Lecture 25

Parametric Resonance and Multi-particle Wave Modes (Ch. 7-8 of Unit 4 11.27.12)

Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance) Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.) Schrodinger wave equation related to Parametric resonance dynamics Electronic band theory and analogous mechanics

Wave resonance in cyclic symmetry Harmonic oscillator with cyclic C₂ symmetry C₂ symmetric (B-type) modes
Harmonic oscillator with cyclic C₃ symmetry C₃ symmetric spectral decomposition by 3rd roots of unity Resolving C₃ projectors and moving wave modes Dispersion functions and standing waves
C₆ symmetric mode model:Distant neighbor coupling C₆ spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ...)
C_N symmetric mode models: Made-to order dispersion functions Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

Algebra and geometry of resonant revivals: Farey Sums and Ford Circles

Relating C_N symmetric H and K matrices to differential wave operators

Tuesday, November 27, 2012

Two Kinds of Resonance

Linear or additive resonance.

Example: oscillating electric E-field applied to a cyclotron orbit .

 $\ddot{x} + \omega_0^2 x = E_s \cos(\omega_s t)$

Chapter 4.2 study of FDHO (Here damping $\Gamma \cong 0$ *)*

Two Kinds of Resonance

Linear or additive resonance.

Example: oscillating electric E-field applied to a cyclotron orbit .

$$\ddot{x} + \omega_0^2 x = E_s \cos(\omega_s t)$$
Chapter 4.2 study of FDHO
(Here damping $\Gamma \cong 0$)

Nonlinear or multiplicative resonance.

Example: oscillating magnetic **B**-field is applied to a cyclotron orbit.

$$\ddot{x} + \left(\omega_0^2 + B\cos(\omega_s t)\right)x = 0 \qquad Chapter \ 4.7$$

Also called *parametric resonance*.

(Frequency parameter or spring constant $k=m\omega^2$ is being stimulated.)

Coupled Rotation and Translation (Throwing) Early non-human (or in-human) machines: trebuchets, whips...

(3000 BCE-1542 CE)

Coupled Rotation and Translation (Throwing)

Chaotic motion from both linear and non-linear resonance (a) Trebuchet, (b) Whirler.

Positioned for linear resonance

Positioned for nonlinear resonance

Schrodinger Equation Parametric Resonance

Schrodinger Wave Equation

Related to

Jerked-Pendulum Trebuchet Dynamics

Tuesday, November 27, 2012

Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance) Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.) Schrodinger wave equation related to Parametric resonance dynamics Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus B is zero

$$-\frac{d^2\phi}{dx^2} = E\phi \qquad \qquad -\frac{d^2\phi}{dt^2} = \omega_0^2\phi$$

Eigen-solutions are the familiar *Bohr orbitals* or, for the pendulum, the familiar phasor waves

$$\langle x | M \rangle = \phi_M(x) = \frac{e^{\pm iMx}}{\sqrt{2\pi}}$$
, where: $E = M^2$ $\langle t | \omega \rangle = \phi_\omega(t) = \frac{e^{\pm i\omega_0 t}}{\sqrt{2\pi}}$, where: $\omega_0 = \sqrt{\frac{g}{\ell}}$

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus B is zero

$$-\frac{d^2\phi}{dx^2} = E\phi \qquad \qquad -\frac{d^2\phi}{dt^2} = \omega_0^2\phi$$

Eigen-solutions are the familiar *Bohr orbitals* or, for the pendulum, the familiar phasor waves

$$\langle x | M \rangle = \phi_M(x) = \frac{e^{\pm iMx}}{\sqrt{2\pi}}$$
, where: $E = M^2$
 $\langle t | \omega \rangle = \phi_\omega(t) = \frac{e^{\pm i\omega_0 t}}{\sqrt{2\pi}}$, where: $\omega_0 = \sqrt{\frac{g}{\ell}}$

Bohr has *periodic boundary conditions x* between 0 and L

$$\phi(0) = \phi(L) \Longrightarrow e^{iML} = 1$$
, or: $M = \frac{2\pi m}{L}$

Pendulum repeats perfectly after a time *T*.

$$\phi(0) = \phi(T) \Rightarrow e^{i\omega_0 T} = 1$$
, or: $\omega_0 = \frac{2\pi m}{T}$

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus B is zero

$$-\frac{d^2\phi}{dx^2} = E\phi \qquad \qquad -\frac{d^2\phi}{dt^2} = \omega_0^2\phi$$

Eigen-solutions are the familiar *Bohr orbitals* or, for the pendulum, the familiar phasor waves

$$\langle x | M \rangle = \phi_M(x) = \frac{e^{\pm iMx}}{\sqrt{2\pi}}$$
, where: $E = M^2$
 $\langle t | \omega \rangle = \phi_\omega(t) = \frac{e^{\pm i\omega_0 t}}{\sqrt{2\pi}}$, where: $\omega_0 = \sqrt{\frac{g}{\ell}}$

Bohr has *periodic boundary conditions x* between 0 and L

$$\phi(0) = \phi(L) \Longrightarrow e^{iML} = 1$$
, or: $M = \frac{2\pi m}{L}$

= 1, or: $M = \frac{2\pi m}{L}$ $\phi(0) = \phi(T) \Rightarrow e^{i\omega_0 T} = 1$, or: $\omega_0 = \frac{2\pi m}{T}$

Pendulum repeats perfectly after a time *T*.

Limit $L=2\pi=T$ for both analogies. Then the allowed energies and frequencies follow

$$E = m^2 = 0, 1, 4, 9, 16...$$

$$\omega_0 = m = 0, \pm 1, \pm 2, \pm 3, \pm 4, ...$$

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus B is zero

$$-\frac{d^2\phi}{dx^2} = E\phi \qquad \qquad -\frac{d^2\phi}{dt^2} = \omega_0^2\phi$$

Eigen-solutions are the familiar *Bohr orbitals* or, for the pendulum, the familiar phasor waves

$$\langle x | M \rangle = \phi_M(x) = \frac{e^{\pm iMx}}{\sqrt{2\pi}}$$
, where: $E = M^2$ $\langle t | \omega \rangle = \phi_\omega(t) = \frac{e^{\pm i\omega_0 t}}{\sqrt{2\pi}}$, where: $\omega_0 = \sqrt{\frac{g}{\ell}}$

Bohr has *periodic boundary conditions x* between 0 and L

$$\phi(0) = \phi(L) \Longrightarrow e^{iML} = 1$$
, or: $M = \frac{2\pi m}{L}$

Limit $L=2\pi=T$ for both analogies. Then the allowed energies and frequencies follow

$$E = m^2 = 0, 1, 4, 9, 16...$$
 $\omega_0 = m = 0, \pm 1, \pm 2, \pm 3, \pm 4, ...$

Schrodinger equation with non-zero V solved in Fourier basis

$$\frac{d^2\phi}{dx^2} + V\cos(nx)\phi = E\phi , \qquad (\mathbf{D} + \mathbf{V})|\phi\rangle = E|\phi\rangle$$

Fourier representation is with $\langle j | \mathbf{D} | k \rangle = j^2 \delta_j^k$

$$\Sigma \langle j | (\mathbf{D} + \mathbf{V}) | k \rangle \langle k | \phi \rangle = E \langle j | \phi \rangle$$

Tuesday, November 27, 2012

Pendulum repeats perfectly after a time T.

$$\phi(0) = \phi(T) \Longrightarrow e^{i\omega_0 T} = 1$$
, or: $\omega_0 = \frac{2\pi m}{T}$

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus B is zero

$$-\frac{d^2\phi}{dx^2} = E\phi \qquad \qquad -\frac{d^2\phi}{dt^2} = \omega_0^2\phi$$

Eigen-solutions are the familiar *Bohr orbitals* or, for the pendulum, the familiar phasor waves

$$\langle x | M \rangle = \phi_M(x) = \frac{e^{\pm iMx}}{\sqrt{2\pi}}$$
, where: $E = M^2$ $\langle t | \omega \rangle = \phi_\omega(t) = \frac{e^{\pm i\omega_0 t}}{\sqrt{2\pi}}$, where: $\omega_0 = \sqrt{\frac{g}{\ell}}$

Pendulum repeats perfectly after a time *T*.

 $\phi(0) = \phi(T) \Longrightarrow e^{i\omega_0 T} = 1$, or: $\omega_0 = \frac{2\pi m}{T}$

Bohr has *periodic boundary conditions x* between 0 and L

$$\phi(0) = \phi(L) \Longrightarrow e^{iML} = 1$$
, or: $M = \frac{2\pi m}{L}$

Limit $L=2\pi=T$ for both analogies. Then the allowed energies and frequencies follow

$$E = m^2 = 0, 1, 4, 9, 16...$$

$$\omega_0 = m = 0, \pm 1, \pm 2, \pm 3, \pm 4, ...$$

Schrodinger equation with non-zero V solved in Fourier basis

$$\frac{d^2\phi}{dx^2} + V\cos(nx)\phi = E\phi , \qquad (\mathbf{D} + \mathbf{V})|\phi\rangle = E|\phi\rangle$$

Fourier representation is with $\langle j | \mathbf{D} | k \rangle = j^2 \delta_j^k$ and $\langle j | \mathbf{V} | k \rangle = \int_{0}^{2\pi} dx \frac{e^{-ijx}}{\sqrt{2\pi}} V \cos(nx) \frac{e^{-ikx}}{\sqrt{2\pi}} = \int_{0}^{2\pi} dx \frac{e^{-i(j-k)x}}{2\pi} V \frac{e^{-inx} + e^{inx}}{2\pi}$

$$\Sigma \langle j | (\mathbf{D} + \mathbf{V}) | k \rangle \langle k | \phi \rangle = E \langle j | \phi \rangle \qquad \qquad = \frac{V}{2} (\delta_j^{k+n} + \delta_j^{k-n})$$

Tuesday, November 27, 2012

Schrodinger equation with non-zero V solved in Fourier basis

 $-\frac{d^2\phi}{dx^2} + V\cos(nx)\phi = E\phi , \qquad (\mathbf{D} + \mathbf{V})|\phi\rangle = E|\phi\rangle$

Fourier representation is with $\langle j | \mathbf{D} | k \rangle = j^2 \delta_j^k$ and $\langle j | \mathbf{V} | k \rangle = \int_0^{2\pi} dx \frac{e^{-ijx}}{\sqrt{2\pi}} V \cos(nx) \frac{e^{-ikx}}{\sqrt{2\pi}} = \int_0^{2\pi} dx \frac{e^{-i(j-k)x}}{2\pi} V \frac{e^{-inx} + e^{inx}}{2\pi}$

$$\sum \langle j | (\mathbf{D} + \mathbf{V}) | k \rangle \langle k | \phi \rangle = E \langle j | \phi \rangle \qquad \qquad = \frac{V}{2} (\delta_j^{k+n} + \delta_j^{k-n})$$

Schrodinger equation with non-zero V solved in Fourier basis

$$\frac{-\frac{d^2\phi}{dx^2} + V\cos(nx)\phi = E\phi, \quad (\mathbf{D} + \mathbf{V})|\phi\rangle = E|\phi\rangle$$
Fourier representation is with $\langle j|\mathbf{D}|k\rangle = j^2\delta_j^k$ and $\langle j|\mathbf{V}|k\rangle = \int_0^{2\pi} dx \frac{e^{-ijx}}{\sqrt{2\pi}} V\cos(nx) \frac{e^{-ikx}}{\sqrt{2\pi}} = \int_0^{2\pi} dx \frac{e^{-i(j-k)x}}{2\pi} V \frac{e^{-inx} + e^{inx}}{2\pi} V \frac{e^{-inx} + e^{-inx}}{2\pi} V \frac{e^$

Wave resonance in cyclic symmetry

 Harmonic oscillator with cyclic C₂ symmetry
 C₂ symmetric (B-type) modes

 Harmonic oscillator with cyclic C₃ symmetry
 C₃ symmetric spectral decomposition by 3rd roots of unity
 Resolving C₃ projectors and moving wave modes
 Dispersion functions and standing waves
 C₄ symmetric mode model:Distant neighbor coupling
 C₄ spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, .
 C_N symmetric mode models: Made-to order dispersion functions
 Quadratic dispersion models: Super-beats and fractional revivals
 Phase arithmetic

Hamiltonian matrix **H** or spring-constant matrix $\mathbf{K}=\mathbf{H}^2$ with B-type or *bilateral-balanced* symmetry

$$\mathbf{H} = \begin{pmatrix} A & B \\ B & A \end{pmatrix} = A \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \qquad \mathbf{K} = \mathbf{H}^2 = \begin{pmatrix} A^2 + B^2 & 2AB \\ 2AB & A^2 + B^2 \end{pmatrix} \qquad \qquad \qquad \frac{C_2 \quad \mathbf{1} \quad \sigma_B}{\mathbf{1} \quad \mathbf{1} \quad \sigma_B} \\ = A \cdot \mathbf{1} + B \cdot \sigma_B \qquad \qquad = (A^2 + B^2) \cdot \mathbf{1} + 2AB \cdot \sigma_B \qquad \qquad \frac{\sigma_B \quad \sigma_B \quad \mathbf{1}}{\mathbf{1}}$$

Reflection symmetry σ_B defined by $(\sigma_B)^2=1$ in C₂ group product table.

Wave resonance in cyclic symmetry Harmonic oscillator with cyclic C₂ symmetry C₂ symmetric (B-type) modes
→ Harmonic oscillator with cyclic C₃ symmetry C₃ symmetric spectral decomposition by 3rd roots of unity Resolving C₃ projectors and moving wave modes Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling C6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, .
C_N symmetric mode models: Made-to order dispersion functions Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

Wave resonance in cyclic symmetry

then unit $\mathbf{g}^{\dagger}\mathbf{g}=\mathbf{1}=\mathbf{g}^{-1}\mathbf{g}$ occupies p^{th} -diagonal.

 $\begin{bmatrix} r_0 & r_1 & r_2 \\ r_2 & r_0 & r_1 \\ r_1 & r_2 & r_0 \end{bmatrix} = r_0 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + r_1 \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} + r_2 \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $\mathbf{H} = r_0 \cdot \mathbf{1} + r_1 \cdot \mathbf{r}^1 + r_2 \cdot \mathbf{r}^2$ $\mathbf{r}^0 = \mathbf{1}$

Wave resonance in cyclic symmetry

Wave resonance in cyclic symmetry

Each **H**-matrix coupling constant $r_p = \{r_0, r_1, r_2\}$ is amplitude of its operator power $\mathbf{r}^p = \{\mathbf{r}^0, \mathbf{r}^1, \mathbf{r}^2\}$

Wave resonance in cyclic symmetry Harmonic oscillator with cyclic C₂ symmetry C₂ symmetric (B-type) modes
Harmonic oscillator with cyclic C₃ symmetry
C₃ symmetric spectral decomposition by 3rd roots of unity Resolving C₃ projectors and moving wave modes Dispersion functions and standing waves
C₆ symmetric mode model:Distant neighbor coupling C₆ spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ... C_N symmetric mode models: Made-to order dispersion functions Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

We can spectrally resolve **H** if we resolve **r** since is **H** a combination $r_p \mathbf{r}^p$ of powers \mathbf{r}^p .

We can spectrally resolve **H** if we resolve **r** since is **H** a combination $r_p \mathbf{r}^p$ of powers \mathbf{r}^p .

r-symmetry is cubic **r**³=**1**, or **r**³-**1**=**0** and resolves to factors of 3^{rd} roots of unity $\rho_m = e^{im2\pi/3}$.

We can spectrally resolve **H** if we resolve **r** since is **H** a combination $r_p \mathbf{r}^p$ of powers \mathbf{r}^p .

r-symmetry is cubic **r**³=1, or **r**³-1=0 and resolves to factors of 3rd roots of unity $\rho_m = e^{im2\pi/3}$.

$$\mathbf{1} = \mathbf{r}^3 \text{ implies : } \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \rho_0 \mathbf{1})(\mathbf{r} - \rho_1 \mathbf{1})(\mathbf{r} - \rho_2 \mathbf{1}) \text{ where : } \rho_m = e^{im\frac{2\pi}{3}}$$

Each eigenvalue ρ_m of **r**, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \rho_m \mathbf{P}^{(m)}$.

We can spectrally resolve **H** if we resolve **r** since is **H** a combination $r_p \mathbf{r}^p$ of powers \mathbf{r}^p .

r-symmetry is cubic **r**³=1, or **r**³-1=0 and resolves to factors of 3rd roots of unity $\rho_m = e^{im2\pi/3}$.

$$\mathbf{1} = \mathbf{r}^3 \text{ implies : } \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \rho_0 \mathbf{1})(\mathbf{r} - \rho_1 \mathbf{1})(\mathbf{r} - \rho_2 \mathbf{1}) \text{ where : } \rho_m = e^{im\frac{2\pi}{3}}$$

Each eigenvalue ρ_m of **r**, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \rho_m \mathbf{P}^{(m)}$. All three $\mathbf{P}^{(m)}$ are *orthonormal* ($\mathbf{P}^{(m)} \mathbf{P}^{(n)} = \delta_{mn} \mathbf{P}^{(m)}$) and *complete* (sum to unit 1).

$$\rho_{1} = e^{i\frac{2\pi}{3}} \qquad 1 = P^{(0)} + P^{(1)} + P^{(2)}$$

$$\rho_{0} = e^{i0} = 1$$

$$\rho_{2} = e^{-i\frac{2\pi}{3}}$$

We can spectrally resolve **H** if we resolve **r** since is **H** a combination $r_p \mathbf{r}^p$ of powers \mathbf{r}^p .

r-symmetry is cubic **r**³=1, or **r**³-1=0 and resolves to factors of 3rd roots of unity $\rho_m = e^{im2\pi/3}$.

$$\mathbf{1} = \mathbf{r}^3 \text{ implies : } \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \rho_0 \mathbf{1})(\mathbf{r} - \rho_1 \mathbf{1})(\mathbf{r} - \rho_2 \mathbf{1}) \text{ where : } \rho_m = e^{im\frac{2\pi}{3}}$$

Each eigenvalue ρ_m of **r**, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \rho_m \mathbf{P}^{(m)}$. All three $\mathbf{P}^{(m)}$ are *orthonormal* ($\mathbf{P}^{(m)} \mathbf{P}^{(n)} = \delta_{mn} \mathbf{P}^{(m)}$) and *complete* (sum to unit 1).

$$\rho_{1} = e^{i\frac{2\pi}{3}} \qquad 1 = P^{(0)} + P^{(1)} + P^{(2)}$$

$$\rho_{0} = e^{i0} = 1 \qquad \mathbf{r} = \rho_{0} P^{(0)} + \rho_{1} P^{(1)} + \rho_{2} P^{(2)}$$

$$\rho_{2} = e^{-i\frac{2\pi}{3}}$$

We can spectrally resolve **H** if we resolve **r** since is **H** a combination $r_p \mathbf{r}^p$ of powers \mathbf{r}^p .

r-symmetry is cubic **r**³=1, or **r**³-1=0 and resolves to factors of 3rd roots of unity $\rho_m = e^{im2\pi/3}$.

$$\mathbf{1} = \mathbf{r}^3 \text{ implies : } \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \rho_0 \mathbf{1})(\mathbf{r} - \rho_1 \mathbf{1})(\mathbf{r} - \rho_2 \mathbf{1}) \text{ where : } \rho_m = e^{im\frac{2\pi}{3}}$$

Each eigenvalue ρ_m of **r**, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \rho_m \mathbf{P}^{(m)}$. All three $\mathbf{P}^{(m)}$ are *orthonormal* ($\mathbf{P}^{(m)} \mathbf{P}^{(n)} = \delta_{mn} \mathbf{P}^{(m)}$) and *complete* (sum to unit 1).

$$\rho_{1} = e^{i\frac{2\pi}{3}} \qquad 1 = P^{(0)} + P^{(1)} + P^{(2)}$$

$$\rho_{0} = e^{i0} = 1 \qquad \mathbf{r} = \rho_{0} P^{(0)} + \rho_{1} P^{(1)} + \rho_{2} P^{(2)}$$

$$\rho_{2} = e^{-i\frac{2\pi}{3}} \qquad \mathbf{r}^{2} = (\rho_{0})^{2} P^{(0)} + (\rho_{1})^{2} P^{(1)} + (\rho_{2})^{2} P^{(2)}$$

We can spectrally resolve **H** if we resolve **r** since is **H** a combination $r_p \mathbf{r}^p$ of powers \mathbf{r}^p .

r-symmetry is cubic **r**³=1, or **r**³-1=0 and resolves to factors of 3rd roots of unity $\rho_m = e^{im2\pi/3}$.

$$\mathbf{1} = \mathbf{r}^3 \text{ implies : } \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \rho_0 \mathbf{1})(\mathbf{r} - \rho_1 \mathbf{1})(\mathbf{r} - \rho_2 \mathbf{1}) \text{ where : } \rho_m = e^{im\frac{2\pi}{3}}$$

Each eigenvalue ρ_m of **r**, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \rho_m \mathbf{P}^{(m)}$. All three $\mathbf{P}^{(m)}$ are *orthonormal* ($\mathbf{P}^{(m)} \mathbf{P}^{(n)} = \delta_{mn} \mathbf{P}^{(m)}$) and *complete* (sum to unit 1).

$$\rho_{1} = e^{i\frac{2\pi}{3}} \qquad 1 = P^{(0)} + P^{(1)} + P^{(2)}$$

$$\rho_{0} = e^{i0} = 1 \qquad \mathbf{r} = \rho_{0} P^{(0)} + \rho_{1} P^{(1)} + \rho_{2} P^{(2)}$$

$$\rho_{2} = e^{i\frac{2\pi}{3}} \qquad \mathbf{r}^{2} = (\rho_{0})^{2} P^{(0)} + (\rho_{1})^{2} P^{(1)} + (\rho_{2})^{2} P^{(2)}$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$

$$\mathbf{P}^{(0)} = \frac{1}{3}(\mathbf{r}^{0} + \mathbf{r}^{1} + \mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2})$$
$$\mathbf{P}^{(1)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{1}^{*}\mathbf{r}^{1} + \rho_{2}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + e^{-i2\pi/3}\mathbf{r}^{1} + e^{+i2\pi/3}\mathbf{r}^{2})$$
$$\mathbf{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{2}^{*}\mathbf{r}^{1} + \rho_{1}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + e^{+i2\pi/3}\mathbf{r}^{1} + e^{-i2\pi/3}\mathbf{r}^{2})$$
C₃ Spectral resolution: 3rd roots of unity

We can spectrally resolve **H** if we resolve **r** since is **H** a combination $r_p \mathbf{r}^p$ of powers \mathbf{r}^p .

r-symmetry is cubic **r**³=**1**, or **r**³-**1**=**0** and resolves to factors of *3rd roots of unity* $\rho_m = e^{im2\pi/3}$.

$$\mathbf{1} = \mathbf{r}^3 \text{ implies : } \mathbf{0} = \mathbf{r}^3 - \mathbf{1} = (\mathbf{r} - \rho_0 \mathbf{1})(\mathbf{r} - \rho_1 \mathbf{1})(\mathbf{r} - \rho_2 \mathbf{1}) \text{ where : } \rho_m = e^{im\frac{2\pi}{3}}$$

Each eigenvalue ρ_m of **r**, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)} = \rho_m \mathbf{P}^{(m)}$. All three $\mathbf{P}^{(m)}$ are *orthonormal* ($\mathbf{P}^{(m)} \mathbf{P}^{(n)} = \delta_{mn} \mathbf{P}^{(m)}$) and *complete* (sum to unit 1).

$$\rho_{1} = e^{i\frac{2\pi}{3}} \qquad 1 = P^{(0)} + P^{(1)} + P^{(2)}$$

$$\rho_{0} = e^{i0} = 1 \qquad \mathbf{r} = \rho_{0} P^{(0)} + \rho_{1} P^{(1)} + \rho_{2} P^{(2)}$$

$$\rho_{2} = e^{-i\frac{2\pi}{3}} \qquad \mathbf{r}^{2} = (\rho_{0})^{2} \mathbf{P}^{(0)} + (\rho_{1})^{2} \mathbf{P}^{(1)} + (\rho_{2})^{2} \mathbf{P}^{(2)}$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle (m) |$

$$\mathbf{P}^{(0)} = \frac{1}{3} (\mathbf{r}^{0} + \mathbf{r}^{1} + \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2})
\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{1}^{*} \mathbf{r}^{1} + \rho_{2}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})
\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})
\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})
\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})
\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})
\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})
\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

(*m*₃) means: *m*-*modulo*-3 (Details follow)

Wave resonance in cyclic symmetry Harmonic oscillator with cyclic C₂ symmetry C₂ symmetric (B-type) modes
Harmonic oscillator with cyclic C₃ symmetry C₃ symmetric spectral decomposition by 3rd roots of unity
 Resolving C₃ projectors and moving wave modes Dispersion functions and standing waves
C₆ symmetric mode model:Distant neighbor coupling C₆ spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ... C_N symmetric mode models: Made-to order dispersion functions Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

$$\mathbf{P}^{(0)} = \frac{1}{3} (\mathbf{r}^{0} + \mathbf{r}^{1} + \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2})$$
$$\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{1}^{*} \mathbf{r}^{1} + \rho_{2}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$
$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\begin{pmatrix} (\mathbf{0}_3) \\ = & \begin{pmatrix} 0 \\ \mathbf{P}^{(0)} \sqrt{3} = \sqrt{\frac{1}{3}} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \\ \langle (1_3) \\ = & \begin{pmatrix} 0 \\ \mathbf{P}^{(1)} \sqrt{3} = \sqrt{\frac{1}{3}} \begin{pmatrix} 1 & e^{-i2\pi/3} & e^{+i2\pi/3} \end{pmatrix} \\ \langle (2_3) \\ = & \begin{pmatrix} 0 \\ \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} \begin{pmatrix} 1 & e^{+i2\pi/3} & e^{-i2\pi/3} \end{pmatrix}$$

(*m*₃) means: *m-modulo-3* (Details follow)

 $\pm i 2\pi/3$

$$\mathbf{P}^{(0)} = \frac{1}{3} (\mathbf{r}^{0} + \mathbf{r}^{1} + \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2})$$
$$\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{1}^{*} \mathbf{r}^{1} + \rho_{2}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$
$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\left\langle (\mathbf{0}_{3}) \right| = \left\langle 0 \right| \mathbf{P}^{(0)} \sqrt{3} = \sqrt{\frac{1}{3}} \left(\begin{array}{ccc} 1 & 1 & 1 \end{array} \right)$$

$$\left\langle (1_{3}) \right| = \left\langle 0 \right| \mathbf{P}^{(1)} \sqrt{3} = \sqrt{\frac{1}{3}} \left(\begin{array}{ccc} 1 & e^{-i2\pi/3} & e^{+i2\pi/3} \end{array} \right)$$

$$\left\langle (2_{3}) \right| = \left\langle 0 \right| \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} \left(\begin{array}{ccc} 1 & e^{+i2\pi/3} & e^{-i2\pi/3} \end{array} \right)$$

$$\mathbf{P}^{(0)} = \frac{1}{3}(\mathbf{r}^{0} + \mathbf{r}^{1} + \mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2}) \qquad \langle (0_{3}) | = \langle 0 | \mathbf{P}^{(0)}\sqrt{3} = \sqrt{\frac{1}{3}}(\mathbf{1} - \mathbf{1} - \mathbf{1}) \\
\mathbf{P}^{(1)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{1}^{*}\mathbf{r}^{1} + \rho_{2}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + e^{-i2\pi/3}\mathbf{r}^{1} + e^{+i2\pi/3}\mathbf{r}^{2}) \\
\mathbf{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{2}^{*}\mathbf{r}^{1} + \rho_{1}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + e^{+i2\pi/3}\mathbf{r}^{1} + e^{-i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{2}^{*}\mathbf{r}^{1} + \rho_{1}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + e^{+i2\pi/3}\mathbf{r}^{1} + e^{-i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{2}^{*}\mathbf{r}^{1} + \rho_{1}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + e^{+i2\pi/3}\mathbf{r}^{1} + e^{-i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{2}^{*}\mathbf{r}^{1} + \rho_{1}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + e^{+i2\pi/3}\mathbf{r}^{1} + e^{-i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{2}^{*}\mathbf{r}^{1} + \rho_{1}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + e^{+i2\pi/3}\mathbf{r}^{1} + e^{-i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{2}^{*}\mathbf{r}^{1} + \rho_{1}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + e^{+i2\pi/3}\mathbf{r}^{1} + e^{-i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{2}^{*}\mathbf{r}^{1} + \rho_{1}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + e^{+i2\pi/3}\mathbf{r}^{1} + e^{-i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{2}^{*}\mathbf{r}^{1} + \rho_{1}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{1} + e^{+i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{2}^{*}\mathbf{r}^{1} + \rho_{1}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{r}^{0} + e^{i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + \rho_{2}^{*}\mathbf{r}^{1} + \rho_{1}^{*}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{r}^{0} + e^{i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + e^{i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} + e^{i2\pi/3}\mathbf{r}^{2}) = \frac{1}{3}(\mathbf{r}^{0} + e^{i2\pi/3}\mathbf{r}^{2}) \\
\mathcal{P}^{(2)} = \frac{1}{3}(\mathbf{r}^{0} +$$

Two distinct types of "quantum" numbers. $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ and defines each oscillator's position point } p.$ $m=0,1, \text{or } 2 \text{ is mode momentum } m \text{ of the waves or wavevector } k_m = 2\pi/\lambda_m = 2\pi m/L. (L=Na=3)$ wavelength $\lambda_m = 2\pi/k_m = L/m$

$$\mathbf{P}^{(0)} = \frac{1}{3} (\mathbf{r}^{0} + \mathbf{r}^{1} + \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2}) \qquad \langle (\mathbf{0}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(0)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - \mathbf{1} - \mathbf{1}) \rangle \\ \mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{1}^{*} \mathbf{r}^{1} + \rho_{2}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2}) \\ \mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(1)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{-i2\pi/3} e^{+i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{+i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{+i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{+i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{+i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{P}^{(2)} \sqrt{3} = \sqrt{\frac{1}{3}} (\mathbf{1} - e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{0} | \mathbf{1} + e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{1} + e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1}_{3}) | = \langle \mathbf{1} + e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1} + e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3}) \\ \langle (\mathbf{1} + e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3} e^{-i2\pi/3} e^{-$$

Two distinct types of "quantum" numbers. $p=0,1, \text{or } 2 \text{ is power } p \text{ of operator } \mathbf{r}^p \text{ and defines each oscillator's position point } p.$ $m=0,1, \text{or } 2 \text{ is mode momentum } m \text{ of the waves or wavevector } k_m = 2\pi/\lambda_m = 2\pi m/L. (L=Na=3)$ wavelength $\lambda_m = 2\pi/k_m = L/m$

Each quantum number follows *modular arithmetic:* sums or products are an *integer-modulo-3*, that is, always 0,1,or 2, or else -1,0,or 1, or else -2,-1,or 0, *etc.*, depending on choice of origin.

$$\mathbf{P}^{(0)} = \frac{1}{3} (\mathbf{r}^{0} + \mathbf{r}^{1} + \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2})$$

$$\mathbf{P}^{(1)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{1}^{*} \mathbf{r}^{1} + \rho_{2}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{-i2\pi/3} \mathbf{r}^{1} + e^{+i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\mathbf{P}^{(2)} = \frac{1}{3} (\mathbf{r}^{0} + \rho_{2}^{*} \mathbf{r}^{1} + \rho_{1}^{*} \mathbf{r}^{2}) = \frac{1}{3} (\mathbf{1} + e^{+i2\pi/3} \mathbf{r}^{1} + e^{-i2\pi/3} \mathbf{r}^{2})$$

$$\begin{array}{c} (m_{3}) \text{ means: } m-modulo-3 \text{ (Details follow)} \\ (m_{3}) \text{ means: } m-modulo-3 \text{ (Detai$$

Two distinct types of "quantum" numbers.

p=0,1, or 2 is *power p* of operator \mathbf{r}^p and defines each oscillator's *position point p*. m=0,1, or 2 is mode momentum m of the waves or wavevector $k_m=2\pi/\lambda_m=2\pi m/L$. $(L=N\dot{a}=3)$ wavelength $\lambda_m = 2\pi/k_m = L/m$

Each quantum number follows *modular arithmetic*: sums or products are an *integer-modulo-3*, that is, always 0,1, or 2, or else -1,0, or 1, or else -2,-1, or 0, etc., depending on choice of origin.

For example, for m=2 and p=2 the number $(\rho_m)^p = (e^{im2\pi/3})^p$ is $e^{imp \cdot 2\pi/3} = e^{i4 \cdot 2\pi/3} = e^{i2\pi/3} = e^{i2\pi/3} = \rho_1$. That is, $(2\text{-times-2}) \mod 3$ is not 4 but 1 (4 mod 3=1, the remainder of 4 divided by 3.)

Tuesday, November 27, 2012

Wave resonance in cyclic symmetry Harmonic oscillator with cyclic C₂ symmetry C₂ symmetric (B-type) modes
Harmonic oscillator with cyclic C₃ symmetry C₃ symmetric spectral decomposition by 3rd roots of unity Resolving C₃ projectors and moving wave modes
Dispersion functions and standing waves
C₆ symmetric mode model:Distant neighbor coupling C₆ spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ... C_N symmetric mode models: Made-to order dispersion functions Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

 $\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i m \cdot 0} \frac{2\pi}{3} + r_1 e^{i m \cdot 1} \frac{2\pi}{3} + r_2 e^{i m \cdot 2} \frac{2\pi}{3}$ $\frac{m^{th} \ Eigenvalue \ of \ \mathbf{r}^p}{\langle m | \ \mathbf{r}^p | m \rangle = e^{i m \cdot p \ 2\pi/3} }$

 $\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i m \cdot 0} \frac{2\pi}{3} + r_1 e^{i m \cdot 1} \frac{2\pi}{3} + r_2 e^{i m \cdot 2} \frac{2\pi}{3}$ $\frac{m^{th} \ Eigenvalue \ of \ \mathbf{r}^p}{\langle m | \ \mathbf{r}^p | m \rangle = e^{i m \cdot p \ 2\pi/3} }$

 $\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i m \cdot 0} \frac{2\pi}{3} + r_1 e^{i m \cdot 1} \frac{2\pi}{3} + r_2 e^{i m \cdot 2} \frac{2\pi}{3}$ $\frac{m^{th} \ Eigenvalue \ of \ \mathbf{r}^p}{\langle m | \ \mathbf{r}^p | m \rangle = e^{i m \cdot p \ 2\pi/3} }$

$$\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i m \cdot 0} \frac{2\pi}{3} + r_1 e^{i m \cdot 1} \frac{2\pi}{3} + r_2 e^{i m \cdot 2} \frac{2\pi}{3}$$

$$\frac{m^{th} \ Eigenvalue \ of \ \mathbf{r}^p}{\langle m | \ \mathbf{r}^p | m \rangle = e^{i m \cdot p \ 2\pi/3}} = r_0 e^{i m \cdot 0} \frac{2\pi}{3} + r(e^{i \frac{2\pi m}{3}} + e^{-i\frac{2\pi m}{3}}) = r_0 + 2r \cos(\frac{2\pi m}{3}) = \begin{cases} r_0 + 2r \ (\text{for } m = 0) \\ r_0 - r \ (\text{for } m = \pm 1) \end{cases}$$

$$\frac{\langle m | \mathbf{H} | m \rangle}{\langle m | \mathbf{r}^{p} | m \rangle} = \langle m | r_{0} \mathbf{r}^{0} + r_{1} \mathbf{r}^{1} + r_{2} \mathbf{r}^{2} | m \rangle = r_{0} e^{i \frac{m \cdot 0}{3} \frac{2\pi}{3}} + r_{1} e^{i \frac{m \cdot 1}{3} \frac{2\pi}{3}} + r_{2} e^{i \frac{m \cdot 2}{3} \frac{2\pi}{3}}$$

$$\frac{m^{th} Eigenvalue \ of \ \mathbf{r}^{p}}{\langle m | \ \mathbf{r}^{p} | m \rangle} = e^{i \frac{m \cdot p}{2\pi/3}} = r_{0} e^{i \frac{m \cdot 0}{3} \frac{2\pi}{3}} + r(e^{i \frac{2\pi m}{3}} + e^{-i \frac{2\pi m}{3}}) = r_{0} + 2r \cos(\frac{2\pi m}{3}) = \begin{cases} r_{0} + 2r \ (\text{for } m = 0) \\ r_{0} - r \ (\text{for } m = \pm 1) \end{cases}$$

H-eigenvalues:

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{pmatrix} 1 \\ \frac{i^{2}m\pi}{3} \\ e^{-i^{2}\frac{m\pi}{3}} \\ e^{-i^{2}\frac{m\pi}{3}} \end{pmatrix} = \left(r_{0} + 2r\cos(\frac{2m\pi}{3})\right) \begin{pmatrix} 1 \\ \frac{i^{2}m\pi}{3} \\ e^{-i^{2}\frac{m\pi}{3}} \\ e^{-i^{2}\frac{m\pi}{3}} \end{pmatrix}$$

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{pmatrix} i^{2}m\pi \\ e^{-i^{2}m\pi} \\ e$$

$$\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 e^{i m \cdot 0} \frac{2\pi}{3} + r_1 e^{i m \cdot 1} \frac{2\pi}{3} + r_2 e^{i m \cdot 2} \frac{2\pi}{3}$$

$$\frac{m^{th} \ Eigenvalue \ of \ \mathbf{r}^p}{\langle m | \ \mathbf{r}^p | m \rangle = e^{i m \cdot p} 2\pi/3} = \begin{cases} r_0 + 2r \ (\text{for } m = 0) \\ r_0 - r \ (\text{for } m = \pm 1) \end{cases}$$

$$\mathbf{H}\text{-eigenvalues:}$$

$$\left(\frac{r_0 - r}{3} \right) \left(\frac{1}{2\pi\pi} \right) = \left(\frac{1}{2\pi\pi} \left(\frac{1}{2\pi\pi} \right) =$$

$$\begin{pmatrix} r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0} \end{pmatrix} \begin{vmatrix} 1 \\ e^{i2m\pi} \\ e^{-i^{2}m\pi} \\ e^{-i^{2}m\pi$$

$$\begin{vmatrix} e^{-i2\pi/3} \\ e^{-i2\pi/3} \\ |(-1)_3\rangle = \sqrt{3} \begin{pmatrix} 1 \\ e^{-i2\pi/3} \\ e^{+i2\pi/3} \\ e^{+i2\pi/3} \end{pmatrix} \begin{vmatrix} s_3 \\ s_3 \\ s_3 \\ s_3 \\ s_1 \\ \hline (0)_3 \\ s_1 \\ \hline (1) \\ s_1 \\ \hline (0)_3 \\ s_2 \\ s_1 \\ \hline (1) \\ s_1 \\ \hline (1) \\ \hline (1) \\ s_2 \\ \hline (1) \\ s_1 \\ \hline (1) \\ \hline (1) \\ s_2 \\ \hline (1) \\ s_1 \\ \hline (1) \\$$

$$\langle m | \mathbf{H} | m \rangle = \langle m | r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 | m \rangle = r_0 \frac{i}{2} \frac{m \cdot 0}{3} \frac{2\pi}{3} + r_1 \frac{i}{2} \frac{m \cdot 1}{3} \frac{2\pi}{3} + r_2 \frac{i}{2} \frac{m \cdot 2}{3} \frac{2\pi}{3}$$

$$\frac{m^{th} \ Eigenvalue \ of \ \mathbf{r}^p}{\langle m | \mathbf{r}^p | m \rangle = e^{i} m \cdot p \cdot 2\pi/3} = r_0 e^{i m \cdot 0 \cdot 2\pi} + r(e^{i \frac{2\pi m}{3}} + e^{-i \frac{2\pi m}{3}}) = r_0 + 2r \cos(2\pi m) = \begin{cases} r_0 + 2r (\text{for } m = 0) \\ r_0 - r (\text{for } m = \pm 1) \end{cases}$$

$$\mathbf{H}\text{-eigenvalues:} \qquad \qquad \mathbf{K}\text{-eigenvalues:}$$

$$\left(\begin{matrix} r_0 & r & r \\ r & r_0 & r \\ r & r & r_0 \end{matrix} \right) \left(\begin{matrix} \frac{1}{e^{i \frac{2\pi m}{3}}} \\ e^{-i \frac{2\pi m}{3}} \end{matrix} \right) = \left(r_0 + 2r \cos(2\pi m) \right) \left(\begin{matrix} \frac{1}{e^{i \frac{2\pi}{3}}} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \end{matrix} \right) = \left(\kappa - 2k \cos(2\pi m) \right) \left(\begin{matrix} \frac{1}{r_0 - 2r} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \end{matrix} \right) = \left(\kappa - 2k \cos(2\pi m) \right) \left(\begin{matrix} \frac{1}{r_0 - 2r} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \end{matrix} \right) = \left(\kappa - 2k \cos(2\pi m) \right) \left(\begin{matrix} \frac{1}{e^{i \frac{2\pi m}{3}}} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \end{matrix} \right) = \left(\kappa - 2k \cos(2\pi m) \right) \left(\begin{matrix} \frac{1}{r_0 - 2r} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \end{matrix} \right) = \left(\kappa - 2k \cos(2\pi m) \right) \left(\begin{matrix} \frac{1}{r_0 - 2r} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \end{matrix} \right) = \left(\kappa - 2k \cos(2\pi m) \right) \left(\begin{matrix} \frac{1}{r_0 - 2r} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \end{matrix} \right) = \left(\kappa - 2k \cos(2\pi m) \right) \left(\begin{matrix} \frac{1}{r_0 - 2r} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac{2\pi m}{3}} \end{matrix} \right) = r_0 + 2r \cos(2\pi m) \left(\begin{matrix} \frac{1}{r_0 - 2r} \\ e^{-i \frac{2\pi m}{3}} \\ e^{-i \frac$$

$$| (0)_{3} \rangle = \sqrt{\frac{1}{3}} \begin{bmatrix} 1 \\ e^{-i2\pi/3} \\ e^{+i2\pi/3} \end{bmatrix} | s_{3} \rangle = \frac{|(+1)_{3} \rangle - |(-1)_{3} \rangle}{i\sqrt{2}} = \sqrt{\frac{1}{2}} \begin{bmatrix} 0 \\ +1 \\ -1 \end{bmatrix} | r_{0} + 2r \cos(\frac{-2m\pi}{3}) = \sqrt{k_{0} - 2k} \cos(\frac{2m\pi}{3}) = \sqrt{k_{0} + k} = \sqrt{k_{0} + k} = \sqrt{k_{0} + k} = \sqrt{k_{0} - 2k} = \sqrt{k_{0} - 2k}$$

$$\begin{array}{c} p=0 \ p=1 \ p=2 \\ c_{3} \\ s_{3} \\ n=0_{3} \end{array} \begin{array}{c} C_{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{array} \begin{array}{c} C_{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{array} \begin{array}{c} C_{3} \\ r=1 \\ r=1 \end{array}$$

$$\frac{\langle m | \mathbf{H} | m \rangle = \langle m | r_{0} \mathbf{r}^{0} + r_{1} \mathbf{r}^{1} + r_{2} \mathbf{r}^{2} | m \rangle = r_{0} e^{\frac{2\pi}{3}} + r_{1} e^{\frac{\pi}{3}} + r_{2} e^{\frac{2\pi}{3}} + r_{2} e$$

$$\frac{\langle m | \mathbf{H} | m \rangle = \langle m | r_{0} \mathbf{r}^{0} + r_{1} \mathbf{r}^{1} + r_{2} \mathbf{r}^{-2} | m \rangle = r_{0} e^{\frac{i m (2 - 2\pi)}{3}} + r_{1} e^{\frac{i m (2 - 2\pi)}{3}} + r_{2} e^{\frac{i m (2 - 2\pi)}{3}} = r_{0} e^{\frac{i m (2 - 2\pi)}{3}} = r_{0}$$

 Wave resonance in cyclic symmetry Harmonic oscillator with cyclic C₂ symmetry C₂ symmetric (B-type) modes
 Harmonic oscillator with cyclic C₃ symmetry
 C₃ symmetric spectral decomposition by 3rd roots of unity Resolving C₃ projectors and moving wave modes
 Dispersion functions and standing waves
 C₆ symmetric mode model:Distant neighbor coupling C₆ spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ... C_N symmetric mode models: Made-to order dispersion functions
 Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

C₆ Symmetric Mode Model: Distant neighbor coupling

C₆ Spectral resolution: 6th roots of unity

Wave resonance in cyclic symmetry Harmonic oscillator with cyclic C_2 symmetry C_2 symmetric (B-type) modes Harmonic oscillator with cyclic C_3 symmetry C_3 symmetric spectral decomposition by 3rd roots of unity Resolving C_3 projectors and moving wave modes Dispersion functions and standing waves C_6 symmetric mode model:Distant neighbor coupling \sim C_6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ... C_N symmetric mode models: Made-to order dispersion functions Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

C₆ Spectra of 1st neighbor gauge splitting by C-type (Chiral, Coriolis,...,

Wave resonance in cyclic symmetry Harmonic oscillator with cyclic C_2 symmetry C_2 symmetric (B-type) modes Harmonic oscillator with cyclic C_3 symmetry C_3 symmetric spectral decomposition by 3rd roots of unity Resolving C_3 projectors and moving wave modes Dispersion functions and standing waves C_6 symmetric mode model:Distant neighbor coupling C_6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ... \blacktriangleright C_N symmetric mode models: Made-to order dispersion functions Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

1st Neighbor K-matrix

1st Neighbor K-matrix

Nth roots of 1 $e^{i m \cdot p 2\pi/N} = \langle m | \mathbf{r}^p | m \rangle$ serving as e-values, eigenfunctions, transformation matrices, dispersion relations, Group reps. etc.

Nth roots of 1 $e^{i m \cdot p 2\pi/N} = \langle m | \mathbf{r}^p | m \rangle$ serving as e-values, eigenfunctions, transformation matrices, dispersion relations, Group reps. etc.

C₂₄ Symmetric Modes

in

Fourier transformation matrix

Wave resonance in cyclic symmetry Harmonic oscillator with cyclic C₂ symmetry C₂ symmetric (B-type) modes
Harmonic oscillator with cyclic C₃ symmetry C₃ symmetric spectral decomposition by 3rd roots of unity Resolving C₃ projectors and moving wave modes Dispersion functions and standing waves
C₆ symmetric mode model:Distant neighbor coupling C₆ spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ... C_N symmetric mode models: Made-to order dispersion functions
✓ Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

(and wave dynamics)

Tuesday, November 27, 2012

68

Making pure quadratic $\omega = ck^2$ (Bohr dispersion)

	H_0	H_1	<i>H</i> ₂	H_3	H_4	H_5	H ₆	H_7	H_8
N=2	1/2	-1/2							
N=3	2/3	-1/3							
N=4	3/2	-1	1/2						
N=5	2	-1.1708	0.1708						
N=6	19/6	-2	2/3	-1/2					
N=7	4	-2.393	0.51	-0.1171					
N=8	11/2	-3.4142	1	-0.5858	1/2				
N=9	20/3	-4.0165	0.9270	-1/3	0.0895				
N=10	17/2	-5.2361	1.4472	-0.7639	0.5528	-1/2			
N=11	10	-6.0442	1.4391	-0.5733	0.2510	-0.0726			
N=12	73/6	-7.4641	2	-1	2/3	-0.5359	1/2		
N=13	14	-8.4766	2.0500	-0.8511	0.4194	-0.2028	0.06116		
N=14	33/2	-10.098	2.6560	-1.2862	0.8180	-0.6160	0.5260	-1/2	
N=15	57/3	-11.314	2.7611	-1.1708	0.6058	-1/3	0.1708	-0.0528	
N=16	43/2	-13.137	3.4142	-1.6199	1	-0.7232	0.5858	-0.5198	1/2
N=17	24	-14.557	3.5728	-1.5340	0.81413	-0.4732	0.2781	-0.1479	0.0465

Revivals with quadratic $\omega = ck^2$ (Bohr dispersion)

C₂ beats or revivals happen with most any dispersion

Wave resonance in cyclic symmetry Harmonic oscillator with cyclic C_2 symmetry C_2 symmetric (B-type) modes Harmonic oscillator with cyclic C_3 symmetry C_3 symmetric spectral decomposition by 3rd roots of unity Resolving C_3 projectors and moving wave modes Dispersion functions and standing waves C_6 symmetric mode model:Distant neighbor coupling C_6 spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ... C_N symmetric mode models: Made-to order dispersion functions Quadratic dispersion models: Super-beats and fractional revivals \rightarrow Phase arithmetic

Revivals with quadratic $\omega = ck^2$ (Bohr dispersion)

C₂ beats or revivals happen with most any dispersion

*C*₃ revivals and *C*₄ revivals occur with quadratic dispersion

C_N Symmetric Mode Models: Made-to-Order Dispersion

Revivals with quadratic $\omega = ck^2$ (Bohr dispersion)

C_N Symmetric Mode Models: Made-to-Order Dispersion

(b) C₆ Eigenstate Characters

Revivals with quadratic $\omega = ck^2$ (Bohr dispersion)

*C*₅ revivals and *C*₆ revivals occur with quadratic dispersion

C₁₅ revivals occur with quadratic dispersion

first display prime factors then multiples by zeros at site ± 1

Algebra and geometry of resonant revivals: Farey Sums and Ford Circles

Tuesday, November 27, 2012

Tuesday, November 27, 2012

Farey Sum algebra of revival-beat wave dynamics Label by *numerators N* and *denominators D* of rational fractions *N/D*

Farey Sum algebra of revival-beat wave dynamics Label by *numerators N* and *denominators D* of rational fractions *N/D*

[[]Lester. R. Ford, Am. Math. Monthly 45,586(1938)]

[[]John Farey, Phil. Mag.(1816)]

Farey Sum related to vector sum and Ford Circles 1/1-circle has diameter 1

Tuesday, November 27, 2012

Farey Sum related to vector sum and *Ford Circles*

1/2-circle has diameter $1/2^2=1/4$

1/3-circles have diameter $1/3^2 = 1/9$

n/d-circles have diameter $1/d^2$

Relating C_N symmetric H and K matrices to differential wave operators

Relating C_N symmetric H and K matrices to wave differential operators

The 1st neighbor **K** matrix relates to a 2nd *finite-difference* matrix of 2nd *x*-derivative for high C_N .

H and **K** matrix equations are finite-difference versions of quantum and classical wave equations. $i\hbar \frac{\partial}{\partial t} |\psi\rangle = \mathbf{H} |\psi\rangle$ (H-matrix equation) $i\hbar \frac{\partial}{\partial t} |\psi\rangle = (-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V) |\psi\rangle$ (Scrodinger equation) $-\frac{\partial^2}{\partial t^2} |y\rangle = \mathbf{K} |y\rangle$ (K-matrix equation) $-\frac{\partial^2}{\partial t^2} |y\rangle = -k \frac{\partial^2}{\partial x^2} |y\rangle$ (Classical wave equation)

Square p^2 gives 1st neighbor **K** matrix. Higher order p^3 , p^4 ,... involve 2nd, 3rd, 4th...neighbor **H**

1st

 $\frac{\hbar}{i}$

Symmetrized finite-difference operators

$$\bar{\Delta} = \frac{1}{2} \begin{pmatrix} \ddots & \vdots & & & \\ \cdots & 0 & 1 & & \\ & -1 & 0 & 1 & & \\ & & -1 & 0 & 1 & \\ & & & -1 & 0 & 1 \\ & & & & -1 & 0 \end{pmatrix}, \ \bar{\Delta}^{3} = \frac{1}{2^{3}} \begin{pmatrix} \ddots & \vdots & 0 & -1 & & \\ \cdots & 0 & 3 & 0 & -1 & \\ 0 & -3 & 0 & 3 & 0 & -1 \\ 1 & 0 & -3 & 0 & 3 & 0 \\ 1 & 0 & -4 & 0 & 1 & 0 \\ 0 & -4 & 0 & 6 & 0 & -4 \\ 1 & 0 & -4 & 0 & 6 & 0 \\ 1 & 0 & -4 & 0 & -4 & 0 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -4 & 0 & -1 \\ 1 & 0 & -1 & -1 \\ 1 & 0 & -1 & 0 & -1 \\ 1 & 0 & -1 & 0 & -1 \\ 1 & 0 & -1 & -1 \\ 1 & 0 & -1 & -1 & -1 \\ 1 & 0 & -1 & -1 & -1 \\ 1 & 0 & -1 & -1 & -1 \\ 1 & 0 & -1 & -1 \\ 1 & 0 & -1 & -1 & -1 \\ 1 & 0 & -1 & -1 & -1 \\ 1$$