Oct. 2 2019 - Assignment 6 - due Wed Oct. 09 - Mainly Chapters 9, 11, and 12. Lect. 11 Name

"

 Geometric Optimization Exercises

 Fig. 1 Local friction-free subways on Sophomore Physics-Earth (SPE). Fig. 2 Global friction-free subways on SPE.

1. a. Friction-free local subway path *ACB* in Fig. 1 is laser-beam straight and normal to line thru Earth center only at turning point *C*. How long does it take for subway car starting with v(0)=0 at point *A* to arrive at point *B*? b. Assume *constant* gravity $g=9.8m/s^2$ for friction-free local subway path *AMB* in Fig. 1 where turning vertex *M* is negotiated ideally with no loss of energy (or life!). Derive depth D_V of point *M* and angle ϕ_{AMB} that gives the quickest trip from *A* to *B* (*AC*=1km=*CB*) thru *M* and derive the *AMB* time of travel $\tau_{AMB}=$ _____ *min*. c. Cycloid (Lect. 11 p.33-42) gives *absolute* minimum τ_{AB} . Derive its (*x*,*y*) formula and plot using attached cycloid graph paper. Over it plot the optimal V-shaped path *AMB* of 1b to help compare the two. d. Use Lagrange equation of circle angle ϕ to find cycloid travel time $\tau_{AB}=$ ______min and compare it to τ_{AMB} .

2. Assume *Isotropic Harmonic Oscillator* IHO gravity in Fig. 2 with acceleration $g=9.8m/s^2$ at surface dropping to g=0 at Earth-center C_{\oplus} (bottom-center of Fig.2). The objective (as in Ex. 1) is to find path *AMB* and angle ϕ_{AMB} having least time of travel τ_{AMB} between Terminal points *A* and *B* separated by great circle longitude angle $\Delta \Phi_{AB}$.

Before solving main objective consider some alternative routes whose travel times should be easy to derive.

a. Direct straight line route from A to B: $\tau_{A \text{ direct toB}} = \underline{min}$. Relate to SPE half-orbit period $\tau_{\odot}/2$

b. Straight line segment routes A to C then C to B: $\tau_{AtoCtoB} = \underline{\qquad} min.$ "

c. Direct A to Earth-center C_{\oplus} then C_{\oplus} back up to B: $\tau_{AtoC_{\oplus}toB} = \underline{\qquad}$ min. "

3. To solve main objective of Ex.2, imagine subway cars from terminal *A* or *B* leave their terminal at time $t_0=0$ and fall along straight tunnels (white lines) to positions at later time t_1 indicated by points on blue oval in Fig. 2. Ovals *A* and *B* expand equally until a touch-time t_T when they are tangent to each other and to vertical line *CM*.

- a. That touch-time t_T is related to total minimum travel time τ_{AMB} . How? (Recall τ_{AMB} for Ex. 1.)
- b. Derive polar $r(\Theta, \mathbf{t})$ equation for "ovals" relative to Terminal origin. What Thales geometric form is it?
- c. Relate optimizing angle ϕ_{AMB} to angle $\Delta \Phi_{AB}$ of longitudinal *A* to *B* separation. Plot geometry for $\Delta \Phi = \frac{\pi}{2}$. It helps to define a slope angle α between optimal subway path and terminal vertical radial line.
- d. A terminal-launched SPE circular orbit serves as a clock hand that quantifies growing "oval" size. Include this in your geometric plot to quantify optimal travel time τ_{AMB} and plot car positions vs. *t*. Show car positions at fractions $\frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \dots$ of half-orbit period $\tau_{\odot}/2$ to help relate to travel time τ_{AMB} .
- e. Verify geometry c and d in extreme cases of distance that is small ($\Delta \Phi \ll \frac{\pi}{2}$ like Ex.1) or large ($\Delta \Phi = \pi$).

For Exercises 1c and 1d:

Huygen's cycloidal-pendulum construction graph (See Lect. 11p.33-42).

Motion may be calculated using Lagrange's 1D equation using single angle variable ϕ and angular velocity $\dot{\phi}$. In *mks* units the circumference $2\pi R$ of the circle (and width *ACB* of cycloid) should be 2*km* as shown in Fig. 1.

Exercise Set 6 Solutions 1a. Car falls "down" *A* to *C* in 21 min. and back "up" to *B* in 21 min. Total time: 42 min. Exercise 1b The simplest local (constant gravity) travel time is greatly reduced by a "V" shaped path between A and B that drops by angle α below the line connecting *A* to *B*. For nearby points, the connecting line is very close to the horizon. Not so for more global excursions.

Local uniform g approximation

For local V-path let A and B be L=2X apart and connected by an isosceles "V" of slant length S. Uniform gravity potential V=mgy is zero at the surface as is assumed the initial velocity v(t=0) and KE(t=0). Then total energy E will be conserved at zero value.

$$0 = E = KE + PE = \frac{1}{2}mv^2 + mgy = \frac{1}{2}m\left(\frac{ds}{dt}\right)^2 - mgs\sin\alpha \quad \text{where:} \quad y = -s\sin\alpha \quad \text{and:} \quad v = \frac{ds}{dt} = \sqrt{2gs\sin\alpha}$$

The travel time is then a simple integral. Consider just the first (or last) half travel time.

$$T = \int_0^T dt = \int_0^s \frac{ds}{v} = \int_0^s \frac{ds}{\sqrt{2gs \sin \alpha}} = \frac{1}{\sqrt{2g \sin \alpha}} \int_0^s s^{-1/2} ds = \frac{S^{1/2}}{\frac{1}{2}\sqrt{2g \sin \alpha}} = \sqrt{\frac{2S}{g \sin \alpha}} \quad \text{where:} \quad X = S \cos \alpha$$
$$time: T_{AtoX} = \sqrt{\frac{2X}{g \sin \alpha \cos \alpha}} \quad frequency: v_{AtoBtoA} = \frac{1}{4T_{AtoX}} = \frac{1}{4}\sqrt{\frac{g \sin \alpha \cos \alpha}{2X}} = \frac{1}{8}\sqrt{\frac{g}{X}}\sqrt{\sin 2\alpha}$$

Finding α -min-max for either υ or *T* involves zeroing its α -derivative.

$$\frac{d\upsilon}{d\alpha} = 0 = \frac{1}{2}\sqrt{\frac{g}{X}}\frac{d}{d\alpha}\sqrt{\sin 2\alpha} = \frac{1}{2}\sqrt{\frac{g}{X}}\frac{\cos 2\alpha}{\sqrt{\sin 2\alpha}} \Rightarrow \cos 2\alpha = 0 \Rightarrow \alpha = \pm \frac{\pi}{4}$$

So angle α =45° minimizes the half-travel time as well as twice that, the whole A-to-X-to-B time.

$$T_{AtoXtoB}(1way) = 2\sqrt{\frac{2X}{g(1/\sqrt{2})^2}} = 4\sqrt{\frac{X}{g}} = 2\sqrt{2}\sqrt{\frac{L}{g}} = 2\sqrt{2}\sqrt{\frac{2\cdot10^3m}{9.8m/s^2}} = 40.4sec \text{ for:} L = AtoB \text{ distance} = 2X = 2km$$

An *A-to-B* distance of L=2km on Earth is thus traversed in a little over 40 seconds. A longitude $\Delta \phi = 1^{\circ}$ gives L=111km and T=301 seconds or nearly 5 min. (Both beat the 42-minute half-circum-period by a lot!.)

The more difficult problem of deep-V-tunnel global travel is solved similarly, but a geometric solution sketched above and below is quick (once you see the trick!). The trick is to imagine a pencil of competing tunnels going out from both point A and point B so that the trial runs from two expanding circles that finally touch on a tangent that bisects the A-to-B longitude angle $\phi_{AOB} = \Delta \phi$. We find the angle $\alpha = \pi/4 - \Delta \phi/4$ between shortest path and *quickest* path. It approaches $\alpha = 45^{\circ}$ in the local limit $\Delta \phi \rightarrow 0$. The AMB vertex angle is $\phi_{AMB} = \pi/2 + \phi_{AOB}/2$ and approaches a local 90° limit. Half the AMB vertex angle is $\phi_{AMB}/2 = \pi/2 - \alpha = \alpha_{\rm C}$ (compliment of α) that is also horizon dip angle between the horizon and the quickest path. For short trips: $\alpha = \alpha_{\rm C} = 45^{\circ}$. For longer trips: $\alpha < 45^{\circ}$ and $\alpha_{\rm C} > 45^{\circ}$.

Each circle diameter D=2r (in units of Earth radius R_{\oplus}) expands as $D=1-\cos \theta$ where $\theta=\omega t$ is the circular orbit angle subtended by projecting the diameter point to the Earth circle. Travel time T is proportional to angle θ with $\theta=\pi$ corresponding to 42 minutes of a half-circle orbit and $\theta=\pi/2$ to 21 min. (Going half-way between A and B by the straight tunnel takes 21 minutes.)

The following is a general solution with the $\phi=\Phi/2=45^{\circ}$ case with numerical timing estimates.

The following is a general solution with the $\phi = \Phi/2 = 30^{\circ}$ case given numerically.

