\qquad
Some lesser known properties of parabolic PE functions
1.(a) Mechanics problems of atomic oscillators affected by electric fields is basic to spectroscopy. A useful model is potential $\operatorname{Vatom}(x)=k x^{2} / 2$ function of center x of charge Q with polarizability spring constant k. A uniform electric field E applies force $F=Q \cdot E$ to charge by adding potential $V^{E}(x)$ to $\operatorname{Vatom}(x)$. (Give $V^{E}(x)=$ \qquad and $F^{E}(x)=$ \qquad _) Consider the resulting potential $\operatorname{Vtotal}(x)$ for an atom for unit constants $k=1$ and $Q=1$. Derive and plot the new values for equilibrium position $x^{\text {equil }}(E)$, energy $\operatorname{Vequil}(E)$, dipole moment $p^{\text {equil }}(E)=Q \cdot x$ equil. Plot V total (x) for field values of $E=-3,-2,-1,0,1,2$, and 3 . Does frequency $\omega^{\text {equil }}(E)$ vary with field E ? What curve do xequil (E) points form?
(b) Follow the steps to construct to external and internal potential energy $V(r)$ and Force $F(r)$ plots of the

Sophomore-Physics Earth model. (Lect, 6 p.39-41 and p,62-65.) Describe the 3 equally spaced energy levels.

Superball tower IBM model constructions (With initial $V_{k}=-1$) See Fig. 8.1(b) p. 103 of Text Unit 1 or Lect. 5 p. 60

The 100% energy transfer limit (IBM values are $v_{1}^{I N}=1$ and $-1=v_{2}^{I N}=v_{3}^{I N}=v_{4}^{I N}=\ldots$ after 1 st floor bang.)
2. Suppose each m_{k} has just the right mass ratio m_{k} / m_{k+1} with the m_{k+1} above it to pass on all its energy to m_{k+1} so the top ball- N, a lgm pellet, goes off with the total energy. Construct velocity-velocity diagrams, indicate velocity at each stage, and derive the required intermediate mass values for (a) $N=2$, (b) $N=3$, (c) $N=4$.
(d) Give algebraic formula for this Maximum Amplified Velocity factor in terms of $N(M A V(N)=$ \qquad ?).
(e) Give algebraic formula neighbor-mass ratios $R=M_{N-1} / M_{N}$ in terms of $N(R(N)=$ \qquad ?).

N-Ball tower ∞-limits

3. Suppose each m_{k} is very much larger than m_{k+l} above it so that final v_{k+l} approaches its upper limit. Then top m_{N} goes off with nearly the highest velocity v_{N} attainable. Construct the velocity-velocity diagrams. Indicate each intermediate velocity limit value at each stage and the limiting top value for (a) $N=2$, (b) $N=3$, (c) $N=4$. (d) Give algebraic formula for Absolute Maximum Amplified Velocity factor in terms of $N(A M A V(N)=$ \qquad ?).

The optimal idler (An algebra/calculus vs. geometry problem)
4. (a) To get highest final v_{3} of mass m_{3} find optimum mass m_{2} in terms of masses m_{1} and m_{3} that will do that.
(b) Consider this problem in Galileo-shifted frame with: $v_{1}^{I N}=2$ and $0=v_{2}^{I N}=v_{3}^{I N}$ (Algebra simplifies for this.)
(c) Do V-V plots for case $m_{1}=4$ and $m_{3}=1$ (where $m_{2}=\ldots$?) ...for non-optimal case $m_{1}=4, m_{2}=3, m_{3}=1$.
(d) Give formula for optimal top mass final velocity in terms of m_{1}, m_{2}, and m_{3} and compare to result of 4(a). Plot that final velocity versus the idler mass $x=m_{2}=0$ to 4 . How sensitive is the optimal final v_{3} to x ?

The backsides of exponentials

5. Some lesser known properties of exponentials and logarithms

(a) Do plots of exponential $y=\mathrm{e}^{x}$ and $y=\log _{e} x$ functions on the same graph and draw any tangent-triangle whose hypotenuse is tangent to one of the curves and intercepts the x or y axis at integers $-2,-1,0,1,2, .$.
(b) As a roller-coaster car moves down a track $y=e^{x}$ it shines one laser beam along the track and another beam vertically down so both makes spots on baseline $y=0$. Find the distance between spots as function of x.

Solutions to Assignment 4

Properties of all-important parabolic PE functions

Ex. 1 A most important mechanics problems is that of atomic oscillators affected by electric fields since it is basic to all spectroscopy. A useful approximate model is potential $\operatorname{Vatom}(x)=k x^{2} / 2$ function of center x of charge Q where k is a spring constant of atomic polarizability. A uniform electric field E is assumed to apply a force $F=Q \cdot E$ to the charge by adding a potential $V^{E}(x)$ to $\operatorname{Vatom}^{(x)}$. (Give $V^{E}(x)=$ \qquad and $F E(x)=$ \qquad)
Consider the resulting potential $\operatorname{Vtotal}(x)$ for an atom for unit constants $k=1$ and $Q=1$. Derive and plot the new values for equilibrium position $x^{\text {equil }}(E)$, energy $\operatorname{Vequil}(E)$, dipole moment $p^{\text {equil }}(E)=Q \cdot x$ equil. Plot $V^{\text {total }}(x)$ for field values of $E=-3,-2,-1,0,1,2$, and 3. Does oscillation frequency $\omega^{\text {equil }}(E)$ vary with field E ? If so, how?
Ex. 1 Parabolic potential changes due to uniform field $F=$-const. that slides $V(x)$ equilibrium point to the side by Δ and down by $-B \Delta^{2}$ in an Energy-vs. $-x$ plot. The parabola rigidly follows an inverted copy of the original zero-Field potential $B x^{2}=(k / 2) x^{2}$.
Adding $E \cdot x$ to $B x^{2}$ gives $V(x)=B x^{2}+E \cdot x$ that may be rewritten $V(x)=B(x+E / 2 B)^{2}-E^{2 / 4 B}=B(x-\Delta)^{2}-B \Delta^{2}$.
That is just the same zero-Field parabola shape but it's x-shifted by $\Delta=-E / 2 B=-E / k$ and drops down by $-B \Delta^{2}=-(k / 2) \Delta^{2}$.
Being the same parabola means it has the same frequency. Equilibrium dipole moment grows to $p=Q \cdot \Delta=-Q \cdot E / 2 B=-Q \cdot E / k$.

Superball tower IBM model constructions (Independent Bang Model with initial $V_{k}=-1$)

The 100\% energy transfer limit
Ex. 2 Suppose each m_{k} has just the right mass ratio m_{k} / m_{k+1} with the m_{k+1} above it to pass on all its energy to m_{k+1} so the top ball- N, a $1 g m$ pellet, goes off with the total energy. Construct velocity-velocity diagrams, indicate velocity at each stage, and derive the required intermediate mass values for (a) $N=2$, (b) $N=3$, (c) $N=4$.
(d) Give algebraic formula for this Maximum Amplified Velocity factor in terms of N (MAV $(N)=$ \qquad ?).
(e) Give algebraic formula neighbor-mass ratios $R=M_{N-1} / M_{N}$ in terms of $N(R(N)=$ \qquad ?).

The towering limit

Ex. 3 Suppose each m_{k} is very much larger than m_{k+1} above it so that final v_{k+1} approaches its upper limit. Then top m_{N} goes off with nearly the highest velocity v_{N} attainable. Construct the velocity-velocity diagrams. Indicate each intermediate velocity limit value at each stage and the limiting top value for (a) $N=2$, (b) $N=3$, (c) $N=4$.
(d) Give algebraic formula for Absolute Maximum Amplified Velocity factor in terms of $N(\operatorname{AMAV}(N)=$ \qquad ?).

Exercise Set 4
Solutions to exercise 2 and 3

$1^{\text {st }}$ case shows linear series of final velocity. $2^{\text {nd }}$ case shows geometric or exponential series of velocity.
(Solutions to Assignment 4) The optimum idler:
4(a) Find optimum mass m_{2} to get highest final v_{3} of mass m_{3} in terms of masses m_{1} and m_{3}.
Let $m_{1}=M, m_{2}=x$ and $m_{3}=m$. Then use (5.1b) : $\binom{v_{1}^{F I N}}{v_{2}^{F I N}}=\frac{1}{m_{1}+m_{2}}\left(\begin{array}{cc}m_{1}-m_{2} & 2 m_{2} \\ 2 m_{1} & m_{2}-m_{1}\end{array}\right)\binom{v_{1}}{v_{2}}$ in stages. 1st stage gives: $v_{x}^{F I N}=\frac{3 M-x}{M+x}$
$\binom{v_{M}^{F I N}}{v_{x}^{F I N}}=\frac{1}{M+x}\left(\begin{array}{cc}M-x & 2 x \\ 2 M & x-M\end{array}\right)\binom{1}{-1}=\frac{1}{M+x}\binom{M-3 x}{3 M-x}^{\text {.The 2nd stage: }}\binom{v_{x}^{F I N}}{v_{m}^{F I N}}=\frac{1}{x+m}\left(\begin{array}{cc}x-m & 2 m \\ 2 x & m-x\end{array}\right)\binom{\frac{3 M-x}{M+x}}{-1}$
The velocity v_{m} is to be maximized. (A quicker approach involving a frame-change in part (b) has less algebra.)

$$
v_{m}^{F I N}=\frac{2 x \frac{3 M-x}{M+x}-(m-x)}{x+m}=\frac{6 M x-2 x^{2}+(x-m)(M+x)}{(M+x)(x+m)}=\frac{-x^{2}+(7 M-m) x-m M}{x^{2}+(M+m) x+m M}=\frac{N(x)}{D(x)}
$$

Derivative $\frac{1}{D(x)} \frac{d N}{d x}-N(x) \frac{d}{d x} \frac{1}{D(x)}=\frac{D(x) \frac{d N(x)}{d x}-N(x) \frac{d D(x)}{d x}}{D(x)^{2}}$ is set to zero.

$$
\left(x^{2}+(M+m) x+m M\right)(-2 x+(7 M-m)) \quad-\left(-x^{2}+(7 M-m) x-m M\right)(2 x+(M+m))=0
$$

| | x^{2} | $+(M+m) x$ | $m M$ | | x^{2} | $-(7 M-m) x$ | $m M$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-2 x$ | $-2 x^{3}$ | $-2(M+m) x^{2}$ | $-2 m M x$ | $2 x$ | $-2 x^{3}$ | $-2(7 M-m) x^{2}$ | $2 m M x$ |
| $(7 M-m)$ | $(7 M-m) x^{2}$ | $(7 M-m)(M+m) x$ | $(7 M-m) m M$ | $(M+m)$ | $(M+m) x^{2}$ | $-(M+m)(7 M-m) x$ | $(M+m) m M$ |

Cancellations simplify it.

Result is quadratic and not cubic equation: $-8 M x^{2}+8 M^{2} m=0$ or $-x^{2}+M m=0$.
The result is geometric mean! $x=\sqrt{ }(\mathrm{Mm})$ or: $m_{2}=\sqrt{ }\left(m_{1} m_{3}\right)$. The resulting final velocity (Not assigned) is as follows:
$v_{m}^{F I N}=\frac{-\sqrt{m M}^{2}+(7 M-m) \sqrt{m M}-m M}{\sqrt{m M}^{2}+(M+m) \sqrt{m M}+m M}=\frac{-m M+(7 M-m) \sqrt{m M}-m M}{m M+(M+m) \sqrt{m M}+m M}=\frac{(7 M-m) \sqrt{m M}-2 m M}{(M+m) \sqrt{m M}+2 m M}$

Xtra-Credit (Not assigned)

Now try more difficult problem for next stage where lowest mass is coming up with higher speed S but top one is still falling at speed -1 .
Let $m_{1}=M, m_{2}=x$ and $m_{3}=m$. Use (5.1b): $\binom{v_{1}^{F I N}}{v_{2}^{F I N}}=\frac{1}{m_{1}+m_{2}}\left(\begin{array}{cc}m_{1}-m_{2} & 2 m_{2} \\ 2 m_{1} & m_{2}-m_{1}\end{array}\right)\binom{v_{1}}{v_{2}}$ in stages. 1st stage gives: $v_{x}^{F I N}=\frac{3 M-x}{M+x}$
$\binom{v_{M}^{F I N}}{v_{x}^{F I N}}=\frac{1}{M+x}\left(\begin{array}{cc}M-x & 2 x \\ 2 M & x-M\end{array}\right)\binom{S}{-1}=\frac{1}{M+x}\binom{S M-(S+2) x}{(2 S+1) M-x}^{.2 \mathrm{nd} \text { stage: }}\binom{v_{x}^{F I N}}{v_{m}^{F I N}}=\frac{1}{x+m}\left(\begin{array}{cc}x-m & 2 m \\ 2 x & m-x\end{array}\right)\binom{\frac{3 M-x}{M+x}}{-1}$
Again, velocity v_{m} could be maximized but algebra is complicated. Consider instead simpler algebra of Solution to 4(b) that follows.
(Solutions to Assignment 4 contd) The optimum idler:
4(b) Find optimum mass m_{2} to get highest final v_{3} of mass m_{3} in terms of masses m_{1} and m_{3} assuming a frame that has zero initial velocity $0=v_{2}^{I N}=v_{3}^{I N}=v_{4}^{I N}=\ldots$ for all "falling" balls $m_{2}, m_{3}, m_{4}, \ldots$ except m_{1} that has $v_{1}^{I N}=v_{0}=2$.
Let $m_{1}=M, m_{2}=x$ and $m_{3}=m$. Then use (5.1b): $\binom{v_{1}^{F I N}}{v_{2}^{F I N}}=\frac{1}{m_{1}+m_{2}}\left(\begin{array}{cc}m_{1}-m_{2} & 2 m_{2} \\ 2 m_{1} & m_{2}-m_{1}\end{array}\right)\binom{v_{1}^{I N}}{v_{2}^{I N}}$ in stages. 1st stage gives:
$\binom{v_{M}^{F I N}}{v_{x}^{F I N}}=\frac{1}{M+x}\left(\begin{array}{cc}M-x & 2 x \\ 2 M & x-M\end{array}\right)\binom{v_{0}=2}{0}=\frac{v_{0}}{M+x}\binom{M-x}{2 M}^{. \text {The 2nd stage: }}\binom{v_{x}^{F I N}}{v_{m}^{F I N}}=\frac{1}{x+m}\left(\begin{array}{cc}x-m & 2 m \\ 2 x & m-x\end{array}\right)\binom{\frac{2 M v_{0}}{M+x}}{0}$
The velocity $v_{m}^{F I N}$ is to be maximized by setting x-derivative to zero
$v_{m}^{F I N}=\frac{2 x \frac{2 M v_{0}}{M+x}+0}{x+m}=\frac{4 M v_{0} x}{(M+x)(x+m)}=\frac{4 M v_{0} x}{x^{2}+(M+m) x+M m}$ has max $v_{m}^{F I N}$ if: $0=\frac{d}{d x} \frac{x}{x^{2}+(M+m) x+M m}$
solving: $0=\frac{d}{d x} \frac{x}{x^{2}+(M+m) x+M m}=\frac{1}{x^{2}+(M+m) x+M m}-\frac{x(2 x+M+m)}{\left(x^{2}+(M+m) x+M m\right)^{2}}$

$$
\text { reducing: } 0=x^{2}+(M+m) x+M m-x(2 x+M+m)=-x^{2}+M m
$$

This gives optimal middle mass m_{2} to be geometric mean of m_{1} and $m_{3}: x=m_{2}=\sqrt{M m}=\sqrt{m_{1} m_{3}}=\sqrt{4 \cdot 1}=2$
4(c) VV graphs shown on following page
It should be noted that the momentum line slopes for the optimal pair of IBM collisions are equal.

$$
\text { slope(1:2) } \frac{m_{1}}{m_{2}}=\frac{m_{1}}{\sqrt{m_{1} m_{3}}}=\frac{\sqrt{m_{1}}}{\sqrt{m_{3}}} \text { equals the slope(2:3) } \frac{m_{2}}{m_{3}}=\frac{\sqrt{m_{1} m_{3}}}{m_{3}}=\frac{\sqrt{m_{1}}}{\sqrt{m_{3}}}
$$

4(d) The resulting maximum velocity of the top mass $m_{3}=m$ is found by substitution of x value.

$$
v_{m}^{F I N}=\frac{4 v_{0} M x}{x^{2}+(M+m) x+M m}=\frac{4 v_{0} M \sqrt{M m}}{M m+(M+m) \sqrt{M m}+M m}=\frac{4 v_{0} M \sqrt{M m}}{2 M m+(M+m) \sqrt{M m}}=\frac{8 m_{1} \sqrt{m_{1} m_{3}}}{2 m_{1} m_{3}+\left(m_{1}+m_{3}\right) \sqrt{m_{1} m_{3}}}=\frac{8 m_{1} m_{2}}{2 m_{1} m_{3}+m_{1} m_{2}+m_{2} m_{3}}
$$

For case $m_{1}=4$ and $m_{3}=1$ we get $m_{2}=\sqrt{4 \cdot 1}=2$ with optimal speed $v_{m}^{F I N}=64 / 18=3.56$ consistent with figure below. Note: This is in frame with $v_{1}^{I N}=2$ and $0=v_{2}^{I N}=v_{3}^{I N}=v_{4}^{I N}=\ldots$. In IBM lab frame: $v_{1}^{I N}=1$ and $-1=v_{2}^{I N}=v_{3}^{I N}=v_{4}^{I N}=\ldots$ Thus we need to subtract 1.0 to get $v_{m}^{F I N(L a b)}=2.56$ and slide the graph down 45° line by 1.0 unit. Then the result matches the formula given by $4(a)$.

The optimal sequence may be continued to a 5-mass tower by choosing m_{5} arbitrarily and making $m_{4}=\sqrt{m_{3} m_{5}}$. However, having uniform slopes appears to be the optimal overall strategy. Picking that value is an open problem for ball towers of 4 or greater since the IBM approximation degrades potential details become important..
 Ex.4(c) Non-Optimal case VV-graph shows smaller final velocity $V_{3}=3.45$ than Optimal 3.65.:

(Solutions to Assignment 4 contd) The backsides of exponentials
(b) Plot exponential $y=\mathrm{e}^{x}$ and $y=\log _{e} x$ functions on same graph and draw tangent-triangle whose hypotenuse is tangent to a curves and intercepts x or y axes at $-2,-1,0,1,2, .$. Give the base and altitude coordinates of the tangent point in each case.
Note $y=e^{x}$ tangents at $x=$ integer- N intercept x-axis at integer-(N-1). Distance between vertical spot and tangent spot is always 1.0 .

