
           Assignments for Physics 5103  -  2019        Reading in  Classical Mechanics with a BANG! and Lectures

Exercise Set 7 Due Wednesday Oct. 16:  Based on Unit 1 Chapter 10 and 12 and Lectures 12-13 (2018).  

"Professional" Parabolic and Hyperbolic Coordinates (Relates to Fig. 1.10.7)  
1. Consider GCC definition: q1=Φ= x2 - y2 , q2 =A= 2xy. Both (x1=x,x2=y) and (q1=u=Φ,q2=v=A) are Orthogonal 
Curvilinear Coordinates (OCC) related by an analytic function w=z2 or (u+iv)=(x+iy)2. You can treat either one as 
Cartesian. (This is based on the analytic function f(z)=2z whose complex potential is φ=_________) 

(a) Plot (q1=u,q2=v) coordinate curves in a Cartesian (x1=x,x2=y) graph. Derive the Jacobian, Kajobian, unitary 
vectors Ek and Ek and metric tensors gmn and gmn for this GCC.  
(b) Plot (x1=x,x2=y) coordinate curves in a Cartesian (q1=u,q2=v) graph. Derive the Jacobian, Kajobian, unitary 
vectors and metric tensors for this GCC. 

Galaxy Grids  
2. Consider the monopole field function f(z)=eiα/z with complex source eiα discussed in Lectures 12-13. 

(a) Derive its  (q1=Φ,q2=A) scalar and vector potential coordinate functions. 
(b) Plot examples for angle α=30° and α=45°. 

Fun with Exponentials & more from The Story of  e 
3. Consider a sequence of functions , " . The function "  has a 
finite limit "  for N approaching infinity if argument z is small enough . (z=1 works! But, so does z=√2.)  

(a) Find " =____? 
(b) Find analytic expression for limiting real zmax to give finite .It involves Euler constant. e=2.718281828... 

Fun in the bathtub (This has a peculiar connection to “Sophomore-Physics-Earth” potential.) 
4. Derive surface shape of rotating fluid subject to constraints on curl function "  for velocity field. From 
this you should be able to derive surface altitude S=S(r) as a function of radius r by relating balanced forces to 
differential slope. (Objects floating on these surfaces would not move up or down their S(r) surface.)    

(a)   (Whirlpool or Vortex) Complex vortex field f(z*)=vx(x,y) +i vy(x,y)=i/z* has zero z-derivative and zero divergence 
(flux derivative " ) and zero curl (circulation derivative " ). 
(b)  (Rigid rotation) Complex vortex field f(z)=vx(x,y) +i vy(x,y)=iω z has constant imaginary z-derivative and 
therefore zero divergence (flux derivative " ) and constant curl (circulation derivative " ). 

                        "  
(c) How might the “Sophomore-Physics-Earth” potential  be related to a surface whirlpool in deep water  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Solutions: Assignment 6  "Professional" Parabolic and Hyperbolic Coordinates  
1 Consider the GCC(Cartesian) definition: q1 = (x1)2 - (x2)2 , q2 = 2(x1)(x2). Both (x1=x,x2=y) and (q1=u,q2=v) are Orthogonal 

Curvilinear Coordinates (OCC) related by an analytic function w=z2 or (u+iv)=(x+iy)2. 
(a) Plot (q1=u,q2=v) coordinate curves in a Cartesian (x1=x,x2=y) graph. Derive the Jacobian, Kajobian, unitary vectors and metric 
tensors for this GCC. See below.
(b) Plot (x1=x,x2=y) coordinate curves in a Cartesian (q1=u,q2=v) graph. Derive the Jacobian, Kajobian, unitary vectors and metric 
tensors for this GCC. 

�

                

� �
Note how parabolic covariant vectors grow with distance from origin while contravariant vectors shrink.

   

w = (u + iv) = z 2 = (x + iy)2  is analytic function of z and w

Expansion:                   u = x 2 −y 2   and v = 2xy   may be solved using |w |=| z 2 |=| z |2

Expansion: |w |= u2 + v 2 = x 2 + y 2 =| z |2      
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OCC everywhere: g12 = 0  
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Galaxy Grids-Solutions:
2. Consider the monopole field function f(z)=eiα/z with complex source eiα discussed in Lect. 12-13. 
(a) Derive its  (q1=Φ,q2=A) scalar and vector potential coordinate functions. 
(b) Plot examples for angle α=30° and α=45°. 
�

                                                   

    � �
A=0.5 and B=0.5   eiα = 0.5 + i 0.5 has α = atan(0.5/0.5) = 45°.

� �
A=0.75 and B=0.25   A=eiα = 0.75 + i 0.25 has α = atan(0.25/0.75) = 18°.

Fun with Exponents & more of the Story of e 
3. Consider a sequence of functions , " . The function "  has a 
limit for N approaching infinity if argument z is small enough . (z=1 works! But, so does z=√2.) Find an analytic 
expression for the limiting real z that involves the Euler constant. e=2.718281828... 
Solution:    Assume limiting case can be reached.     Then: "  or: " . Let’s plot this function: "  

 " ...Has max when:  "  

Take implicit derivative of  :           then set   
   

                                    "

φ = f (z)dz∫ = (A + iB) / zdz∫ = (A + iB)ln(z) = (A + iB)(ln(r)+ iθ ) = A ln(r)− Bθ[ ]+ i Aθ + B ln(r)[ ]
A = cosα     and:     B = sinα  Φ = A ln(r)− Bθ[ ] = const. |A |= Aθ + B ln(r)[ ] = const.
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Fun in the bathtub (This has a peculiar connection to “Sophomore-Physics-Earth” potential.) 
Solution 
4. Derive surface shape of rotating fluid subject to constraints on curl function "  on velocity field. 
(a)   (Whirlpool or Vortex) Complex vortex field f(z*)=vx(x,y) +i vy(x,y)=i/z* has zero z-derivative and therefore zero 
divergence (flux derivative " ) and zero curl (circulation derivative " ). 

"  

 (b)  (Rigid rotation) Complex vortex field f(z)=vx(x,y) +i vy(x,y)=iω z has constant imaginary z-derivative and 
therefore zero divergence (flux derivative " ) and constant curl (circulation derivative " ). 

"

 

surface: 

 

(c) Ideal whirlpools have parabolic core-bottoms starting wherever viscosity wins over curl-free flow. 
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