An icy cycloid problem

Ex. 1 (a) A 1 kg . meter stick lies on a smooth icy hockey rink surface with two marbles sitting at its end on either side of the 0.0 cm mark. (See top-view figure) Assume frictionless ice rink.
A hammer give impulse $\mathbf{P}=(1 \mathrm{~N} \cdot \mathrm{~s}) \mathbf{e}_{\mathbf{x}}$ to the 1 kg stick at the $h-\mathrm{cm}$. mark.
What height h is least likely to disturb the marbles.

(b) Now assume h-value from (a) and friction-free "icy" surface. At what distances $d, 2 d, 3 d, \ldots$ along x-axis should the $3^{r d}, 4^{\text {th }}, 5^{\text {th }}, \ldots$ marbles be placed so they are most likely to be knocked below the axis. Draw 6 equal time Δt interval snapshots of the stick as it flips by 180° and then to 360°. What is Δt for the 1 kg stick?
(c) Compare path of stick if it struck with the same impulse at $h+10 \mathrm{~cm}$. and if it struck at $h-10 \mathrm{~cm}$.

Electromagnetic cycloids

Ex. 2 A unit mass $m=1 \mathrm{~kg}$ and charge $Q=1$ Coul. (Dangerous!) starts at ($x=0=y$) on a frictionless (x, y)-surface in vertical Earth gravity (Say $g_{y}=-10 \mathrm{~m} / \mathrm{s}^{2}$) and in a strong z-axial magnetic field $\mathbf{B}_{z}=\left(0,0, B_{z}\right)$ normal to surface.
(a) What field B_{z} (in Tesla) has a mass with zero initial velocity $\left(v_{x}(0), v_{y}(0)\right)=(0,0)$ follow a cycloid of 1 meter wheel diameter rolling along $-x$ axis? What x-axis points does it hit? Are these hit points different for different $\mathbf{v}(0)$?
(b) What initial $\mathbf{v}(0)$ would cause the mass to fly a straight line along the $-x$-axis? \ldots along the $+x$-axis?
(c) Describe and plot the resulting trajectory if instead the mass is thrown down with $\left(v_{x}(0), v_{y}(0)\right)=(0,-2 \mathrm{~m} / \mathrm{s})$.

Flinger vs. Trebuchet on turntable (geometric version)
Ex.3. Compare dynamics of mass m on a "Flinger" (Fig. (a)) to what it does on a "Trebuchet" (Fig. (b)).
Both begin at point A of radius $r(0)=1 \mathrm{~cm}$. from the center of a turntable rotating at $\omega=1$ (radian) s^{-1}. Both have an initial speed of $v(0)=1 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ and move from that point A to a final point B relative to turntable having radius $r\left(t_{r}\right)=20 \mathrm{~cm}$ where we assume m is then released into the laboratory.

In Fig. (a) m slides 19 cm along a rod of length $\ell=20 \mathrm{~cm}$. In Fig. (b) m swivels on a rod of length $\ell=10 \mathrm{~cm}$ (The 20 cm rod is fixed to turntable.) around a point fixed to turntable at $r=10 \mathrm{~cm}$ radius.

(1a)Relative to turntable...
Find m release speed for "Flinger." \qquad
(2a)Relative to laboratory...
Find m release speed for "Flinger." \qquad
(3a)To scale ${ }^{\dagger}$, sketch lab $\mathbf{v}\left(t_{r}\right)$ assuming release at B. (3b)To scale ${ }^{\dagger}$, sketch $\underline{\mathrm{lab}} \mathbf{v}\left(t_{r}\right)$ assuming release at B.
\dagger Let 1 cm be $1 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$.
How long does m take to go from A to release point B?
\dagger Let 1 cm be $1 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$.
\qquad sec.
Plot or (preferably) construct its orbit on a polar graph like Fig. (a) but in the lab-relative frame.
(4) Compare throwing turntable-relative and laboratory-relative performance (speed and direction) of the Flinger versus that of the Trebuchet.

Assignment 9 Solutions. Exercise1 Hockey knock: An icy cycloid problem
A meter stick is lying flat on an ice rink with two marbles sitting at the lower end on either side of the 0.0 cm mark on x -axis. (See figure) A hammer gives impulse $\mathbf{P}=(1 \mathrm{~N} \cdot \mathrm{~s}) \mathbf{e}_{\mathbf{x}}$ to the stick at the h-cm. mark.
What horizontal distance h is least likely to disturb the marbles. At what distances $d, 2 d, 3 d, \ldots$ along x-axis should the $3^{r d}, 4^{\text {th }}, 5^{\text {th }}, \ldots$
marbles be placed so they are most likely to be knocked below the axis. (See figure above.)
Ex.1(a) Solution: Impulse P gives x-linear momentum $P=M v_{x}$, linear velocity $v_{x}=P / M$ as well as angular momentum $L=(C M$ leverarm) $\cdot P=(h-0.5) \cdot P$, angular velocity $\omega_{z}=L / I$, where rot-inertia for stick (length $L=1 / 2$, mass M) is $\int_{0}^{\ell} \rho r^{2} d r=\frac{1}{3} \rho \ell^{3}=\frac{1}{3} M \ell^{2}=M / 12$. (Same for two sticks end-to-end.) $I=M / 12=1 / 12 \mathrm{~kg} \cdot \mathrm{~m}^{2}=1 / 12 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.
That gives: $\omega_{z}=L / I=(h-0.5) \cdot P \cdot 12 / M=(12 h-6) \cdot P / M=(12 h-6) \cdot v_{x}$.
To not disturb the marbles at $r_{M}=0.5$ we need $\omega_{z} r_{M}=(12 h-6) \cdot v_{x} \cdot 0.5$ to cancel v_{x}.
So: $(12 h-6) \cdot v_{x} \cdot 0.5=v_{x}$, or $(6 h-3)=1$, or $h=2 / 3 m=66.666 \ldots \mathrm{~cm}$.
The meter stick rolls on x-axis like a wheel of radius $R=0.5 \mathrm{~m}$. So $d=\pi \cdot R=\pi / 2=1.57 \mathrm{~m}$. Time for $360^{\circ}=2 \pi / \omega_{z}=2 \pi /(12 h-6)=\pi$ sec.
(b) Now assume h-value from (a) and friction-free "icy" surface. At what distances $d, 2 d, 3 d, \ldots$ along x-axis should the $3^{r d}, 4^{\text {th }}, 5^{\text {th }}, \ldots$ marbles be placed so they are most likely to be knocked below the axis. Draw 6 equal time Δt interval snapshots of the stick as it flips by 180° and then to 360°. What is Δt for a 1 kg stick? $\Delta t=\pi / 6 \mathrm{sec} .=0.532 \mathrm{sec}$.
(c) Start with $h p=I / M=(1 / 12) L^{2}$ with $L=1 m$ and $h=1 / 6$ above center at 0.5 m . Lect. 18 p.13-14 or CMwBang! Unit 1 p.175-176.

Changing h to $h=(1 / 6)-(1 / 10)=1 / 15$ changes p from $p=0.5 m$ to $p=(1 / 12) /(1 / 15)=(5 / 4) L=1.25 m$. (much larger "p-wheel")
Changing h to $h=(1 / 6)+(1 / 10)=4 / 15$ changes p from $p=0.5 m$ to $p=(1 / 12) /(4 / 15)=(5 / 16) L=0.3125 m$. (smaller "p-wheel")

Solution to Ex. 2 Electromagnetic cycloids A vertical frictionless surface in Earth gravity (Say $g=10 \mathrm{~m} / \mathrm{s}^{2}$) guides a unit mass $m=1 \mathrm{~kg}$ and charge $Q=1$ Coul. (Dangerous!) that is dropped from $(x=0=y)$ in a strong magnetic \mathbf{B}-field.
(a) How many Tesla of magnetic field \mathbf{B} and in what direction would cause the mass to move to the left on a normal cycloid of one meter diameter? Where would it hit the horizontal x-axis? Primary hit points are independent of $\mathbf{v}(0)$.
Replace wheel radius $R_{W}=E / B^{2}=\left(e E_{x} / m\right) /\left(e B_{z} / m\right)^{2}$ in $(2.8 .24)$ with $R_{W}=\left(m g_{x} / m\right) /\left(Q B_{z} / m\right)^{2}=m^{2} g_{x} / Q^{2} B_{z}{ }^{2}=10 / B^{2}$ where $R_{W}=0.5 m$.

$$
B_{z}=\sqrt{\frac{m^{2} g}{R_{W} Q^{2}}}=\sqrt{\frac{1 k g \cdot 10 m s^{-2}}{0.5 m \cdot(1 C)^{2}}}=\sqrt{20} \text { Tesla }=4.47 \text { Tesla } \quad \text { Normal } R_{W}=0.5 m \text { cycloid hits } x \text {-axis every }-2 \pi R=-3.14 m
$$

(b) What initial speed and direction would cause the mass to fly straight-line along the x -axis?

Magnetic force $m Q v_{x} B_{z}$ supports weight $-m g$ for finite negative velocity $v_{x}=g / Q B_{z}=-10 / 1 \cdot \sqrt{ } 20=-\sqrt{ } 5=-2.236 \mathrm{~m} / \mathrm{s} \ldots$. or infinite positive v_{x} !
(c) Describe and plot the resulting trajectory if the mass is thrown down with with a speed of $-2 \mathrm{~m} / \mathrm{s}$.

Use 2.(a) results with (1). $x(0)=0=y(0)$, (2). $\mathrm{v}_{x}(0)=0, \mathrm{v}_{y}(0)=-2$, (3). $\varepsilon_{x}=0, \varepsilon_{y}=-g=-10$, and (4). $B=Q B_{z} / m=B_{z}=\sqrt{ } 20$.
$\binom{x(t)}{y(t)}=\left(\begin{array}{cc}\cos B \cdot t & \sin B \cdot t \\ -\sin B \cdot t & \cos B \cdot t\end{array}\right)\binom{-v_{y}(0) / B-\varepsilon_{x} / B^{2}}{v_{x}(0) / B-\varepsilon_{y} / B^{2}}+\binom{\varepsilon_{y} t / B}{-\varepsilon_{x} t / B}+\binom{x(0)+v_{y}(0) / B+\varepsilon_{x} / B^{2}}{y(0)-v_{x}(0) / B+\varepsilon_{y} / B^{2}}$
$\binom{x(t)}{y(t)}=\left(\begin{array}{cc}\cos B \cdot t & \sin B \cdot t \\ -\sin B \cdot t & \cos B \cdot t\end{array}\right)\binom{2 / B}{10 / B^{2}}+\binom{-10 t / B}{0}+\binom{-2 / B}{-10 / B^{2}}=\left(\begin{array}{c}\cos \sqrt{ } 20 \cdot t \\ -\sin \sqrt{ } 20 \cdot t \\ -\sin 20 \cdot t \\ \cos \sqrt{ } 20 \cdot t\end{array}\right)\binom{2 / \sqrt{2} 20}{1 / 2}+\binom{-t \sqrt{5}}{0}+\binom{-2 \sqrt{2} 20}{-1 / 2}$
$\binom{v_{x}(t)}{v_{y}(t)}=\left(\begin{array}{cc}\cos \sqrt{20 \cdot t} & \sin \sqrt{ } 20 \cdot t \\ -\sin \sqrt{20 \cdot t} & \cos \sqrt{20 \cdot t}\end{array}\right)\binom{\sqrt{5}}{-2}+\binom{-\sqrt{5}}{0}$ Wheel radius: $R_{\text {wheel }}=m g / Q B_{z}{ }^{2}=10 / B^{2}=0.5$ Rim radius: $\sqrt{4 / B^{2}+R_{W}^{2}}=\sqrt{0.2+0.25}=0.671$

Assignment 9(contd.) Solutions to Ex.3. Flinger vs Trebuchet

\ldots...begin at point A $r(0)=1 \mathrm{~cm} . v(0)=1 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ relative to turntable at $\omega=1(\mathrm{rad}) \mathrm{s}^{-1} \ldots$. Release at $\mathrm{B} r\left(t_{r}\right)=20 \mathrm{~cm}$.

Relative to turntable...

Find m release speed for "Flinger." $20 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$

Relative to laboratory...

Find m release speed for "Flinger." $20 \sqrt{2} \mathrm{~cm} \cdot \mathrm{~s}^{-1}$
To scale ${ }^{\dagger}$, sketch $\underline{\underline{l a b}} \mathbf{v}\left(\mathrm{t}_{\mathrm{r}}\right)$ assuming release at B .
\dagger Let 1 cm be $1 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$.

Relative to turntable...

Find m release speed for "Trebuchet." $20 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$
Relative to laboratory...
Find m release speed for "Trebuchet." $40 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$

\dagger Let 1 cm be $1 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$.

Assignment 9. Ex.2. (contd) "Flinger" problems:
How long does m take to go from A to release point B? \qquad 3 _sec.
Plot or (preferably) construct its orbit on a polar graph like Fig. (a) but in the lab frame.

Turntable-relative Hamiltonian is a constant E. (Similar to harmonic oscillator H but with (-) sign.)
$E=H=\frac{p^{2}}{2 m}-\frac{1}{2} m \omega^{2} r^{2}=\frac{1}{2} m\left(\dot{r}^{2}-r^{2}\right)$
Solutions are real (as opposed to imaginary) exponentials.
$r(t)=A e^{\omega t}+B e^{-\omega t}=A e^{t}+B e^{-t} \quad \dot{r}(t)=A \omega e^{\omega t}-B \omega e^{-\omega t}=A e^{t}-B e^{-t}$
Given $r(0)=1$ and $\dot{r}(0)=1$ we settle on purely exponential solutions $r(t)=e^{t}=\dot{r}(t)$.
So turntable-relative velocity vector $\mathbf{v}=\dot{\mathbf{r}}$ is always equal to position vector \mathbf{r}.
To this we add the turntable velocity $\mathbf{v}_{\text {table }}=\omega \hat{\mathbf{e}}_{\mathbf{z}} \times \mathbf{r}$ relative to lab whose magnitude also equals that of \mathbf{r} but is perpendicular to it in the direction of rotation.
So lab-relative flinger velocity is always at 45° to table-relative flinger velocity and a factor of $\sqrt{2}$ larger. As a result, the lab-relative flinger path shown below is a log-spiral that is always heading 45° to \mathbf{r}. Trebuchet lab final velocity is 2 times greater than table relative final velocity so it beats the flinger!

