\qquad
Some lesser known properties of parabolic PE functions
1.(a) Mechanics problems of atomic oscillators affected by electric fields is basic to spectroscopy. A useful model is potential $\operatorname{Vatom}(x)=k x^{2} / 2$ function of center x of charge Q with polarizability spring constant k. A uniform electric field E applies force $F=Q \cdot E$ to charge by adding potential $V^{E}(x)$ to $\operatorname{Vatom}(x)$. (Give $V^{E}(x)=$ \qquad and $F^{E}(x)=$ \qquad _) Consider the resulting potential $\operatorname{Vtotal}(x)$ for an atom for unit constants $k=1$ and $Q=1$. Derive and plot the new values for equilibrium position $x^{\text {equil }}(E)$, energy $\operatorname{Vequil}(E)$, dipole moment $p^{\text {equil }}(E)=Q \cdot x$ equil. Plot V total (x) for field values of $E=-3,-2,-1,0,1,2$, and 3 . Does frequency $\omega^{\text {equil }}(E)$ vary with field E ? What curve do xequil (E) points form?
(b) Follow the steps to construct to external and internal potential energy $V(r)$ and Force $F(r)$ plots of the

Sophomore-Physics Earth model. (Lect, 6 p.39-41 and p,62-65.) Describe the 3 equally spaced energy levels.

Superball tower IBM model constructions (With initial $V_{k}=-1$) See Fig. 8.1(b) p. 103 of Text Unit 1 or Lect. 5 p. 60

The 100% energy transfer limit (IBM values are $v_{1}^{I N}=1$ and $-1=v_{2}^{I N}=v_{3}^{I N}=v_{4}^{I N}=\ldots$ after 1 st floor bang.)
2. Suppose each m_{k} has just the right mass ratio m_{k} / m_{k+1} with the m_{k+1} above it to pass on all its energy to m_{k+1} so the top ball- N, a lgm pellet, goes off with the total energy. Construct velocity-velocity diagrams, indicate velocity at each stage, and derive the required intermediate mass values for (a) $N=2$, (b) $N=3$, (c) $N=4$.
(d) Give algebraic formula for this Maximum Amplified Velocity factor in terms of $N(M A V(N)=$ \qquad ?).
(e) Give algebraic formula neighbor-mass ratios $R=M_{N-1} / M_{N}$ in terms of $N(R(N)=$ \qquad ?).

N-Ball tower ∞-limits

3. Suppose each m_{k} is very much larger than m_{k+l} above it so that final v_{k+l} approaches its upper limit. Then top m_{N} goes off with nearly the highest velocity v_{N} attainable. Construct the velocity-velocity diagrams. Indicate each intermediate velocity limit value at each stage and the limiting top value for (a) $N=2$, (b) $N=3$, (c) $N=4$. (d) Give algebraic formula for Absolute Maximum Amplified Velocity factor in terms of $N(A M A V(N)=$ \qquad ?).

The optimal idler (An algebra/calculus vs. geometry problem)
4. (a) To get highest final v_{3} of mass m_{3} find optimum mass m_{2} in terms of masses m_{1} and m_{3} that will do that.
(b) Consider this problem in Galileo-shifted frame with: $v_{1}^{I N}=2$ and $0=v_{2}^{I N}=v_{3}^{I N}$ (Algebra simplifies for this.)
(c) Do V-V plots for case $m_{1}=4$ and $m_{3}=1$ (where $m_{2}=\ldots$?) ...for non-optimal case $m_{1}=4, m_{2}=3, m_{3}=1$.
(d) Give formula for optimal top mass final velocity in terms of m_{1}, m_{2}, and m_{3} and compare to result of 4(a). Plot that final velocity versus the idler mass $x=m_{2}=0$ to 4 . How sensitive is the optimal final v_{3} to x ?

The backsides of exponentials

5. Some lesser known properties of exponentials and logarithms

(a) Do plots of exponential $y=\mathrm{e}^{x}$ and $y=\log _{e} x$ functions on the same graph and draw any tangent-triangle whose hypotenuse is tangent to one of the curves and intercepts the x or y axis at integers $-2,-1,0,1,2, .$.
(b) As a roller-coaster car moves down a track $y=e^{x}$ it shines one laser beam along the track and another beam vertically down so both makes spots on baseline $y=0$. Find the distance between spots as function of x.

