Well-known Coordinates (OCC) NOTE: Save copy of solution to this Ex.1 for next Assignment 9

- 1. Find Jacobian, Kajobian, E_m , E^m , metric tensors g_{mn} and g^{mn} for OCC (a) and (b). Do (b) first. Then reduce to (a).
 - (a) Cylindrical coordinates $\{q^1=\rho, q^2=\phi, q^3=z\}$: $x=x^1=\rho \cos\phi, y=x^2=\rho \sin\phi, z=x^3$.
 - (b) Spherical coordinates: $\{q^1=r, q^2=\theta, q^3=\phi\}$: $x=x^1=r\sin\theta\cos\phi, y=x^2=r\sin\theta\sin\phi, z=x^3=r\cos\theta$.

"Plopped" Parabolic Coordinates (GCC) (In attached figure)

- **2.** Consider the GCC(Cartesian) definition: $q^1 = (x)^2 + y$ $q^2 = (y)^2 x$
- (a) Does an analytic Cartesian coordinate definition $x^j = x^j(q^m)$ exist? If so, show.
- (b) Derive the Jacobian, Kajobian, unitary vectors \mathbf{E}_{m} , \mathbf{E}^{m} , and metric tensors for this GCC.
- (c) On the appropriate graph on attached pages sketch the unitary vectors at the point (x=1, y=1) (Arrow) and at the point (x=1, y=0). Where, if anywhere, is the grid an OCC however briefly? Indicate loci on graph.
- (d) Find and indicate where, if anywhere, are there singularities of this GCC.

"Sliding" Parabolic Coordinates (GCC) (*In attached figure*)

- **3.** Consider the Cartesian(GCC) definition: $x = 0.4 (q^1)^2 q^2$, $y = q^1 0.4 (q^2)^2$
- (a) Does an analytic GCC coordinate definition $q^m = q^m(x^j)$ exist? If so, show.
- (b) Derive the Jacobian, Kajobian, unitary vectors \mathbf{E}_m , \mathbf{E}^m , and metric tensors for this GCC.
- (c) On the appropriate graph on attached pages sketch the unitary vectors near point (x=1, y=1) (Arrow) and near point (x=1, y=0). Where, if anywhere, is the grid an OCC however briefly? Indicate loci on graph.
- (d) Find and indicate where, if anywhere, are there singularities of this GCC.
- **4.** Covariant vs Contravariant Geometry (*In attached figure*)

GCC components of a vector V in attached figure are realized by line segments OA, BV, etc. Give each segment length by single terms of the form V_m or V^m times $(\sqrt{g_{mm}})^{+1}$, $(\sqrt{g_{mm}})^{-1}$, $(\sqrt{g^{mm}})^{+1}$, or $(\sqrt{g^{mm}})^{-1}$ with the correct m=1 or 2. Also label each unitary vector as \mathbf{E}_1 , \mathbf{E}_1 , \mathbf{E}_2 , or \mathbf{E}_2 , whichever it is.

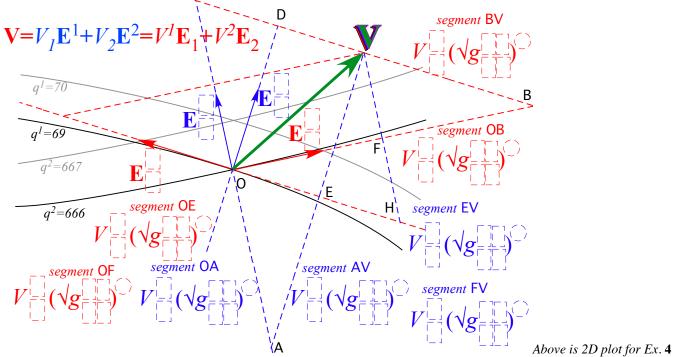
You should be able to do this quickly without looking at the text figures.

"Unprofessional" Paraboloidal Coordinates (GCC) (In attached figure)

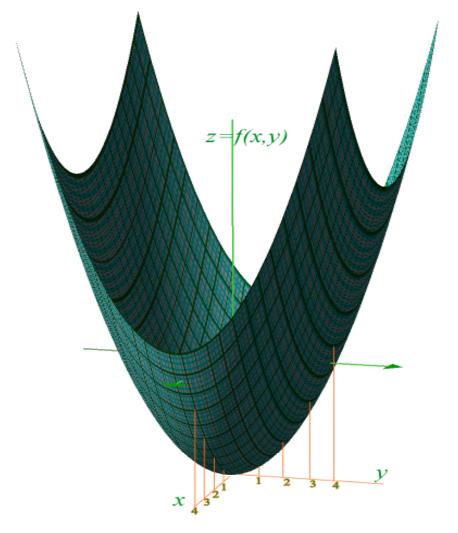
- **5.** The surface $z = f(x, y) = \frac{1}{2} x^2 + y^2$ (See xyz-plot) introduces 3D partial derivative chain rules. It is the $(q^3 = \theta)$ -surface in a 3D GCC coordinate grid $q^1=x$, $q^2=y$, $q^3=\frac{1}{2}x^2+y^2-z$. It contains a projection of an orthogonal (x,y) Cartesian coordinate grid on the surface that is obviously *not* orthogonal most places.
- a. Derive the 3-by-3 Jacobian J(x,y,z) and Kajobian K(x,y,z) for $(q^3=0)$.
- b. Extract covariant $\{E_1, E_2, E_3\}$ and contravariant $\{E^1, E^2, E^3\}$ vectors represented in Cartesian (x, y, z) basis.
- c. Derive the 3-by-3 covariant metric $g_{vv}(x,y)$ and contravariant metric $g^{vv}(x,y)$ for $(q^3=0)$ and tell which if any points on the surface have grids that are locally *orthogonal* and which if any are locally *orthonormal*.

(Graph provided separately for Ex.5d and Ex.5e.

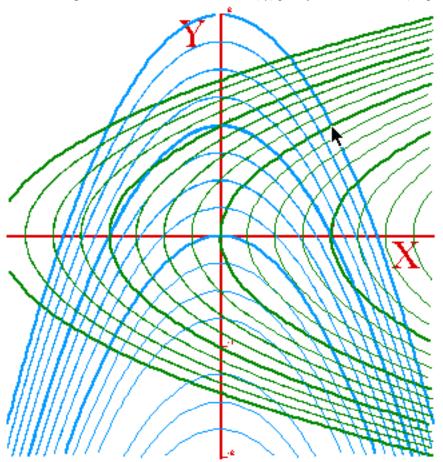
- d. Calculate and sketch covariant $\{E_1, E_2, E_3\}$ on $(q^3=0)$ surface where (x=4,y=-2) and where (x=3,y=+2). e. Calculate and sketch contravariant $\{E^1, E^2, E^3\}$ on $(q^3=0)$ surface where (x=4,y=+2) and where (x=0,y=+4).



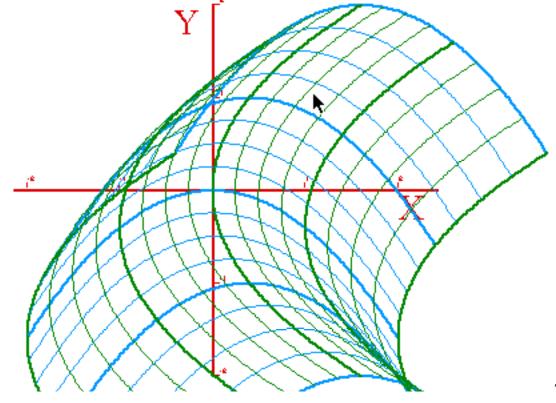
Below is 3D (xyz) plot for Ex.5.



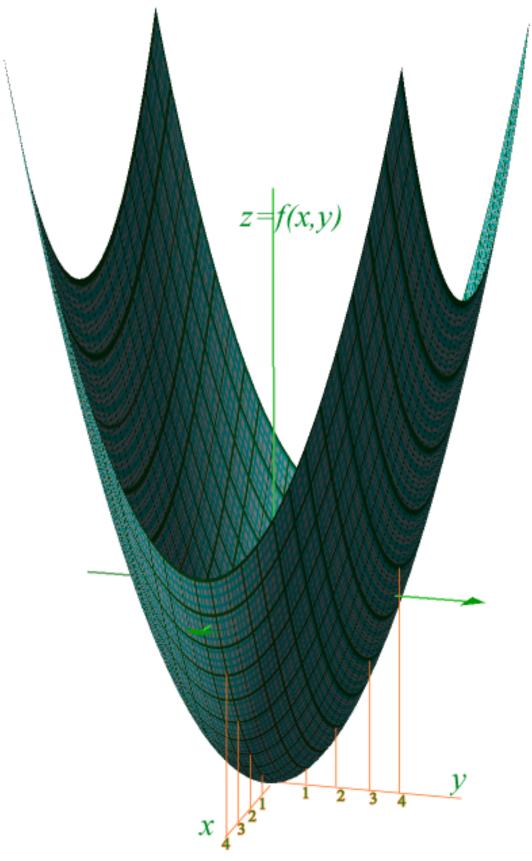
"Plopped" and "Sliding" Parabolic Coordinates are 2D (xy) plots for Ex.2 and Ex.3 (despite 3D appearance of latter.)



 $"Plopped"\ Parabolic\ Coordinates\ for\ Ex. {\bf 2}$



"Sliding" Parabolic Coordinates for Ex.3



Assignment 8(contd.) - Ex. 5
"Unprofessional" Paraboloidal Coordinates