Lecture 28

 Multi-particle and Rotational Dynamics

 Multi-particle and Rotational Dynamics}
(Ch. 2-7 of Unit 6 12.06.12)

2-Particle orbits
Copernican view
Ptolemetric view

2-Particle scattering Lab-vs.-Body frame views
Ruler \& compass construction

Rotational momentum and velocity tensor relations
Quadratic form geometry and duality (again)
angular velocity $\boldsymbol{\omega}$-ellipsoid vs. angular momentum \mathbf{L}-ellipsoid
Lagrangian $\boldsymbol{\omega}$-equations vs. Hamiltonian momentum L-equation
Symmetric-top dynamics (Constant \mathbf{L})
BOD-frame cone rolling on LAB frame cone

2-Particle orbits and center-of-mass (CM) coordinate frame

$$
\mathbf{r}_{\mathrm{CM}}=\frac{m_{1} \mathbf{r}_{\mathbf{1}}+m_{2} \mathbf{r}_{\mathbf{2}}}{m_{1}+m_{2}}
$$

Defining relative coordinate vector

$$
\mathbf{r}=\mathrm{r}_{1}-\mathrm{r}_{2}
$$

and mass-weighted-average or center-of-mass coordinate vector $\boldsymbol{r}_{C M}$

$$
\overline{\mathbf{r}}=\mathbf{r}_{\mathbf{C M}}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}
$$

The inverse coordinate transformation.

$$
\mathbf{r}_{\mathbf{1}}=\mathbf{r}_{\mathbf{C M}}+\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}, \quad \mathbf{r}_{2}=\mathbf{r}_{\mathbf{C M}}-\frac{m_{1} \mathbf{r}}{m_{1}+m_{2}}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathrm{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{\mathbf{1}}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{l}-\mathbf{r}_{2}$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$
Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's $3^{\text {rd }}$-law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \ddot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{\mathbf{2}}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
m_{1} \mathbf{r}_{1} &]-[& m_{2} \mathbf{r}_{2} &]=\frac{2 F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{array}\right.} \\
& {\left[m_{1} \ddot{\mathbf{r}}_{\mathrm{CM}}+\frac{m_{1} m_{2} \dot{\mathbf{r}}}{m_{1}+m_{2}}\right]-\left[m_{2} \dot{\mathbf{r}}_{\mathrm{CM}}+\frac{m_{2} m_{1} \dot{\mathbf{r}}}{m_{1}+m_{2}}\right] \frac{2 F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \quad \frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}}=\frac{m_{1}+m_{2}}{m_{1} m_{2}} \quad \mu=\frac{m_{2}}{1+\frac{m_{2}}{m_{1}}=m_{2}}\left(1-\frac{m_{2}}{m_{1}}\right)\left(m_{1} \gg m_{2}\right)} \\
& \mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r) \\
& \mu=\frac{m_{1}}{1+\frac{m_{1}}{m_{2}}}=m_{1}\left(1-\frac{m_{1}}{m_{2}} \ldots\right)\left(m_{2} \gg m_{1}\right) \\
& \text { Re-scaled force: A Copernican view } \\
& \text { relative radius vector } \\
& \mathbf{r}_{\mathbf{1}}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \\
& \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
\end{aligned}
$$

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

each particle keeps it original mass $m 1$ or $m 2$, but feels coordinate-re-scaled force field $F\left(m_{1} r_{1} / \mu\right)$ or $F\left(m_{2} r_{2} / \mu\right)$ field

$$
\begin{array}{lr}
\mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F\left(\frac{m_{1}}{\mu} r_{1}\right) \hat{\mathbf{r}}_{1}=-\mathbf{F}_{21} & F(r)=\frac{k}{r^{2}} \text { becomes: } F\left(\frac{m_{1}}{\mu} r_{1}\right)=\frac{\mu^{2}}{m_{1}^{2}} \frac{k}{r_{1}^{2}}, \\
\mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=F\left(\frac{m_{2}}{\mu} r_{2}\right) \hat{\mathbf{r}}_{2}=-\mathbf{F}_{12} & \left.k \rightarrow k_{1}=k \mu^{2} / r\right)=-k r \text { becomes: } F\left(\frac{m_{1}}{\mu} r_{1}\right)=-\frac{m_{1}}{\mu} k r_{1}, \\
\hline k_{2}=k \mu^{2} / m_{2}^{2} & k \rightarrow k_{1}=k m_{1} / \mu, \quad k \rightarrow k_{2}=k m_{2} / \mu
\end{array}
$$

Examples of Coulomb and harmonic oscillator 2-particle "Ptolemetric" orbits.

Two particles are in synchronous motion around fixed CM origin.
Orbit periods are identical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a / b), eccentricity, and orientation.
Orbits differ in size of axes $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions (a_{k}, b_{k}) and λ_{k} are in inverse proportion to mass values.

$$
a_{1} m_{1}=a_{2} m_{2}=a \mu,
$$

$$
b_{1} m_{1}=b_{2} m_{2}=b \mu
$$

$$
\lambda_{1} m_{1}=\lambda_{2} m_{2}=\lambda \mu
$$

Harmonic oscillator periods and Coulomb orbit periods and eccentricity must match
$T_{\text {IHO }}=2 \pi \sqrt{\frac{\mu}{k}}=2 \pi \sqrt{\frac{m_{1}}{k_{1}}}=2 \pi \sqrt{\frac{m_{2}}{k_{2}}}$

$$
T_{\text {Coul }}=2 \pi \sqrt{\frac{\mu a^{3}}{k}}=2 \pi \sqrt{\frac{m_{1} a_{1}^{3}}{k_{1}}}=2 \pi \sqrt{\frac{m_{2} a_{2}^{3}}{k_{2}}}
$$

$$
\varepsilon_{1}=\varepsilon_{2}=\varepsilon
$$

Three Coulomb orbit energy values satisfy the same proportion relation as their axes

$$
E_{1} m_{1}=E_{2} m_{2}=E \mu \text {, where: }\left|E_{1}\right|=\frac{\left|k_{1}\right|}{2 a_{1}},\left|E_{2}\right|=\frac{\left|k_{2}\right|}{2 a_{2}},|E|=\frac{|k|}{2 a} .
$$

Energy values and axes satisfy similar sum relations

$$
E_{1}+E_{2}=\frac{m_{1}}{\mu} E+\frac{m_{2}}{\mu} E=E, \quad \text { and: } \quad a_{1}+a_{2}=\frac{m_{1}}{\mu} a+\frac{m_{2}}{\mu} a=a
$$

A common type of scattering

$$
\left(m_{1}=m_{2}\right)
$$

...that everyone should know

Inertia tensors

angular velocity and angular momentum relation
$\dot{\mathbf{r}}_{j}=\boldsymbol{\omega} \times \mathbf{r}_{j} \quad \mathbf{L}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{3} m_{j} \mathbf{r}_{j} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{j}\right)$
$\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \bullet \mathbf{B}) \mathbf{C}$
the rotational inertia tensor \mathbf{I}
$\mathbf{L}=\sum_{j=1}^{3} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \boldsymbol{\omega}-\left(\mathbf{r}_{j} \bullet \boldsymbol{\omega}\right) \mathbf{r}_{j}\right]=\sum_{j=1}^{3} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right] \bullet \boldsymbol{\omega}=\overrightarrow{\mathbf{I}} \bullet \boldsymbol{\omega}$

$$
\stackrel{\leftrightarrow}{\mathbf{I}}=\sum_{j=1}^{3} \stackrel{\rightharpoonup}{\mathbf{I}}_{j}=\sum_{j=1}^{3} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) 1-\mathbf{r}_{j} \mathbf{r}_{j}\right]
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\sum_{j=1}^{3} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \quad\langle\overrightarrow{\mathbf{I}}\rangle=\sum_{j=1}^{3}\left\langle\mathbf{i}_{j}\right\rangle=\sum_{j=1}^{3} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right) \\
& \text { mass } m \text { at the end of a bent axle that is rotating around a fixed bearing instantaneously at } \\
& \mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, 0\right)
\end{aligned}
$$

Kinetic energy in terms of velocity ω and rotational Lagrangian

Kinetic energy T of a rotating rigid body can be expressed in terms of the inertia matrix I

$$
\begin{aligned}
T= & \frac{1}{2} \sum_{j=1}^{3} m_{j} \dot{\mathbf{r}}_{j} \bullet \dot{\mathbf{r}}_{j}=\frac{1}{2} \sum_{j=1}^{3} m_{j}\left(\boldsymbol{\omega} \times \mathbf{r}_{j}\right) \bullet\left(\boldsymbol{\omega} \times \mathbf{r}_{j}\right) \\
T & =\frac{1}{2} \sum_{j=1}^{3} m_{j}\left[(\boldsymbol{\omega} \bullet \boldsymbol{\omega})\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right)-\left(\boldsymbol{\omega} \bullet \mathbf{r}_{j}\right)\left(\mathbf{r}_{j} \bullet \boldsymbol{\omega}\right)\right] \\
& =\frac{1}{2} \boldsymbol{\omega} \bullet \sum_{j=1}^{3} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\left(\mathbf{r}_{j}\right)\left(\mathbf{r}_{j}\right)\right] \bullet \boldsymbol{\omega} \\
& =\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{I} \bullet \boldsymbol{\omega}
\end{aligned}
$$

Levi-Civita identity

$$
(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D})=(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \bullet \mathbf{D})-(\mathbf{A} \bullet \mathbf{D})(\mathbf{B} \cdot \mathbf{C})
$$

Kinetic energy is a quadratic form

$$
\begin{aligned}
& \text { is a quadratic form } \\
& T=\frac{1}{2}\left(\begin{array}{lll}
\omega_{x} & \omega_{y} & \omega_{y}
\end{array}\right)\left(\begin{array}{ccc}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \\
&=\frac{1}{2}\left(\begin{array}{lll}
\langle\omega \mid x\rangle & \langle\omega \mid y\rangle & \langle\omega \mid z\rangle
\end{array}\right)\left(\begin{array}{ccc}
\langle x| \mathbf{I}|x\rangle & \langle x| \mathbf{I}|y\rangle & \langle x| \mathbf{I}|z\rangle \\
\langle y| \mathbf{I}|x\rangle & \langle y| \mathbf{I}|y\rangle & \langle y| \mathbf{I}|z\rangle \\
\langle z| \mathbf{I}|x\rangle & \langle z| \mathbf{I}|y\rangle & \langle z| \mathbf{I}|z\rangle
\end{array}\right)\left(\begin{array}{l}
\langle x \mid \omega\rangle \\
\langle y \mid \omega\rangle \\
\langle z \mid \omega\rangle
\end{array}\right) \text { (Dirac notation) } \\
&=\frac{1}{2}\left(\begin{array}{lll}
\omega_{x} & \omega_{y} & \omega_{y}
\end{array}\right) \sum_{j=1}^{3} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
\end{aligned}
$$

Simplifies in principle inertial axes $\{X, Y, Z\}$ or body eigen-axes

$$
\begin{aligned}
T & =\frac{1}{2}\left(\begin{array}{lll}
\omega_{X} & \omega_{Y} & \omega_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
\omega_{X} \\
\omega_{Y} \\
\omega_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
\omega_{X} & \omega_{Y} & \omega_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & 0 & 0 \\
0 & I_{Y Y} & 0 \\
0 & 0 & I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
\omega_{X} \\
\omega_{Y} \\
\omega_{Z}
\end{array}\right)=\frac{I_{X X} \omega_{X}^{2}}{2}+\frac{I_{Y Y} \omega_{Y}^{2}}{2}+\frac{I_{Z Z} \omega_{Z}^{2}}{2}
\end{aligned}
$$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathrm{L}=\mathbf{I} \bullet \omega$, generally implies: $\boldsymbol{\omega}=\mathbf{I}^{-1} \bullet \mathrm{~L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L, or both at once. once

$$
T=\frac{1}{2} \omega \cdot \boldsymbol{I} \cdot \omega=\frac{1}{2} \omega \cdot \mathrm{~L}=\frac{1}{2} \mathrm{~L} \cdot \omega=\frac{1}{2} \mathrm{~L} \cdot \ddot{\mathrm{I}}^{-1} \cdot \mathrm{~L}
$$

$$
T=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{X X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z X} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)
$$

$$
=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
$$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \boldsymbol{\omega} \bullet \ddot{\mathbf{I}} \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathrm{~L}=\frac{1}{2} \mathrm{~L} \bullet \boldsymbol{\omega}=\frac{1}{2} \mathrm{~L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{X X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum \mathbf{L}, or both at once. once

$$
\begin{aligned}
& T=\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{I} \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{L}=\frac{1}{2} \mathbf{L} \bullet \boldsymbol{\omega}=\frac{1}{2} \mathbf{L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathrm{~L} \\
& T=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{cccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z X} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
&=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{l}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+ \\
& \text { Torque-free body } \\
& \text { has conserved } \mathrm{L}=\text { const. }
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid
is not dissipated internally
Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid $\boldsymbol{\omega}$ is generally not conserved unless it is aligned to L or body has symmetry

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$

Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{I} \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{L}=\frac{1}{2} \mathbf{L} \bullet \boldsymbol{\omega}=\frac{1}{2} \mathbf{L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{cc}
1 / I_{X X} & 0 \\
0 & 1 / I_{Y Y} \\
0 \\
0 & 0 \\
1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid is not dissipated internally
Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid $\boldsymbol{\omega}$ is generally not conserved unless it is aligned to L or body has symmetry

$$
\begin{aligned}
& \text { Canonical momentum: } \quad p_{\mu}=\frac{\partial L}{\partial \dot{q}^{\mu}}(\text { where: } L=T) \\
& L=\frac{\partial T}{\partial \omega}=\nabla_{\omega} T=\frac{\partial}{\partial \omega} \frac{\omega \bullet \mathrm{I} \bullet \omega}{2}=\mathrm{I} \bullet \omega
\end{aligned}
$$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \boldsymbol{\omega} \bullet \overrightarrow{\mathbf{I}} \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{L}=\frac{1}{2} \mathbf{L} \bullet \boldsymbol{\omega}=\frac{1}{2} \mathbf{L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{X X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid is not dissipated internally Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid $\boldsymbol{\omega}$ is generally not conserved unless it
is aligned to L or body has symmetry

$$
\begin{aligned}
& \text { Canonical momentum: } \quad p_{\mu}=\frac{\partial L}{\partial \dot{q}^{\mu}}(\text { where: } L=T) \\
& L=\frac{\partial T}{\partial \omega}=\nabla_{\omega} T=\frac{\partial}{\partial \omega} \frac{\omega \bullet \mathrm{I} \bullet \omega}{2}=\mathrm{I} \bullet \omega
\end{aligned}
$$

$$
\text { Hamilton's } \left.1^{\text {st }} \text { equations : } \dot{q}^{\mu}=\frac{\partial H}{\partial p_{\mu}} \text { (where: } H=T\right)
$$

$$
\omega=\frac{\partial H}{\partial \mathbf{L}}=\nabla_{\mathbf{L}} H=\frac{\partial}{\partial \mathbf{L}} \frac{\mathbf{L} \bullet \mathbf{I}^{-1} \bullet \mathbf{L}^{\mu}}{2}=\mathbf{I}^{-1} \bullet \mathbf{L}
$$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{I} \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{L}=\frac{1}{2} \mathbf{L} \bullet \boldsymbol{\omega}=\frac{1}{2} \mathbf{L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid is not dissipated internally
Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid $\boldsymbol{\omega}$ is generally not conserved unless it is aligned to L or body has symmetry

$$
\begin{aligned}
& \text { Canonical momentum: } \quad p_{\mu}=\frac{\partial L}{\partial \dot{q}^{\mu}}(\text { where: } L=T) \\
& L=\frac{\partial T}{\partial \omega}=\nabla_{\omega} T=\frac{\partial}{\partial \omega} \frac{\omega \bullet \mathrm{I} \bullet \omega}{2}=\mathrm{I} \bullet \omega
\end{aligned}
$$

Hamilton's $1^{\text {st }}$ equations : $\dot{q}^{\mu}=\frac{\partial H}{\partial p_{\mu}}$ (where: $H=T$) $\boldsymbol{\omega}=\frac{\partial H}{\partial \mathbf{L}}=\nabla_{\mathbf{L}} H=\frac{\partial}{\partial \mathbf{L}} \frac{\mathbf{L} \bullet \mathbf{I}^{-1} \bullet \mathbf{L}^{\mu}}{2}=\mathbf{I}^{-1} \bullet \mathbf{L}$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{I} \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{L}=\frac{1}{2} \mathbf{L} \bullet \boldsymbol{\omega}=\frac{1}{2} \mathbf{L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or L-ellipsoid is not dissipated internally
Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid $\boldsymbol{\omega}$ is generally not conserved unless it is aligned to L or body has symmetry

Z
Absolutely
stable axis

$$
\begin{aligned}
& \text { Hamilton's } 1^{\text {st }} \text { equations : } \dot{q}^{\mu}=\frac{\partial H}{\partial p_{\mu}}(\text { where: } H=T) \\
& \boldsymbol{\omega}=\frac{\partial H}{\partial \mathbf{L}}=\nabla_{\mathbf{L}} H=\frac{\partial}{\partial \mathbf{L}} \frac{\mathbf{L} \bullet \mathbf{I}^{-1} \bullet \mathbf{L}}{2}=\mathbf{I}^{-1} \bullet \mathbf{L}
\end{aligned}
$$

In body frame momentum L moves along intersection of L -ellipsoid and L -sphere (Length $|\mathrm{L}|$ is constant in any classical frame.)

Fig. 6.7.1 Elementary ω-constrained rotor and angular velocity-momentum geometry
(a) Constrained rotor:LAB-fixed ω, moving $\mathbf{J} \quad$ (b) Free rotor:LAB-fixed \mathbf{J}, moving $\boldsymbol{\omega}$

Fig. 6.7.2 Free rotor cut loose from LAB-constraining ω-axis changes dynamics accordingly.
..this was the kind of dynamics that started me dropping superballs...

Prolate tops: (a) $I_{I I}=4 I_{3}$

$$
\begin{aligned}
& \dot{\gamma}=3 \dot{\alpha} \cos \beta \\
& \dot{\gamma}=(3 / 4) \omega_{\overline{3}}
\end{aligned}
$$

$$
L A B \mathbf{x}_{3}
$$

(b) $I_{I I}=2 I_{3}$
(c) $I_{I I}=(3 / 2) I_{3}$
$\dot{\gamma}=(1 / 2) \dot{\alpha} \cos \beta$
$\dot{\gamma}=(1 / 3) \omega_{\overline{3}}$

(d) Spherical top:

Blue BOD-frame cones roll (around $\boldsymbol{\omega}$-sticking axis)without slipping on red LAB-frame cone
Fig. 6.7.3 Symmetric top ω-cones for $\beta=30^{\circ}$ and inertial ratios: (a) ${ }^{I_{I}-I_{3}} I_{3}=3$, (b) 1 , (c) $\frac{1}{2}$, (d) 0 , (e) $-\frac{1}{2}$.

Blue BOD-frame cones roll without slipping on red $L A B$-frame cone

Fig. 6.7.4 Detailed geometry of symmetric top kinetics. (a) Prolate case. (b) Most-oblate case

Fig. 6.7.5 Extreme cases (Oblate vs. Prolate) of symmetric-top geometry.

