Oct. 2 2019 - Assignment 6 - due Wed Oct. 09 - Mainly Chapters 9, 11, and 12. Lect. 11 Name

Geometric Optimization Exercises

Fig. 1 Local friction-free subways on Sophomore Physics-Earth (SPE). Fig. 2 Global friction-free subways on SPE.

- 1. a. Friction-free local subway path ACB in Fig. 1 is laser-beam straight and normal to line thru Earth center only at turning point C. How long does it take for subway car starting with v(0)=0 at point A to arrive at point B? b. Assume *constant* gravity $g=9.8m/s^2$ for friction-free local subway path AMB in Fig. 1 where turning vertex M is negotiated ideally with no loss of energy (or life!). Derive depth D_V of point M and angle ϕ_{AMB} that gives the quickest trip from A to B (AC=1km=CB) thru M and derive the AMB time of travel $\tau_{AMB}=$ ______ min. c. Cycloid (Lect. 11 p.33-42) gives absolute minimum τ_{AB} . Derive its (x,y) formula and plot using attached cycloid graph paper. Over it plot the optimal V-shaped path AMB of 1b to help compare the two.
- d. Use Lagrange equation of circle angle ϕ to find cycloid travel time τ_{AB} =____min and compare it to τ_{AMB} .
- 2. Assume *Isotropic Harmonic Oscillator* IHO gravity in Fig. 2 with acceleration $g=9.8m/s^2$ at surface dropping to g=0 at Earth-center C_{\oplus} (bottom-center of Fig.2). The objective (as in Ex. 1) is to find path AMB and angle ϕ_{AMB} having least time of travel τ_{AMB} between Terminal points A and B separated by great circle longitude angle $\Delta \Phi_{AB}$. Before solving main objective consider some alternative routes whose travel times should be easy to derive.
 - a. Direct straight line route from A to B: $\tau_{A \text{ direct toB}} = \underline{\qquad}$ min. Relate to SPE half-orbit period $\tau_{\odot}/2$
 - b. Straight line segment routes A to C then C to B: $\tau_{AtoCtoB} = \underline{\hspace{1cm}} min$.
 - c. Direct A to Earth-center C_{\oplus} then C_{\oplus} back up to B: $\tau_{AtoC_{\oplus}toB} = \underline{\qquad}$ min. "
- 3. To solve main objective of Ex.2, imagine subway cars from terminal A or B leave their terminal at time $t_0=0$ and fall along straight tunnels (white lines) to positions at later time t_1 indicated by points on blue oval in Fig. 2. Ovals A and B expand equally until a touch-time t_T when they are tangent to each other and to vertical line CM.
 - a. That touch-time t_T is related to total minimum travel time τ_{AMB} . How? (Recall τ_{AMB} for Ex. 1.)
 - b. Derive polar $r(\Theta, \mathbf{t})$ equation for "ovals" relative to Terminal origin. What Thales geometric form is it?
 - c. Relate optimizing angle ϕ_{AMB} to angle $\Delta \Phi_{AB}$ of longitudinal A to B separation. Plot geometry for $\Delta \Phi = \frac{\pi}{2}$. It helps to define a slope angle α between optimal subway path and terminal vertical radial line.
 - d. A terminal-launched SPE circular orbit serves as a clock hand that quantifies growing "oval" size. Include this in your geometric plot to quantify optimal travel time τ_{AMB} and plot car positions vs. t. Show car positions at fractions $\frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \dots$ of half-orbit period $\tau_{\circ}/2$ to help relate to travel time τ_{AMB} .
 - e. Verify geometry c and d in extreme cases of distance that is small ($\Delta\Phi \ll \frac{\pi}{2}$ like Ex.1) or large ($\Delta\Phi = \pi$).

For Exercises 1c and 1d:

Huygen's cycloidal-pendulum construction graph (See Lect. 11p.33-42).

Motion may be calculated using Lagrange's 1D equation using single angle variable ϕ and angular velocity $\dot{\phi}$. In *mks* units the circumference $2\pi R$ of the circle (and width *ACB* of cycloid) should be 2km as shown in Fig. 1.

