Assignments for Physics 5103 - 2019 Reading in Classical Mechanics with a BANG! and Lectures
Exercise Set 7 Due Wednesday Oct. 16: Based on Unit 1 Chapter 10 and 12 and Lectures 12-13 (2018).

"Professional” Parabolic and Hyperbolic Coordinates (Relates to Fig. 1.10.7)

1. Consider GCC definition: g/=d= x? - y2 , g? =A= 2xy. Both (x!=x,x?=y) and (¢! =u=®,q?=v=/4) are Orthogonal
Curvilinear Coordinates (OCC) related by an analytic function w=z? or (u+iv)=(x+iy)2. You can treat either one as
Cartesian. (This is based on the analytic function f{z) =2z whose complex potential is ¢p= )

(a) Plot (q!=u,q?=v) coordinate curves in a Cartesian (x!=x,x?=y) graph. Derive the Jacobian, Kajobian, unitary
vectors Ex and E* and metric tensors g, and g for this GCC.

(b) Plot (x/=x,x°=y) coordinate curves in a Cartesian (g =u,q?=v) graph. Derive the Jacobian, Kajobian, unitary
vectors and metric tensors for this GCC.

Galaxy Grids
2. Consider the monopole field function f(z)=ei®/z with complex source e discussed in Lectures 12-13.

(a) Derive its (q/=®,q?=A4) scalar and vector potential coordinate functions.
(b) Plot examples for angle a=30° and a=45°.

Fun with Exponentials & more from The Story of e

3. Consider a sequence of functions , f(z)=2z°,f,(2)=z"% =77, fi(2) =z"¥ = z* ... The function fy(2) hasa
finite limit f.(z) for N approaching infinity if argument z is small enough . (z=1 works! But, so does z=2.)

(a) Find f.(N2)=__ 2

(b) Find analytic expression for limiting real zuax to give finite f_(z) .It involves Euler constant. e=2.718281828...

Fun in the bathtub (This has a peculiar connection to “Sophomore-Physics-Earth” potential.)

4. Derive surface shape of rotating fluid subject to constraints on curl function Vxv for velocity field. From
this you should be able to derive surface altitude S=S(7) as a function of radius r by relating balanced forces to
differential slope. (Objects floating on these surfaces would not move up or down their S(7) surface.)

(a) Vxv=0 (Whirlpool or Vortex) Complex vortex field f{z*)=v(x,y) +i vy(x,y)=i/z* has zero z-derivative and zero divergence
(flux derivative Vev = 0 ) and zero curl (circulation derivative VX v =0).

(b) Vxv =const. (Rigid rotation) Complex vortex field f{z)=v«(x,y) +i v,(x,y)=i® z has constant imaginary z-derivative and
therefore zero divergence (flux derivative Vev = 0 ) and constant curl (circulation derivative VX v =@®).
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(c) How might the “Sophomore-Physics-Earth” potential be related to a surface whirlpool in deep water
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Solutions: Assignment 6 "Professional" Parabolic and Hyperbolic Coordinates
1 Consider the GCC(Cartesian) definition: ¢/ = (x1)? - x?)?, ¢ = 2(x!)(x?). Both (x! =x,x°=y) and (¢! =u,q?=v) are Orthogonal

Curvilinear Coordinates (OCC) related by an analytic function w:z2 or (u+iv)=(x+iy)2.

(a) Plot (ql =u,q2 =v) coordinate curves in a Cartesian (x] =x,x° =y) graph. Derive the Jacobian, Kajobian, unitary vectors and metric
tensors for this GCC. See below.

(b) Plot (x] =x,x° =y) coordinate curves in a Cartesian (q[ :u,q2 =v) graph. Derive the Jacobian, Kajobian, unitary vectors and metric
tensors for this GCC.

w=(u+w) =2 = (v+iy)’ is analytic function of z and w

Expansion: u=2"—9y" and v = 2zy may be solved using |w |=| 2* |=| z [

Expansion: |w|=vu’ +v* =2° +¢* =]z
u+\/u2+v2 2_—u+\/u2+v2

2 Y 2
Jacobian follows by inversion:

Solution: z* =

@ % [ Q;y —;iy ]detJ—4(J:2+y2)—0when:ac—y—O
Easier to get Kajobian first: Ou v |_ ( E E ): | S e _fu R _ 90\ — 90 — 442 2
merte! ay oy . E, 4(z2 n yQ) g12 = 1:3 1:3 =(20 —2yp(20 —2)=140"+ 4y
oc oy |_[B|_[ 22 -2 Ou v " =ENE = (2 2y 2)=0
ov  Ov E’ +2y 2z \/u + \/UZ +? \/\/uz +0’ —u 922 = E'.E' = (2y 21:):(23/ 2:r) =42 + 4y2

oo b [2 2 = | detg=g,9, — 9,9, = (detJ)" = (42" + 4y’)’
_\/ w4+t —u \/u+ w42 1722 12712

_ OCC everywhere: ¢ =0
4\/ u? 4+ 0°

z=-34 +155 is mapped into w(z)=-9.1 +1-19
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Note how parabolic covariant vectors grow with distance from origin while contravariant vectors shrink.



Assignments for Physics 5103 - 2019 Reading in Classical Mechanics with a BANG! and Lectures

Galaxy Grids-Solutions:

2. Consider the monopole field function f(z)=ei®/z with complex source e discussed in Lect. 12-13.
(a) Derive its (q/=®,q?=A4) scalar and vector potential coordinate functions.

(b) Plot examples for angle a=30° and a=45°.

0= [ f(2)dz=[(A+iB)/zdz=(A+iB)In(z)= (A+iB)(In(r)+i0)=[ Aln(r) ~ BO|+i
A=cosx and: B=sina d)z [Aln(r) - BH] = const. [ A= = const.

A=0.5 and B=0.5 ei“=0.5+10.5 has o = atan(0.5/0.5) = 45°.

A=0.75+10.25
A=0.75 and B=0.25 A=ei®=0.75+10.25 has o = atan(0.25/0.75) = 18°.

Fun with Exponents & more of the Story of e )

3. Consider a sequence of functions , f(z)=2z",f,(z)=z"% =z",f,(z) =z =7" ,.... The function f,(z) hasa
limit for N approaching infinity if argument z is small enough . (z=1 works! But, so does z=V2.) Find an analytic
expression for the limiting real z that involves the Euler constant. e=2.718281828...

1

Solution: ~Assume limiting case can be reached.  Then: f(z) =z or: z=f " Let’s plot this function: y(x) =x

i is 3 3 i d .
1 =1.00, 15 =130, 2 =1414, 3 =1.442, 4 =1.414,..Has max when: d—y=0with:1ny=1nx =
X
Take implicit derivative of xIny=1Inx : then set 2=0:
d d x dy 1 1 1
—xIlny=—Inx or: Iny+——=lny=—, so:x*'=y=e* =¢°=1.44466786
dx dx y dx by
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Fun in the bathtub (This has a peculiar connection to “Sophomore-Physics-Earth” potential.)
Solution

4. Derive surface shape of rotating fluid subject to constraints on curl function V X v on velocity field.
(@) Vxv=0 (Whirlpool or Vortex) Complex vortex field f{z*)=v«(x,y) +i vy(x,y)=i/z* has zero z-derivative and therefore zero
divergence (flux derivative Vev = 0 ) and zero curl (circulation derivative Vv =10).
dv(z¥) 1{ 9 .9 o Mfov, vy | v, dvy ) 1 i
0= @ _1 ——i— (v, +iv)== Xy 24— === :—(V-V)+—|V><V|
dz 2{dx ay Y2l dx  dy | 2| dy ox 2 2 Lx.y

y sin@
. : . . V= =T
I I I Xx+i . X . . r
Jor :v(Z¥)=—= —= - .y=l +i— =V, tivy where: r
z¥  x—iy x—iyx+iy 24y P4yt x cos@
v.=+—=+
y 2 r
r

(b) V X v =const. (Rigid rotation) Complex vortex field f{z)=v«(x,y) +i v(x,y)=i® z has constant imaginary z-derivative and
therefore zero divergence (flux derivative Vev = 0 ) and constant curl (circulation derivative VXV =@®).
d(iwz) 1( 0 0 1 i
o= =—| ——i— |(v. +iv,))=—=(Vev)+—=|V XV So: Vev =0 and: |V xv =2w
dz 2\ox dy Wy +ivy) 2( ) 2| |J-xay | |J_x,y

v, =—@y=-—@rsin6
Jor:v(z)=iwz=io(x+iy)=v_+ w, where:

O\ normal N tanO= al/g Rigidrotor Su’fface
g
al centrifugal O\ normal N
—v24 g
[VXv|=0 o g\al v
v=k/r
y a

vy =+4+wx =+or cosO

centrifugal

‘ a‘:\,.”/,.
gravity|g

Y

Vortex surface

V=Or

surface:

dz |a| v:/r | (kK* /gy forvortex v="k/r) —(k*/2g)r™? for vortex (v =k / r)
tane:—ziziz Z(}"):
dr g g (@? / g)r™! for rotor (v = wr) (w*/2g)r™ for rotor (v = wr)

(c) Ideal whirlpools have parabolic core-bottoms starting wherever viscosity wins over curl-free flow.

Curl-free region Curl-free region

Rigid-rotation
region



