Huygen's problem. For 40 years Christian Huygens worked to improve harmonicity of pendulums and only solved the problem you are about to do, just before he died. Let's hope it doesn't take <u>you</u> as long!

A really scary Halloween roller coaster (cackle! cackle!)

Ex.1. A mass *m* slides frictionlessly along a cycloid of radius $R = \frac{3}{\pi} cm$ in gravity $g \sim 10m \cdot s^{-2}$. Or else, a very light hoop is held up against a magnetized ceiling so it rolls with no slip carrying mass *m* on its rim. (See sketch).

(a₁) First construct 24pt normal cycloids using ruler-compass on graph paper. (Attached is a 6cm. graph whose x-axis has 24 intervals that "roll" circles of radii $R=3/\pi cm$. by angles $n\pi/12$ above and below and π out of phase. Check geometry with algebra.)) (a₂) Write parametric equations $x(\phi)$, $y(\phi)$ for a circumference point mass on a wheel rolling on the ceiling where ϕ is the wheel-center-relative angle that mass has rotated from its lowest point at lab origin (x=0, y=0).

(b) Derive Lagrangian $L(d\phi/dt, \phi)$ and find canonical momentum p_{ϕ} and equation of motion.

(c) Derive total energy and Hamiltonian function *H*. Are any of these (*L*, p_{ϕ} , *E*, or *H*) ever constants of motion?

(d) Derive an expression for the arc length $s(\phi)$ that *m* travels to ϕ from the lowest point $\phi=0$. How long is a string wrapped around a cycloid from $\phi=0$ to $\phi=\pi$.

(e) Prove period of oscillation of mass *m* is independent of initial velocity $\dot{\phi}(0)$ at $\phi = 0$ for $\dot{\phi}(0)$ less than____? What is that max $v_{max} = \dot{x}_{max} =$ and max $\omega_{max} = \dot{\phi}_{max} =$? (Discuss and give both algebraic and numerical results.) (f) Derive $\phi(t)$ for free oscillation. Can the hoop roll across the ceiling with constant speed $v_{const} = \dot{x}_{const}$ for some initial conditions? Discuss. Does such a uniform velocity state exist if instead the hoop rolls on the floor? (g) Show how a cycloid path is generated by a string unwrapping (*evolute*) from another cycloid and that a normal cycloid is the locus of the center of curvature (*involute*) of a π -out-of-phase cycloid like itself. (Use (a) to discuss.)

Flinger vs. Trebuchet on turntable (geometric version)

Ex.2. Compare dynamics of mass *m* on a "Flinger" (Fig. (a)) to what it does on a "Trebuchet" (Fig. (b)). Both begin at point A of radius r(0)=1cm. from the center of a turntable rotating at $\omega = 1(radian)s^{-1}$. Both have an initial speed of $v(0)=1cm \cdot s^{-1}$ and move from that point A to a final point B relative to turntable having radius $r(t_r)=20cm$ where we assume *m* is then released into the laboratory.

In Fig. (a) *m* slides *19cm* along a rod of length $\ell = 20cm$. In Fig. (b) *m* swivels on a rod of length $\ell = 10cm$ (The 20cm rod is fixed to turntable.) around a point fixed to turntable at r = 10cm radius.

How long does *m* take to go from A to release point B? _____sec.

Plot or (preferably) construct its orbit on a polar graph like Fig. (a) but in the lab-relative frame.