Exercise Set 7 Due Tuesday Oct. 10: Based on Unit 1 Chapter 10 and 12 and Lectures 12-13 (2017).

"Professional" Parabolic and Hyperbolic Coordinates (Relates to Fig. 1.10.7)

1. Consider GCC definition: $q^{I=\Phi} = x^2 - y^2$, $q^2 = A = 2xy$. Both $(x^I = x, x^2 = y)$ and $(q^I = u = \Phi, q^2 = v = A)$ are Orthogonal Curvilinear Coordinates (OCC) related by an analytic function $w = z^2$ or $(u+iv) = (x+iy)^2$. You can treat *either one* as Cartesian. (This is based on the analytic function f(z) = 2z whose complex potential is $\phi =$ _____)

(a) Plot $(q^1 = u, q^2 = v)$ coordinate curves in a Cartesian $(x^1 = x, x^2 = y)$ graph. Derive the Jacobian, Kajobian, unitary vectors \mathbf{E}_k and \mathbf{E}^k and metric tensors g_{mn} and g^{mn} for this GCC.

(b) Plot $(x^1=x,x^2=y)$ coordinate curves in a Cartesian $(q^1=u,q^2=v)$ graph. Derive the Jacobian, Kajobian, unitary vectors and metric tensors for this GCC.

Galaxy Grids

2. Consider the monopole field function $f(z) = e^{i\alpha}/z$ with complex source $e^{i\alpha}$ discussed in Lectures 13-14.

- (a) Derive its $(q^1 = \Phi, q^2 = A)$ scalar and vector potential coordinate functions.
- (b) Plot examples for angle α =30° and α =45°.

Fun with Exponentials & more from The Story of e

3. Consider a sequence of functions, $f_1(z) = z^z$, $f_2(z) = z^{f_1(z)} = z^{z^z}$, $f_3(z) = z^{f_2(z)} = z^{z^{z^z}}$,.... The function $f_N(z)$ has a finite limit $f_{\infty}(z)$ for *N* approaching infinity if argument *z* is small enough . (*z*=*I* works! But, so does *z*= $\sqrt{2}$.)

(a) Find $f_{\infty}(\sqrt{2}) =$

(b) Find an analytic expression for the limiting real z_{max} that involves the Euler constant. e=2.718281828...

Fun in the bathtub (This has a peculiar connection to "Sophomore-Physics-Earth" potential.)

4. Derive surface shape of rotating fluid subject to constraints on curl function $\nabla \times \mathbf{v}$ for velocity field. From this you should be able to derive surface altitude S=S(r) as a function of radius *r* by relating balanced forces to differential slope. (Objects floating on these surfaces would not move up or down their S(r) surface.)

(a) $\nabla \times \mathbf{v} = 0$ (Whirlpool or Vortex) Complex vortex field $f(z^*) = v_x(x,y) + i v_y(x,y) = i/z^*$ has zero z-derivative and zero divergence (flux derivative $\nabla \cdot \mathbf{v} = 0$) and zero curl (circulation derivative $\nabla \times \mathbf{v} = \mathbf{0}$).

(b) $\nabla \times \mathbf{v} = const.$ (Rigid rotation) Complex vortex field $f(z) = v_x(x,y) + i v_y(x,y) = i\omega z$ has constant imaginary z-derivative and therefore zero divergence (flux derivative $\nabla \cdot \mathbf{v} = 0$) and <u>constant</u> curl (circulation derivative $\nabla \times \mathbf{v} = \boldsymbol{\omega}$).

(c) How might the "Sophomore-Physics-Earth" potential be related to a surface whirlpool in deep water