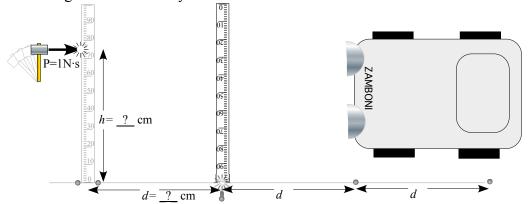
10/30/19 Assignment 9 - CMwBANG! Unit 2-2.9. Unit 3-3.8. - Lect.16-18 p.73-74 & p.102-110 Due Wed Nov. 6

An icy cycloid problem

Ex.1 (a) A 1kg. meter stick lies on a smooth icy hockey rink surface with two marbles sitting at its end on either side of the 0.0cm mark. (See top-view figure) Assume frictionless ice rink.

A hammer give impulse $P=(IN\cdot s)e_x$ to the 1kg stick at the h-cm. mark.

What height *h* is *least* likely to disturb the marbles.



- (b) Now assume h-value from (a) and friction-free "icy" surface. At what distances d, 2d, 3d, ... along x-axis should the 3^{rd} , 4^{th} , 5^{th} ,...marbles be placed so they are most likely to be knocked below the axis. Draw 6 equal time Δt interval snapshots of the stick as it flips by 180° and then to 360°. What is Δt for the 1kg stick?
- (c) Compare path of stick if it struck with the same impulse at h+10cm and if it struck at h-10cm.

Electromagnetic cycloids

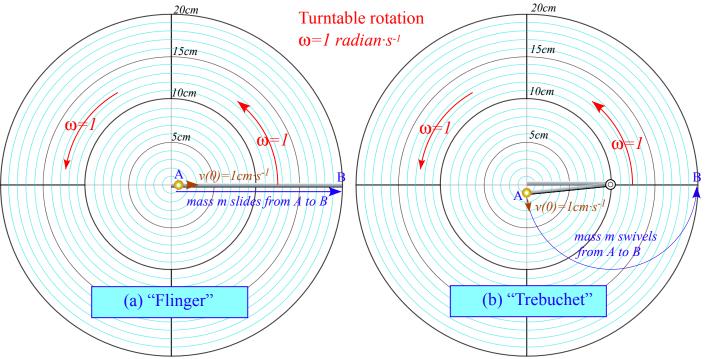
- **Ex.2** A unit mass m=1 kg and charge Q=1 Coul. (Dangerous!) starts at (x=0=y) on a frictionless (x,y)-surface in vertical Earth gravity (Say $g_y=-10m/s^2$) and in a strong z-axial magnetic field $\mathbf{B}_z=(0,0,B_z)$ normal to surface.
- (a) What field B_z (in Tesla) has a mass with zero initial velocity $(v_x(0), v_y(0)) = (0,0)$ follow a cycloid of 1 meter wheel diameter rolling along -x axis? What x-axis points does it hit? Are these hit points different for different v(0)?
- **(b)** What initial $\mathbf{v}(0)$ would cause the mass to fly a straight line along the -x-axis? ... along the +x-axis?
- (c) Describe and plot the resulting trajectory if instead the mass is thrown down with $(v_x(0), v_y(0)) = (0, -2m/s)$.

Flinger vs. Trebuchet on turntable (geometric version)

Ex.3. Compare dynamics of mass *m* on a "Flinger" (Fig. (a)) to what it does on a "Trebuchet" (Fig. (b)).

Both begin at point A of radius r(0)=1cm. from the center of a turntable rotating at $\omega=1$ (radian)s⁻¹. Both have an initial speed of $v(0) = 1 \text{ cm} \cdot \text{s}^{-1}$ and move from that point A to a final point B relative to turntable having radius $r(t_r)=20cm$ where we assume m is then released into the laboratory.

In Fig. (a) m slides 19cm along a rod of length $\ell=20cm$. In Fig. (b) m swivels on a rod of length $\ell=10cm$ (The *20cm* rod is fixed to turntable.) around a point fixed to turntable at r=10cm radius.



(Ta)Kel	ative	to 1	turnt	abl	le

Find *m* release speed for "Flinger."

(2a)Relative to laboratory...

Find *m* release speed for "Flinger."

(1b)Relative to turntable...

Find *m* release speed for "Trebuchet."

(2b)Relative to laboratory...

Find *m* release speed for "Trebuchet."

(3a)To scale[†], sketch lab $\mathbf{v}(t_r)$ assuming release at B. (3b)To scale[†], sketch lab $\mathbf{v}(t_r)$ assuming release at B.

† Let 1cm be 1cm·s-1. † Let lcm be $lcm \cdot s^{-1}$.

How long does m take to go from A to release point B? _____sec. Plot or (preferably) construct its orbit on a polar graph like Fig. (a) but in the lab-relative frame.

(4) Compare throwing turntable-relative and laboratory-relative performance (speed and direction) of the Flinger versus that of the Trebuchet.

Assignment 9 Solutions. Exercise1 Hockey knock: An icy cycloid problem

A meter stick is lying flat on an ice rink with two marbles sitting at the lower end on either side of the 0.0cm mark on x-axis. (See figure) A hammer gives impulse $P=(IN\cdot s)e_x$ to the stick at the h-cm. mark.

What horizontal distance h is least likely to disturb the marbles. At what distances d, 2d, 3d, ... along x-axis should the 3rd, 4th, 5th, ... marbles be placed so they are most likely to be knocked below the axis. (See figure above.)

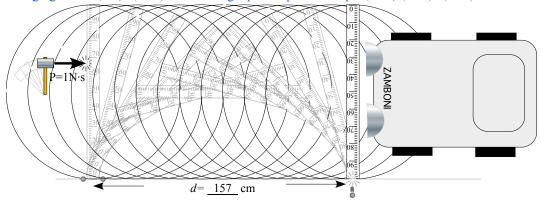
Ex.1(a) Solution: Impulse P gives x-linear momentum $P=Mv_x$, linear velocity $v_x=P/M$ as well as angular momentum $L=(CM \ lever$ arm)·P=(h-0.5)·P, angular velocity $\omega_z=L/I$, where rot-inertia for stick (length L=I/2, mass M) is $\int_0^\ell \rho r^2 dr = \frac{1}{3}\rho \ell^3 = \frac{1}{3}M\ell^2 = M/12$. (Same for two sticks end-to-end.) $I=M/12=I/12kg\cdot m^2=I/12kg\cdot m^2$. That gives: $\omega_z=L/I=(h-0.5)$ · $P\cdot I2/M=(12h-6)$ ·P/M=(12h-6)·

To not disturb the marbles at $r_M = 0.5$ we need $\omega_z r_M = (12h-6) \cdot v_x \cdot 0.5$ to cancel v_x .

So: $(12h-6)\cdot v_x \cdot 0.5 = v_x$, or (6h-3) = 1, or h = 2/3m = 66.666...cm.

The meter stick rolls on x-axis like a wheel of radius R=0.5m. So $d=\pi \cdot R=\pi/2=1.57m$. Time for $360^{\circ}=2\pi/\omega_z=2\pi/(12h-6)=\pi$ sec.

- **(b)** Now assume h-value from (a) and friction-free "icy" surface. At what distances d, 2d, 3d, ... along x-axis should the 3^{rd} , 4^{th} , 5^{th} , ... marbles be placed so they are most likely to be knocked below the axis. Draw 6 equal time Δt interval snapshots of the stick as it flips by 180° and then to 360°. What is Δt for a 1kg stick? $\Delta t = \pi/6$ sec. =0.532sec.
- (c) Start with $hp=I/M=(1/12)L^2$ with L=Im and h=I/6 above center at 0.5 m. Lect. 18 p.13-14 or CMwBang! Unit 1 p.175-176. Changing h to h = (1/6) - (1/10) = 1/15 changes p from p = 0.5m to p = (1/12)/(1/15) = (5/4)L = 1.25m. (much larger "p-wheel") Changing h to h=(1/6)+(1/10)=4/15 changes p from p=0.5m to p=(1/12)/(4/15)=(5/16)L=0.3125m. (smaller "p-wheel")



Solution to Ex.2 Electromagnetic cycloids A vertical frictionless surface in Earth gravity (Say $g=10m/s^2$) guides a unit mass m=1 kg and charge Q=1 Coul. (Dangerous!) that is dropped from (x=0=y) in a strong magnetic **B**-field.

(a) How many Tesla of magnetic field B and in what direction would cause the mass to move to the left on a normal cycloid of one meter diameter? Where would it hit the horizontal x-axis? Primary hit points are independent of $\mathbf{v}(0)$. Replace wheel radius $R_W = E/B^2 = (eE_x/m)/(eB_z/m)^2$ in (2.8.24) with $R_W = (mg_x/m)/(QB_z/m)^2 = m^2g_x/Q^2B_z^2 = 10/B^2$ where $R_W = 0.5m$.

$$B_z = \sqrt{\frac{m^2 g}{R_w Q^2}} = \sqrt{\frac{1 kg \cdot 10 ms^{-2}}{0.5 m \cdot (1C)^2}} = \sqrt{\frac{20}{1000}} = \frac{4.47 Tesla}{1000}$$
Normal $R_W = 0.5 m$ cycloid hits x-axis every $-2\pi R = -3.14 m$.

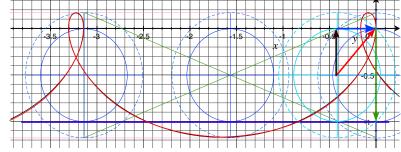
- **(b)** What initial speed and direction would cause the mass to fly straight-line along the x-axis?
- Magnetic force mQv_xB_z supports weight -mg for finite negative velocity $v_x=g/QB_z=-10/1 \cdot \sqrt{20}=-\sqrt{5}=-2.236m/s...$ or infinite positive $v_x!$
- (c) Describe and plot the resulting trajectory if the mass is thrown down with with a speed of -2m/s.

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \cos B \cdot t & \sin B \cdot t \\ -\sin B \cdot t & \cos B \cdot t \end{pmatrix} \begin{pmatrix} -v_y(0)/B - \varepsilon_x/B^2 \\ v_x(0)/B - \varepsilon_y/B^2 \end{pmatrix} + \begin{pmatrix} \varepsilon_y t/B \\ -\varepsilon_x t/B \end{pmatrix} + \begin{pmatrix} x(0) + v_y(0)/B + \varepsilon_x/B^2 \\ y(0) - v_x(0)/B + \varepsilon_y/B^2 \end{pmatrix}$$

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \cos B \cdot t & \sin B \cdot t \\ -\sin B \cdot t & \cos B \cdot t \end{pmatrix} \begin{pmatrix} 2/B \\ 10/B^2 \end{pmatrix} + \begin{pmatrix} -10t/B \\ -10/B^2 \end{pmatrix} = \begin{pmatrix} \cos \sqrt{20} \cdot t & \sin \sqrt{20} \cdot t \\ -\sin \sqrt{20} \cdot t & \cos \sqrt{20} \cdot t \end{pmatrix} \begin{pmatrix} 2/\sqrt{20} \\ 1/2 \end{pmatrix} + \begin{pmatrix} -t\sqrt{5} \\ 0 \end{pmatrix} + \begin{pmatrix} -2\sqrt{20} \\ -1/2 \end{pmatrix}$$

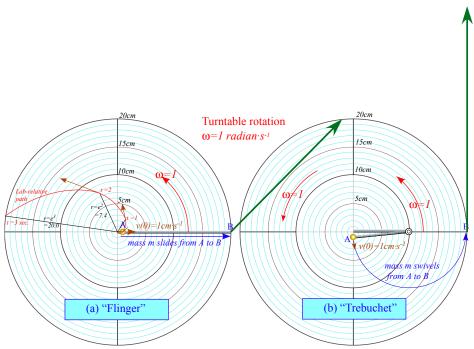
$$\binom{x(t)}{v(t)} = \binom{\cos B \cdot t}{-\sin B \cdot t} \frac{\sin B \cdot t}{\cos B \cdot t} \binom{2/B}{10/B^2} + \binom{-10t/B}{0} + \binom{-2/B}{10/B^2} = \binom{\cos \sqrt{20 \cdot t}}{-\sin \sqrt{20 \cdot t}} \frac{\sin \sqrt{20 \cdot t}}{\cos \sqrt{20 \cdot t}} \binom{2/\sqrt{20}}{1/2} + \binom{-t\sqrt{5}}{0} + \binom{-2\sqrt{20}}{-1/2}$$

$$\binom{v_x(t)}{v_y(t)} = \binom{\cos\sqrt{20 \cdot t}}{-\sin\sqrt{20 \cdot t}} \frac{\sin\sqrt{20 \cdot t}}{\cos\sqrt{20 \cdot t}} \binom{\sqrt{5}}{-2} + \binom{-\sqrt{5}}{0} \text{ Wheel radius: } R_{wheel} = mg/QB_z^2 = 10/B^2 = 0.5 \text{ Rim radius: } \sqrt{4/B^2 + R_W^2} = \sqrt{0.2 + 0.25} = 0.671$$



Assignment 9(contd.) Solutions to Ex.3. Flinger vs Trebuchet

....begin at point A r(0)=1cm. v(0)=1cm. s^{-1} relative to turntable at $\omega=1$ (rad)s⁻¹... Release at B $r(t_r)=20$ cm.



Relative to turntable...

Find m release speed for "Flinger." 20cm·s-1__

Relative to laboratory...

Find m release speed for "Flinger." 20√2cm·s⁻¹

To scale[†], sketch <u>lab</u> $\mathbf{v}(t_r)$ assuming release at **B**.

† Let 1cm be 1cm·s⁻¹.

Relative to turntable...

Find m release speed for "Trebuchet." 20cm·s-1___

Relative to laboratory...

Find m release speed for "Trebuchet." 40cm·s⁻¹___

To scale[†], sketch <u>lab</u> v(t_r) assuming release at B.

† Let 1cm be 1cm·s⁻¹.

Assignment 9. Ex.2. (contd) "Flinger" problems:

How long does m take to go from A to release point B? __3_sec.

Plot or (preferably) construct its orbit on a polar graph like Fig. (a) but in the lab frame.

Turntable-relative Hamiltonian is a constant *E*. (Similar to harmonic oscillator H but with (-) sign.)

$$E = H = \frac{p^2}{2m} - \frac{1}{2}m\omega^2 r^2 = \frac{1}{2}m(\dot{r}^2 - r^2)$$

Solutions are real (as opposed to imaginary) exponentials.

$$r(t) = Ae^{\omega t} + Be^{-\omega t} = Ae^{t} + Be^{-t} \qquad \dot{r}(t) = A\omega e^{\omega t} - B\omega e^{-\omega t} = Ae^{t} - Be^{-t}$$

Given r(0) = 1 and $\dot{r}(0) = 1$ we settle on purely exponential solutions $r(t) = e^t = \dot{r}(t)$.

So turntable-relative velocity vector $\mathbf{v} = \dot{\mathbf{r}}$ is always equal to position vector \mathbf{r} .

To this we add the turntable velocity $\mathbf{v}_{table} = \boldsymbol{\omega} \,\hat{\mathbf{e}}_{\mathbf{z}} \times \mathbf{r}$ relative to lab whose magnitude also equals that of \mathbf{r} but is perpendicular to it in the direction of rotation.

So lab-relative flinger velocity is always at 45° to table-relative flinger velocity and a factor of $\sqrt{2}$ larger.

As a result, the lab-relative flinger path shown below is a log-spiral that is always heading 45° to r.

Trebuchet lab final velocity is 2 times greater than table relative final velocity so it beats the flinger!