9/17/19 Assignment Set 4 - Read Unit 1 Ch. 3 thru Ch.8 Lect. 4-5 Due Wed. 9/25/19 Name

Some lesser known properties of parabolic PE functions

1.(a) Mechanics problems of atomic oscillators affected by electric fields is basic to spectroscopy. A useful model is potential $V^{atom}(x) = k x^2/2$ function of center x of charge Q with polarizability spring constant k. A uniform electric field *E* applies force $F = O \cdot E$ to charge by adding potential $V^{E}(x)$ to $V^{atom}(x)$. (Give $V^{E}(x) =$ and $F^{E}(x) =$ Consider the resulting potential $V^{total}(x)$ for an atom for unit constants k=1 and Q=1. Derive and plot the new values for equilibrium position $x^{equil}(E)$, energy $V^{equil}(E)$, dipole moment $p^{equil}(E) = Q \cdot x^{equil}$. Plot $V^{total}(x)$ for field values of E=-3,-2,-1, 0, 1, 2, and 3. Does frequency $\omega^{equil}(E)$ vary with field E? What curve do $x^{equil}(E)$ points form? (b) Follow the steps to construct to external and internal potential energy V(r) and Force F(r) plots of the Sophomore-Physics Earth model. (Lect, 6 p.39-41 and p.62-65.) Describe the 3 equally spaced energy levels.

Superball tower IBM model constructions (With initial $V_k = -1$) See Fig. 8.1(b) p.103 of Text Unit 1 or Lect. 5 p.60

The 100% energy transfer limit (IBM values are $v_1^{IN} = 1$ and $-1 = v_2^{IN} = v_3^{IN} = v_4^{IN} = ...$ after 1st floor bang.)

2. Suppose each m_k has just the right mass ratio m_k/m_{k+1} with the m_{k+1} above it to pass on all its energy to m_{k+1} so the top ball-N, a *Igm* pellet, goes off with the total energy. Construct velocity-velocity diagrams, indicate velocity at each stage, and derive the required intermediate mass values for (a) N=2, (b) N=3, (c) N=4. (d) Give algebraic formula for this *Maximum Amplified Velocity* factor in terms of N(MAV(N) = ?). (e) Give algebraic formula neighbor-mass ratios $R=M_{N-I}/M_N$ in terms of N(R(N)=?).

N-Ball tower ∞ *-limits*

3. Suppose each m_k is very much larger than m_{k+1} above it so that final v_{k+1} approaches its upper limit. Then top m_N goes off with nearly the highest velocity v_N attainable. Construct the velocity-velocity diagrams. Indicate each intermediate velocity limit value at each stage and the limiting top value for (a) N=2, (b) N=3, (c) N=4. (d) Give algebraic formula for *Absolute Maximum Amplified Velocity* factor in terms of N (AMAV(N)= ?).

The optimal idler (An algebra/calculus vs. geometry problem)

- 4.(a) To get highest final v_3 of mass m_3 find optimum mass m_2 in terms of masses m_1 and m_3 that will do that.
- (b) Consider this problem in Galileo-shifted frame with: $v_1^{IN} = 2$ and $0 = v_2^{IN} = v_3^{IN}$ (Algebra simplifies for this.)
- (c) Do V-V plots for case $m_1=4$ and $m_3=1$ (where $m_2=$ __?) ... for non-optimal case $m_1=4$, $m_2=3$, $m_3=1$. (d) Give formula for optimal top mass final velocity in terms of m_1 , m_2 , and m_3 and compare to result of 4(a). Plot that final velocity versus the idler mass $x=m_2=0$ to 4. How sensitive is the optimal final v_3 to x?

The backsides of exponentials

5. Some lesser known properties of exponentials and logarithms

(a) Do plots of exponential $y=e^x$ and $y=\log_e x$ functions on the same graph and draw any tangent-triangle whose hypotenuse is tangent to one of the curves and intercepts the x or y axis at integers -2, -1, 0, 1, 2, ...

(b) As a roller-coaster car moves down a track $y=e^x$ it shines one laser beam along the track and another beam vertically down so both makes spots on baseline y=0. Find the distance between spots as function of x.

Solutions to Assignment 4

Properties of all-important parabolic PE functions

Ex. 1 A most important mechanics problems is that of atomic oscillators affected by electric fields since it is basic to all spectroscopy. A useful approximate model is potential $V^{atom}(x) = k x^2/2$ function of center x of charge Q where k is a spring constant of atomic polarizability. A uniform electric field E is assumed to apply a force $F = Q \cdot E$ to the charge by adding a potential $V^{E}(x)$ to $V^{atom}(x)$. (Give $V^{E}(x) = _____$ and $F^{E}(x) = _____$)

Consider the resulting potential $V^{total}(x)$ for an atom for unit constants k=1 and Q=1. Derive and plot the new values for equilibrium position $x^{equil}(E)$, energy $V^{equil}(E)$, dipole moment $p^{equil}(E)=Q \cdot x^{equil}$. Plot $V^{total}(x)$ for field values of E=-3,-2,-1, 0, 1, 2, and 3. Does oscillation frequency $\omega^{equil}(E)$ vary with field E? If so, how?

Ex.1 Parabolic potential changes due to uniform field *F*=-*const*. that slides V(x) equilibrium point to the side by Δ and down by $-B\Delta^2$ in an Energy-*vs*.-*x* plot. The parabola rigidly follows an inverted copy of the original zero-Field potential $B x^2 = (k/2) x^2$.

Adding E x to B x² gives $V(x) = B x^2 + E x$ that may be rewritten $V(x) = B(x+E/2B)^2 - E^2/4B = B(x-\Delta)^2 - B\Delta^2$.

That is just the same zero-Field parabola shape but it's x-shifted by $\Delta = -E/2B = -E/k$ and drops down by $-B\Delta^2 = -(k/2)\Delta^2$.

Being the same parabola means it has the same frequency. Equilibrium dipole moment grows to $p = Q \cdot \Delta = -Q \cdot E/2B = -Q \cdot E/k$.

Superball tower IBM model constructions (Independent Bang Model with initial $V_k=-1$)

The 100% energy transfer limit

Ex.2 Suppose each m_k has just the right mass ratio m_k/m_{k+1} with the m_{k+1} above it to pass on all its energy to m_{k+1} so the top ball-N, a *Igm* pellet, goes off with the total energy. Construct velocity-velocity diagrams, indicate velocity at each stage, and derive the required intermediate mass values for (a) N=2, (b) N=3, (c) N=4.

(d) Give algebraic formula for this *Maximum Amplified Velocity* factor in terms of $N(MAV(N) = ___?)$.

(e) Give algebraic formula neighbor-mass ratios $R=M_{N-1}/M_N$ in terms of N(R(N)=____?).

The towering limit

Ex.3 Suppose each m_k is very much larger than m_{k+1} above it so that final v_{k+1} approaches its upper limit. Then top m_N goes off with nearly the highest velocity v_N attainable. Construct the velocity-velocity diagrams. Indicate each intermediate velocity limit value at each stage and the limiting top value for (a) N=2, (b) N=3, (c) N=4.

(d) Give algebraic formula for *Absolute Maximum Amplified Velocity* factor in terms of N(AMAV(N) = ?).

1st case shows *linear* series of final velocity. 2nd case shows *geometric* or *exponential* series of velocity.

(Solutions to Assignment 4) The optimum idler:

4(a) Find optimum mass m_2 to get highest final v_3 of mass m_3 in terms of masses m_1 and m_3 .

Let
$$m_1 = M, m_2 = x$$
 and $m_3 = m$. Then use (5.1b): $\begin{pmatrix} v_1^{FIN} \\ v_2^{FIN} \end{pmatrix} = \frac{1}{m_1 + m_2} \begin{pmatrix} m_1 - m_2 & 2m_2 \\ 2m_1 & m_2 - m_1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ in stages. 1st stage gives: $v_x^{FIN} = \frac{3M - x}{M + x}$
 $\begin{pmatrix} v_M^{FIN} \\ v_x^{FIN} \end{pmatrix} = \frac{1}{M + x} \begin{pmatrix} M - x & 2x \\ 2M & x - M \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{M + x} \begin{pmatrix} M - 3x \\ 3M - x \end{pmatrix}$. The 2nd stage: $\begin{pmatrix} v_x^{FIN} \\ v_m^{FIN} \end{pmatrix} = \frac{1}{x + m} \begin{pmatrix} x - m & 2m \\ 2x & m - x \end{pmatrix} \begin{pmatrix} \frac{3M - x}{M + x} \\ -1 \end{pmatrix}$.

The velocity v_m is to be maximized. (A quicker approach involving a frame-change in part (b) has less algebra.)

$$v_{m}^{FIN} = \frac{2x\frac{3M-x}{M+x} - (m-x)}{x+m} = \frac{6Mx - 2x^{2} + (x-m)(M+x)}{(M+x)(x+m)} = \frac{-x^{2} + (7M-m)x - mM}{x^{2} + (M+m)x + mM} = \frac{N(x)}{D(x)}$$
Derivative $\frac{1}{D(x)}\frac{dN}{dx} - N(x)\frac{d}{dx}\frac{1}{D(x)} = \frac{D(x)\frac{dN(x)}{dx} - N(x)\frac{dD(x)}{dx}}{D(x)^{2}}$ is set to zero.

$$\left(x^{2} + (M+m)x + mM\right)(-2x + (7M-m)) - \left(-x^{2} + (7M-m)x - mM\right)(2x + (M+m)) = 0$$

$$\frac{x^{2}}{-2x} + \frac{(M+m)x}{-2x^{3}} - \frac{2(M+m)x^{2}}{-2(M+m)x^{2}} - \frac{2mMx}{2x} - \frac{2x^{3}}{2(7M-m)x^{2}} - \frac{2(7M-m)x}{2mMx} \frac{mM}{(M+m)}$$
Cancellations simplify it.

$$\begin{pmatrix} x^{2} + (M+m)x + mM \end{pmatrix} (-2x + (7M-m)) & -(-x^{2} + (7M-m)x - mM) (2x + (M+m)) = 0 \\ \hline x^{2} + (M+m)x & mM & x^{2} - (7M-m)x & mM \\ \hline -2x & -2(M)x^{2} & 2x & -2(7M)x^{2} \\ (7M-m) & (7M)x^{2} & (7M)mM & (M+m) & (M)x^{2} & (M)mM \\ \hline \end{cases}$$

Result is quadratic and not cubic equation: $-8Mx^2 + 8M^2m = 0$ or $-x^2 + Mm = 0$.

The result is geometric mean! $x = \sqrt{(Mm)}$ or: $m_2 = \sqrt{(m_1 m_3)}$. The resulting final velocity (*Not assigned*) is as follows:

$$v_m^{FIN} = \frac{-\sqrt{mM^2 + (7M - m)\sqrt{mM} - mM}}{\sqrt{mM^2 + (M + m)\sqrt{mM} + mM}} = \frac{-mM + (7M - m)\sqrt{mM} - mM}{mM + (M + m)\sqrt{mM} + mM} = \frac{(7M - m)\sqrt{mM} - 2mM}{(M + m)\sqrt{mM} + 2mM}$$

Xtra-Credit (Not assigned)

Now try more difficult problem for next stage where lowest mass is coming up with higher speed S but top one is still falling at speed -1.

Let
$$m_1 = M$$
, $m_2 = x$ and $m_3 = m$. Use (5.1b): $\begin{pmatrix} v_1^{FIN} \\ v_2^{FIN} \end{pmatrix} = \frac{1}{m_1 + m_2} \begin{pmatrix} m_1 - m_2 & 2m_2 \\ 2m_1 & m_2 - m_1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ in stages. 1st stage gives: $v_x^{FIN} = \frac{3M - x}{M + x}$
 $\begin{pmatrix} v_m^{FIN} \\ v_x^{FIN} \end{pmatrix} = \frac{1}{M + x} \begin{pmatrix} M - x & 2x \\ 2M & x - M \end{pmatrix} \begin{pmatrix} S \\ -1 \end{pmatrix} = \frac{1}{M + x} \begin{pmatrix} SM - (S + 2)x \\ (2S + 1)M - x \end{pmatrix}$. 2nd stage: $\begin{pmatrix} v_x^{FIN} \\ v_m^{FIN} \end{pmatrix} = \frac{1}{x + m} \begin{pmatrix} x - m & 2m \\ 2x & m - x \end{pmatrix} \begin{pmatrix} \frac{3M - x}{M + x} \\ -1 \end{pmatrix}$

Again, velocity v_m could be maximized but algebra is complicated. Consider instead simpler algebra of Solution to 4(b) that follows.

(Solutions to Assignment 4 contd) The optimum idler:

4(b) Find optimum mass m_2 to get highest final v_3 of mass m_3 in terms of masses m_1 and m_3 assuming a frame that has zero initial velocity $0 = v_2^{IN} = v_3^{IN} = v_4^{IN} = \dots$ for all "falling" balls m_2, m_3, m_4, \dots except m_1 that has $v_1^{IN} = v_0 = 2$.

Let
$$m_1 = M, m_2 = x$$
 and $m_3 = m$. Then use (5.1b): $\begin{pmatrix} v_1^{FIN} \\ v_2^{FIN} \end{pmatrix} = \frac{1}{m_1 + m_2} \begin{pmatrix} m_1 - m_2 & 2m_2 \\ 2m_1 & m_2 - m_1 \end{pmatrix} \begin{pmatrix} v_1^{IN} \\ v_2^{IN} \end{pmatrix}$ in stages. 1st stage gives:

$$\begin{pmatrix} v_M^{FIN} \\ v_x^{FIN} \\ v_x^{FIN} \end{pmatrix} = \frac{1}{M+x} \begin{pmatrix} M-x & 2x \\ 2M & x-M \end{pmatrix} \begin{pmatrix} v_0=2 \\ 0 \end{pmatrix} = \frac{v_0}{M+x} \begin{pmatrix} M-x \\ 2M \end{pmatrix}$$
. The 2nd stage:
$$\begin{pmatrix} v_x^{FIN} \\ v_m^{FIN} \\ m \end{pmatrix} = \frac{1}{x+m} \begin{pmatrix} x-m & 2m \\ 2x & m-x \end{pmatrix} \begin{pmatrix} \frac{2Mv_0}{M+x} \\ 0 \end{pmatrix}$$

The velocity v_m^{FIN} is to be maximized by setting *x*-derivative to zero

$$v_{m}^{FIN} = \frac{2x\frac{2Mv_{0}}{M+x} + 0}{x+m} = \frac{4Mv_{0}x}{(M+x)(x+m)} = \frac{4Mv_{0}x}{x^{2} + (M+m)x + Mm} \text{ has max } v_{m}^{FIN} \text{ if: } 0 = \frac{d}{dx}\frac{x}{x^{2} + (M+m)x + Mm}$$

solving:
$$0 = \frac{d}{dx}\frac{x}{x^{2} + (M+m)x + Mm} = \frac{1}{x^{2} + (M+m)x + Mm} - \frac{x(2x+M+m)}{(x^{2} + (M+m)x + Mm)^{2}}$$

reducing:
$$0 = x^{2} + (M+m)x + Mm - x(2x+M+m) = -x^{2} + Mm$$

This gives optimal middle mass m_2 to be *geometric mean* of m_1 and m_3 : $x=m_2=\sqrt{Mm}=\sqrt{m_1m_3}=\sqrt{4\cdot 1}=2$ 4(c) VV graphs shown on following page

It should be noted that the momentum line slopes for the optimal pair of IBM collisions are equal.

slope(1:2)
$$\frac{m_1}{m_2} = \frac{m_1}{\sqrt{m_1 m_3}} = \frac{\sqrt{m_1}}{\sqrt{m_3}}$$
 equals the slope(2:3) $\frac{m_2}{m_3} = \frac{\sqrt{m_1 m_3}}{m_3} = \frac{\sqrt{m_1}}{\sqrt{m_3}}$

4(d) The resulting maximum velocity of the top mass $m_3=m$ is found by substitution of x value.

 $v_{m}^{FIN} = \frac{4v_{0}Mx}{x^{2} + (M+m)x + Mm} = \frac{4v_{0}M\sqrt{Mm}}{Mm + (M+m)\sqrt{Mm} + Mm} = \frac{4v_{0}M\sqrt{Mm}}{2Mm + (M+m)\sqrt{Mm}} = \frac{8m_{1}\sqrt{m_{1}m_{3}}}{2m_{1}m_{3} + (m_{1}+m_{3})\sqrt{m_{1}m_{3}}} = \frac{8m_{1}m_{2}}{2m_{1}m_{3} + m_{1}m_{2} + m_{2}m_{3}}$ For case $m_1=4$ and $m_3=1$ we get $m_2=\sqrt{4\cdot 1}=2$ with optimal speed $v_m^{FIN}=64/18=3.56$ consistent with figure below. Note: This is in frame with $v_1^{IN} = 2$ and $0 = v_2^{IN} = v_3^{IN} = v_4^{IN} = \dots$ In IBM lab frame: $v_1^{IN} = 1$ and $-1 = v_2^{IN} = v_3^{IN} = v_4^{IN} = \dots$ Thus we need to subtract 1.0 to get $v_m^{FIN(Lab)} = 2.56$ and slide the graph down 45° line by 1.0 unit. Then the result matches the formula given by 4(a).

The optimal sequence may be continued to a 5-mass tower by choosing m_5 arbitrarily and making $m_4 = \sqrt{m_3 m_5}$. However, having uniform slopes appears to be the optimal overall strategy. Picking that value is an open problem for ball towers of 4 or greater since the IBM approximation degrades potential details become important.

Assignments for Physics 5103 - 2019 Reading in Classical Mechanics with a BANG! and Lectures $Ex.4(c)Optimal\ case\ VV$ -graph shows final velocity $V_3=3.65$:

Assignments for Physics 5103 - 2019 Reading in Classical Mechanics with a BANG! and Lectures Ex.4(c) Non-Optimal case VV-graph shows smaller final velocity $V_3=3.45$ than Optimal 3.65.:

Assignments for Physics 5103 - 2019

(Solutions to Assignment 4 contd) The backsides of exponentials

(b) Plot exponential $y=e^x$ and $y=log_e x$ functions on same graph and draw tangent-triangle whose hypotenuse is tangent to a curves and intercepts x or y axes at -2, -1, 0, 1, 2,... Give the base and altitude coordinates of the tangent point in each case. Note $y=e^x$ tangents at x=integer-N intercept x-axis at integer-(N-1). Distance between vertical spot and tangent spot is always 1.0.

