Exercise Set 7 Due Wednesday Oct. 16: Based on Unit 1 Chapter 10 and 12 and Lectures 12-13 (2018).
"Professional" Parabolic and Hyperbolic Coordinates (Relates to Fig. 1.10.7)

1. Consider GCC definition: $q^{1}=\Phi=x^{2}-y^{2}, q^{2}=A=2 x y$. Both ($x^{1}=x, x^{2}=y$) and ($q^{1}=u=\Phi, q^{2}=v=A$) are Orthogonal Curvilinear Coordinates (OCC) related by an analytic function $w=z^{2}$ or $(u+\mathrm{i} v)=(x+\mathrm{i} y)^{2}$. You can treat either one as Cartesian. (This is based on the analytic function $f(z)=2 z$ whose complex potential is $\phi=$ \qquad _)
(a) Plot $\left(q^{1}=u, q^{2}=v\right)$ coordinate curves in a Cartesian ($x^{1=x, x^{2}=y \text {) graph. Derive the Jacobian, Kajobian, unitary }}$ vectors \mathbf{E}_{k} and \mathbf{E}^{k} and metric tensors $g_{m n}$ and $g^{m n}$ for this GCC.
 vectors and metric tensors for this GCC.

Galaxy Grids

2. Consider the monopole field function $f(z)=e^{i \alpha} / z$ with complex source $e^{i \alpha}$ discussed in Lectures 12-13.
(a) Derive its $\left(q^{1}=\Phi, q^{2}=A\right)$ scalar and vector potential coordinate functions.
(b) Plot examples for angle $\alpha=30^{\circ}$ and $\alpha=45^{\circ}$.

Fun with Exponentials \& more from The Story of e
3. Consider a sequence of functions, $f_{1}(z)=z^{z}, f_{2}(z)=z^{f_{1}(z)}=z^{z^{z}}, f_{3}(z)=z^{f_{2}(z)}=z^{z^{z^{z}}}, \ldots$. The function $f_{N}(z)$ has a finite limit $f_{\infty}(z)$ for N approaching infinity if argument z is small enough . $(z=1$ works! But, so does $z=\sqrt{ } 2$.)
(a) Find $f_{\infty}(\sqrt{2})=$ \qquad ?
(b) Find analytic expression for limiting real $z_{\max }$ to give finite $f_{\infty}(z)$.It involves Euler constant. $e=2.718281828 \ldots$

Fun in the bathtub (This has a peculiar connection to "Sophomore-Physics-Earth" potential.)
4. Derive surface shape of rotating fluid subject to constraints on curl function $\nabla \times \mathbf{v}$ for velocity field. From this you should be able to derive surface altitude $S=S(r)$ as a function of radius r by relating balanced forces to differential slope. (Objects floating on these surfaces would not move up or down their $S(r)$ surface.)
(a) $\nabla \times \mathbf{v}=0$ (Whirlpool or Vortex) Complex vortex field $f\left(z^{*}\right)=v_{x}(x, y)+i v_{y}(x, y)=i / z^{*}$ has zero z-derivative and zero divergence (flux derivative $\nabla \cdot \mathbf{v}=0$) and zero curl (circulation derivative $\nabla \times \mathbf{v}=\mathbf{0}$).
(b) $\nabla \times \mathbf{v}=$ const. (Rigid rotation) Complex vortex field $f(z)=v_{x}(x, y)+i v_{y}(x, y)=i \omega z$ has constant imaginary z-derivative and therefore zero divergence (flux derivative $\nabla \cdot \mathbf{v}=0$) and constant curl (circulation derivative $\nabla \times \mathbf{v}=\boldsymbol{\omega}$).

(c) How might the "Sophomore-Physics-Earth" potential be related to a surface whirlpool in deep water

Solutions: Assignment 6 "Professional" Parabolic and Hyperbolic Coordinates

1 Consider the GCC(Cartesian) definition: $q^{1}=\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}, q^{2}=2\left(x^{1}\right)\left(x^{2}\right)$. Both $\left(x^{1}=x, x^{2}=y\right)$ and $\left(q^{1}=u, q^{2}=v\right)$ are Orthogonal Curvilinear Coordinates (OCC) related by an analytic function $w=z^{2}$ or $(u+\mathrm{i} v)=(x+\mathrm{i} y)^{2}$.
(a) Plot $\left(q^{1}=u, q^{2}=v\right)$ coordinate curves in a Cartesian $\left(x^{1}=x, x^{2}=y\right)$ graph. Derive the Jacobian, Kajobian, unitary vectors and metric tensors for this GCC. See below.
(b) Plot $\left(x^{1}=x, x^{2}=y\right)$ coordinate curves in a Cartesian $\left(q^{1}=u, q^{2}=v\right)$ graph. Derive the Jacobian, Kajobian, unitary vectors and metric tensors for this GCC.
$w=(u+i v)=z^{2}=(x+i y)^{2}$ is analytic function of z and w
Expansion: $\quad u=x^{2}-y^{2}$ and $v=2 x y$ may be solved using $|w|=\left|z^{2}\right|=|z|^{2}$
Expansion: $|w|=\sqrt{u^{2}+v^{2}}=x^{2}+y^{2}=|z|^{2}$
Solution: $x^{2}=\frac{u+\sqrt{u^{2}+v^{2}}}{2} \quad y^{2}=\frac{-u+\sqrt{u^{2}+v^{2}}}{2}$
Jacobian follows by inversion:

Easier to get Kajobian first:
$\left(\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right)=\binom{\overline{\mathbf{E}}^{u}}{\overline{\mathbf{E}}^{v}}=\left(\begin{array}{cc}2 x & -2 y \\ +2 y & 2 x\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\overline{\mathbf{E}}_{u} & \overline{\mathbf{E}}_{v}
\end{array}\right)=\frac{\left(\begin{array}{cc}
2 x & +2 y \\
-2 y & 2 x
\end{array}\right)}{4\left(x^{2}+y^{2}\right)} \begin{array}{l}
\operatorname{det} J=4\left(x^{2}+y^{2}\right)=0 \text { when: } x=y=0 \\
g^{11}=\overline{\mathbf{E}}^{u} \cdot \overline{\mathbf{E}}^{u}=\left(\begin{array}{ll}
2 x & -2 y
\end{array}\right) \cdot\left(\begin{array}{ll}
2 x & -2 y
\end{array}\right)=4 x^{2}+4 y^{2} \\
g^{12}=\overline{\mathbf{E}}^{u} \cdot \overline{\mathbf{E}}^{v}=\left(\begin{array}{ll}
2 x & -2 y
\end{array}\right) \cdot\left(\begin{array}{ll}
2 y & 2 x
\end{array}\right)=0
\end{array} \\
& =\frac{\sqrt{2}\binom{\sqrt{u+\sqrt{u^{2}+v^{2}}} \sqrt{\sqrt{u^{2}+v^{2}}-u}}{-\sqrt{\sqrt{u^{2}+v^{2}}-u} \sqrt{u+\sqrt{u^{2}+v^{2}}}}}{4 \sqrt{g^{22}=\overline{\mathbf{E}}^{v} \cdot \overline{\mathbf{E}}^{v}=\left(\begin{array}{ll}
2 y & 2 x
\end{array}\right) \cdot\left(\begin{array}{ll}
2 y & 2 x
\end{array}\right)=4 x^{2}+4 y^{2}}} \begin{array}{l}
\operatorname{det} g=g_{11} g_{22}-g_{12} g_{12}=(\operatorname{det} J)^{2}=\left(4 x^{2}+4 y^{2}\right)^{2} \\
\text { OCC everywhere: } g^{12}=0
\end{array}
\end{aligned}
$$

Note how parabolic covariant vectors grow with distance from origin while contravariant vectors shrink.

Galaxy Grids-Solutions:

2. Consider the monopole field function $f(z)=e^{i \alpha} / z$ with complex source $e^{i \alpha}$ discussed in Lect. 12-13.
(a) Derive its $\left(q^{1}=\Phi, q^{2}=A\right)$ scalar and vector potential coordinate functions.
(b) Plot examples for angle $\alpha=30^{\circ}$ and $\alpha=45^{\circ}$.
$\phi=\int f(z) d z=\int(A+i B) / z d z=(A+i B) \ln (z)=(A+i B)(\ln (r)+i \theta)=[A \ln (r)-B \theta]+i[A \theta+B \ln (r)]$
$A=\cos \alpha \quad$ and: $\quad B=\sin \alpha$
$\mathrm{x}=-0.82 \mathrm{y}=-4.8 \quad \mathrm{Fx}=-0.12 \mathrm{Fy}=-0.084 \quad \mathrm{Plif}=1.7 \quad \mathrm{~A}=-0.078$

$A=0.5$ and $B=0.5 \quad \mathrm{e}^{\mathrm{i} \alpha}=0.5+\mathrm{i} 0.5$ has $\alpha=\operatorname{atan}(0.5 / 0.5)=45^{\circ}$.

$A=0.75$ and $B=0.25 \quad \mathrm{~A}=\mathrm{e}^{\mathrm{i} \alpha}=0.75+\mathrm{i} 0.25$ has $\alpha=\operatorname{atan}(0.25 / 0.75)=18^{\circ}$.
Fun with Exponents \& more of the Story of e
3. Consider a sequence of functions, $f_{1}(z)=z^{z}, f_{2}(z)=z^{f_{1}(z)}=z^{z^{z}}, f_{3}(z)=z^{f_{2}(z)}=z^{z^{z^{z}}}, \ldots$. The function $f_{N}(z)$ has a limit for N approaching infinity if argument z is small enough . $(z=1$ works! But, so does $z=\sqrt{2}$.) Find an analytic expression for the limiting real z that involves the Euler constant. $e=2.718281828$...
Solution: Assume limiting case can be reached. Then: $f(z)=z^{f(z)}$ or: $z=f^{\frac{1}{f}}$. Let's plot this function: $y(x)=x^{\frac{1}{x}}$ $1^{\frac{1}{1}}=1.00, \quad 1.5^{\frac{1}{1.5}}=1.30, \quad 2^{\frac{1}{2}}=1.414, \quad 3^{\frac{1}{3}}=1.442, \quad 4^{\frac{1}{4}}=1.414, \ldots$ Has max when: $\frac{d y}{d x}=0$ with $: \ln y=\ln x^{\frac{p}{x}}=\frac{\ln x}{x}$
Take implicit derivative of $x \ln y=\ln x$: then set $\frac{d y}{d x}=0$:

$$
\frac{d}{d x} x \ln y=\frac{d}{d x} \ln x \quad \text { or }: \quad \ln y+\frac{x}{y} \frac{d y}{d x}=\ln y=\frac{1}{x}, \text { so }: x^{\frac{1}{x}} \equiv y=e^{\frac{1}{x}}=e^{\frac{1}{e}}=1.44466786
$$

Fun in the bathtub (This has a peculiar connection to "Sophomore-Physics-Earth" potential.) Solution
4. Derive surface shape of rotating fluid subject to constraints on curl function $\nabla \times \mathbf{v}$ on velocity field.
(a) $\nabla \times \mathbf{v}=0$ (Whirlpool or Vortex) Complex vortex field $f\left(z^{*}\right)=v_{x}(x, y)+i v_{y}(x, y)=i / z^{*}$ has zero z-derivative and therefore zero divergence (flux derivative $\nabla \cdot \mathbf{v}=0$) and zero curl (circulation derivative $\nabla \times \mathbf{v}=\mathbf{0}$).
$0=\frac{d v\left(z^{*}\right)}{d z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\left(v_{x}+i v_{y}\right)=\frac{1}{2}\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial v_{x}}{\partial y}-\frac{\partial v_{y}}{\partial x}\right)=\frac{1}{2}(\nabla \cdot \mathbf{v})+\frac{i}{2}|\nabla \times \mathbf{v}|_{\perp x, y}$
for $: v\left(z^{*}\right)=\frac{i}{z^{2}}=\frac{i}{x-i y}=\frac{i}{x-i y} \frac{x+i y}{x+i}=i\left(\frac{x}{x^{2}+y^{2}}+i \frac{y}{x^{2}+y^{2}}\right)=v_{x}+i v_{y}$ where: $\quad v_{x}=-\frac{y}{r^{2}}=-\frac{\sin \theta}{r}$
for: $v\left(z^{*}\right)=\frac{i}{z^{*}}=\frac{i}{x-i y}=\frac{i}{x-i y} \frac{x+i y}{x+i y}=i\left(\frac{x}{x^{2}+y^{2}}+i \frac{y}{x^{2}+y^{2}}\right)=v_{x}+i v_{y}$ where: $v_{y}=+\frac{x}{r^{2}}=+\frac{\cos \theta}{r}$
(b) $\nabla \times \mathbf{v}=$ const. (Rigid rotation) Complex vortex field $f(z)=v_{x}(x, y)+i v_{y}(x, y)=i \omega z$ has constant imaginary z-derivative and therefore zero divergence (flux derivative $\nabla \cdot \mathbf{v}=0$) and constant curl (circulation derivative $\nabla \times \mathbf{v}=\boldsymbol{\omega}$).
$i \omega=\frac{d(i \omega z)}{d z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\left(v_{x}+i v_{y}\right)=\frac{1}{2}(\nabla \cdot \mathbf{v})+\frac{i}{2}|\nabla \times \mathbf{v}|_{\perp x, y}$ So: $\nabla \cdot \mathbf{v}=0$ and: $|\nabla \times \mathbf{v}|_{\perp x, y}=2 \omega$
for: $v(z)=i \omega z=i \omega(x+i y)=v_{x}+i v_{y}$ where:

$$
v_{x}=-\omega y=-\omega r \sin \theta
$$

$$
v_{y}=+\omega x=+\omega r \cos \theta
$$

$\tan \theta=\frac{d z}{d r}=\frac{|a|}{g}=\frac{v^{2} / r}{g}=\left\{\begin{array}{c}\left(k^{2} / g\right) r^{-3} \text { for vortex }(v=k / r) \\ \left(\omega^{2} / g\right) r^{+1} \text { for rotor }(v=\omega r)\end{array} \quad z(r)=\left\{\begin{array}{c}-\left(k^{2} / 2 g\right) r^{-2} \text { for vortex }(v=k / r) \\ \left(\omega^{2} / 2 g\right) r^{+2} \text { for rotor }(v=\omega r)\end{array}\right.\right.$
(c) Ideal whirlpools have parabolic core-bottoms starting wherever viscosity wins over curl-free flow.

