Oct. 2 2019-Assignment 6-due Wed Oct. 09 - Mainly Chapters 9, 11, and 12. Lect. 11 Name

Geometric Optimization Exercises

Fig. 1 Local friction-free subways on Sophomore Physics-Earth (SPE). Fig. 2 Global friction-free subways on SPE.

1. a. Friction-free local subway path $A C B$ in Fig. 1 is laser-beam straight and normal to line thru Earth center only at turning point C. How long does it take for subway car starting with $v(0)=0$ at point A to arrive at point B ?
b. Assume constant gravity $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ for friction-free local subway path $A M B$ in Fig. 1 where turning vertex M is negotiated ideally with no loss of energy (or life!). Derive depth D_{V} of point M and angle $\phi_{A M B}$ that gives the quickest trip from A to $B(A C=1 \mathrm{~km}=C B)$ thru M and derive the $A M B$ time of travel $\tau_{A M B}=$ \qquad min. c. Cycloid (Lect. 11 p.33-42) gives absolute minimum $\tau_{A B}$. Derive its (x, y) formula and plot using attached cycloid graph paper. Over it plot the optimal V-shaped path $A M B$ of 1 b to help compare the two.
d. Use Lagrange equation of circle angle ϕ to find cycloid travel time $\tau_{A B}=$ \qquad \min and compare it to $\tau_{\text {AMB }}$.
2. Assume Isotropic Harmonic Oscillator IHO gravity in Fig. 2 with acceleration $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ at surface dropping to $g=0$ at Earth-center C_{\oplus} (bottom-center of Fig.2). The objective (as in Ex. 1) is to find path AMB and angle $\phi_{A M B}$ having least time of travel $\tau_{A M B}$ between Terminal points A and B separated by great circle longitude angle $\Delta \Phi_{A B}$.

Before solving main objective consider some alternative routes whose travel times should be easy to derive.
a. Direct straight line route from A to $B: \tau_{A \text { direct to } B=\ldots}=\quad \min$. Relate to SPE half-orbit period $\tau_{\odot} / 2$
b. Straight line segment routes A to C then C to $B: \tau_{A t o C t o B}=$ \qquad min.
c. Direct A to Earth-center C_{\oplus} then C_{\oplus} back up to $B: \tau_{A t o C_{\oplus} \text { toB }}=$ \qquad \min.
3. To solve main objective of Ex.2, imagine subway cars from terminal A or B leave their terminal at time $t_{0}=0$ and fall along straight tunnels (white lines) to positions at later time t_{1} indicated by points on blue oval in Fig. 2. Ovals A and B expand equally until a touch-time t_{T} when they are tangent to each other and to vertical line $C M$.
a. That touch-time t_{T} is related to total minimum travel time $\tau_{A M B}$. How? (Recall $\tau_{A M B}$ for Ex. 1.)
b. Derive polar $r(\Theta, \mathrm{t})$ equation for "ovals" relative to Terminal origin. What Thales geometric form is it?
c. Relate optimizing angle $\phi_{A M B}$ to angle $\Delta \Phi_{A B}$ of longitudinal A to B separation. Plot geometry for $\Delta \Phi=\frac{\pi}{2}$. It helps to define a slope angle α between optimal subway path and terminal vertical radial line.
d. A terminal-launched SPE circular orbit serves as a clock hand that quantifies growing "oval" size. Include this in your geometric plot to quantify optimal travel time $\tau_{A M B}$ and plot car positions vs. t. Show car positions at fractions $\frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \ldots$ of half-orbit period $\tau_{\odot} / 2$ to help relate to travel time $\tau_{A M B}$.
e. Verify geometry c and d in extreme cases of distance that is small ($\Delta \Phi \ll \frac{\pi}{2}$ like Ex.1) or large ($\Delta \Phi=\pi$).

For Exercises 1c and 1d:
Huygen's cycloidal-pendulum construction graph (See Lect. 11p.33-42).
Motion may be calculated using Lagrange's 1D equation using single angle variable ϕ and angular velocity $\dot{\phi}$. In $m k s$ units the circumference $2 \pi R$ of the circle (and width $A C B$ of cycloid) should be $2 k m$ as shown in Fig. 1 .

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$
is a rational length of rolled fout circumference $R \phi=(3 / \pi) m \pi / n=3 m / n$. Diameter is $2 R=6 / \pi=1.91$

