Oct. 2 2019-Assignment 6-due Wed Oct. 09 - Mainly Chapters 9, 11, and 12. Lect. 11 Name

Geometric Optimization Exercises

Fig. 1 Local friction-free subways on Sophomore Physics-Earth (SPE). Fig. 2 Global friction-free subways on SPE.

1. a. Friction-free local subway path $A C B$ in Fig. 1 is laser-beam straight and normal to line thru Earth center only at turning point C. How long does it take for subway car starting with $v(0)=0$ at point A to arrive at point B ?
b. Assume constant gravity $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ for friction-free local subway path $A M B$ in Fig. 1 where turning vertex M is negotiated ideally with no loss of energy (or life!). Derive depth D_{V} of point M and angle $\phi_{A M B}$ that gives the quickest trip from A to $B(A C=1 \mathrm{~km}=C B)$ thru M and derive the $A M B$ time of travel $\tau_{A M B}=$ \qquad min. c. Cycloid (Lect. 11 p.33-42) gives absolute minimum $\tau_{A B}$. Derive its (x, y) formula and plot using attached cycloid graph paper. Over it plot the optimal V-shaped path $A M B$ of 1 b to help compare the two.
d. Use Lagrange equation of circle angle ϕ to find cycloid travel time $\tau_{A B}=$ \qquad \min and compare it to $\tau_{\text {AMB }}$.
2. Assume Isotropic Harmonic Oscillator IHO gravity in Fig. 2 with acceleration $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ at surface dropping to $g=0$ at Earth-center C_{\oplus} (bottom-center of Fig.2). The objective (as in Ex. 1) is to find path AMB and angle $\phi_{A M B}$ having least time of travel $\tau_{A M B}$ between Terminal points A and B separated by great circle longitude angle $\Delta \Phi_{A B}$.

Before solving main objective consider some alternative routes whose travel times should be easy to derive.
a. Direct straight line route from A to $B: \tau_{A \text { direct to } B=\ldots}=\quad \min$. Relate to SPE half-orbit period $\tau_{\odot} / 2$
b. Straight line segment routes A to C then C to $B: \tau_{A t o C t o B}=$ \qquad min.
c. Direct A to Earth-center C_{\oplus} then C_{\oplus} back up to $B: \tau_{A t o C_{\oplus} \text { toB }}=$ \qquad \min.
3. To solve main objective of Ex.2, imagine subway cars from terminal A or B leave their terminal at time $t_{0}=0$ and fall along straight tunnels (white lines) to positions at later time t_{1} indicated by points on blue oval in Fig. 2. Ovals A and B expand equally until a touch-time t_{T} when they are tangent to each other and to vertical line $C M$.
a. That touch-time t_{T} is related to total minimum travel time $\tau_{A M B}$. How? (Recall $\tau_{A M B}$ for Ex. 1.)
b. Derive polar $r(\Theta, \mathrm{t})$ equation for "ovals" relative to Terminal origin. What Thales geometric form is it?
c. Relate optimizing angle $\phi_{A M B}$ to angle $\Delta \Phi_{A B}$ of longitudinal A to B separation. Plot geometry for $\Delta \Phi=\frac{\pi}{2}$. It helps to define a slope angle α between optimal subway path and terminal vertical radial line.
d. A terminal-launched SPE circular orbit serves as a clock hand that quantifies growing "oval" size. Include this in your geometric plot to quantify optimal travel time $\tau_{A M B}$ and plot car positions vs. t. Show car positions at fractions $\frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \ldots$ of half-orbit period $\tau_{\odot} / 2$ to help relate to travel time $\tau_{A M B}$.
e. Verify geometry c and d in extreme cases of distance that is small ($\Delta \Phi \ll \frac{\pi}{2}$ like Ex.1) or large ($\Delta \Phi=\pi$).

For Exercises 1c and 1d:
Huygen's cycloidal-pendulum construction graph (See Lect. 11p.33-42).
Motion may be calculated using Lagrange's 1D equation using single angle variable ϕ and angular velocity $\dot{\phi}$. In $m k s$ units the circumference $2 \pi R$ of the circle (and width $A C B$ of cycloid) should be $2 k m$ as shown in Fig. 1 .

Exercise Set 6 Solutions 1a. Car falls "down" A to C in 21 min . and back "up" to B in 21 min . Total time: 42 min . Exercise 1b The simplest local (constant gravity) travel time is greatly reduced by a "V" shaped path between A and B that drops by angle α below the line connecting A to B. For nearby points, the connecting line is very close to the horizon. Not so for more global excursions.

Local uniform g approximation
For local V-path let A and B be $\mathrm{L}=2 X$ apart and connected by an isosceles " V " of slant length S. Uniform gravity potential $V=m g y$ is zero at the surface as is assumed the initial velocity $v(t=0)$ and $\mathrm{KE}(t=0)$. Then total energy E will be conserved at zero value.
$0=E=K E+P E=\frac{1}{2} m v^{2}+m g y=\frac{1}{2} m\left(\frac{d s}{d t}\right)^{2}-m g s \sin \alpha$ where: $y=-s \sin \alpha$ and: $v=\frac{d s}{d t}=\sqrt{2 g s \sin \alpha}$
The travel time is then a simple integral. Consider just the first (or last) half travel time.
$T=\int_{0}^{T} d t=\int_{0}^{s} \frac{d s}{v}=\int_{0}^{S} \frac{d s}{\sqrt{2 g s \sin \alpha}}=\frac{1}{\sqrt{2 g \sin \alpha}} \int_{0}^{S} s^{-1 / 2} d s=\frac{S^{1 / 2}}{\frac{1}{2} \sqrt{2 g \sin \alpha}}=\sqrt{\frac{2 S}{g \sin \alpha}} \quad$ where: $\quad X=S \cos \alpha$
time $: T_{\text {AtoX }}=\sqrt{\frac{2 X}{g \sin \alpha \cos \alpha}} \quad$ frequency: $v_{\text {AtoBtoA }}=\frac{1}{4 T_{\text {AtoX }}}=\frac{1}{4} \sqrt{\frac{g \sin \alpha \cos \alpha}{2 X}}=\frac{1}{8} \sqrt{\frac{g}{X}} \sqrt{\sin 2 \alpha}$
Finding α-min-max for either v or T involves zeroing its α-derivative.
$\frac{d v}{d \alpha}=0=\frac{1}{2} \sqrt{\frac{g}{X}} \frac{d}{d \alpha} \sqrt{\sin 2 \alpha}=\frac{1}{2} \sqrt{\frac{g}{X}} \frac{\cos 2 \alpha}{\sqrt{\sin 2 \alpha}} \Rightarrow \cos 2 \alpha=0 \Rightarrow \alpha= \pm \frac{\pi}{4}$
So angle $\alpha=45^{\circ}$ minimizes the half-travel time as well as twice that, the whole A-to-X-to-B time.
$T_{A t o X t o B}(1$ way $)=2 \sqrt{\frac{2 X}{g(1 / \sqrt{2})^{2}}}=4 \sqrt{\frac{X}{g}}=2 \sqrt{2} \sqrt{\frac{L}{g}}=2 \sqrt{2} \sqrt{\frac{2 \cdot 10^{3} m}{9.8 m / s^{2}}}=40.4 \mathrm{sec}$ for: $L=$ AtoB distance $=2 \mathrm{X}=2 \mathrm{~km}$
An A-to-B distance of $L=2 \mathrm{~km}$ on Earth is thus traversed in a little over 40 seconds. A longitude $\Delta \phi=1^{\circ}$ gives $L=111 \mathrm{~km}$ and $T=301$ seconds or nearly 5 min . (Both beat the 42 -minute half-circum-period by a lot!.)

Pendulum of length 4R has frequency: $v=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{g}{4 R}}$ where: $\pi R=1 \mathrm{~km}=10^{3} \mathrm{~m}$
Pendulum of length 4R has period: $\quad \tau=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{4 R}{g}}$
Half-period: $\frac{\tau}{2}=\pi \sqrt{\frac{4 R}{g}}=\pi \sqrt{\frac{4 \cdot 10^{3} m}{g \cdot \pi}}=\sqrt{\frac{4 \pi \cdot 10^{3} m}{9.8 m \cdot s^{-2}}}=35.81$ seconds
This a little quicker that the 40.4 seconds travel time on the $45^{\circ} \mathrm{V}$-path.

The more difficult problem of deep-V-tunnel global travel is solved similarly, but a geometric solution sketched above and below is quick (once you see the trick!). The trick is to imagine a pencil of competing tunnels going out from both point A and point B so that the trial runs from two expanding circles that finally touch on a tangent that bisects the A-to-B longitude angle $\phi_{A O B}=\Delta \phi$. We find the angle $\alpha=\pi / 4-\Delta \phi / 4$ between shortest path and quickest path. It approaches $\alpha=45^{\circ}$ in the local limit $\Delta \phi \rightarrow 0$. The $A M B$ vertex angle is $\phi_{A M B}=\pi / 2+\phi_{A O B} / 2$ and approaches a local 90° limit. Half the $A M B$ vertex angle is $\phi_{A M B} / 2=\pi / 2-\alpha=\alpha_{C}$ (compliment of α) that is also horizon dip angle between the horizon and the quickest path. For short trips: $\alpha=\alpha_{C}=45^{\circ}$. For longer trips: $\alpha<45^{\circ}$ and $\alpha_{C}>45^{\circ}$.

Each circle diameter $D=2 r$ (in units of Earth radius R_{\oplus}) expands as $D=1-\cos \theta$ where $\theta=\omega t$ is the circular orbit angle subtended by projecting the diameter point to the Earth circle. Travel time T is proportional to angle θ with $\theta=\pi$ corresponding to 42 minutes of a half-circle orbit and $\theta=\pi / 2$ to 21 min . (Going half-way between A and B by the straight tunnel takes 21 minutes.)

The following is a general solution with the $\phi=\Phi / 2=45^{\circ}$ case with numerical timing estimates.

The following is a general solution with the $\phi=\Phi / 2=30^{\circ}$ case given numerically.

