpendicular p(φk+1) to velocity  r (φk-1)= v(tk).

	
 p(φk+1)• r (φk-1)=0=  p (φk+1)•r (φk-1) 	
(11.17a)	
 	
 	
 p(φk+1)•r(φk-1)=1 	
 (11.17b)
This restates the duality relations (11.10) for an entire sequence, part of which is shown by Fig. 11.7b.

	
 A {φk} sequence may start on any angle but a choice φ0=π/4 in Fig. 11.7 gives symmetric results. 

Also, we may let: ab=1 and: Q =  0
b/a

a/b
 0( ) below by assuming unit scale S=1 in (11.11).

  p(φ1) =
b cosφ0
a sinφ0

⎛

⎝⎜
⎞

⎠⎟
=

b / 2

a / 2

⎛

⎝
⎜

⎞

⎠
⎟ 	
 p(φ0 ) =

b cosφ−1

a sinφ−1

⎛

⎝⎜
⎞

⎠⎟
=

ab / a2 + b2

ab / a2 + b2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
	
 p(φ−1) =

b cosφ−2

a sinφ−2

⎛

⎝⎜
⎞

⎠⎟
=

a2b / a4 + b4

ab2 / a4 + b4

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

          = Q • r(φ−1)    (11.18a)	
          = Q • r(φ−2 ) 	
 (11.18b)	
          = Q • r(φ−3 ) 	
 (11.18c)

  r(φ−1) =
a cosφ0
b sinφ0

⎛

⎝⎜
⎞

⎠⎟
=

a / 2

b / 2

⎛

⎝
⎜

⎞

⎠
⎟ 	
 r(φ0 ) =

a cosφ1
b sinφ1

⎛

⎝⎜
⎞

⎠⎟
==

ab / a2 + b2

ab / a2 + b2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
	
 r(φ1) =

a cosφ2
b sinφ2

⎛

⎝⎜
⎞

⎠⎟
=

ab2 / a4 + b4

a2b / a4 + b4

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Triads {rk+1,rk,rk-1} and {pk+1,pk,pk-1} of vectors rk=r(φk) and pk=p(φk) are given for φ0=π/4.

  p(φk ) =
b cosφk−1
a sinφk−1

⎛

⎝⎜
⎞

⎠⎟
	
 	
 r(φk ) =

a cosφk+1
b sinφk+1

⎛

⎝⎜
⎞

⎠⎟
	
 	
 cosφk = b

k / a2k + b2k = sinφ−k

cosφ−k = a
k / a2k + b2k = sinφk

	
 (11.19)

Each triad {rk+1,rk,rk-1} easily gives the tangent vk-1=v(φk-1)= 
rk−1  that contacts the Q-ellipse at rk-1. An arc by 

rk intersects rk+1 where vk-1 is perpendicular to rk+1 or pk+1=p(φk+1). (See Fig. 11.7a and exercises.) 
	
 So far the ellipse axes line up with the Cartesian coordinate axes of a standard page. Ellipses in other 

bases may be rotated, and certainly an orbit of an isotropic oscillator may choose any direction for its axes. 

The following general 2D quadratic form gives a rotated conic section (ellipse or hyperbola). 
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� 

x y( ) •
A B
B C

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ •

x
y

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 1 = x y( ) •

Ax + By
Bx + Cy
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = Ax2 + 2Bxy +Cy 2     or:      r •Q• r = 1 	
 (11.20)

slope
1/1

slope
a/b

slope
b/a

r(φ-1)
φ-1

φ0

φ1

p(φ-1)

vv--11== rr((φ-1))••
p(φ1)

pp((φ1))••

r(φ0)
r(φ1)

slope
1/1

slope
a/b

slope
b/a
φ-1

φ0

φ1

slope
1/1

slope
a/b

slope
b/a φ-1

φ0

φ1

slope
b2/a2

slope
a2/b2

φ-2

φ2

φ-3

φ3

φ-1

φ0

φ1

φ-2

φ2

φ-3

φ3

slope
b3/a3

slope
a3/b3

(a) Basic rk=r(φk) or pk=p(φk) triad around φ0=45°

(b) Sequence of rk=r(φk) or pk=p(φk) triads on {... φ2, φ1, φ0, φ-1, φ-2,...}

r1

p2
p3

r2r3

p1

vv--11== rr((φ-1))••
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Fig. 11.7 Triad sequence geometry of radial position vector r(φn-1) and tangent-perpendicular p(φn+1).

However, all the relative geometric properties such as their tangent geometry are the same in all 

bases. It’s abstract vector equation 1=r•Q•r looks the same in any coordinate base system, but the matrix 

components may include non-zero off-diagonal elements B≠0 that indicate it is a rotated ellipse.

Angular momentum and Kepler’s law
The shape and rotational orientation of an isotropic oscillator orbit ellipse is constant with time. The cross 

product of rxv of position and velocity is also a constant of the motion by (11.5). (See App. 1.A.)

	
 	


� 

r× v = rx vy − ryvx = a cosω t ⋅ bω cosω t( ) − asinω t ⋅ −bω sinω t( ) = ab ⋅ω  	
 (11.21)

The quantity L=m rxv is called orbital angular momentum. It’s conserved as mass m orbits. 

	
 	
 	
 	


� 

L = m r × v = m rxvy − ry vx( ) = m ⋅ab ⋅ω  	
 	
 	
 (11.22)

It means the area of r+v or r-v triangles, as discussed in Appendix 1.A, are constant on an orbit as indicated 

in Fig. 11.8 below. Area enclosed by r and v is proportional to the area π ab of the whole orbit.

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Fig. 11.8 Vector r+v and r-v parallelogram and triangle areas are constant all during orbit.

By (11.22), velocity at perigee (x=0,y=b) is vb=L/mb=aω. At apogee it slows to va=L/ma=bω. This is 

consistent with velocity formula (11.5b). Constant momentum relates to Kepler’s Law: the radius r-vector 

sweeps the same area every second or every hour and equal time means equal area. 

This is true since the triangle made of r and dr=v dt has the same area 1/2rxv dt = (L/m)dt for the 

same time interval dt. This law applies to any central force that is a function of radius r alone, not just the 

oscillator force F=-k·r. This includes the Coulomb force F=-k/r2, which is the only other force to have 

elliptical orbits that maintain their orientation.

The oscillator and Coulomb forces each have hidden symmetry beyond their Keplerian rotational 

isotropy that conserves angular momentum and this makes their orbits have simple geometric properties. 

This extra symmetry will be analyzed in units 4 and 5.

Flight of a stick: Introducing geometry of cycloids

If linear momentum and angular momentum are conserved they often do so together. As an example, 

we consider the flight of a rigid rod or stick in free space. Flying rods are treated in Sec. 6.4 of the rigid body 
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unit (Unit 6) but elementary aspects of rigid body motion are easy to derive and they display cycloid 

geometry that is useful for several classical mechanical phenomena. A mass m rotating on a circle of radius r 

with angular velocity ω has a linear tangential velocity V=ω·r and kinetic energy KE=21mV 2 . (Recall (9.10) for 

orbiting starlet.) An angular form is derived here again.

	
 	
 	
 	
 KEangular = ε = 1
2
mV 2 = 1

2
mr2ω 2 = 1

2
I ⋅ω 2 	
 	
 	
 	
 	
 (11.23)

Circular orbiter angular momentum (from (11.22) above) takes an angular form, too.

	
 	
 	
 	
 Pangular = Π⋅ r = mV ⋅ r = mr2ω = I ·ω 	
 	
 	
 	
 	
 (11.24)

In each the point mass rotational inertia I=mr2  replaces linear mass m while angular velocity ω replaces V. 

	
 A rod or lever of length  rotating about one end is viewed as an integral from r=0 to r= of its mass 

points  dm = ρ ⋅dr each of infinitesimal inertia   dI = r2dm = ρ ⋅ r2dr . Density ρ is the rod’s total mass M per length , 

and that is assumed to be uniform. Total inertia follows from taking the integral over its length.

	
 	
 	

   
I = dI∫ = ρ ⋅ r2 dr

0



∫ = 1
3
ρ ⋅3 = 1

3
M ⋅2       where: ρ=M/ 	
 	
 	
 	
 	
 (11.25)

	
 This inertial formula is true for two identical rods of length  welded end-to-end and rotating about 

that point. Now mass M is that of the total system. In free space the straight welded rod will rotate naturally 

with constant angular velocity ω about the welded point at its center of mass and that center travels at a 

constant velocity  V CM  until hit by an outside force. 

	
 Then free-space paths of each point on the rod, including its center-of-mass, are generalized cycloids 

such as are shown in Fig. 11.9. There are two dots on the rod (a red dot • and a green dot •) that follow 

normal cycloids. Each comes to a complete stop at a cycloid cusp (as green dot • is in the lower center of the 

figure) while the opposite dot is just reaching its maximum velocity (as red dot • is in the upper center of the 

figure). On left and (later) right sides of Fig. 11.9 is similar with rod flipped.

Imagine dot • and dot • are pieces of gum stuck to opposite sides of a tire (green circle of radius p in 

Fig. 11.9) rolling left-to-right along a line (“road”) with rod CM point attached at tire center. A blue dot • on 

one end of the rod is initially above the green dot • (upper left of Fig. 11.9) while the rod’s lower end has a 

violet dot • attached below the red dot • where the tire initially meets the road. Rod points outside tire radius 

(blue dot • and violet dot •) trace curlate cycloids. Inside points (CM and yellow dot •) trace prolate cycloids. 

The CM just follows a straight line at constant speed. Tire radius p depends on hit-height h above CM point 

where momentum impulse Π is delivered in Fig. 11.10. However, regardless of h, the CM point will travel at 

constant linear velocity V=Π/M while the rod conserves linear momentum Π=MV. 
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Center of percussion, radius of gyration, and “sweet-spot”

Angular velocity ω relates to hit-height h factor in angular momentum Iω=Λ=Πh and to tire radius p where 

red dot • on tire comes to rest on road, and velocity ω·p=Πh·p/I due to rotation cancels velocity V=Π/M due to 

translation. This gives relation h·p=I/M. Rod inertia 
   
I= 3

1 M ⋅2 then gives relation 
   
h·p= 3

12  between hit-height h 

and radius p of percussion for rod of radius . We call hit point h a “sweet-spot” for point P and vice-versa.

    

p

πp

Curlate cycloid

Normal cycloid

Prolate cycloid
(nearly a sine curve)

Normal cycloid

Curlate cycloid

	
 Fig. 11.9 Free flying rod of length L=2 “rolls” left-to-right on “tire” of radius p. 

	


bang!



 h

Π = linear momentum

Π·h= angular momentum around
c.g.

point

Imaginary wheel or radius p rolls on imaginary road

that intersects the Center of PercussionPP

p

	
 Fig. 11.10 Impulse hit-height h relates to rod radius  and percussion radius p of rolling “tire.”
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 If the hit-height h is zero then percussion radius p is infinite and all points of the rod follow straight 

parallel paths since there will then be zero rod rotational velocity ω and zero angular momentum Λ=Πh. Only 

linear velocity V=Π/M would be nonzero then. If the hit-height h is equal to  (the maximum practical value 

of h is the radius  of rod) then the percussion radius is p=/3, its minimum practical value. 

Reducing h increases p proportionally. The two are equal at the value p=/√3=h=0.866 which is 

called the radius of gyration of the rod. Reducing hit-height h further to /2 and /3 increases the percussion 

radius p to p=2/3 and p=, respectively. The percussion point is where you can hold the lever and feel the 

very least recoil during the hit. In fact, the dynamics at a normal cycloid cusp point at radius p in Fig. 11.9 

amounts to a gentle tug along the lever but no force perpendicular to it.

	
 Baseball bats are made thicker at the hitting end to accommodate h and p points further from the ends 

than allowed by p=h=0.866. Cricket bats, on the other hand, seem to be more like sticks. 

Exercise 1.11.1 
Quadratic form matrices are generally non-diagonal Q = B

A
D
 B( ) . If Q has positive eigenvalues 1/a2 and 1/b2 its form is called 

positive definite and r•Q•r =1 gives an ellipse rotated by angle θ with radii a and b. So does r•Q-1•r =1.
(a) Derive relations between matrix parameters {A,B,D} and ellipse parameters {a,b, θ }. (Hint: Start with diagonal matrix and 
rotate it to Q´=R·Q·R-1 by applying rotation transformation matrices R = sinθ

cosθ
cosθ
−sinθ( )  and R−1 = − sinθ

cosθ
cosθ
sinθ( ) .)

(b) Show TraceQ and detQ (or TraceQ-1 and detQ-1) are invariant to θ and relate them to conserved quantities such as total energy 

    E = 2
1mrir +2

1 mω 2rir  and orbital momentum      =|mr × r|  of isotropic 2D harmonic oscillator orbit elliptic orbit r(t) in (11.5). 

Could the energy or momentum of an isotropic 2D HO orbit depend on orientation angle θ ? How or why not?
(c) Suppose Q’s eigenvalues were 1/a2 and -1/b2. What curve is r•Q•r =1? Plot for a=1=b and θ = 45°.

Exercise1.11.2 
Recall Fig. 11.7 geometric sequence {r-3, r-2, r-1, r0, r1, r2, r3,…} of ellipse radii rk=r(φk) and perpendicular-to-tangents pk+2 =Q•rk 
defined by quadratic forms rk•Q•rk =1= pk•Q-1•pk by Q =  0

b/a
a/b
 0( ) . (Ellipse radii had ab=1 and 0th sequence slope was tanφ0=1 

(φ0=π/4) but other values work as well.)
(a) Construct super-imposed r-ellipse and p-ellipse with at least seven vectors each for a/b=2 (done in class) and a/b=5/4. Give 
the vectors rk you draw algebraically (in terms of a and b) for -2 ≤ k ≤ 2  and check k=2 cases numerically with geometry.

(b) Verify duality relations:    rk−1 •pk+1 = 1  and      rk−1 •pk+1 = 0 = rk−1 • pk+1. (For time derivatives let ω=1.)

rk+1 rk
rk-1

rk-1=vk-1
•

(c) The text noted that a ellipse tangent vk-1=v(φk-1)= 
rk−1 at rk-1 is also tangent to a circular arc Ck to k+1 swept by radius |rk| from the 

tip of rk to where Ck to k+1 is perpendicular the rk+1-line. Show this implies a relation
       rk−1 • r̂k+1 =| rk |. (Notation    r̂k+1  denotes unit vector:    | r̂k+1 |= 1 )
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Verify this algebraically and geometrically for the case k=-1 and k=0 using vectors you have derived. Use the result to construct 
tangents vk contacting each radius {r-3, r-2, r-1, r0, r1, r2, r3,…} on r-ellipse. Place the tangent vectors in r-ellipse.
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Chapter 12. Velocity vs momentum functions: Lagrange vs Hamilton 

Relating energy ellipses in velocity and momentum space
The ellipse in Fig. 5.1 is skinny and difficult to see. To better view multiple collisions, the v1-v2 axes are 

rescaled into “quasi-velocities” Vk=vk √mk so the ellipse forms into a nice circle in Fig. 5.2.

	
 KE =2
1 (m1v1

2 + m2v2
2 ) =2

1 (V1
2 +V2

2 )  where: V1 = (m1)
1/ 2 v1  and: V2 = (m2 )

1/ 2 v2 	
 (12.1)
The half-power mass scale is helpful. A full power mk-scale converts velocity vk to momentum pk. 

	
 KE =2
1 (m1v1

2 + m2v2
2 ) =2

1 (
p1
2

m1

+
p2
2

m2

)  where: p1 = m1v1  and: p2 = m2v2 	
 	
 (12.2)

Geometry of a p-ellipse is just a flip of the v-ellipse, but there are compelling algebraic reasons for dealing 

with such alternative functions. In fact two of these functions have famous names attached.

Lagrangian, Estrangian, and Hamiltonian functions

An energy that is an explicit function of velocities is called a Lagrangian function L=L(vk..).

	
 	
 	
  L(vk…) =2
1 (m1v1

2 + m2v2
2 +…) = L(v...) 	
 	
 	
 	
 (12.3)

An energy that is an explicit function of momenta is called a Hamiltonian function H=H(pk..).

	
 	
 	

 
H(pk…) =2

1 (
p1
2

m1

+
p2
2

m2

+…) = H(p...) 	
 	
 	
 	
 (12.4)

A compromising function like (12.1) has no famous name so we’ll call it an Estrangian E=E(Vk..).

	
 	
 	
  E(Vk…) =2
1 (V1

2 +V2
2 +…) = E(V…) 	
 	
 	
 	
 	
 (12.5)

	
 While all these functions may have the same numerical value for a given situation, the have quite 

different functional dependence. To emphasize this let us write our first equations of (non)-motion.

	
 ∂L
∂pk

≡ 0 ≡ ∂E
∂pk

 (12.6a)	
 ∂H
∂vk

≡ 0 ≡ ∂E
∂vk

 (12.6b) 	
 ∂L
∂Vk

≡ 0 ≡ ∂H
∂Vk

 (12.6a)

The first two for L and H say that L has no explicit p-dependence and H has no explicit v-dependence. L may 

still vary if p varies but L is not defined by p and the same for H and v. Calculus distinguishes total 

derivatives dz
dL or dz

dH  from partial derivatives ∂z
∂L  or ∂z

∂H and begins by defining differential chain rule sums.

	
 	

 
dL =

∂L
∂v1

dv1 +
∂L
∂v2

dv2 + (12.7a)	
 	

 
dH =

∂H
∂p1

dp1 +
∂H
∂p2

dp2 + (12.7a)	


Then L (or H) varies with any variable z such as vk, pk, or time t according to derivative chain rule sums.

	
 	

 

dL
dz

=
∂L
∂v1

dv1
dz

+
∂L
∂v2

dv2
dz

+  (12.7a)	
 	

 

dH
dz

=
∂H
∂p1

dp1
dz

+
∂H
∂p2

dp2
dz

+  (12.7a)

(Imagine L(v...) is “married” to v and H (p...) to p. Dots denote coordinates and time discussed later.)

©2012 W. G. Harter Unit 1 Review of Velocity, Momentum, Energy and Fields         

183



 Neither may use another’s dependents without legal difficulty! Geometry helps clarify this below.	


L, E, and H ellipse geometry
A Lagrangian ellipse plot const. = L(v) in Fig. 12.1a is similar to the superball collision diagram in Fig. 5.1. 

It is to be compared with the corresponding Estrangian ellipse (circle) plot const. = E(V) in Fig. 12.1b and 

the Hamiltonian ellipse plot const. = H(p) in Fig. 12.1c. COM and collision line slopes are compared.

(a) Lagrangian L = L(v1,v2)

v1

v2
(b) Estrangian E = E(V1,V2)

V1=√m1v1

(c) Hamiltonian H = H(p1,p2)

p1=m1v1

p2=m2v2

V2=√m2v2

COM Bisector
slope = 1/1

Collision line and
COM tangent slope
= -m1/m2 =-16

Collision line and
COM tangent slope
=-√m1/√m2=-4

COM Bisector slope
= √m2/√m1 =1/4

Collision line and
COM tangent slope

= -1/1

COM Bisector slope
= m2/m1 =1/16

slope
√m1
√m2

=4

slope=1

Fig. 12.1 KE ellipse functions related by scale. (a) L in velocity vk space. (b) E in Vk. (c) H in pk. 
	
 	
 	
 	
 	
 	

Functions L, E, and H are quadratic forms of vectors v, V=R•v, and p=M•v=R2•v, respectively.

 L(v) =2
1 viMiv   (12.8a)	
  E(V) =2

1 Vi1iV   (12.8b)	
  H(p) =2
1 piM−1ip    (12.8c)

The corresponding scaling matrices are powers of the root-mass matrix:  R= 0
m1

m2

0( )
M =

m1 0
0 m2

⎛

⎝⎜
⎞

⎠⎟
= R2 	
 	
 1 = 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
	
 	
 M−1 =

1 / m1 0
0 1 / m2

⎛

⎝⎜
⎞

⎠⎟
= R−2 	
(12.9) 

The 2nd power rescaling M=R2 mass matrix maps L(v) space (a) into Hamiltonian H(p) space (c). 
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 The p-to-v tangent-normal mapping is analogous to r-to-p mapping in Fig. 11.6 as displayed in a Fig. 

12.2c that overlaps parts (a) and (c) of Fig. 12.1. Velocity v is a p-space gradient operation ∇ p H= v and thus 

normal to H-ellipse, and vice-versa for the normal p=∇v L to the L-ellipse. Matrix notation is given, too.	


 
∇vL = p = ∂L

∂v
=Miv 	
 	
 	
 (12.10a)	


 
∇ pH = v = ∂H

∂p
=M−1ip    	
 	
 (12.10b)

  

∂L
∂v1

∂L
∂v2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
p1

p2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

m1 0

0 m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

v1

v2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (12.10c)      

  

∂H
∂p1

∂H
∂p2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
v1

v2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

m1
−1 0

0 m2
−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

p1

p2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  	
(12.10d)

p2=m2v2

p1
=m1v1

Hamiltonian plot
H(p)=const.=p•M-1•p/2(b)Lagrangian plot

L(v)=const.=v•M•v/2

v2=p2 /m2

L=const = E

v1=
p1 /m1

(a)

v v = ∇∇pH
=M-1•p

p = ∇∇vL
=M•v

p

Lagrangian tangent at velocity v
is normal to momentum p

Hamiltonian tangent at momentum p
is normal to velocity v

(c) Overlapping plots
v

p

v

p

p

v (d) Less mass

(e)More mass

H=const = E

L=const = E

H=const = E

Fig. 12.2 Tangent-normal mapping between (a) Lagrangian L(v) space and (b) H(p) space.

If mass increases s-times then L-ellipse radii become s times H-ellipse radii. (d) s=1/2, (e) s=2.

Fig. 12.2 is a top view of L(v)-vs-v and H(p)-vs-p plots. Side views are shown and discussed below.
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Legendre contact transformations
Given mapping  p =Miv  or inverse  v =M

−1ip , it might appear that either quadratic form L(v) =2
1viMiv  or 

 H(p) =2
1piM−1ip  may be written simply as  2

1vip  or  2
1piv  . This is correct numerically but its calculus is not. 

Instead, it is  piv −2
1 piv = piv − H  or else  piv −2

1 piv = piv − L  that gives correct derivatives. This results in the 
Legendre contact transformation between H(p) and L(v) expressed by the following identical equations.
	
 	
  L(v) = piv − H (p)    (12.11a)	
	
  H (p) = piv − L(v)   	
 	
 (12.11b)

 They give correct partial derivatives with zero for ∂p
∂L  and ∂ v

∂H  according to definitions in (12.6), as follows.

    

∂L
∂p

= ∂
∂p

p i v − ∂H
∂p

   0 =         v − ∂H
∂p

   (12.12a)	
 	


    

∂H
∂v

= ∂
∂v

p i v − ∂L
∂v

   0 =       p  − ∂L
∂v

   	
 	
 (12.12b)

The results are the first Hamilton equation and the first Lagrange definition (Recall (12.10). Reversing p and 
v derivatives gives them again in reverse order but quite consistently.

    

∂L
∂v

= ∂
∂v

p i v − ∂H
∂v

    =       p   − 0
   (12.12c)	
 	


    

∂H
∂p

= ∂
∂p

p i v − ∂L
∂p

      =         v  − 0
  	
 	
  (12.12d)

Side-view sketches of eqs. (12.11) and (12.12) are given in Fig. 12.3a-b and Fig. 12.4a-b below. 

   

-1

-1

+2

0 +1

+1

p-slope=v

dH/dp=+1.0

-1 0 +1

-1

+1

+2

v-slope=p

dL/dv =+1.6

1.6

1

1.0

1

Lagrangian plot

L(v)= v•p - H(p)(a) Hamiltonian plot

H(p)=p•v-L(v)(b)

v-slope

intercept

-H = -0.6 p-slope

intercept

-L = -1.0

Lagrangian

L(v) = 1.0 Hamiltonian

H(p) = 0.6

momentum

p
velocity

v

velocity

v = 1.0

momentum

p = 1.6

L(v) H(p)

v-slope is momentum p

velocity v is p-slope

Lagrangian L(v) is -p-slope intercept

-v-slope intercept is Hamiltonian H(p)

   Fig 12.3 Geometry of Legendre contact transformation relating (a) L(v)-vs-v and (b) H(p)-vs-p plots.
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Extreme geometry of contact transformations
Contact transformations are among the most enduring and fundamental ideas in either classical or modern 

physics. Yet few texts on these subjects explain them adequately, if at all. Most can’t even tell why “contact” 

appears in their name. Our explanation revolves around explicit-function issues involving equations (2.12):

  	
 “L(v...) is not function of p, H(p...) is not function of v, yet L(v...), H(p...), p, and v are all related!” 

There is method in this madness! One should learn how these ideas “contact” so much of physics. 

	
 The term “contact” refers to a line or curve touching or being tangent-to another curve. It is opposite 

to more common cases of crossing or being secant-to another curve (swordlike). Examples in Fig. 12.4 are 

based on Fig. 12.3.  Lagrangian side (a) shows secant lines  L(v) = p iv − H  all of slope p  but decreasing 

intercept −H (v−2 ) > −H (v−1) > ...  tied to increasing velocity points v−2 > v−1 > ...> v0   leading to a unique 

tangent to the L(v) curve at tangent contact point v0  that has a max-value H (v0 )  of H . At that point the 

Hamiltonian H  has no 1st order variation with respect to velocity, that is, H has zero 1st v-derivative.

	
 	
 	
 ∂H
∂v

= 0 at each point v= ∂H
∂p

 of L(v) with slope p= ∂L
∂v
	
 	
 	
 (12.13a)

Thus H loses its explicit v-dependence at each tangent point butH(p)  does depend on its slope p . So also 

does L lose its explicit p -dependence at each tangent point butL(v)  does depend on that tangent slope v .

	
 	
 	
 ∂L
∂p

= 0 at each point p= ∂L
∂v

 of H(p) with slope v= ∂H
∂p
	
 	
 	
 (12.13b)

momentum

p
velocity

v

v
-3

v
-2
v
-1

v
0
v
1
...-H(v

-3
)

-H(v
-2
)

-H(v
-1
)

-H(v
0
)

Tangent line points to

extreme value -H(v
0
)

of intercept -H thus:

dH(v)/dv = 0

Secant lines: L(v)=p•v-H

for fixed slope p

and varying HL(v) H(p)

dL(p)/dp = 0

p
-2
p
-1
p
0
p
1
...

Secant lines: H(p)=p•v-L(v)
for fixed slope v
and varying L

Tangent line points to

extreme value -L(p
0
)

of intercept -L thus:

dL(p)/dp = 0

-L(p
-1
)

-L(p
0
)

(a) (b)s
lo
p
e
p

sl
o
p
e
v

-L(p
-2
)

-L(p
-3
)

p
-3

extreme values

Fig 12.4 Geometry of explicit dependence. (a) L(v) loses p dependence.  (b)H(p) loses v dependence. 

Let’s examine more general examples of contact mapping that help clarify its beautiful structure and utility.
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General contact transformation geometry
Consider now a contact transformation that relates to some classical physics or to some modern physics 

while reviewing some sophomore physics. It involves the geometry of volcanic plumes on Io or atomic 

clouds rising and falling in Earth gravity as sketched in Fig. 12.5a or b, respectively. Each is modeled by a 

parabolic trajectory fountain in Fig. 12.5c that you may have studied in sophomore physics. 

α=45°

v0

(a) (b)Atomic clock
controls expanding
balls of Cesium atoms
rising and falling in
Earth gravity

(NIST Boulder Labs)

(c) Trajectory family
for fixed g and v0

Volcanic plumes on
Jupiter’s moon Io

α=45°
trajectory
contact
point

α=0°
trajectory

never
contacts
envelope

AAttoomm bbaallll eexxppaannddss aatt ccoonnssttaanntt rraattee vv00 aass cceenntteerr ffaallllss aatt ccoonnssttaannttllyy iinnccrreeaassiinngg rraattee gg··tt
aanndd iitt mmaaiinnttaaiinnss ttwwoo ccoonnttaacctt ppooiinnttss wwiitthh tthhee eennvveellooppee aafftteerr rreeaacchhiinngg iittss hhiigghheesstt ppooiinntt..

y

x

envelope

Fig. 12.5 Modeling (a) Io volcano and (b) Atomic clock by (c) trajectories of initial velocity v0 and angle α.
        
Initial position x(0)=0=y(0) and velocity  v(0) = x(0) below lead to a fixed-g trajectory x(t) = (x(t), y(t)).

 
  
x t( ) = v0 cosα( )t   (12.14a) 

  
y t( ) = v0 sinα( )t − 1

2
gt2    (12.14b)

 
   
x 0( ) = vx 0( ) = v0 cosα    

   
 y 0( ) = vy 0( ) = v0 sinα .   

The x(t)-solution has time t=x/(v0 cos α) to put in y(t) and get each trajectory y(x) plotted in Fig. 12.5c.

   
  
y x( ) = v0 sinα

v0 cosα
x − gx2

2v0
2 cos2α

= x tanα − gx2

2v0
2 cos2α

.  (12.14c)
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 Each trajectory is a zero value of a Contact Generating Solution S(v0, α : x, y)given by 

   
  
S v0,α :x, y( ) = − y + x tanα − gx2

2v0
2 cos2α

= 0 .   (12.15)

 S(v0, α : x, y) maps initial value point (v0=1, α=45°) in Fig. 12.6 onto red trajectory curve y(x) in Fig. 12.5c. 

A horizontal line of points (same v0 but α varies) fills a region of y(x) space with the v0-trajectory family.

0=S(v0, α , : x, y)

x

y
v0

α
α= 45°

Contact points

60° 75°45°

α= 45°

Fig. 12.6 Contact transformation maps point (v0, α) to trajectory of initial velocity v0 and angle α.

Envelopes of the v0-trajectory region contain extremal contact points with each trajectory. Varying α at such 

a point does not change S so 1st α-derivative of S is zero, quite analogous to zero derivatives in (12.13).

     
  

∂S v0,α :x, y( )
∂α

= 0       (12.16a)

      
  
x ∂ tanα

∂α
− gx2

2v0
2
∂ cos−2α

∂α
= 0 = x

cos2α
− gx2

2v0
2

2sinα

cos3α    (12.16b)

Solving this equation relates the x-value and the α-value of each contact point for a given fixed v0.

       
  
tanα =

v0
2

gx
 ,    or:             x =

v0
2

g tanα
 .     (12.16c)

If you put this relation into generating function (12.15), it gives the contact envelope function yenv(x).

 

  

yenv (x) = x tanα − gx2

2v0
2

1+ tan2α( )⇒ yenv (x) = x
v0

2

gx
− gx2

2v0
2

1+
v0

4

g2x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

v0
2

2g
− gx2

2v0
2

. (12.17)

It is the dashed parabolic curve in Fig. 12.5-6 contacting each and (almost) every parabolic trajectory from 
above. The envelope happens to share the shape of the (α=0)-trajectory hilited in green in Fig. 12.5. That is 
the single trajectory that never contacts the envelope. Do exercises to see more of this lovely geometry!
 A generic general contact transformation S(x,y:X,Y) shown in Fig. 12.7 maps points (xk, yk) in (x, y)-
space into points (Xk, Yk) in (X, Y)-space so function y(x) is contact-transformed to function Y(X) there. Such 
a transformation can occur from one curved set of points to another in the same space as in Huygen’s wavelet 
view of wave propagation: each wavefront curve at one instant is a contact transform of a wavefront at 
another time. (Presumably, it’s an earlier time but quantum waves are time reversible.) Contact transform 
geometry plays such a big role in connecting (contacting) classical and modern physics as we’ll see.  

©2012 W. G. Harter Unit 1 Review of Velocity, Momentum, Energy and Fields         

189



 Contact transforms are key to classical thermodynamics. For example, internal energy U(S,V) is 
defined as a function of entropy S and volume V. A new function enthalpy H(S,P) depends on entropy and 

pressure P. It is a Legendre transform H(S,P)=P·V+U of energy U(S,V) to new variable P = −(∂V
∂U )S  . Except 

for ±signs, it’s our Hamiltonian H(p)=p·v-L(v) from Lagrangian L(v) to new variable momentum p = (∂v
∂L )x .

(a) y

xx0 x1 x2

(x0,y(x0))

y(x)
(b) Y

XX0 X2X1

(X0,Y(X0))

Y(X)

S(x2,y2,X,Y)=10

S(x1,y1,X,Y)=10

S(x0,y0,X,Y)=10

Fig. 12.7 General contact transformation S(x,y:X,Y) maps each point (xk, yk) to a contact point (Xk,Yk).

Let us return briefly to the Legendre-Lagrangian-Hamiltonian relation (12.11) by comparing it’s geometry in 

Fig. 12.8 to the generic case in Fig. 12.7. The general case makes contacts using curved tangents. Legendre 

uses straight line tangents and is thus easily invertible as shown below in Fig. 12.9 and before in Fig. 12.3.

(a) y

xx0 x1 x2

(x0,y(x0))

y(x)

(b) Y

XX0 X2X1

(X0,Y(X0))

Y(X)

Y=x0X-y(x0)
Y=x1X-y(x1)

Y=x2X-y(x2)

-y(x2)
-y(x1)
-y(x0)

Fig. 12.8 Legendre contact transform S(x,y:X,Y) maps each point (xk, yk) to a contact point (Xk,Yk).
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L

q
q
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q
1
q
2

(q
1
,L(q
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))

L(q)
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0

p
2

p
1

(p
1
,H(p

1
))

H(p)

H=q
1
p-L(q

1
)

-L(q
2
)

-L(q
1
)

-L(q
0
)

-H(p
1
)

L=p
1
q-H(p

1
)

(Slope = p1)

(Slope = q1)

Fig. 12.9 Summary sketch of Legendre-Lagrangian-Hamiltonian geometry of Fig. 12.3 and 12.4.

The Equations of the Classical Universe (Lagrange, Hamilton, and others)
While string theorists search for an “Equation of the Universe”(EOTU) or a “Theory of Everything” (TOE) it should be 

noted that virtually all our modern physics, however avant-garde, has a classical foundation in Lagrangian or 

Hamiltonian equations. So a derivation of these all-important equations is in order. We already have deduced, 

mostly by symmetry and functional trickery, half of the Lagrange equations ( ∂v
∂L=p  in 12.12c) and half of the 

Hamilton equations ( ∂p
∂H =v  in 12.12d) for purely kinetic quadratic form Lagrangian L(v) =2

1viMiv  or 

Hamiltonian H(p) =2
1piM−1ip . Needed now are the other half that add a potential energy U(x) with spatial 

coordinate-x dependence to L(v,x)  and H(p,x) . That wrecks our nice translational symmetry and momentum 

conservation. Fortunately, the halves we have so far still apply. (Nature is so kind!) Also, the to-be-derived 

EOTCU (Equations of the Classical Universe) translate easily to “quite queer” coordinates {q1, q2,...} such as polar, 

parabolic, hyperbolic, etc. that were introduced in  Ch. 10 in connection with complex potential fields.

	
 Generalized curvilinear coordinate (GCC) qm systems are a big deal with a long history coming after 

(de)Cartesian coordinates xj (or xj) introduced in Chapter 1. GCC superscript qm convention that puts the 

index m up (where exponents usually go) and its notation by letter-q may seem, well, quite queer. But, such 

oddity can be forgiven if the qm let us write all EOTCU in a single compact translatable form! It is based on 

an N-dimension differential chain relation between Cartesian coordinate (CC) differential dxj  and GCC dqm.

	
 	
 	

  
dx j = ∂x j

∂qm
dqm ≡ ∂x j

∂qm
dqm   dummy-index m-sum

Defining a shorthand { }
m=1

N
∑

⎛

⎝
⎜

⎞

⎠
⎟ 	
 	
 	
 (12.18)

An N-dimension sum is implied over any index repeated (like m above) to avoid writing “Sigma”-sums.  
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  An identical linear relation exists between CC velocity   v
j≡ x j and GCC velocity  υ

m≡ qm .

	
 	
 	

 
dx j = ∂x j

∂qm
dqm 	
 	
 	
 	


   
x j = ∂x j

∂qm
qm    	
 	
 (12.19)

Total time-derivatives of CC (Cartesian velocity) and GCC (Generalized velocity) are denoted as follows.

	
 	
 	

  
v j≡ x j≡ dx j

dt
	
 	
 	
 	
 	


  
υm≡ qm≡ dqm

dt

In (12.19) Jacobian Jmj matrix gives each CCC differential dx j or velocity x j  in terms of GCC dqm or  q
m .

	
 	
 	
 	
 	

   
Jm

j ≡ ∂x j

∂qm
= ∂x j

∂ qm
   matrix component

Defining Jacobian{ } 	
 	
 	
 (12.20a)

Inverse (so-called) Kajobian Kjm matrix is defined by a partial derivative that is a flip of the one for Jmj. 

	
 	
 	
 	
 	
  
   
K j

m ≡ ∂qm

∂x j
= ∂ qm

∂x j
   (inverse to Jacobian)

Defining "Kajobian"{ }   	
 	
 	
 (12.20b)

Product of matrix Jmj and Kjm is a j-sum or ∂nq
m that by definition of partial derivatives, gives unit matrix.

	
 	
 	
 	
 	

  
K j

m⋅Jn
j ≡ ∂qm

∂x j
⋅ ∂x j

∂qn
= ∂qm

∂qn
= δn

m =
1  if  m = n
0  if  m ≠ n
⎧
⎨
⎩

	


So a Kjm matrix gives GCC dqm or  q
m in terms of dx j or  x j , respectively, the reverse of (12.18) or (12.19).

	
 	
 	

 
dqm = ∂qm

∂x j
dx j 	
 	
 	
 	


  
qm = ∂qm

∂x j
x j

 GCC acceleration or 2nd time-derivatives are a bit more complicated. We first apply dt
d  to velocity (12.19).

	
 	
 	
 	

 
x j ≡ d

dt
x j = d

dt
∂x j

∂qm
qm

⎛
⎝⎜

⎞
⎠⎟
= d
dt

∂x j

∂qm
⎛
⎝⎜

⎞
⎠⎟
qm+ ∂x j

∂qm
qm

Then a differential chain sum is applied to the Jacobian. Partial derivatives  ∂m  and  ∂n  are reversible.

	

 

d
dt

∂x j

∂qm
⎛
⎝⎜

⎞
⎠⎟
= ∂
∂qn

∂x j

∂qm
⎛
⎝⎜

⎞
⎠⎟
dqn

dt
= ∂2 x j

∂qn ∂qm
⎛
⎝⎜

⎞
⎠⎟
dqn

dt
= ∂2 x j

∂qm ∂qn
⎛
⎝⎜

⎞
⎠⎟
dqn

dt
= ∂
∂qm

∂x j

∂qn
dqn

dt
⎛
⎝⎜

⎞
⎠⎟
= ∂ x j

∂qm

Velocity eq. (12.19) then equates total t-derivative of Jacobian to a partial qm-derivative of CC velocity  x j .

	
 	
 	
 	
 	
 	

 

d
dt

∂x j

∂qm
⎛
⎝⎜

⎞
⎠⎟
=
∂x j

∂qm
	
 	
 	
 	
 	
 (12.21)

This and (12.20) are two main keys to converting the Newton Second Law (Newt II) to GCC forms that 

apply to all classical mechanical phenomena due to any number of particles in one, two, or three dimensions. 

These then serve as mathematical analogies or analogs to modern physics of relativity and quantum theory 

that describe optical, nuclear, atomic, and molecular phenomena that involve bizarre wavelike behavior in 

unimaginably countless dimensions. Even LHC physics is glimpsed but that’s still a work in progress.  
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 Lagrange’s version of Newt-II (f=Ma)
 Lagrange’s derivation starts with the following multidimensional CC version of Newt-II (f=Ma).

	
 	
 	
 	

  
f j = M j k ak = M j k x

k 	
 	
 	
 	
 	
 (12.22)

It is based upon a multidimensional CC version of kinetic energy that generalizes  2
1viMiv in (12.8).

	
 	

   
T = 1

2
M jk v jvk = 1

2
M jk x

j xk    (where M jk =Mkj  are inertia constants) 	
 (12.23)

Into the CC expression for differential work  dW = f idr = f jdx
j  is put the 1st GCC differential (12.19).

	
 	

  
dW = f jdx j = f j

∂x j

∂qm
dqm⎛

⎝
⎜

⎞

⎠
⎟ = M j k x

k ∂x j

∂qm
dqm⎛

⎝
⎜

⎞

⎠
⎟ 	
 	
 	
 (12.24)

The dqm-sum is true term-by-term since dqm are independent. (Sum still holds if all dqm are zero but one.)  

This gives an expression for each generalized GCC force component Fm defined as follows.

	
 	

  
dW = f jdx j = Fmdqm = f j

∂x j

∂qm
dqm = M j k x

k ∂x j

∂qm
dqm 	
 	
 	
 (12.24a)

	
 	

   
where : Fm = f j

∂x j

∂qm
= M j k x

k ∂x j

∂qm
	
 	
 	
 	
 	
 (12.24b)

Now for Lagrange’s clever end game.  First set
  
A = M j k x

k and 
 
B = ∂x j

∂qm
with 

  
AB = d

dt
AB( ) − A B⎡

⎣
⎢

⎤

⎦
⎥  to get:

  
  
Fm = M j k x

k ∂x j

∂qm
= M j k

d
dt
xk ∂x j

∂qm

⎛

⎝
⎜

⎞

⎠
⎟ − M j k x

k d
dt

∂x j

∂qm

⎛

⎝
⎜

⎞

⎠
⎟

Then convert  ∂x j  to   ∂x j  by (12.20a) on 1st term and (12.21) on 2nd term. Simplify by:
  

Mijv
i ∂v j

∂q
= Mij

∂
∂q

viv j

2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
  

                      

   

Fm = M j k
d
dt
xk ∂x j

∂ qm

⎛

⎝
⎜

⎞

⎠
⎟ − M j k x

k ∂x j

∂qm

⎛

⎝
⎜

⎞

⎠
⎟ =

d
dt

∂

∂ qm

M j k x
k x j

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
− ∂

∂qm

M j k x
k x j

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

The result is Lagrange’s GCC force equation using kinetic energy (12.23).

    
  
Fm = d

dt
∂T

∂ qm
− ∂T

∂qm
where: 

   
T = 1

2
M jk x

j xk   (12.25a)

 But, Lagrange isn’t done yet! If the force is conservative it’s a gradient   F = −∇U or in GCC:
 
Fm = − ∂U

∂qm
.

    
  
Fm = − ∂U

∂qm
= d

dt
∂T

∂ qm
− ∂T

∂qm
   

This gives Lagrange’s GCC potential equation with a new definition for the Lagrangian: L=T-U.

   
   
0 = d

dt
∂L

∂ qm
− ∂L

∂qm
where:    L( qm ,qm ) = T ( qm ,qm ) −U (qm )   (12.25b)
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 Note that the potential function U cannot have any velocity    ( q
m=υm) dependence or else the first term of 

(12.25b) would be wrong. Lagrange’s equations have simple forms that use GCC momentum pm.

     
  

d
dt

∂L

∂ qm
= ∂L

∂qm
     (12.25c)

 
  
pm ≡

dpm
dt

= ∂L

∂qm
 (12.25d)     

  
pm = ∂L

∂ qm
  (12.25e)

The first one (12.25d) is what we did not have when we found in (12.12c) the form p =∂v
∂L . The latter is the 

CC version of (12.25e) above. Pretty nice EOTCU (Equations of the Classical Universe) here! Let’s try them out.

 Consider an example of Lagrange equations in polar coordinates (q1 = r, q2 = φ) defined as follows.
     x =x1= r cos φ ,       y=x2 = r sin φ     
First we find Jacobian and Kajobian matrices. <J> is easy to get by (12.20a). Inverting <J> gives <K>.

   

J =

∂x1

∂q1
∂x1

∂q2

∂x2

∂q1
∂x2

∂q2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

∂x
∂r

= cosφ ∂x
∂φ

= −r sinφ

∂y
∂r

= sinφ ∂y
∂φ

= r cosφ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

           ↑ E1 ↑ E2           ↑ Er        ↑ Eφ   

  

   

K = J −1 =

∂r
∂x

= cosφ ∂r
∂y

= sinφ

∂φ
∂x

= − sinφ
r

∂φ
∂y

= cosφ
r

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

← Er = E1

← Eφ = E2

(12.26)

Two kinds of quasi-unit vectors show up. Columns of <J> are covariant vectors E1=Er and E2=Eφ  Rows of 

<K> are contravariant vectors E1= Er and E2= Eφ . They are plotted and sketched generically in Fig. 12.10.

 

E1=Er

E2=Eφ

E1=Er

E2=Eφ

Er

Eφ

q1=100

q1=101

q2=200

q2=201

dr=E1dq1+E2dq2

E1

E2 dr

(a) Polar coordinate bases (b) Covariant bases {E1E2}

(c) Contravariant bases {E1E2}
F=F1E1+F2E2FE2

q1=100

q2=200

E1

dq1=1.0
dq2=1.0

(Normal)

(Tangent)

Fig. 12.10  Covariant force vector components in a polar space ( Eρ,Eφ ).

©2012 W. G. Harter       Chapter12. Lagrangian velocity functions vs. Hamiltonian momentum functions 194

194



195

	
 Covariant vector Em  is tangent to the qm coordinate line of a cell wall. Em  grows as its cell grows 

according to the 1st differential relation (12.18) sketched in Fig. 12.10b and rewritten here in vector notation.

	
 	
 	
 dr = E1dq
1 + E2dq

2 =
∂r
∂q1

dq1 + ∂r
∂q2

dq2 	
 	
 	
 	
 	
 (12.27)

Note E2 grows in Fig. 12.10a. Em are convenient bases for extensive quantities like distance and velocity.

	
 Contravariant vector Em  is normal to the qm=const. surface or coordinate line of a cell wall. Em  
shrinks as its cell side grows according to gradient relation (12.28) sketched in Fig. 12.10c.

	
 	
 	
 F = F1E
1 + F2E

2 = F1
∂q1

∂r
+ F2

∂q2

∂r
= F1∇q

1 + F2∇q
2 	
 	
 	
 	
 (12.28)

Em are convenient bases for intensive quantities like force and momentum.

	
 Polar coordinates are orthogonal, but GCC Em andEm  are at home in more exotic non-orthogonal 
manifolds and provide mutually orthonormal dual bases with GCC orthogonality relations. (Prove this!)

	
 	
 	
 	
 	

 
Em iEn = δ

m
n =

1 if m = n
0 if m ≠ n

⎧
⎨
⎩

	
 	
 	
 	
 	
 (12.30a)

Scalar products Em •En  give covariant metric gmn-tensor matrix and similarly Em •Em  gives contra-gmn. 

   Em iEn = gmn  (12.30b)      E
m iEn = gmn   (12.30c)

GCC version for 1-free-particle Lagrangian  L=2
1Mviv involves gmn factors using (12.27) and (12.30b).

   L(v) =2
1Mviv =2

1Mrir =2
1M (Em q

m)i(En q
n) =2

1M (gmn q
m qn) = L( qm )    (12.31)

Polar coordinate metric tensors follow from (12.26). gmn and gmn are diagonal (orthogonal) mutual inverses.

 
 

grr grφ
gφr gφφ

⎛
⎝⎜

⎞
⎠⎟
=
Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎛
⎝⎜

⎞
⎠⎟
=
1 0
0 r2

⎛
⎝⎜

⎞
⎠⎟

       
 

grr grφ

gφr gφφ
⎛
⎝⎜

⎞
⎠⎟
=
Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎛
⎝⎜

⎞
⎠⎟
=
1 0
0 1 / r2

⎛
⎝⎜

⎞
⎠⎟

The resulting polar-coordinate Lagrangian and its covariant momentum pm expressions (12.25e) follow. 

  L( r, φ) =2
1M ( r2 + r2 φ 2)   

 
pr =

∂L
∂r

= Mr    
 
pφ =

∂L
∂ φ

= Mr2 φ  (12.32)

pr is radial linear momentum. pφ  is angular momentum complete with moment of inertiaMr2 . A potential 

U(r,φ)  turns the Lagrangian into L=T −U(r,φ) of (12.25b). Momentum t-derivatives (12.25d) follow.

  L( r, φ) =2
1M ( r2 + r2 φ 2) −U(r,φ)  

 

pr =
∂L
∂r

= Mr φ 2 − ∂U
∂r

= Mr
 

 

pφ =
∂L
∂φ

= −
∂U
∂φ

= Mr2 φ + 2Mrr φ
 (12.33)

Note how centrifugal force  Mr φ
2  and Coriolis force  2Mrr φ are derived so easily by Lagrange GCC. Also, if 

potential is radial-isotropic (no φ -dependence) then angular momentum is a conserved constant.

       pφ=0⇒ pφ= = const.     (12.35)

Lagrange GCC is elegant and powerful. So is Hamiltonian GCC and, as we’ll see, it’s more conservative!
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Hamilton’s version of Newt-II (f=Ma)
 A GCC Hamiltonian H(p,q) uses momenta and coordinates as independent variables rather than 

generalized velocities and coordinates employed by Lagrangian   L(q, q) . The total time derivative of L is 

    
   
L q, q,t( ) = dL

dt
= ∂L

∂qm
dqm

dt
+ ∂L

∂ qm
d qm

dt
+ ∂L
∂t

.   

Here we leave open the possibility that the Lagrangian may have explicit time dependence and a non-zero 
partial t-derivative. (Think of a mad scientist dialing up the force field as the experiment progresses.) 
 The Lagrange equations (12.25) let us insert momentum pm and its time derivative  pm into (12.36).

	
 	
 	
 	


   

L q, q,t( ) = dL
dt

= pm
dqm

dt
+ pm

d qm

dt
+ ∂L
∂t

               = dL
dt

= d
dt

pm q
m( ) + ∂L

∂t

	
 	
 	
 	
 	


A derivative identity
  
p dq

dt
+ p d q

dt
= d

dt
p q( )  lets us collect the two pq terms. Reordering gives a total t-derivative of a 

GCC version of a form (    H (p) = piv − L(v) ) first encountered in (12.11b). That’s the GCC Hamiltonian H(p,q). 

    
   
d
dt

pm q
m − L( ) = − ∂L

∂t
= dH

dt
where : H = pm q

m − L   (12.36a)

The momentum side (12.12) of Hamilton’s equations follows. So does the other (coordinate) side (12.36c).

  
   
 ∂H
∂pm

= qm  (12.36b)   
   

∂H
∂qm

= 0− ∂L
∂qm

=− pm   (12.36c)

To get (12.36b) we apply ∂p
∂  to H. (Recall ∂p

∂L =0.) To get (12.36c) we apply ∂q
∂  to H. (Recall 

  ∂q
∂L= p (12.25d).) 

 The Hamiltonian function has an unusual property. Its total time derivative equals its partial time 

derivative. If H lacks explicit time dependence it is a conserved constant. (Imagine our mad scientist asleep 

at the dial!)  That constant is energy. To show this, apply metric definition (12.31) of T in L=T-U.
  

   
H = pm q

m − L = Mgmn q
n( ) qm − T −V( ) = Mgmn q

m qn − 2
1 Mgmn q

m qn( ) +V    (12.37a)

     H =2
1 Mgmn q

m qn +V = T +V ≡ E   
 
   ( Numerically

correct ONLY!
)      (12.37b)

  
  
H = 1

2M
gmn pm pn +V = T +V ≡ E  

 
   ( Formally and Numerically

correct
)     (12.37c)

So, the Hamiltonian is the sum of kinetic energy T and potential U which is the total energy E=T+U. 
Equations (3.12.5) amount to the conservation of total energy if L and H are not explicit functions of time. 
 Note that we use the covariant metric gmn for the velocity v-dependent Lagrangian, but the inverse 
contravariant metric gmn comes into play for the momentum p-dependent Hamiltonian. Seem like so much 
formalistic foo-foo? Perhaps. But, just wait until Unit 8 where we develop the relativistic and quantum 
mechanical versions of this. Then this “formalism” will morph into the most sublimely gorgeous geometry 
that you have ever imagined!
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Variational calculus of Lagrangian mechanics
Here is a funny way to derive Lagrange’s equations. It involves something called variational calculus.
	
 Variational calculus finds extreme (minimum or maximum) values to entire integrals such as 

     
 
S q( ) = dt

t0

t1

∫ L q t( ), q t( ),t( ).     (12.38)

Here the curve q(t) can vary at each time t. If S(q) was a simple function like S(q)=q2 -4q we would find 
zeros of its derivative dS/dq =(2q-4)=0 at q=2 and be done. However, here S(q) is a functional, that is, a 
function    dt L(q, q, t)∫  of entire functions q(t) and t-derivative  q(t)  either of which can be varied arbitrarily at 

any point between limits t0 and t1 of the dependent time integration variable as shown in Fig. 12.11. (Again, 
we allow the possibility that    L(q, q, t)  may have explicit t-dependence, too.)

 

q(t)

t0 t1

q(t)+δq(t)

t0 t1

q(t)

δq(t)
..varied to:

 Fig. 12.11 Variation of functional curve or trajectory path from q(t) to q(t) + δq(t)

 An arbitrary but small variation function δq(t) is allowed at every point t in the figure along the curve 

except at the end points t0 and t1. There we demand it not vary at all. 
      δq(t0 ) = 0 = δq(t1)      (12.39) 

The variant δq(t) changes integral (12.38) according to a first order Taylor series.

  
 
S q + δq( ) = dt

t0

t1

∫ L q, q,t( ) + ∂L
∂q

δq + ∂L
∂ q

δ q⎡

⎣
⎢

⎤

⎦
⎥       where: δ q = d

dt
δq   (12.40)

Replacing 
 

∂L
∂ q

δ q  with 
 

d
dt

∂L
∂ q

δq
⎛
⎝⎜

⎞
⎠⎟
−
d
dt

∂L
∂ q

⎛
⎝⎜

⎞
⎠⎟
δq  gives a sum of two and then three integrals. 

  

 

S q + δq( ) = dt
t0

t1

∫ L q, q,t( ) + ∂L
∂q

δq − d
dt

∂L
∂ q

⎛
⎝⎜

⎞
⎠⎟
δq

⎡

⎣
⎢

⎤

⎦
⎥+ dt

t0

t1

∫
d
dt

∂L
∂ q

δq
⎛
⎝⎜

⎞
⎠⎟

              = dt
t0

t1

∫ L q, q,t( ) + dt
t0

t1

∫
∂L
∂q

−
d
dt

∂L
∂ q

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥δq+ ∂L

∂ q
δq

⎛
⎝⎜

⎞
⎠⎟
t1
t0

  
 

The third term vanishes according to (12.40). This leaves the following first order variation δS.

    
 
δS = S q + δq( ) − S q( ) = dt

t0

t1

∫
∂L
∂q

−
d
dt

∂L
∂ q

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥δq   
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If integral S is an extremum its first order variation δS must be zero for all δq(t) even the case where δq(t) is 
only non-zero at only one tiny t-interval. Thus the δS integrand must be zero everywhere.

     
 
δS = 0⇒ d

dt
∂L
∂ q

⎛
⎝⎜

⎞
⎠⎟
−
∂L
∂q

= 0     (12.41a)

The result is an Euler-Lagrange equation. It is a 1-dimensional version of GCC Lagrange equation (12.25c)

      
 

d
dt

∂L
∂ q

⎛
⎝⎜

⎞
⎠⎟
=
∂L
∂q

    (12-41b)

We may just as well demand extreme (actually minimum) values for multi-dimensional Lagrange integrals. 

     
 
S q( ) = dt

t0

t1

∫ L qm t( ), qm t( ),t( ).    (12.38)N-dim

The result is the N-dimensional Lagrange equations (12.25) derived from Newt-II. But, why should Newt-II 
make the integral of Lagrangian minimum? Something weird underlies classical laws! Henri Poincare 
recognized early on that a new physics (modern physics) must be hiding down there.

Poincare’s invariant, quantum phase, and action

The Legendre relation (12.11a) becomes Poincare’s invariant differential if v =dt
dr has dt cleared.

	
 	
 	
 	
  Ldt = piv ⋅dt − H ⋅dt = pidr − H ⋅dt 	
	
 	
 	
 (12.42a)

It is also the time differential dS of action S = Ldt∫ whose time derivative is rate L of quantum phase.

	
 	
 	
 	

 
dS = Ldt = pidr − H ⋅dt     where:   L =

dS
dt
	
 	
 	
 (12.42b)

In Unit 2 we find DeBroglie law  p=k and Planck law H=ω that, if conserved, give a quantum plane wave:

	
 	
 	
 	
  ψ (r,t) = e
iS / = ei(pir−H ⋅t )/ = ei(kir−ω ⋅t )  	
 	
 	
 (12.42c)

Time-independent or Hamilton’s reduced action is the spatial integral 
 
SH = pidr∫ . Classical trajectories 

minimize action integrals S and SH according to Least Action Principles like (12.41). 

Huygen's principle: "Proof" of classical axioms and path integrals 
 Enveloping curves generated by contact transformations like (12.15) or Fig. 12.7 are closely related 
to Huygen's principle of wave optics. This also applies to quantum waves of matter. Suppose a hypothetical 
action function SH(r0 : r) generates the curves SH(r0 : r)=10, 20, and 30 as sketched in Fig. 12.12.
 Now imagine the same generator acts starting from two points r10 and r'10 on the SH(r0 : r)=10 wave 
front thereby generating two sets of intermediate wave fronts: SH(r10 : r)=10 and SH(r'10 : r)=10 around 
each of these two points. All points on these curves represent a total accumulation of 20 J.s of action since 
leaving r0, but only for select points like r20 and r'20 is 20 J. the least action that can be accumulated after 
leaving r0. All other points have a more direct route from r0 that is cheaper than 20 J.s.

©2012 W. G. Harter       Chapter12. Lagrangian velocity functions vs. Hamiltonian momentum functions 198

198



199

    

r0

r´10 r´20 r´30

r10
r20 r30

S
H
(r
0
:r)=30

r
0

S
H
(r
0
:r)=20

S
H
(r
0
:r)=10

S
H
(r´10:r)=10

S
H
(r´10:r)=20

Non-optimal path r0 to r20
accumulates 30

Optimal path r0 to r20
accumulates 20

(Least action possible)

      Fig. 12.12 Comparison of paths and wave fronts for discussion of Huygen's principle. 

 These special points r=r20 and r=r'20  of least action are just the contacting ones that lie on the 
envelope curve SH(r0 : r)=20. They also lie on optimal (least action) trajectory paths from r0 which have 
never failed to follow the undeviating "straight-and-narrow" paths determined by Lagrange equations.
 What makes these paths appear to follow the classical Lagrange equations? Why do they appear to 
optimize their action so faithfully? Huygens knew the answer in the 1600's, at least for rays of light. The key 
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word here is "appear" since neither light waves nor matter waves originally have any intention of following a 
straight and narrow path! 
 Quite the contrary, every point on a Huygen's wave front broadcasts a continuum of deviant wave 
fronts in the form of the intermediate "wavelet" ovals such as SH(r10 : r)=10 and SH(r'10 : r)=10 in Fig. 
12.12. But, for each of these non-optimal deviant "rascals" there are thousands more neighboring "rascals" 
whose actions vary linearly with deviation so that non-extreme action paths end up canceling each other by 
destructive interference of the varying phases due to deviant actions. No honor amongst "rascals" here!
 Only for those optimal paths of stationary action (and therefore, stationary phase) do the phases add 
constructively, and it is only for these that quantum wave intensity or classical presence appears to exist most 
of the time in a classical world of enormous action. All paths are possible to varying degrees and exist in 
some sense, but only the optimal ones make their presence known and generally do so while obeying quite 
precisely the classical equations of motion. 
 In a sense, this constitutes an evolutionary proof of Newton's "laws" or at least justification of 
Newton's axioms in the case of high action or the classical limit. The classical world appears to be a result of 
a continual process of natural selection of waves! 
 However, the situation is different for systems with discrete or limited number of paths as in the case 
of low action or when wavelength is comparable to the size of a system. Then the classical myth is likely to 
disintegrate like Dracula out of his coffin at dawn! Now matter how dearly we believe in our precisely 
machined gears and fine particles there comes a time and place where the classical equations part company 
with new reality that appears with increasingly clever and precise experimental evidence.
 Nevertheless, the classical apparatus is far too well developed to die forever, and it rises to assist the 
newly appointed quantum paradigm in what is called semi-classical approximation theory. The role of 
generating action functions S(r0,t0 : r,t) and SH(r0 : r) is taken over in quantum theory by amplitudes, 
wavefunctions, or matrix elements such as the amplitude 〈r,t| r0,t0〉 of time-evolution and or the transition-
overlap amplitude 〈r |  r0 〉. Here, |〈 B |  A 〉|2 is the probability for a state-A to become state-B if forced to 
make a choice. Bracket 〈 B |  A 〉 is called a probability amplitude; past-to-future is read right-to-left like 
Hebrew. Probability amplitudes may be approximated by semi-classical relations similar to (12.42c).

  
    
r1,t1 r0,t0 = ei S r0 ,t0:r1,t1( )/   (12.43a)       

r1 r0 = ei SH r0:r1( )/
   (12.43b) 

Restating Huygen's principle with semiclassical amplitudes gives a completeness or closure relation.

  
    

r1 ′r
′r
∑ ′r r0 ≅ e

i SH r0: ′r( )+SH ′r :r1( )( )/
′r
∑ = ei SH r0:r1( )/ = r1 r0  (12.44)

Intermediate r'-path sums, as in Fig. 12.12, cancel by phase variation except on the optimal stationary-action 
path r1←r0. The sum over phase factors from r'-paths is well approximated by the amplitude for the 
stationary optimal path. Methods for summing over all paths of significant importance (including deviant 
ones) are called Feynman path integration techniques. This is a difficult chore since “all paths...” are a 
tangled uncountably infinite mess. Often, the extra effort needed to count them is not needed.
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Bohr quantization
Bohr quantization requires quantum phase  SH / in amplitude (12.44) to be an integral multiple υ of 2π after 

a closed loop integral 
 
SH r0 :r0( ) = pidr

r0

r0∫ . The integer υ (υ = 0, 1, 2,...) is a quantum number.

   
    
1 = r0 r0 = ei SH r0:r0( )/ = eiΣH /=1  for: ΣH = 2π υ = hυ  (12.45)

A colorful way to display action and its Bohr quantization is to numerically integrate Hamilton's equations 
and Lagrangian L and color the trajectory according to the current accumulated value of action.

       SH(0 : r) = Sp(0, 0 : r, t ) + Ht =
  
 L dt
0

t
∫ + Ht .   (12.46)

The hue should represent the phase angle SH(0 : r)/ modulo 2π as, for example, 0=red, π/4=orange, 
π/2=yellow, 3π/4=green, π=cyan (opposite of red), 5π/4=indigo, 3π/2=blue, 7π/4=purple, and 2π=red (full 
color circle). Interpolating action on a palette of 32 colors is enough precision for low quanta.
 The colored paths display a confused gray mess if phases fail to interfere constructively. But, for 
select quantizing values of energy, there appear striking patterns of colors when Bohr quantization makes 
phases interfere constructively. Patterns are outlines of spatial quantum wave amplitudes (12.43b).

         
r1 r0 = ei SH r0:r1( )/

   (12.43)repeated

 Heller and Davis first tried this color-quantization technique on a CRAY-Dicomed film system in 1983. 
 A quantizing example for a 2-dimensional oscillator using the ColorU(2) program is shown in Fig. 
11.13. Viewing this in gray-scale is possible since only two hues actually survive: red, representing a phase 
of 0, and cyan, representing a phase of π. The example is a standing wave mode in (x,y)-coordinate space, so 
the only possible wave amplitude is ±1, that is, complimentary hues red and cyan which appear as light and 
dark gray in a gray scale portrait. Remaining colors pile up on nodal lines with so many phases interfering to 
destroy the amplitude. A time-dependent action S(0, 0 : r, t ) (12.43a) gives time-dependent moving waves 
such as the snapshot in Fig. 11.14 of a quantum fountain discussed after Fig. 12.5. Wave animation is done 
by shift the computer color wheel by the time-dependent phase angle    H ⋅T / =ω⋅T in (12.46).   

 
    
r1,t1 r0,t0 = ei S r0 ,t0:r1,t1( )/ = ei SH r0:r1( )/−iω⋅T  where:T = t1 - t0 , and: H = ω   (12.46)

A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=p•dr-Hdt .

     
  
Vphase = dr

dt
= H

p
= ω

k
       (12.47)

This is quite the opposite of classical particle velocity which is quantum group velocity.

     
  
Vgroup = dr

dt
= ∂H

∂p
= ∂ω
∂k

       (12.48)

 By making two of the entries in the phase-color palette to be black-and-white it is possible to display a wave 
front line which will march in step with the other hues in the palette.
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Fig. 12.13 Phase-color 2-dimensional harmonic oscillator paths showing (2,2) quantum wave function.

  
Fig. 12.14 Phase-color trajectory  paths showing quantum wave fronts of moving wave.

 A sequence of quantum wavefronts underlying the quantum fountain are drawn in Fig. 12.15 for three 
different values of reduced action SH. This is equivalent to taking snapshots at different times. As classical 
momentum approaches zero at the top of Fig. 12.15b, the S wave phase speed diverges to infinity. Then two 
"cat ears" are created and race out along the top of the classical envelope in Fig. 12.15c and then slow down 
as the classical momentum p again picks up. High p in Fig. 12.15 means high gradient ∇SH = p so the SH  
contours are closer together. S fronts move from one SH =n2π contour to the next SH =(n+1)2π contour at 
frequency ω=H/ so large p means slow going. Note that the lower regions of each contour in Fig. 12.15 are 
slower than upper regions; quite the opposite of the classical particle “ball” in Fig. 12.5. The two "cat ears" 
move out and down rapidly until, like Lewis Carroll's Cheshire cat, nothing remains but its smile! 
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Dynamics of phase and group velocity are keys to relativity and quantum theory as shown in Unit 8.

Fig. 12.15 Constant SH contours for iso-energetic trajectory family are normal to trajectory paths.

(a) SH=0.3 (b) SH=0.35

(d) SH=0.9

∇SH=p

∇SH=p

(c) SH=0.4

        
16th Century carving on St. Wifred’s in Grappenhall  From Alice’s Adventures in Wonderland by Lewis Carrol (1865)       St. Nicolas carving
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α=45°

V0

 The volcanoes of Io and NIST atomic fountain
1.12.1. A fountain spraying water in many directions at equal speed appears to form a parabola of revolution 
whose cross-section is plotted above. You see this also in photos of volcanoes on Jupter’s moon Io. Let’s 
model this with a Bang! of equal-initial-speed v0 particles ejected from origin in uniform gravity g vacuum 
and develop geometry of parabolic trajectories and their envelope. Key questions: “What curve or “blast 
wave” do the particles form at each moment of time?”  and “Is the envelope, in fact, parabolic?” 
(a) First describe how observers see the trajectories behave if they are riding in a well-shielded free-falling 
elevator frame-(x´,y´) that passes the origin point at the moment of ejection.
(b) Meanwhile, in the lab (x,y)-frame, describe the parabolic fragment trajectories as a function of  the initial 

elevation angle α for each fragment. Give equations for the focal point of each parabola and describe what 
curve these foci form (the focus-locus). (See if you can do it without peeking at Ch. 12.)
(c) Construct examples of parabolas with their focus-locus and find a relation between the focal point and the 
contact point for each parabolic path with the envelope. Is the envelope parabolic? and, if so, where is its 

focus? Construct drawings of α =30° and α =45° paths and “blast wave” at the moment each path contacts 
the envelope. 

Problem for a volcanolgist (or baseball outfielder)
1.12.2. Suppose you are on the x-axis some distance from the origin where a baseball (or volcano rock) is 
thrown up and toward you so it appears to move straight up the y-axis like an imaginary elevator that is at the 
line-of-sight projection of baseball (or rock) onto y-axis. Elevator motion indicates if you are in position to 
catch the ball (or be clobbered by the rock) or whether the object will fly over or fall short. Describe apparent 
elevator velocity and/or acceleration that distinguishes the three cases, particularly the middle one.
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1.12.3. Suppose a neutron starlet enters a pocket of U235 at position r(0) and goes Bang! The U235 detonates 
and blasts off pieces of starlet that each fly away with the same initial speed |v(0)|=1 (we assume) but various 

velocities v(0) =(0,1), (
2
1 ,

2
1 ), (0,1), (

2
1 ,

2
−1 ), etc. (Units use the usual geometric ω=1 scaling.) 

α ϑ
φ

r(0) v(0)

The short answer problems concern the resulting orbits of equal mass starlet pieces inside the Earth.
Do the starlet blast orbits conserve values for any physical quantities such as (Yes or No) initial
speed |v|?__, momentum |p|?__, angular momentum ?__, KE?__, PE?__, total Energy E?__ .
Do the starlet blast orbits conserve values for some geometric quantities such as (Yes or No)
a?__, b?__ , r?__ , H?__, φ?__, ϑ?__, α?__. (See sketch of general ellipse orbit above.)
For whichever it is possible, give |v|, |p|, , KE, PE, or E in terms of a, b, H, ϑ or α. Note if any correspond 
to particular geometrical length or area that characterizes an orbit.
Do the starlet blast orbits share equal values for any physical quantities such as (Yes or No)
Average momentum p?__, angular momentum ?__, average KE?__, average PE?__, total E?__ .
Do the starlet blast orbits share equal values for some geometric quantities such as (Yes or No)
a?__, b?__ , H?__, φ?__, ϑ?__, α?__. (See sketch of general ellipse orbit above.)
Geometric orbit and envelope constructions
Using the graph on the attached page, do the following for initial position vector r(0) =(1,0):
(a) Construct the orbit for initial v(0) =(0,1) in part (a) of the graph.
(b) Construct the orbit for initial v(0) =(1,0) in part (b) of the graph.

(c) Construct the orbit for initial v(0) =(
2
1 ,

2
1 ) in part (c) of the graph.

(d) Construct the orbit for initial v(0) =(
2
−1 ,

2
1 ) in part (c) of the graph.

(e) There is a “blast wavefront” or locus of starlet pieces that expands with each instant of time. Using 
whatever means you like, plot points of this curve for t/τperiod= 1/12, 2/12, 3/12, and 4/12.
(f) There is a constant contacting curve that envelops all orbits with r(0)=(1,0) and |v(0)|=1. 
Construct this enveloping boundary for |v(0)|=1. How does the envelope vary with initial speed |v(0)| ? 
(g) See if you can deduce a relation between the focal point(s) and the contact point(s) for each elliptic path 
with the envelope. Is the envelope also elliptic? If so, where are its foci? 
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r(0)

r(0) r(0)

(a)
(b)

(c)
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Appendix 1.A Vector product geometry and Levi-Civita εijk  
Vectors have relative projections onto each other. Components x, y, or z are projections of r onto unit i, j, 

and k. Power F•v =Fvcosθ is a dot product cosine projection of F on v. Coriolis a=|ω × v | =wvsinθ  is a 

sine-like transverse projection called the cross product. Product A•B (or |AxB|) is cosine (or sine) of a 

relative angle (θB-θA) times length factor AB shown in Fig. 1.A.1. Also, recall complex products in (10.30).

The cosine or dot-projection may be given in Cartesian lab components (Ax=AcosφA) Ay=AsinφA).

  

� 

A • B = AB cos φB −φA( ) = A cosφAB cosφB + AsinφAB sinφB = AxBx + AyBy   (1.A.1a)

The sine or cross-projection has a somewhat different or “crossed-up” form.

  

� 

A × B = ABsin φB −φA( ) = A cos φAB sinφB − A sinφAB cos φB = AxBy − AyBx   (1.A.1b)

A

Ax=Acos θA
θA

Ay=Asin θA

B

Bx=Bcos θB

θB
By=Bsin θB

(a) Cartesian Lab Coordinates

θA

B
θB θA

(b) A-Relative Projection (c) B-Relative Coordinates

θB−θAθ

A•B=A·BA=A·Bcos(θB−θA)

A↵
A

A↵

A×B=A·BA↵=A·Bsin(θB−θA)

BA

BA↵

θA

Bθ

A

AB↵
AB

B↵

A-longitudinal component of B
BA=Bcos(θB−θA)

A-transverse component of B
BA↵=Bsin(θB−θA)

B-longitudinal component of A
AB=Acos(θB−θA)

θB

B-transverse component of A
AB↵=Bsin(θB−θA)

B•A=B·AB=B·Acos(θB−θA)=A•B

B×A=B·AB↵=-B·Asin(θB−θA)=-A×B

B↵

AB
AB↵

Cartessian xy- component of B

Cartesian xy-component of A

Fig. 1.A.1 Vector component geometry (a) Lab-relative. (b) A-relative. (c) B-relative.

Here A•B and AxB are numbers or scalars. Full AxB definition ((1.A.4b) below) is a vector perpendicular 

to both A and B. (In Fig. 1.A.1, it would stick out of the page.) Also it happens that AxB is the area of the 

vector parallelogram and 1/2AxB is the area of the A+B or A-B triangle as shown in Fig. 1.A.2.

  In Fig. 1.A.1b vector B refers to axes made of vector A and its perpendicular copy A↵ and vice-

versa in Fig. 1.A.1(c). Dot products are reflexive (A•B = B•A). However, cross products must be anti-

reflexive (AxB =-BxA) since the B↵ vector is in a negative direction relative to A in Fig. 1.A.1(c). One way  

to display the relation between the pair (A, A↵) and the pair (B, B↵ ) is in a rotation matrix.

   

� 

AB AB↵
A↵B A↵B↵

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

cosθ BA − sinθBA
sinθBA cosθBA

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

BA BA↵
B↵A B↵A↵

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
−1

=
cosθBA sinθ BA
−sinθ BA cosθBA

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
−1

  (1.A.2)
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Algebraic definitions of A•B and AxB are based on the symmetric Kronecker function δij and the 

totally anti-symmetric Levi-Civita function εijk defined as follows. 

   δ i
j = δ ij =

1 if:  i = j
0 if:  i ≠ j

⎧
⎨
⎩

  (1.A.3a)       ε ijk = εijk =
+1 if {ijk} is EVEN permutation of {123},
 -1 if {ijk} is  ODD  permutation of {123},
0                                            otherwise.

⎧

⎨
⎪

⎩
⎪

     (1.A.3a)

These are fundamental to tensor analysis and exterior calculus that will be introduced in Unit 3. 
They also define scalar A•B and vector AxB products in useful ways for fast computer logic, as follows.

  A • B = δ ij AiBj = AiBi
i=1

3

∑
j=1

3

∑
i=1

3

∑     (1.A.4a)  A × B( )k = εijk AiBj =
j=1

3

∑
i=1

3

∑ εkij AiBj
j=1

3

∑
i=1

3

∑   (1.A.4b)

The notation Ck=(C)k denotes the kth component of a vector C.

Determinants and triple products
    Levi-Civita sums define the determinant detU of a matrix Uij. An expansion by minors is shown here.

 detU =
U11 U12 U13

U21 U22 U23

U31 U32 U33

= εijkU1iU2 jU3k
i , j ,k
∑ =U11

U22 U23

U32 U33

−U12

U21 U23

U31 U33

+U13

U21 U22

U31 U32

(1.A.5)

A triple vector product AxB•C is such a determinant made from a matrix of three vector components.

 A • B ×C =
A1 A2 A3
B1 B2 B3
C1 C2 C3

= εijk AiBjCk
i , j ,k
∑ = A1

B2 B3
C2 C3

− A2
B1 B3
C1 C3

+ A3
B1 B2
C1 C2

  (1.A.6a)

                                                                 = A1 B ×C( )1 + A2 B ×C( )2
+ A3 B ×C( )3

  (1.A.6b)

Minor expansion (1.A.5) is a (•)-product of A with (× )-product vector BxC. Base area |BxC| times altitude 

(A projected onto normal BxC) equals the parallelepiped volume enclosed by A, B, and C.

 Anti-symmetric ε-forms let us generalize geometry from 2-and 3-dimensions to N-dimensions. 

Advanced mechanics has many dimensions. One mole (6·1023 particles) has at least 6·1023 dimensions and 

two or three times that if the atoms move in 2D or 3D. So ε-forms are necessary!

 Products of anti-symmetric ε-forms reduce to symmetric δ-forms by a LeviCivita identity.

     εijkεmnk
k=1

3

∑ = δ imδ jn −δ inδ jm = εkijεkmn
k=1

3

∑    (1.A.7)

A triple-cross-product formula A × (B ×C) = (A •C)B − (A •B)C  is a first application. 

 
A × (B ×C)( )i = εijk

j ,k

3

∑ Aj (B ×C)k = εijk
j ,k ,m ,n

3

∑ εmnk AjBmCn = (δ imδ jn − δ inδ jm )
j ,m ,n

3

∑ AjBmCn

                       = AnBiCn
n

3

∑ − AmBmCi
m

3

∑ = (A •C) B( )i − (A •B) C( )i
The LC-identity (1.A.7) reduces each sum over k to dot-product terms.

©2012 W. G. Harter Unit 1 Review -- Appendix 1.A  Vector product geometry and Levi-Civita tensors 2

2



3

B

A Area=base·altitude
= B · A sin θ

= |A×B|B

AB

A

Area=1/2 base·altitude
= 1/2B · A sin θ

=1/2 |A×B|

BA

B

A(a) (b) (c)
A+B

A-B

Fig. 1.A.2 Cross-product and area of (a)-(b) Parallelogram, (c) Sum triangle, (d) Difference triangle.

Operator products
The Levi-Civita ε-identity is helpful for unraveling operator products. One example is the expressions for 
magnetic force v×B  where field B is a curl ∇×A  of vector potential A that occurs in Unit 2 Ch. 8.

F / e = v × B = v × ∇ × A( )
Index notation for the double-cross product is the following. Note ε-symmetry gives:εijk = εkij = −εikj

  v × ∇ × A( )⎡⎣ ⎤⎦k = εijk vi ∇ × A( ) j⎡
⎣⎢

⎤
⎦⎥k

= ε ijkεabj vi ∂aAb( )
Here the dummy-index-convention sums any indices repeated on one side of the equation such as i, j, a, and 
b above. Applying the Levi-Civita ε-identity reduces the equation.

  

v × ∇×A( )⎡⎣ ⎤⎦k = εkijεabjvi ∂a Ab( ) = (δ kaδ ib −δ kbδ ia )vi ∂a Ab( )
                         =δ kaδ ibvi ∂a Ab( )−δ kbδ iavi ∂a Ab( )
                         =          vb ∂k Ab( )          − va ∂a Ak( )
                         =          ∂k Ab( )vb          − va ∂a Ak( )
                         = ∂k Abvb( )− ∂k vb( )Ab − va ∂a Ak( )

This is converted back to Gibbs’s bold vector notation that involves tensors like ∇A  and ∇v .

     v × ∇ × A( )= ∇A( )iv − vi∇A
Again, tensor index notation helps to distinguish  ∇A( )iv , vi ∇A( ) , and  ∇(Aiv) = (∇A)iv + (∇v)iA .

 

 

∇A( )iv⎡⎣ ⎤⎦k=
∂Aj
∂xk

v j

            =(∂k Aj)v j

  

 

vi ∇A( )⎡⎣ ⎤⎦k=v j
∂Ak
∂x j

            =(v j∂ j Ak)
  

 

∇(Aiv)⎡⎣ ⎤⎦k= (∇A)iv + (∇v)iA⎡⎣ ⎤⎦k  

∂k Abvb( )= ∂kvb( )Ab− ∂kva( )Aa
However, in Newtonian mechanics the position  r and velocity   r = v have no explicit dependence and so all 
r-partial derivative of v  (or vice-versa) are identically zero.

  
∂v j

∂xk
≡ ∂k v j ≡ 0  implies :   ∇v = ∂v

∂r
= 0    ( for Newtonian mechanics )

Then the double-cross product reduces as follows.
    v × ∇ × A( )= ∇A( )iv − vi∇A = ∇(Aiv) − (∇v)iA − vi∇A = ∇(Aiv) − 0 − vi∇A for mechanics ( )
Try using ε-identities to reduce ∇ × ∇ × A( ) , ∇ × A × B( ) ,  ∇i ∇ × A( ) ,  and  ∇i A × B( ) .
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