Lecture 25

Parametric Resonance and Multi-particle Wave Modes

(Ch. 7-8 of Unit 4 11.27.12)
Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance)
Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.)
Schrodinger wave equation related to Parametric resonance dynamics
Electronic band theory and analogous mechanics
Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry (complex, chiral, coriolis, current, ...) C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic
Algebra and geometry of resonant revivals: Farey Sums and Ford Circles
Relating C_{N} symmetric H and K matrices to differential wave operators

Two Kinds of Resonance

Linear or additive resonance.
Example: oscillating electric E-field applied to a cyclotron orbit .

$$
\ddot{x}+\omega_{0}^{2} x=E_{s} \cos \left(\omega_{s} t\right)
$$

Chapter 4.2 study of FDHO
(Here damping $\Gamma \cong 0$)

Two Kinds of Resonance

Linear or additive resonance.
Example: oscillating electric E-field applied to a cyclotron orbit .

$$
\ddot{x}+\omega_{0}^{2} x=E_{s} \cos \left(\omega_{s} t\right)
$$

Chapter 4.2 study of FDHO
(Here damping $\Gamma \cong 0$)
Nonlinear or multiplicative resonance.
Example: oscillating magnetic \mathbf{B}-field is applied to a cyclotron orbit.

$$
\ddot{x}+\left(\omega_{0}^{2}+B \cos \left(\omega_{s} t\right)\right) x=0
$$

Chapter 4.7
Also called parametric resonance.
(Frequency parameter or spring constant $k=m \omega^{2}$ is being stimulated.)

Coupled Rotation and Translation (Throwing)

Early non-human (or in-human) machines: trebuchets, whips..
(3000 BCE-1542 CE)

Forced Harmonic Resonance

$$
\frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}}+\frac{\mathrm{g}}{\ell} \phi=\frac{\mathrm{A}_{\mathrm{X}}(\mathrm{t})}{\ell}
$$

A Newtonian $\mathrm{F}=\mathrm{Ma}$ equation Lorentz equation (with $\Gamma=0$)

Y-stimulated pendulum:
(Non-Linear Resonance)

Parametric Resonance

$$
\frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}}+\left(\frac{\mathrm{g}}{\ell}+\frac{\mathrm{A}_{\mathrm{y}}(\mathrm{t})}{\ell}\right) \phi=0
$$

General ϕ :

A Schrodinger-like equation
(Time t replaces coord. x)

General case: A Nasty equation! $\frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}}+\frac{\mathrm{g}+\mathrm{A}_{\mathrm{y}}(\mathrm{t})}{\ell} \sin \phi+\frac{\mathrm{A}_{\mathrm{X}}(\mathrm{t})}{\ell} \cos \phi=0$

Coupled Rotation and Translation (Throwing)

The "Arkansas Whirler"

Chaotic motion from both linear and non-linear resonance (a) Trebuchet, (b) Whirler .

Positioned for linear resonance

Positioned for nonlinear resonance

Schrodinger Equation

Related to

Jerked-Pendulum

Trebuchet Dynamics

Jerked Pendulum Equation

$$
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{A_{y}(t)}{\ell}\right) \phi=0
$$

On periodic roller coaster: $y=-A_{y} \cos w_{y} t$

$$
A_{y}(t)=\omega_{y}{ }^{2} A_{y} \cos \left(\omega_{y} t\right)
$$

Mathieu Equation

Schrodinger Wave Equation

$$
\frac{d^{2} \phi}{d x^{2}}+(E-V(x)) \phi=0
$$

With periodic potential

$$
V(x)=-V_{0} \cos (N x)
$$

$$
\begin{gathered}
\frac{d^{2} \phi}{d x^{2}}+(E+ \\
E=\frac{N^{2}}{\omega_{y}^{2}} \frac{g}{\ell}
\end{gathered}
$$

$$
V_{0}=\frac{N^{2} A_{y}}{\ell}
$$

$$
\text { QM Potential } V_{0}-A_{y} \text { Amplitude Connection }
$$

Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance)
Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.)
Schrodinger wave equation related to Parametric resonance dynamics
\rightarrow Electronic band theory and analogous mechanics

Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus B is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi
$$

$$
-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

$$
\langle x \mid M\rangle=\phi_{M}(x)=\frac{e^{ \pm i M x}}{\sqrt{2 \pi}} \text {, where: } E=M^{2} \quad\langle t \mid \omega\rangle=\phi_{\omega}(t)=\frac{e^{ \pm i \omega_{0} t}}{\sqrt{2 \pi}} \text {, where: } \omega_{0}=\sqrt{\frac{g}{\ell}}
$$

Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus B is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi
$$

$$
-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

$$
\langle x \mid M\rangle=\phi_{M}(x)=\frac{e^{ \pm i M x}}{\sqrt{2 \pi}} \text {, where: } E=M^{2} \quad\langle t \mid \omega\rangle=\phi_{\omega}(t)=\frac{e^{ \pm i \omega_{0} t}}{\sqrt{2 \pi}} \text {, where: } \omega_{0}=\sqrt{\frac{g}{\ell}}
$$

Bohr has periodic boundary conditions x between 0 and L

$$
\phi(0)=\phi(L) \Rightarrow e^{i M L}=1, \text { or: } M=\frac{2 \pi m}{L}
$$

Pendulum repeats perfectly after a time T.

$$
\phi(0)=\phi(T) \Rightarrow e^{i \omega_{0} T}=1, \text { or: } \omega_{0}=\frac{2 \pi m}{T}
$$

Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus B is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi \quad-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

$$
\langle x \mid M\rangle=\phi_{M}(x)=\frac{e^{ \pm i M x}}{\sqrt{2 \pi}} \text {, where: } E=M^{2} \quad\langle t \mid \omega\rangle=\phi_{\omega}(t)=\frac{e^{ \pm i \omega_{0} t}}{\sqrt{2 \pi}} \text {, where: } \omega_{0}=\sqrt{\frac{g}{\ell}}
$$

Bohr has periodic boundary conditions x between 0 and L
Pendulum repeats perfectly after a time T.

$$
\phi(0)=\phi(L) \Rightarrow e^{i M L}=1, \text { or: } M=\frac{2 \pi m}{L}
$$

$$
\phi(0)=\phi(T) \Rightarrow e^{i \omega_{0} T}=1, \text { or: } \omega_{0}=\frac{2 \pi m}{T}
$$

Limit $L=2 \pi=T$ for both analogies. Then the allowed energies and frequencies follow

$$
E=m^{2}=0,1,4,9,16 \ldots \quad \omega_{0}=m=0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots
$$

Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus B is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi \quad-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

$$
\langle x \mid M\rangle=\phi_{M}(x)=\frac{e^{ \pm i M x}}{\sqrt{2 \pi}} \text {, where: } E=M^{2} \quad\langle t \mid \omega\rangle=\phi_{\omega}(t)=\frac{e^{ \pm i \omega_{0} t}}{\sqrt{2 \pi}} \text {, where: } \omega_{0}=\sqrt{\frac{\mathrm{g}}{\ell}}
$$

Bohr has periodic boundary conditions x between 0 and $L \quad$ Pendulum repeats perfectly after a time T.

$$
\phi(0)=\phi(L) \Rightarrow e^{i M L}=1, \text { or: } M=\frac{2 \pi m}{L} \quad \phi(0)=\phi(T) \Rightarrow e^{i \omega_{0} T}=1, \text { or: } \omega_{0}=\frac{2 \pi m}{T}
$$

Limit $L=2 \pi=T$ for both analogies. Then the allowed energies and frequencies follow

$$
E=m^{2}=0,1,4,9,16 \ldots \quad \omega_{0}=m=0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots
$$

Schrodinger equation with non-zero V solved in Fourier basis

$$
-\frac{d^{2} \phi}{d x^{2}}+V \cos (n x) \phi=E \phi, \quad(\mathbf{D}+\mathbf{V})|\phi\rangle=E|\phi\rangle
$$

Fourier representation is with $\langle j| \mathbf{D}|k\rangle=j^{2} \delta_{j}^{k}$

$$
\Sigma\langle j|(\mathbf{D}+\mathbf{v})|k\rangle\langle k \mid \phi\rangle=E\langle j \mid \phi\rangle
$$

Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus B is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi \quad-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

$$
\langle x \mid M\rangle=\phi_{M}(x)=\frac{e^{ \pm i M x}}{\sqrt{2 \pi}} \text {, where: } E=M^{2} \quad\langle t \mid \omega\rangle=\phi_{\omega}(t)=\frac{e^{ \pm i \omega_{0} t}}{\sqrt{2 \pi}} \text {, where: } \omega_{0}=\sqrt{\frac{g}{\ell}}
$$

Bohr has periodic boundary conditions x between 0 and $L \quad$ Pendulum repeats perfectly after a time T.

$$
\phi(0)=\phi(L) \Rightarrow e^{i M L}=1, \text { or: } M=\frac{2 \pi m}{L} \quad \phi(0)=\phi(T) \Rightarrow e^{i \omega_{0} T}=1, \text { or: } \omega_{0}=\frac{2 \pi m}{T}
$$

Limit $L=2 \pi=T$ for both analogies. Then the allowed energies and frequencies follow

$$
E=m^{2}=0,1,4,9,16 \ldots \quad \omega_{0}=m=0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots
$$

Schrodinger equation with non-zero V solved in Fourier basis

$$
-\frac{d^{2} \phi}{d x^{2}}+V \cos (n x) \phi=E \phi, \quad(\mathbf{D}+\mathbf{V})|\phi\rangle=E|\phi\rangle
$$

Fourier representation is with $\langle j| \mathbf{D}|k\rangle=j^{2} \delta_{j}^{k} \quad$ and $\langle j| \mathbf{v}|k\rangle=\int_{0}^{2 \pi} d x \frac{e^{-i j x}}{\sqrt{2 \pi}} V \cos (n x) \frac{e^{-i k x}}{\sqrt{2 \pi}}=\int_{0}^{2 \pi} d x \frac{e^{-i(j-k) x}}{2 \pi} V \frac{e^{-i n x}+e^{i n x}}{2}$

$$
\Sigma\langle j|(\mathbf{D}+\mathbf{V})|k\rangle\langle k \mid \phi\rangle=E\langle j \mid \phi\rangle
$$

$$
=\frac{V}{2}\left(\delta_{j}^{k+n}+\delta_{j}^{k-n}\right)
$$

Electronic band theory and analogous mechanics

Schrodinger equation with non-zero V solved in Fourier basis

$$
-\frac{d^{2} \phi}{d x^{2}}+V \cos (n x) \phi=E \phi, \quad(\mathbf{D}+\mathbf{V})|\phi\rangle=E|\phi\rangle
$$

Fourier representation is with $\langle j| \mathbf{D}|k\rangle=j^{2} \delta_{j}^{k}$ and $\langle j| \mathbf{v}|k\rangle=\int_{0}^{2 \pi} d x \frac{e^{-i j x}}{\sqrt{2 \pi}} V \cos (n x) \frac{e^{-i k x}}{\sqrt{2 \pi}}=\int_{0}^{2 \pi} d x \frac{e^{-i(j-k) x}}{2 \pi} V \frac{e^{-i n x}+e^{i n x}}{2}$

$$
\Sigma\langle j|(\mathbf{D}+\mathbf{V})|k\rangle\langle k \mid \phi\rangle=E\langle j \mid \phi\rangle \quad=\frac{V}{2}\left(\delta_{j}^{k+n}+\delta_{j}^{k-n}\right)
$$

Electronic band theory and analogous mechanics

Schrodinger equation with non-zero V solved in Fourier basis

$$
-\frac{d^{2} \phi}{d x^{2}}+V \cos (n x) \phi=E \phi, \quad(\mathbf{D}+\mathbf{V})|\phi\rangle=E|\phi\rangle
$$

Fourier representation is with $\langle j| \mathbf{D}|k\rangle=j^{2} \delta_{j}^{k}$ and $\langle j| \mathbf{V}|k\rangle=\int_{0}^{2 \pi} d x \frac{e^{-i j x}}{\sqrt{2 \pi}} V \cos (n x) \frac{e^{-i k x}}{\sqrt{2 \pi}}=\int_{0}^{2 \pi} d x \frac{e^{-i(j-k) x}}{2 \pi} V \frac{e^{-i n x}+e^{i n x}}{2}$

$$
\begin{aligned}
& \Sigma\langle j|(\mathbf{D}+\mathbf{V})|k\rangle\langle k \mid \phi\rangle=E\langle j \mid \phi\rangle \\
& =\frac{V}{2}\left(\delta_{j}^{k+n}+\delta_{j}^{k-n}\right) \\
& \langle j|(\mathbf{D}+\mathbf{V})|k\rangle=(\text { for } \mathrm{j} \text { and } \mathrm{k} \text { even) } \quad\langle j|(\mathbf{D}+\mathbf{V})|k\rangle=(\text { for } \mathrm{j} \text { and } \mathrm{k} \text { odd }) \\
& \cdots|-6\rangle,|-4\rangle,|-2\rangle,|0\rangle,|2\rangle,|4\rangle,|6\rangle, \cdots \quad \cdots|-7\rangle,|-5\rangle,|-3\rangle,|-1\rangle,|1\rangle,|3\rangle,|5\rangle, \cdots
\end{aligned}
$$

Wave resonance in cyclic symmetry
\rightarrow Harmonic oscillator with cyclic C_{2} symmetry C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)
Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\begin{aligned}
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right) & =A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \mathbf{K}=\mathbf{H}^{2} & =\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right) \\
& =A \cdot \mathbf{1} & +B \cdot \boldsymbol{\sigma}_{B} &
\end{aligned}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{B}\right)^{2}=\mathbf{1}$ in C_{2} group product table.

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)

Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\mathbf{K}=\mathbf{H}^{2}=\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right)
$$

$$
=\left(A^{2}+B^{2}\right) \cdot \mathbf{1} \quad+2 A B \cdot \sigma_{B}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.
(a) unit base state
$|0\rangle=|x\rangle=|2\rangle=\left|\begin{array}{l}1 \\ 0\end{array}\right|$
$|1\rangle=1|1\rangle$
(b) unit base state
$|1\rangle=|y\rangle=|-1\rangle=\left|\begin{array}{l}0 \\ 1\end{array}\right|$

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)

Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\mathbf{K}=\mathbf{H}^{2}=\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right)
$$

$$
=\left(A^{2}+B^{2}\right) \cdot \mathbf{1} \quad+2 A B \cdot \sigma_{B}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.
(a) unit base state $|\mathbf{1}\rangle=\mathbf{1}|\mathbf{1}\rangle$
(b) unit base state $\left|\sigma_{\mathrm{B}}\right\rangle=\sigma_{\mathrm{B}}|\mathbf{1}\rangle$

$$
|0\rangle=|x\rangle=|2\rangle=\left|\begin{array}{l}
1 \\
0
\end{array}\right|
$$

$|1\rangle=|y\rangle=|-1\rangle=\left|\begin{array}{l}0 \\ 1\end{array}\right|$

$$
\begin{aligned}
& \left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1} \text { or: }\left(\sigma_{\mathrm{B}}\right)^{2}-\mathbf{1}=\mathbf{0} \text { gives projectors: } \\
& \left(\sigma_{\mathrm{B}}+\mathbf{1}\right) \cdot\left(\sigma_{\mathrm{B}}-\mathbf{1}\right)=\mathbf{0}=\mathbf{p}^{+1 /)} \cdot \mathbf{p}^{(-1)}
\end{aligned}
$$

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)

Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\mathbf{K}=\mathbf{H}^{2}=\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right)
$$

$$
=\left(A^{2}+B^{2}\right) \cdot \mathbf{1} \quad+2 A B \cdot \sigma_{B}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.
(a) unit base state $|\mathbf{1}\rangle=\mathbf{1}|\mathbf{1}\rangle$

$$
|0\rangle=|x\rangle=|2\rangle=\binom{1}{0}
$$

$\left(\sigma_{B}\right)^{2}=\mathbf{1}$ or: $\left(\sigma_{B}\right)^{2}-\mathbf{1}=\mathbf{0}$ gives projectors: $\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) \cdot\left(\sigma_{\mathrm{B}}-\mathbf{1}\right)=\mathbf{0}=\mathbf{p}^{(+l)} \cdot \mathbf{p}^{(-1)}$ $\mathbf{P}^{(+)}=\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) / 2$ and $\mathbf{P}^{(-)=}=\left(\sigma_{\mathrm{B}}-1\right) / 2$
(Normed so: $\mathbf{P}^{(+)}+\mathbf{P}^{(-)}=\mathbf{1}$ and: $\mathbf{P}^{(m)} \cdot \mathbf{P}^{(m)}=\mathbf{P}^{(m)}$)

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)

Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\mathbf{K}=\mathbf{H}^{2}=\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right)
$$

$$
=\left(A^{2}+B^{2}\right) \cdot \mathbf{1} \quad+2 A B \cdot \sigma_{B}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.
(a) unit base state $|\mathbf{1}\rangle=\mathbf{1}|\mathbf{1}\rangle$

$$
|0\rangle=|x\rangle=|2\rangle=\left|\begin{array}{l}
1 \\
0
\end{array}\right|
$$

C_{2} symmetry (B-type) modes
(a) Even mode $|+\rangle=\left|0_{2}\right\rangle=\binom{1}{1}^{\prime} N_{2}$

$\left(\sigma_{B}\right)^{2}=\mathbf{1}$ or: $\left(\sigma_{B}\right)^{2}-\mathbf{1}=\mathbf{0}$ gives projectors: $\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) \cdot\left(\sigma_{\mathrm{B}}-\mathbf{1}\right)=\mathbf{0}=\mathbf{p}^{(+l)} \cdot \mathbf{p}^{(-1)}$ $\mathbf{P}^{(+)}=\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) / 2$ and $\mathbf{P}^{(-)}=\left(\sigma_{\mathrm{B}}-1\right) / 2$
(Normed so: $\mathbf{P}^{(+)}+\mathbf{P}^{(-)}=\mathbf{1}$ and: $\mathbf{P}^{(m)} \cdot \mathbf{P}^{(m)}=\mathbf{P}^{(m)}$)

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)

Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\mathbf{K}=\mathbf{H}^{2}=\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right)
$$

$$
=\left(A^{2}+B^{2}\right) \cdot \mathbf{1}+2 A B \cdot \sigma_{B}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.

C_{2} symmetry (B-type) modes
(a) Even mode $|+\rangle=\left|0_{2}\right\rangle=\binom{1}{1}^{N_{2}}$

> Mode state projection:

$$
x_{0}=1 / \sqrt{ } 2 \quad x_{1}=1 / \sqrt{2}
$$

$x_{0}=1 / \sqrt{ } 2$	$x_{1}=-1 / \sqrt{2}$

$\left(\sigma_{B}\right)^{2}=\mathbf{1}$ or: $\left(\sigma_{B}\right)^{2}-\mathbf{1}=\mathbf{0}$ gives projectors: $\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) \cdot\left(\sigma_{\mathrm{B}} \mathbf{- 1}\right)=\mathbf{0}=\mathbf{p}^{(+l)} \cdot \mathbf{p}^{(-1)}$ $\mathbf{P}^{(+)}=\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) / 2$ and $\mathbf{P}^{(-)}=\left(\sigma_{\mathrm{B}}-\mathbf{1}\right) / 2$
(Normed so: $\mathbf{P}^{(+)}+\mathbf{P}^{(-)}=\mathbf{1}$ and: $\mathbf{P}^{(m)} \cdot \mathbf{P}^{(m)}=\mathbf{P}^{(m)}$)

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)
Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\begin{aligned}
& \mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
&=A \cdot \mathbf{1} \\
&+B \cdot \boldsymbol{\sigma}_{B}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{K}=\mathbf{H}^{2} & =\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right) \\
& =\left(A^{2}+B^{2}\right) \cdot \mathbf{1}+2 A B \cdot \sigma_{B}
\end{aligned}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.
(a) unit base state $|\mathbf{1}\rangle=\mathbf{1}|\mathbf{1}\rangle$
(b) unit base state $\left|\boldsymbol{\sigma}_{\mathrm{B}}\right\rangle=\boldsymbol{\sigma}_{\mathrm{B}}|\mathbf{1}\rangle$ $|0\rangle=|x\rangle=|2\rangle=\left|\begin{array}{l}1 \\ 0\end{array}\right|$
$\left(\sigma_{B}\right)^{2}=\mathbf{1}$ or: $\left(\sigma_{B}\right)^{2} \mathbf{- 1}=\mathbf{0}$ gives projectors: $\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) \cdot\left(\sigma_{\mathrm{B}} \mathbf{- 1}\right)=\mathbf{0}=\mathbf{p}^{(+1)} \cdot \mathbf{p}^{(-1)}$
$\mathbf{P}^{++}=\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) / 2$ and $\mathbf{P}^{(-)}=\left(\sigma_{\mathrm{B}}-1\right) / 2$
C_{2} symmetry (B-type) modes
(a) Even mode $\left.|+\rangle=\left|0_{2}\right\rangle=\left\lvert\, \begin{array}{l}1 \\ 1\end{array}\right.\right)^{1} \wedge_{2}$

Mode state projection:

(b) Odd mode $|-\rangle=\left|1_{2}\right\rangle=$
(Normed so: $\mathbf{P}^{(+)}+\mathbf{P}^{(-)}=\mathbf{1}$ and: $\mathbf{P}^{(m)} \cdot \mathbf{P}^{(m)}=\mathbf{P}^{(m)}$) C_{2} mode phase \& character tables

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry C_{2} symmetric (B-type) modes
\rightarrow Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{3} symmetry

3 -fold $\pm 120^{\circ}$ rotations $\mathbf{r}=\mathbf{r}^{1}$ and $(\mathbf{r})^{2}=\mathbf{r}^{2}=\mathbf{r}^{-1}$ obey: $(\mathbf{r})^{3}=\mathbf{r}^{3}=\mathbf{1}=\mathbf{r}^{0}$ and a $\mathrm{C}_{3} \mathbf{g} \dagger \mathbf{g}$-product-table

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

\mathbf{H}-matrix and each \mathbf{r}^{p}-matrix based on $\mathbf{g} \dagger \mathbf{g}$-table. $\mathbf{g}=\mathbf{r}^{p}$ heads $p^{t h}$-column. Inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ heads $p^{t h}$-row then unit $\mathbf{g}^{\dagger} \mathbf{g}=\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ occupies $p^{t h}$-diagonal.
$\begin{aligned}\left(\begin{array}{lll}r_{0} & r_{1} & r_{2} \\ r_{2} & r_{0} & r_{1} \\ r_{1} & r_{2} & r_{0}\end{array}\right) & =r_{0}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)+r_{1}\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)+r_{2}\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \\ \mathbf{H} & =\begin{array}{r}r_{0} \cdot \mathbf{1} \\ \mathbf{r}^{0}=\mathbf{1}\end{array}+r_{1} \cdot \mathbf{r}^{1}+r_{2} \cdot \mathbf{r}^{2}\end{aligned}$

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{3} symmetry

3 -fold $\pm 120^{\circ}$ rotations $\mathbf{r}=\mathbf{r}^{1}$ and $(\mathbf{r})^{2}=\mathbf{r}^{2}=\mathbf{r}^{-1}$ obey: $(\mathbf{r})^{3}=\mathbf{r}^{3}=\mathbf{1}=\mathbf{r}^{0}$ and a $\mathrm{C}_{3} \mathbf{g} \dagger \mathbf{g}$-product-table

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

(a) equilibrium zero-state $x_{0}=x_{1}=x_{2}=0\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
\mathbf{H}-matrix and each \mathbf{r}^{p}-matrix based on $\mathbf{g} \boldsymbol{\dagger} \mathbf{g}$-table.
$\mathbf{g}=\mathbf{r}^{p}$ heads $p^{t h}$-column. Inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ heads $p^{t h}$-row then unit $\mathbf{g}^{\dagger} \mathbf{g}=\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ occupies $p^{\text {th }}$-diagonal.

C_{3} unit base states

$$
\begin{aligned}
&\left(\begin{array}{lll}
r_{0} & r_{1} & r_{2} \\
r_{2} & r_{0} & r_{1} \\
r_{1} & r_{2} & r_{0}
\end{array}\right)=r_{0}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+r_{1}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)+r_{2}\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& \mathbf{H}=r_{0} \cdot \mathbf{1}+r_{1} \cdot \mathbf{r}^{1}+r_{2} \cdot \mathbf{r}^{2} \\
& \mathbf{r}^{0}=\mathbf{1}
\end{aligned}
$$

Unit displacement
of mass point- 0
from equilibrium

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{3} symmetry

3-fold $\pm 120^{\circ}$ rotations $\mathbf{r}=\mathbf{r}^{1}$ and $(\mathbf{r})^{2}=\mathbf{r}^{2}=\mathbf{r}^{-1}$ obey: $(\mathbf{r})^{3}=\mathbf{r}^{3}=\mathbf{1}=\mathbf{r}^{0}$ and a $\mathrm{C}_{3} \mathbf{g} \dagger \mathbf{g}$-product-table

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

\mathbf{H}-matrix and each \mathbf{r}^{p}-matrix based on $\mathbf{g} \boldsymbol{\dagger} \mathbf{g}$-table.
$\mathbf{g}=\mathbf{r}^{p}$ heads $p^{t h}$-column. Inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ heads $p^{t h}$-row then unit $\mathbf{g}^{\dagger} \mathbf{g}=\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ occupies $p^{t h}$-diagonal.

C_{3} unit base states

$\left(\begin{array}{lll}r_{0} & r_{1} & r_{2} \\ r_{2} & r_{0} & r_{1} \\ r_{1} & r_{2} & r_{0}\end{array}\right)=r_{0}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)+r_{1}\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)+r_{2}\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
$\mathrm{r}^{0}=1$

Each \mathbf{H}-matrix coupling constant $r_{p}=\left\{r_{0}, r_{1}, r_{2}\right\}$ is amplitude of its operator power $\mathbf{r}^{p}=\left\{\mathbf{r}^{0}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
$\rightarrow C_{3}$ symmetric spectral decomposition by 3rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ..
C_{N} symmetric mode models: Made-to order dispersion functions
Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}.

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\rho_{1}=e^{i \frac{2 \pi}{3}} \rho_{0}=e^{i 0}=1
$$

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{\mathbf{3}}=\mathbf{1}$, or $\mathbf{r}^{\mathbf{3}} \mathbf{-} \mathbf{=}=\mathbf{0}$ and resolves to factors of $3^{r d}$ roots of unity $\rho_{m}=\mathrm{e}^{\mathrm{i} m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m \frac{2 \pi}{3}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(n)}=\rho_{m} \mathbf{P}^{(n)}$.

$$
\rho_{-2}^{\rho_{1}=e^{i \frac{2 \pi}{3}}} \rho_{0}=e^{i 0}=1
$$

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m \frac{2 \pi}{3}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\rho_{m} \mathbf{P}^{(m)}$. All three $\mathbf{P}^{(m)}$ are orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right.$) and complete (sum to unit 1).

$$
\rho_{1}=e^{i \frac{2 \pi}{3}}
$$

$$
\mathbf{1}=\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\mathbf{P}^{(2)}
$$

$\rho_{2}=e_{-i \frac{2 \pi}{3}} \rho_{0}=e^{i 0}=1$

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m \frac{2 \pi}{3}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\rho_{m} \mathbf{P}^{(m)}$. All three $\mathbf{P}^{(m)}$ are orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right.$) and complete (sum to unit 1).
$\rho_{1}=e^{i \frac{2 \pi}{3}}$
$\sum_{2}=e^{-i \frac{2 \pi}{3}}<\rho_{0}=e^{i 0}=1$
$\mathbf{1}=\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)}$
$\mathbf{r}=\rho_{0} \mathbf{P}^{(0)}+\rho_{1} \mathbf{P}^{(1)}+\rho_{2} \mathbf{P}^{(2)}$

C_{3} Spectral resolution: 3rd roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m \frac{2 \pi}{3}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\rho_{m} \mathbf{P}^{(n)}$. All three $\mathbf{P}^{(m)}$ are orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right.$) and complete (sum to unit 1).
$\rho_{1}=e^{i \frac{2 \pi}{3}}$
$\sum_{2}=e_{-i \frac{2 \pi}{3}} \rho_{0}=e^{i 0}=1$

$$
\begin{aligned}
\mathbf{1} & =\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\mathbf{P}^{(2)} \\
\mathbf{r} & =\rho_{0} \mathbf{P}^{(0)}+\rho_{1} \mathbf{P}^{(1)}+\rho_{2} \mathbf{P}^{(2)} \\
\mathbf{r}^{2} & =\left(\rho_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\rho_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\rho_{2}\right)^{2} \mathbf{P}^{(2)}
\end{aligned}
$$

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m \frac{2 \pi}{3}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\rho_{m} \mathbf{P}^{(m)}$. All three $\mathbf{P}^{(m)}$ are orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right.$) and complete (sum to unit 1).

$$
\rho_{1}=e^{i \frac{2 \pi}{3}}
$$

$$
\rho_{0}=e^{i 0}=1
$$

$$
\begin{aligned}
\mathbf{1} & =\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\mathbf{P}^{(2)} \\
\mathbf{r} & =\rho_{0} \mathbf{P}^{(0)}+\rho_{1} \mathbf{P}^{(1)}+\rho_{2} \mathbf{P}^{(2)} \\
\mathbf{r}^{2} & =\left(\rho_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\rho_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\rho_{2}\right)^{2} \mathbf{P}^{(2)}
\end{aligned}
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$

$\mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\quad \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+\quad \mathbf{r}^{1}+\quad \mathbf{r}^{2}\right)$
$\mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)$
$\mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right)$

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m^{2 \pi}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\rho_{m} \mathbf{P}^{(m)}$. All three $\mathbf{P}^{(n)}$ are orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right)$ and complete (sum to unit 1).

$$
\rho_{1}=e^{i \frac{2 \pi}{3}}
$$

$$
\rho_{2}=e_{-i \frac{2 \pi}{3}} \rho_{0}=e^{i 0}=1
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$

$\mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\quad \mathbf{r}^{2}\right)=\frac{1}{3}(\mathbf{1}+$
$\mathbf{r}^{1}+$
\mathbf{r}^{2})
$\left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(\begin{array}{llll}1 & 1 & 1 &)\end{array}\right.$
$\mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)$
$\left\langle\left(1_{3}\right)\right|=\langle 0| \mathbf{P}^{(1)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{-i 2 \pi / 3} e^{+i 2 \pi / 3}\right)$
$\mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right)$ $\left\langle\left(2_{3}\right)\right|=\langle 0| \mathbf{P}^{(2)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{+i 2 \pi / 3} e^{-i 2 \pi / 3}\right)$
$\left(m_{3}\right)$ means: m-modulo-3 (Details follow)

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
\rightarrow Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, .. C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$
$\mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}(\mathbf{1}+$
$\left.\mathbf{r}^{2}\right)$
$\left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$
$\mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)$
$\left\langle\left(1_{3}\right)\right|=\langle 0| \mathbf{P}^{(1)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{-i 2 \pi / 3} e^{+i 2 \pi / 3}\right)$
$\mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2}^{*} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right)$ $\left\langle\left(2_{3}\right)\right|=\langle 0| \mathbf{P}^{(2)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{+i 2 \pi / 3} e^{-i 2 \pi / 3}\right)$
C_{3} mode phase character tables
pis position

$\begin{aligned} & \rho_{2}=\mathrm{e}^{-\mathrm{i} 2 \pi / 3} \\ & \text { "mave-number } \\ & \text { "momentum" } \\ & m=1\end{aligned}{ }_{3}{ }_{3} \rho_{0}^{*}=1 \quad \rho_{01}^{*}=1 \quad \rho_{02}^{*}=1$
$\left(m_{3}\right)$ means: m-modulo-3 (Details follow)

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$
$\mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}(\mathbf{1}+$
\mathbf{r}^{2})
$\left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(\begin{array}{llll}1 & 1 & 1\end{array}\right)$
$\mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)$
$\left\langle\left(1_{3}\right)\right|=\langle 0| \mathbf{P}^{(1)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{-i 2 \pi / 3} e^{+i 2 \pi / 3}\right)$
$\mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2}^{*} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right)$ $\left\langle\left(2_{3}\right)\right|=\langle 0| \mathbf{P}^{(2)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{+i 2 \pi / 3} e^{-i 2 \pi / 3}\right)$

(m_{3}) means: m-modulo-3 (Details follow)

...... $L=$ lattice length $=3$ here)
$N=$ symmetry ($=3$ here)
$\dot{a}=$ lattice spacing($=1$ here $)$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$

$\mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}(\mathbf{1}+$
$\left.\mathbf{r}^{2}\right)$
$\left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$
$\mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)$
$\left\langle\left(1_{3}\right)\right|=\langle 0| \mathbf{P}^{(1)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{-i 2 \pi / 3} e^{+i 2 \pi / 3}\right)$
$\mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2}^{*} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right)$ $\left\langle\left(2_{3}\right)\right|=\langle 0| \mathbf{P}^{(2)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{+i 2 \pi / 3} e^{-i 2 \pi / 3}\right)$

Two distinct types of "quantum" numbers.
$p=0,1$, or 2 is power p of operator \mathbf{r}^{p} and defines each oscillator's position point p. $m=0,1$, or 2 is mode momentum m of the waves or wavevector $k_{m}=2 \pi / \lambda_{m}=2 \pi m / L .(L=N a=3)$ wavelength $\lambda_{m}=2 \pi / k_{m}=L / m$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$

$$
\begin{array}{ll}
\mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}(\mathbf{1}+ & \left.\mathbf{r}^{2}\right) \\
\mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right) & \left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}(1) \left\lvert\,=\langle 0| \mathbf{P}^{(1)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{-i 2 \pi / 3} e^{+i 2 \pi / 3}\right)\right. \\
\mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2}^{*} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right) & \left\langle(2)_{3}\right) \left\lvert\,=\langle 0| \mathbf{P}^{(2)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{+i 2 \pi / 3} e^{-i 2 \pi / 3}\right)\right.
\end{array}
$$

(m3) means: m-modulo-3 (Details follow)

. $L=$ lattice length($=3$ here) $N=$ symmetry ($=3$ here) $a=$ lattice spacing $=1$ here $)$
Two distinct types of "quantum" numbers.
$p=0,1$, or 2 is power p of operator \mathbf{r}^{p} and defines each oscillator's position point p.
$m=0,1$, or 2 is mode momentum m of the waves or wavevector $k_{m}=2 \pi / \lambda_{m}=2 \pi m / L . \quad(L=N a=3)$ wavelength $\lambda_{m}=2 \pi / k_{m}=L / m$
Each quantum number follows modular arithmetic: sums or products are an integer-modulo-3, that is, always 0,1, or 2 , or else $-1,0$, or 1 , or else $-2,-1$, or 0 , etc., depending on choice of origin.

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$

$$
\left.\begin{array}{lll}
\mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}(\mathbf{1}+ & \mathbf{r}^{1}+ & \left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}(1 \\
1 & 1
\end{array}\right)
$$

(m_{3}) means: m-modulo-3 (Details follow)

Two distinct types of "quantum" numbers.
$p=0,1$, or 2 is power p of operator \mathbf{r}^{p} and defines each oscillator's position point p.
$m=0,1$, or 2 is mode momentum m of the waves or wavevector $k_{m}=2 \pi / \lambda_{m}=2 \pi m / L . \quad(L=N a=3)$

$$
\text { wavelength } \lambda_{m}=2 \pi / k_{m}=L / m
$$

Each quantum number follows modular arithmetic: sums or products are an integer-modulo-3, that is, always 0,1, or 2 , or else $-1,0$, or 1 , or else $-2,-1$, or 0 , etc., depending on choice of origin.

That is, (2-times-2) $\bmod 3$ is not 4 but $l(4 \bmod 3=1$, the remainder of 4 divided by 3.)

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
\rightarrow Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, .. C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\begin{aligned}
& \langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot 1 \frac{2}{3}}+r_{2} e^{i m \cdot 2 \frac{2 \pi}{3}} \\
& \begin{array}{l}
m^{\text {th }} \text { Eigenvalue of } \mathbf{r}^{p} \\
\langle m| \mathbf{r}^{p}|m\rangle=e^{i m \cdot p} 2 \pi / 3
\end{array},-\cdots
\end{aligned}
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\begin{aligned}
& \langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \cdot \frac{2}{3}}+r_{1} e^{i m \cdot 1 \frac{2}{3}}+r_{2} e^{i m \cdot 2 \frac{2}{3}} \\
& m^{\text {th }} \text { Eigenvalue of } \mathbf{r}^{p} \\
& \langle m| \mathbf{r}^{p}|m\rangle=e^{i m \cdot p 2 \pi / 3}
\end{aligned}
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\begin{aligned}
& \langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot 1 \frac{2 \pi}{3}}+r_{2} e^{i m \cdot-\cdots \frac{2}{3}}
\end{aligned}
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\begin{aligned}
& \langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \cdot \frac{2 \pi}{3}}+r_{1} e^{i m \cdot 1 \frac{2 \pi}{3}}+r_{2} e^{i m \cdot 2 \frac{2 \pi}{3}}
\end{aligned}
$$

H-eigenvalues:

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2} \frac{m}{3}} \\
e^{-i^{2} \frac{m}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{\overline{3}}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m \pi} \frac{\overline{3}}{}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\begin{aligned}
& \langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot 1 \frac{2 \pi}{3}}+r_{2} e^{i m \cdot-\cdots \frac{2 \pi}{3}} \\
& \begin{array}{l}
m^{\text {th }} \text { Eigenvalue of } \mathbf{r}^{p} \\
\langle m| \mathbf{r}^{p}|m\rangle=e^{\text {imp } 2 \pi / 3}
\end{array} \quad \equiv \equiv \equiv=r_{0} e^{i m \cdot \frac{2 \pi}{3}}+r\left(e^{i \frac{2 \pi m}{3}}+e^{-i \frac{2}{3}}\right)=r_{0}+2 r \cos \left(\frac{2 \pi m}{3}\right)=\left\{\begin{array}{l}
\left.r_{0}+2 r \text { (for } m=0\right) \\
\left.r_{0}-r \text { (for } m= \pm 1\right)
\end{array}\right.
\end{aligned}
$$

\mathbf{H}-eigenvalues:

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i \frac{m}{3} \pi} \\
e^{-i^{2 m} \frac{\overline{3}}{}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{\overline{3}}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m \pi} \frac{\overline{3}}{}} \\
e^{-i^{2 m} \frac{m}{3}}
\end{array}\right)
$$

\mathbf{K}-eigenvalues:

$$
\left(\begin{array}{ccc}
K & -k & -k \\
-k & K & -k \\
-k & -k & K
\end{array}\right)\left(\begin{array}{c}
1 \\
i^{2} \frac{m \pi}{3} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)=\left(K-2 k \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
i^{2 \frac{2 n \pi}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot \cdots \cdot-\cdots}+r_{2} e^{i m \cdot-\cdots} \frac{2 \pi}{3}
$$

$\begin{aligned} & m^{\text {th }} \text { Eigenvalue of } \mathbf{r}^{p} \\ & \langle m\| \mathbf{r}^{p}\|m\rangle=e^{\text {im.p } 2 \pi / 3} \end{aligned}$		$\begin{gathered} r_{0}+2 r(\text { for } m=0) \\ r_{0}-r(\text { for } m= \pm 1) \end{gathered}$

H-eigenvalues: K-eigenvalues:

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2} \frac{m}{3}} \\
e^{-i^{2} \frac{\overline{3}}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 \frac{m}{3}}} \\
e^{-i^{2} \frac{m}{3}}
\end{array}\right) \quad\left(\begin{array}{ccc}
K & -k & -k \\
-k & K & -k \\
-k & -k & K
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2} \frac{m}{3} \pi} \\
e^{-i^{2} \frac{m}{3}}
\end{array}\right)=\left(K-2 k \cos \left(\begin{array}{c}
\left.2 \frac{m \pi}{3}\right)
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \frac{\overline{3}}{3}} \\
e^{-i^{2 m} \frac{m}{3}}
\end{array}\right)\right.
$$

Moving eigenwave	Standing eigenwaves	\mathbf{H} - eigenfrequencies	\mathbf{K} - eigenfrequencies
$\begin{aligned} & \left\|(+1)_{3}\right\rangle=\frac{1}{\sqrt{3}}\binom{e^{+i 2 \pi / 3}}{e^{-i 2 \pi / 3}} \\ & \left\|(-1)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{c} 1 \\ e^{-i 2 \pi / 3} \\ e^{+i 2 \pi / 3} \end{array}\right) \end{aligned}$	$\left\|c_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle+\left\|(-1)_{3}\right\rangle}{\sqrt{2}}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$	$\begin{aligned} & r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right) \\ & =r_{0}-r \end{aligned}$	$\begin{aligned} & \sqrt{k_{0}-2 k \cos \left({ }^{2 m \pi} \frac{3}{3}\right)} \\ & =\sqrt{k_{0}+k} \end{aligned}$
	$\left\|s_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle-\left\|(-1)_{3}\right\rangle}{i \sqrt{2}}=\frac{1}{2}\left(\begin{array}{c}0 \\ +1 \\ -1\end{array}\right)$	$\begin{aligned} & r_{0}+2 r \cos \left(-\frac{2 m \pi}{3}\right) \\ & =r_{0}-r \end{aligned}$	$\begin{aligned} & \sqrt{k_{0}-2 k \cos \left({ }^{2 m \pi} \frac{3}{3}\right)} \\ & =\sqrt{k_{0}+k} \end{aligned}$
	$\left\|(0)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$	$r_{0}+2 r$	$\sqrt{k_{0}-2 k}$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot \cdots \cdot-\cdots}+r_{2} e^{i m \cdot-\cdots} \frac{2 \pi}{3}
$$

$\begin{aligned} & m^{\text {th }} \text { Eigenvalue of } \mathbf{r}^{p} \\ & \langle m\| \mathbf{r}^{p}\|m\rangle=e^{\text {impp } 2 \pi / 3} \end{aligned}$		$\begin{aligned} & r_{0}+2 r(\text { for } m=0) \\ & r_{0}-r(\text { for } m= \pm 1) \end{aligned}$

\mathbf{H}-eigenvalues:

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2} \frac{m}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \frac{m}{3}} \\
e^{-i^{2 m \pi} \frac{3}{3}}
\end{array}\right)
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot-\cdots}+r_{2} e^{i m \cdot-\cdots} \frac{2}{3}-\cdots
$$

$\begin{aligned} & m^{\text {th }} \text { Eigenvalue of } \mathbf{r}^{p} \\ & \langle m\| \mathbf{r}^{p}\|m\rangle=e^{\text {imp } 2 \pi / 3} \end{aligned}$	$\begin{aligned} & =\equiv \equiv=r_{0} e^{i m \cdot 0 \frac{2}{3}}+r\left(e^{i \frac{2 \pi}{3}}+e^{-i \frac{2}{3}}\right)=r_{0}+2 r \cos \left(\frac{2 \pi m}{3}\right)= \end{aligned}$	$\begin{aligned} & r_{0}+2 r(\text { for } m=0) \\ & r_{0}-r(\text { for } m= \pm 1) \end{aligned}$
\mathbf{H}-eigenvalues:	K-eigenvalues:	

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2} \frac{m}{3} \pi} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \frac{\pi}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
K & -k & -k \\
-k & K & -k \\
-k & -k & K
\end{array}\right)\left(\begin{array}{c}
1 \\
i^{2} \frac{m \pi}{3} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)=\left(K-2 k \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
i^{2 \frac{2 n \pi}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)
$$

Moving eigenwave	Standing eigenwaves	\mathbf{H} - eigenfrequencies	\mathbf{K} - eigenfrequencies
$\left\|(+1)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{c}1 \\ e^{+i 2 \pi / 3} \\ e^{-i 2 \pi / 3}\end{array}\right)$	$\left\|c_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle+\left\|(-1)_{3}\right\rangle}{\sqrt{2}}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$	$\begin{aligned} & r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right) \\ & =r_{0}-r \end{aligned}$	$\begin{aligned} & \sqrt{k_{0}-2 k \cos \left({ }^{2 m \pi} \frac{3}{3}\right)} \\ & =\sqrt{k_{0}+k} \end{aligned}$
$\left\|(-1)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{c} 1 \\ e^{-i 2 \pi / 3} \\ e^{+i 2 \pi / 3} \end{array}\right)$	$\left\|s_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle-\left\|(-1)_{3}\right\rangle}{i \sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c} 0 \\ +1 \\ -1 \end{array}\right)$	$\begin{aligned} & r_{0}+2 r \cos \left(-\frac{2 m \pi}{3}\right) \\ & =r_{0}-r \end{aligned}$	$\begin{aligned} & \sqrt{k_{0}-2 k \cos \left({ }^{2 m \pi} \frac{3}{3}\right)} \\ & =\sqrt{k_{0}+k} \end{aligned}$
	$\left\|(0)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right)$	$r_{0}+2 r$	$\sqrt{k_{0}-2 k}$

Transverse (to k) Waves

C_{3} standing wave modes and eigenfrequencies :of \mathbf{K}

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot-\cdots}+r_{2} e^{i m \cdot-\cdots} \frac{2}{3}-\cdots
$$

$\begin{aligned} & m^{\text {th }} \text { Eigenvalue of } \mathbf{r}^{p} \\ & \langle m\| \mathbf{r}^{p}\|m\rangle=e^{\text {impp } 2 \pi / 3} \end{aligned}$	$=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r\left(e^{i^{2} \frac{\pi m}{3}}+e^{-i \frac{2 \pi m}{3}}\right)=r_{0}+2 r \cos \left(\frac{2 \pi m}{3}\right)=$	$\begin{aligned} & r_{0}+2 r(\text { for } m=0) \\ & r_{0}-r \quad(\text { for } m= \pm 1) \end{aligned}$

\mathbf{H}-eigenvalues:

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2 \frac{m}{3}}} \\
e^{-i^{2} \frac{\overline{3}}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \overline{3}} \\
e^{-i^{2 m} \frac{\overline{3}}{3}}
\end{array}\right)
$$

K-eigenvalues:

$$
\left(\begin{array}{ccc}
K & -k & -k \\
-k & K & -k \\
-k & -k & K
\end{array}\right)\left(\begin{array}{c}
1 \\
i^{2 \frac{m}{3}} \\
e^{-i^{2} \frac{m}{3}}
\end{array}\right)=\left(K-2 k \cos \left(2 \frac{m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i \frac{2}{3} \pi} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)
$$

Moving eigenwave Standing eigenwaves	H-eigenfrequencies	\mathbf{K} - eigenfrequencies
$\left\|(+1)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{c} 1 \\ e^{+i 2 \pi / 3} \\ e^{-i 2 \pi / 3} \end{array}\right)\left\|c_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle+\left\|(-1)_{3}\right\rangle}{\sqrt{2}}=\frac{1}{\sqrt{6}}\left(\begin{array}{c} 2 \\ -1 \\ -1 \end{array}\right)$	$\begin{aligned} & r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right) \\ & =r_{0}-r \end{aligned}$	$\begin{aligned} & \sqrt{k_{0}-2 k \cos \left(\frac{2 m \pi}{3}\right)} \\ & =\sqrt{k_{0}+k} \end{aligned}$
$\begin{gathered} \left\|(-1)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{c} 1 \\ e^{-i 2 \pi / 3} \\ e^{+i 2 \pi / 3} \end{array}\right)\left\|s_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle-\left\|(-1)_{3}\right\rangle}{i \sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c} 0 \\ +1 \\ -1 \end{array}\right) \\ \left\|(0)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right) \end{gathered}$	$\begin{aligned} & r_{0}+2 r \cos \left(-\frac{2 m \pi}{3}\right) \\ & =r_{0}-r \\ & r_{0}+2 r \end{aligned}$	$\begin{aligned} & \sqrt{k_{0}-2 k \cos \left(2 \frac{2 m \pi}{3}\right)} \\ & =\sqrt{k_{0}+k} \\ & \sqrt{k_{0}-2 k} \end{aligned}$

Longitudinal (to k) Waves

	$p=0 \quad p=1 \quad p=2$
c_{3}	$2 / \sqrt{ } 6-1 / \sqrt{ } 6-1 / \sqrt{ } 6$
S_{3}	$\begin{array}{llll}0 & 1 / \sqrt{ } 2 & -1 / \sqrt{2}\end{array}$
$m=0$	$\begin{array}{lll}1 / \sqrt{ } 3 & 1 / \sqrt{ } 3 & 1 / \sqrt{ } 3\end{array}$

C_{3} standing wave modes and eigenfrequencies:of \mathbf{K}

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
\rightarrow C6 symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, .. C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic

C_{6} Symmetric Mode Model: Distant neighbor coupling

(b) $2^{\text {nd }}$ Neighbor C_{6}

$$
\begin{aligned}
\mathbf{H}^{\mathrm{B} 2(6)} & =\left(\begin{array}{cccccc}
H_{2} & \cdot & -s & - & -\bar{s} & \cdot \\
\cdot & H_{2} & \cdot & - & \cdot & -\bar{s} \\
-\bar{s} & \cdot & H_{2} & \cdot & -s & \cdot \\
\cdot & -\bar{s} & \cdot & H_{2} & \cdot & -s \\
-s & \cdot & -\bar{s} & \cdot & H_{2} & \cdot \\
\cdot & -s & \cdot & -\bar{s} & \cdot & H_{2}
\end{array}\right)_{s} \\
& =H_{2} \mathbf{1}-s \mathbf{r}^{2}-\bar{s} \mathbf{r}^{-2}
\end{aligned}
$$

C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity

C_{6} Spectral resolution of $\mathbf{n}^{\text {th }}$ Neighbor H: Same modes but different dispersion
(a)

(b)
(c)

eigenvalues of $\mathbf{H}^{\mathrm{B} 2(6)}$
$\left(\begin{array}{cccccc}p=0 & 1 & 2 & 3 & 4 & 5 \\ H_{2} & \cdot & -s & \cdot & -s & \cdot \\ \cdot & H_{2} & \cdot & -S & \cdot & -s \\ -S & \cdot & H_{2} & \cdot & -s & \cdot \\ \cdot & -s & \cdot & H_{2} & \cdot & -s \\ -S & \cdot & -s & \cdot & H_{2} & \cdot \\ \cdot & -s & \cdot & -S & \cdot & H_{2}\end{array}\right)_{2}$
$2^{\text {nd }}$ Neighbor H

3rd Neighbor H

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
$\rightarrow C_{6}$ spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic
C_{6} Spectra of $1^{\text {st }}$ neighbor gauge splitting by C-type (Chiral, Coriolis,...,
1st ${ }^{\text {st }}$ Neighbor H

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ..
$\rightarrow C_{N}$ symmetric mode models: Made-to order dispersion functions
Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic

$$
-\left(\begin{array}{c}
F_{0} \\
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
\vdots \\
F_{N-1}
\end{array}\right)=\left(\begin{array}{ccccccc}
K & -k_{12} & \cdot & \cdot & \cdot & \cdots & -k_{12} \\
-k_{12} & K & -k_{12} & \cdot & \cdot & \cdots & \cdot \\
\cdot & -k_{12} & K & -k_{12} & \cdot & \cdots & \cdot \\
\cdot & \cdot & -k_{12} & K & -k_{12} & \cdots & \cdot \\
\cdot & \cdot & \cdot & -k_{12} & K & \cdots & \cdot \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & -k_{12} \\
-k_{12} & \cdot & \cdot & \cdot & \cdot & -k_{12} & K
\end{array}\right) \cdot\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
\vdots \\
x_{N-1}
\end{array}\right) \quad \begin{gathered}
K=k+2 k_{12} \\
\text { where: } \\
k=\frac{M g}{\ell} \\
(\cdot)=0 \\
\end{gathered}
$$

$1^{\text {st }}$ Neighbor K-matrix

$$
-\left(\begin{array}{c}
F_{0} \\
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
\vdots \\
F_{N-1}
\end{array}\right)=\left(\begin{array}{ccccccc}
K & -k_{12} & \cdot & \cdot & \cdot & \cdots & -k_{12} \\
-k_{12} & K & -k_{12} & \cdot & \cdot & \cdots & \cdot \\
\cdot & -k_{12} & K & -k_{12} & \cdot & \cdots & \cdot \\
\cdot & \cdot & -k_{12} & K & -k_{12} & \cdots & \cdot \\
\cdot & \cdot & \cdot & -k_{12} & K & \cdots & \cdot \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & -k_{12} \\
-k_{12} & \cdot & \cdot & \cdot & \cdot & -k_{12} & K
\end{array}\right) \bullet\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
\vdots \\
x_{N-1}
\end{array}\right) \text { where: } \quad k=\frac{M g}{\ell}
$$

$\mathbf{N}^{\text {th }}$ roots of $1 e^{i m p 2 \pi / N}=\langle m| \mathbf{r}^{p}|m\rangle$ serving as e-values, eigenfunctions, transformation matrices, dispersion relations, Group reps. etc.

C_{N} Symmetric Mode Models:

$\mathbf{N}^{\text {th }}$ roots of $1 e^{i m p ~} 2 \pi / N=\langle m| \mathbf{r}^{p}|m\rangle$ serving as e-values, eigenfunctions, transformation matrices, dispersion relations, Group reps. etc.

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ..
C_{N} symmetric mode models: Made-to order dispersion functions
$\boldsymbol{>}$ Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

$\mathbf{C}_{\mathbf{N}}$ Symmetric Mode Models: Made-to-Order Dispersion (and wave dynamics)

(Making pure linear $\omega=c k$, quadratic $\omega=c k^{2}$, etc. ?)

Archetypical Examples of Dispersion Functions

Strongly coupled pendulums (With gravity)

Optical mode in solids Relativistic matter (If exact hyperbola)

Reading Wave Velocity From Dispersion Function by (k, ω) Vectors

$$
\begin{aligned}
& a=k_{a} \cdot x-\omega_{a} \cdot t \\
& \frac{e^{i a}+e^{i b}}{2}=e^{i \frac{a+b}{2}}\left(\frac{\left.e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right)}{2}\right) \\
& =e^{i \frac{a+b}{2}} \cos \left(\frac{a-b}{2}\right)
\end{aligned}
$$

Things determined by
Dispersion $\omega=\omega(k)$

Individual phase velocity:
$V_{\text {phase-1 }}=\frac{\omega(k)}{k}$
Pairwise phase velocity:

$$
V_{\text {phase-2 }}=\frac{\omega\left(k_{a}\right)+\omega\left(k_{b}\right)}{k_{a}+k_{b}}
$$

Pairwise group velocity:

$$
V_{\text {group }-2}=\frac{\omega\left(k_{a}\right)-\omega\left(k_{b}\right)}{k_{a}-k_{b}}
$$

C_{N} Symmetric Mode Models: Made-to-Order Dispersion

Making pure quadratic $\omega=c k^{2}$ (Bohr dispersion)

	H_{0}	H_{l}	H_{2}	H_{3}	H_{4}	H_{5}	H_{6}	H_{7}	H_{8}
$N=2$	$1 / 2$	$-1 / 2$							
$N=3$	$2 / 3$	$-1 / 3$							
$N=4$	$3 / 2$	-1	$1 / 2$						
$N=5$	2	-1.1708	0.1708						
$N=6$	$19 / 6$	-2	$2 / 3$	$-1 / 2$					
$N=7$	4	-2.393	0.51	-0.1171					
$N=8$	$11 / 2$	-3.4142	1	-0.5858	$1 / 2$				
$N=9$	$20 / 3$	-4.0165	0.9270	$-1 / 3$	0.0895				
$N=10$	$17 / 2$	-5.2361	1.4472	-0.7639	0.5528	$-1 / 2$			
$N=11$	10	-6.0442	1.4391	-0.5733	0.2510	-0.0726			
$N=12$	$73 / 6$	-7.4641	2	-1	$2 / 3$	-0.5359	$1 / 2$		
$N=13$	14	-8.4766	2.0500	-0.8511	0.4194	-0.2028	0.06116		
$N=14$	$33 / 2$	-10.098	2.6560	-1.2862	0.8180	-0.6160	0.5260	$-1 / 2$	
$N=15$	$57 / 3$	-11.314	2.7611	-1.1708	0.6058	$-1 / 3$	0.1708	-0.0528	
$N=16$	$43 / 2$	-13.137	3.4142	-1.6199	1	-0.7232	0.5858	-0.5198	$1 / 2$
$N=17$	24	-14.557	3.5728	-1.5340	0.81413	-0.4732	0.2781	-0.1479	0.0465

C_{N} Symmetric Mode Models: Made-to-Order Dispersion

Revivals with quadratic $\omega=c k^{2}$ (Bohr dispersion)
C_{2} beats or revivals happen
with most any dispersion

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, .. C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals
\Rightarrow Phase arithmetic

C_{N} Symmetric Mode Models: Made-to-Order Dispersion

Revivals with quadratic $\omega=c k^{2}$ (Bohr dispersion)
C_{2} beats or revivals happen
with most any dispersion

C_{3} revivals and C_{4} revivals
occur with quadratic dispersion
(a) C_{3} Eigenstate Characters
(b) C_{4} Eigenstate Characters

(d) C_{4} Revivals

C_{N} Symmetric Mode Models: Made-to-Order Dispersion

Revivals with quadratic $\omega=c k^{2}$ (Bohr dispersion)
C_{5} revivals and C_{6} revivals
occur with quadratic dispersion
(b) C_{6} Eigenstate Characters

(c) C_{5} Revivals

(d) C_{6} Revivals

C_{3} revivals and C_{4} revivals
occur with quadratic dispersion
(a) C_{3} Eigenstate Characters
(b) C_{4} Eigenstate Characters

(d) C_{4} Revivals

C_{N} Symmetric Mode Models: Made-to-Order Dispersion

Revivals with quadratic $\omega=c k^{2}$ (Bohr dispersion)
C_{5} revivals and C_{6} revivals occur with quadratic dispersion
(a) C_{5} Eigenstate Characters
(b) C_{6} Eigenstate Characters
(c) C_{5} Revivals

(d) C_{6} Revivals

C_{15} revivals occur with quadratic dispersion
first display prime factors then multiples by zeros at site ± 1

Algebra and geometry of resonant revivals: Farey Sums and Ford Circles

(Imagine "wrap-around" ϕ-coordinate)

[Harter, J. Mol. Spec. 210, 166-182 (2001)]

Farey Sum algebra of revival-beat wave dynamics

 Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics

 Label by numerators N and denominators D of rational fractions N / D

$$
\begin{gathered}
\text { (a) } 0
\end{gathered}
$$

Relating C_{N} symmetric H and K matrices to differential wave operators

Relating C_{N} symmetric H and K matrices to wave differential operators

The $1^{\text {st }}$ neighbor \mathbf{K} matrix relates to a $2^{\text {nd }}$ finite-difference matrix of $2^{\text {nd }} x$-derivative for high C_{N}.

$$
\mathbf{K}=k\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{-1}\right) \text { analogous to: }-k \frac{\partial^{2}}{\partial x^{2}}
$$

1st derivative momentum: $p=\frac{\hbar}{i} \frac{\partial y}{\partial x} \approx \frac{\hbar}{i} \frac{y(x+\Delta x)-y(x)}{(\Delta x)}$
$\frac{\hbar}{i}\left(\begin{array}{cccccc}\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & -1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & -1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & -1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right)\left(\begin{array}{c}\cdot \\ y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ \cdot\end{array}\right)=\frac{\hbar}{i}\left(\begin{array}{c}\cdot \\ y_{1}-y_{0} \\ y_{2}-y_{1} \\ y_{3}-y_{2} \\ y_{4}-y_{3} \\ \cdot\end{array}\right)$

2nd derivative KE: $2 m E=-\hbar^{2} \frac{\partial^{2} y}{\partial x^{2}} \approx \frac{y(x+\Delta x)-2 y(x)+y(x-\Delta x)}{(\Delta x)^{2}}$

$$
-\hbar^{2}\left(\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
-1 & 2 & -1 & \cdot & \cdot & \cdot \\
\cdot & -1 & 2 & -1 & \cdot & \cdot \\
\cdot & \cdot & -1 & 2 & -1 & \cdot \\
\cdot & \cdot & \cdot & -1 & 2 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{c}
\cdot \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
\cdot
\end{array}\right)=\hbar^{2}\left(\begin{array}{c}
. \\
y_{0}-2 y_{1}+y_{2} \\
y_{1}-2 y_{2}+y_{3} \\
y_{2}-2 y_{3}+y_{4} \\
y_{3}-2 y_{4}+y_{5} \\
\cdot
\end{array}\right)
$$

\mathbf{H} and \mathbf{K} matrix equations are finite-difference versions of quantum and classical wave equations.

$$
\begin{array}{llll}
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\mathbf{H}|\psi\rangle & \text { (H-matrix equation) } & -\frac{\partial^{2}}{\partial t^{2}}|y\rangle=\mathbf{K}|y\rangle & \text { (K-matrix equation) } \\
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V\right)|\psi\rangle & \text { (Scrodinger equation) } & -\frac{\partial^{2}}{\partial t^{2}}|y\rangle=-k \frac{\partial^{2}}{\partial x^{2}}|y\rangle & \text { (Classical wave equation) }
\end{array}
$$

Square p^{2} gives $1^{\text {st }}$ neighbor \mathbf{K} matrix. Higher order $p^{3}, p^{4}, .$. involve $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$. neighbor \mathbf{H}

Symmetrized finite-difference operators

$$
\begin{aligned}
& \bar{\Delta}=\frac{1}{2}\left(\begin{array}{cccccc}
\ddots & \vdots & & & & \\
\cdots & 0 & 1 & & & \\
& -1 & 0 & 1 & & \\
& & -1 & 0 & 1 & \\
& & & -1 & 0 & 1 \\
& & & & -1 & 0
\end{array}\right), \bar{\Delta}^{3}=\frac{1}{2^{3}}\left(\begin{array}{cccccc}
\ddots & \vdots & 0 & -1 & \\
\cdots & 0 & 3 & 0 & -1 & \\
0 & -3 & 0 & 3 & 0 & -1 \\
1 & 0 & -3 & 0 & 3 & 0 \\
& 1 & 0 & -3 & 0 & 3 \\
& & 1 & 0 & -3 & 0
\end{array}\right) \\
& \bar{\Delta}^{2}=\frac{1}{2^{2}}\left(\begin{array}{cccccc}
\ddots & \vdots & 1 & & & \\
\cdots & -2 & 0 & 1 & & \\
1 & 0 & -2 & 0 & 1 & \\
& 1 & 0 & -2 & 0 & 1 \\
& & 1 & 0 & -2 & 0 \\
& & & 1 & 0 & -2
\end{array}\right), \bar{\Delta}^{4}=\frac{1}{2^{4}}\left(\begin{array}{cccccc}
\ddots & \vdots & -4 & 0 & 1 & \\
\cdots & 6 & 0 & -4 & 0 & 1 \\
-4 & 0 & 6 & 0 & -4 & 0 \\
0 & -4 & 0 & 6 & 0 & -4 \\
1 & 0 & -4 & 0 & 6 & 0 \\
& 1 & 0 & -4 & 0 & 6
\end{array}\right)
\end{aligned}
$$

