Selected Astronomical Constants

The Defining Constants (1) and Current Best Estimates (2) were adopted by the IAU 2009 GA, while the planetary equatorial radii (3), are taken from the report of the IAU WG on Cartographic Coordinates and Rotational Elements. For each quantity the list tabulates its description, symbol and value, and to the right, as appropriate, its uncertainty in units that the quantity is given in. Further information is given at foot of the table on the next page.

1 Defining Constants

1.1 Natural Defining Constant:

Speed of light

$$
\begin{aligned}
c & =299792458 \mathrm{~m} \mathrm{~s}^{-1} \\
k & =0.01720209895 \\
L_{\mathrm{G}} & =6.969290134 \times 10^{-10} \\
L_{\mathrm{B}} & =1.550519768 \times 10^{-8} \\
\mathrm{TDB}_{0} & =-6.55 \times 10^{-5} \mathrm{~s} \\
\theta_{0} & =0.7790572732640 \text { revolutions } \\
\dot{\theta} & =1.00273781191135448 \text { revolutions UT1-day }{ }^{-1}
\end{aligned}
$$

1.2 Auxiliary Defining Constants:

Gaussian gravitational constant
$1-\mathrm{d}(\mathrm{TT}) / \mathrm{d}(\mathrm{TCG})$
$1-\mathrm{d}(\mathrm{TDB}) / \mathrm{d}(\mathrm{TCB})$
TDB - TCB at $\mathrm{T}_{0}=2443144.5003725$
Earth rotation angle (ERA) at J2000.0 UT1
Rate of advance of ERA
2. Current Best Estimates (IAU 2009)
2.1 Natural Measurable Constant:

Constant of gravitation

$$
G=6.67428 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}
$$

$$
\pm 6 \cdot 7 \times 10^{-15}
$$

2.2 Derived Constants:

Astronomical unit (unit distance) ${ }^{\dagger}$
Average value of $1-\mathrm{d}(\mathrm{TCG}) / \mathrm{d}(\mathrm{TCB})$

$$
\begin{aligned}
a u=A & =149597870700 \mathrm{~m} & & \pm 3 \\
L_{\mathrm{C}} & =1.48082686741 \times 10^{-8} & & \pm 2 \times 10^{-17}
\end{aligned}
$$

2.3 Body Constants:

Mass Ratio: Moon to Earth
Mass Ratio: Sun to Mercury
Mass Ratio: Sun to Venus
Mass Ratio: Sun to Mars
Mass Ratio: Sun to Jupiter

$$
M_{\mathrm{M}} / M_{\mathrm{E}}=1.23000371 \times 10^{-2}
$$

$$
\pm 4 \times 10^{-10}
$$

$$
M_{\mathrm{S}} / M_{\mathrm{Me}}=6.0236 \times 10^{6} \quad \pm 3 \times 10^{2}
$$

$$
M_{\mathrm{S}} / M_{\mathrm{Ve}}=4.08523719 \times 10^{5} \quad \pm 8 \times 10^{-3}
$$

$$
M_{\mathrm{S}} / M_{\mathrm{Ma}}=3.09870359 \times 10^{6} \quad \pm 2 \times 10^{-2}
$$

$$
M_{\mathrm{S}} / M_{\mathrm{J}}=1.047348644 \times 10^{3} \quad \pm 1.7 \times 10^{-5}
$$

$$
M_{\mathrm{S}} / M_{\mathrm{Sa}}=3.4979018 \times 10^{3} \quad \pm 1 \times 10^{-4}
$$

$$
M_{\mathrm{S}} / M_{\mathrm{U}}=2.290298 \times 10^{4} \quad \pm 3 \times 10^{-2}
$$

$$
M_{\mathrm{S}} / M_{\mathrm{N}}=1.941226 \times 10^{4} \quad \pm 3 \times 10^{-2}
$$

$$
M_{\mathrm{S}} / M_{\mathrm{P}}=1.36566 \times 10^{8} \quad \pm 2.8 \times 10^{4}
$$

$$
M_{\mathrm{S}} / M_{\text {Eris }}=1.191 \times 10^{8} \quad \pm 1.4 \times 10^{6}
$$

$$
M_{\text {Ceres }} / M_{\mathrm{S}}=4.72 \times 10^{-10} \quad \pm 3 \times 10^{-12}
$$

$$
M_{\text {Pallas }} / M_{\mathrm{S}}=1.03 \times 10^{-10} \quad \pm 3 \times 10^{-12}
$$

$$
M_{\text {Vesta }} / M_{\mathrm{S}}=1.35 \times 10^{-10}
$$

$$
\pm 3 \times 10^{-12}
$$

$$
a_{\mathrm{E}}=a_{\mathrm{e}}=6378136 \cdot 6 \mathrm{~m} \quad \pm 0 \cdot 10
$$

$$
J_{2}=0.0010826359 \quad \pm 1 \times 10^{-10}
$$

$$
\dot{J}_{2}=-3.001 \times 10^{-9} \mathrm{cy}^{-1} \quad \pm 6 \times 10^{-10}
$$

$$
G M_{\mathrm{S}}=1.32712442099 \times 10^{20} \mathrm{~m}^{3} \mathrm{~s}^{-2}(\mathrm{TCB}) \quad \pm 1 \times 10^{10}
$$

$$
=1.32712440041 \times 10^{20} \mathrm{~m}^{3} \mathrm{~s}^{-2}(\mathrm{TDB}) \quad \pm 1 \times 10^{10}
$$

Geocentric gravitational constant

$$
G M_{\mathrm{E}}=3.986004418 \times 10^{14} \mathrm{~m}^{3} \mathrm{~s}^{-2}(\mathrm{TCB})
$$

$$
=3.986004415 \times 10^{14} \mathrm{~m}^{3} \mathrm{~s}^{-2}(\mathrm{TT})
$$

$$
\begin{array}{lll}
=3.986004415 \times 10^{14} \mathrm{~m}^{3} \mathrm{~s}^{-2}(\mathrm{TT}) & \pm 8 \times 10^{5} \\
=3.986004356 \times 10^{14} \mathrm{~m}^{3} \mathrm{~s}^{-2}(\mathrm{TDB}) & & \pm 8 \times 10^{5}
\end{array}
$$

Potential of the geoid

$$
W_{0}=6.26368560 \times 10^{7} \mathrm{~m}^{2} \mathrm{~s}^{-2}
$$

$$
\pm 0 \cdot 5
$$

Nominal mean angular velocity of Earth rotation $\quad \omega=7.292115 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$

2.4 Initial Values at J2000.0:

Mean obliquity of the ecliptic

$$
\epsilon_{\mathrm{J} 2000 \cdot 0}=\epsilon_{0}=23^{\circ} 26^{\prime} 21^{\prime \prime} 406=84381^{\prime \prime} 406 \quad \pm 0^{\prime \prime} 001
$$

Selected Astronomical Constants (continued)

3 Constants from IAU WG on Cartographic Coordinates and Rotational Elements (2007)
Equatorial radii in km:

Mercury	$2439 \cdot 7 \pm 1 \cdot 0$	Jupiter	71492 ± 4	Pluto	1195	± 5	
Venus	$6051 \cdot 8$	$\pm 1 \cdot 0$	Saturn	60268 ± 4			
Earth	$6378 \cdot 14 \pm 0 \cdot 01$	Uranus	25559 ± 4	Moon (mean)	$1737 \cdot 4 \pm 1$		
Mars	$3396 \cdot 19 \pm 0 \cdot 1$	Neptune	24764 ± 15	Sun	696000		

4 Other Constants

Light-time for unit distance ${ }^{\dagger}$

$$
\begin{array}{rlrl}
\tau_{\mathrm{A}}=A / c & =499 \text { § } 00478384 & & \pm 1 \times 10^{-8} \\
1 / \tau_{\mathrm{A}} & =173.144632674 \mathrm{au} / \mathrm{d} & & \pm 3 \times 10^{-9} \\
M_{\mathrm{E}} / M_{\mathrm{M}}=1 / \mu & =81.300568 & & \pm 3 \times 10^{-6} \\
G M_{\mathrm{S}} / G M_{\mathrm{E}} & =332946.0487 & & \pm 0.0007 \\
M_{\mathrm{S}}=S & =G M_{\mathrm{S}} / G=1.9884 \times 10^{30} \mathrm{~kg} & & \pm 2 \times 10^{26} \\
M_{\mathrm{E}}=E & =G M_{\mathrm{E}} / G=5.9722 \times 10^{24} \mathrm{~kg} & & \pm 6 \times 10^{20} \\
(S / E) /(1+\mu) & =328900.5596 & & \pm 7 \times 10^{-4} \\
2003) & 1 / f & =298.25642 & \\
\hline 1 \times 10^{-5}
\end{array}
$$

Mass Ratio: Sun to Earth
Mass of the Sun
Mass of the Earth
Mass Ratio: Sun to Earth + Moon
Earth, reciprocal of flattening (IERS 2003)
$p_{\mathrm{A}}=5028{ }^{\prime \prime} 796195$ per Julian century (TDB)
General precession in longitude
$\dot{\epsilon}=-466^{\prime \prime} 836769$ per Julian century (TDB)
Rate of change in obliquity
$\dot{\psi}=5038{ }^{\prime \prime} 481507$ per Julian century (TDB)
Precession of the equator in longitude
$\dot{\omega}=-0!025754$ per Julian century (TDB)
Precession of the equator in obliquity
$N=9!2052331$
Constant of nutation at epoch J2000•0
$\pi_{\odot}=\sin ^{-1}\left(a_{\mathrm{e}} / A\right)=8^{\prime \prime} 794143$
Solar parallax
Constant of aberration at epoch J2000.0

$$
\kappa=20^{\prime \prime} 49551
$$

Masses of the larger natural satellites: mass satellite/mass of the planet (see pages F3, F5)

Jupiter Io	4.704×10^{-5}	Saturn	Titan	2.366×10^{-4}
Europa	2.528×10^{-5}	Uranus	Titania	4.06×10^{-5}
Ganymede	7.805×10^{-5}		Oberon	3.47×10^{-5}
Callisto	5.667×10^{-5}	Neptune Triton	2.089×10^{-4}	

Users are advised to check the website of the IAU WG on Numerical Standards for Fundamental Astronomy (NFSA) at http://maia.usno.navy.mil/NSFA.html for the latest list of 'Current Best Estimates'. The NFSA website also has detailed information about the constants, and all the relevant references.

This almanac, in certain circumstances, may not use constants from this list. The reasons and those constants used are given at the end of Section L Notes and References.
Units
The units meter (m), kilogram (kg), and SI second (s) are the units of length, mass and time in the International System of Units (SI).

The astronomical unit of time is a time interval of one day (D) of 86400 seconds. An interval of 36525 days is one Julian century. Some constants that involve time, either directly or indirectly need to be compatible with the underlying time-scales. In order to specify this (TDB) or (TCB) or (TT), as appropriate, is included after the unit to indicate that the value of the constant is compatible with the specified time-scale, for example, TDB-compatible.

The astronomical unit of mass is the mass of the $\operatorname{Sun}\left(M_{S}\right)$. The dimensions of k^{2} are those of the constant of gravitation (G), which are $A^{3} M_{\mathrm{S}}^{-1} D^{-2}$, i.e. $\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$.

The astronomical unit ${ }^{\dagger}$ of length (the $a u$) in metres is that length $\left.A=\sqrt[3]{(} G M_{\mathrm{S}} D^{2} / k^{2}\right)$, where k, the Gaussian gravitational constant and $G M_{\mathrm{S}}$, the heliocentric gravitational constant (TDB-compatible value), are tabulated on the previous page. Note that at present (2009 September) the $a u$ is considered to be TDB-compatible and no TCB-compatible value has been agreed.

