Assignment 5 Read Unit 1 Chapters 6 thru 9. Prepare for mid term exam based on some of the problems below. No class on Tue 9/29 but closed-notes mid-term will be given on Thur 10/1 when Assignment 5 is due.
1.9.3 Tunnels to UK (5600 miles as an earthworm crawls) are shown below. One high-road is a direct route. A lowroad turns at the Earth center. (Travel and turn-around are assumed frictionless and survivable.) (a) What is the time for each trip? Discuss using geometry or algebra arguments. Thales geometry of circular chords may help.

(b) Lots of roads

(b) Assume cars in subway tunnels depart Ark. at time $t=0$ as indicated above. Describe curve (thru dots shown) locating car positions at a later time t before arrival and at arrival. (Thales geometry helps here and in 1.9.4 below.)
1.9.4. Ex. 1.9.3 compares high-road or direct-route to low-road or Earth-center-and-back-routes. Here we compare Short-roads, Middle-road routes in Fig (a) of fixed longitudinal angle $\phi_{A O B}$ and various road-bend angle $\phi_{A M B}$, and "V-shaped" or "U-shaped" Slow-Roads in Fig. (b) below.
First consider a frictionless 2 km L-subway $A C B$ that is laser-straight and 'level' (normal to Earth radius at C). A mag-lev car riding on it has a non-zero oscillation frequency? Discuss.
Next consider a frictionless L-subway $A C B$ that is much faster. Derive the angle $\phi_{A M B}$ that gives maximum oscillation frequency, that is, shortest A to B travel time.
(a) Now for generally long trips find the fastest two-straight-section middle road A-to- B in Fig (a). Derive optimal angle $\phi_{A M B}$ for $\phi_{A O B}=90^{\circ}\left(\mathrm{UK}\right.$ trips) and a general $\phi_{A M B}\left(\phi_{A O B}\right)$ formula. Check formula for short road case.
Compare optimal 1-way UK trip travel time to that for straight-and-level road $A H B$.
(b) Give A-to- B 1-way travel time on the "V-shaped" and on the "U-shaped" Slow-road in Fig. (b).

1.9.5 Recall class constructions of neutron-starlet orbits inside a uniform asteroid that all have equal component oscillation amplitudes $A_{x}=1=A_{y}$ relative phase $\alpha_{x y}=\alpha_{x}-\alpha_{y}$ that are integer multiples of 15°. Let orbital Cartesian coordinates be given by $x=A_{x} \cos \left(\omega t-\alpha_{x}\right)$ and $y=A_{y} \cos \left(\omega t-\alpha_{y}\right)$ with angular frequency $\omega=2 \pi / 12$ (radian/hr.).
Plot orbit at each $1 / 2$-hour of a 12-hour orbital period on phasor graph paper starting at ($\alpha_{x}=90^{\circ}, \alpha_{y}=-15^{\circ}$) with fixed $\alpha_{x y}=105^{\circ}$. Trace position \mathbf{r}-path and velocity \mathbf{v}-path for $t=0$ to $4.5 h r$. (from 12:00PM to 4:30PM(b) Does a τ-period indicate an asteroid's mass?... or density? ...compared to Earth. Give values or say why not?

