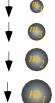
9/17/19 Assignment Set 4 - Read Unit 1 Ch. 3 thru Ch.8 Lect. 4-5 Due Wed. 9/25/19 Name

Some lesser known properties of parabolic PE functions

1.(a) Mechanics problems of atomic oscillators affected by electric fields is basic to spectroscopy. A useful model is potential $V^{atom}(x) = k x^2/2$ function of center x of charge Q with polarizability spring constant k. A uniform electric field *E* applies force $F = O \cdot E$ to charge by adding potential $V^{E}(x)$ to $V^{atom}(x)$. (Give $V^{E}(x) =$ and $F^{E}(x) =$ Consider the resulting potential $V^{total}(x)$ for an atom for unit constants k=1 and Q=1. Derive and plot the new values for equilibrium position $x^{equil}(E)$, energy $V^{equil}(E)$, dipole moment $p^{equil}(E) = Q \cdot x^{equil}$. Plot $V^{total}(x)$ for field values of E=-3,-2,-1, 0, 1, 2, and 3. Does frequency $\omega^{equil}(E)$ vary with field E? What curve do $x^{equil}(E)$ points form? (b) Follow the steps to construct to external and internal potential energy V(r) and Force F(r) plots of the Sophomore-Physics Earth model. (Lect, 6 p.39-41 and p.62-65.) Describe the 3 equally spaced energy levels.

Superball tower IBM model constructions (With initial $V_k = -1$) See Fig. 8.1(b) p.103 of Text Unit 1 or Lect. 5 p.60



The 100% energy transfer limit (IBM values are $v_1^{IN} = 1$ and $-1 = v_2^{IN} = v_3^{IN} = v_4^{IN} = ...$ after 1st floor bang.)

2. Suppose each m_k has just the right mass ratio m_k/m_{k+1} with the m_{k+1} above it to pass on all its energy to m_{k+1} so the top ball-N, a *Igm* pellet, goes off with the total energy. Construct velocity-velocity diagrams, indicate velocity at each stage, and derive the required intermediate mass values for (a) N=2, (b) N=3, (c) N=4. (d) Give algebraic formula for this *Maximum Amplified Velocity* factor in terms of N(MAV(N) = ?). (e) Give algebraic formula neighbor-mass ratios $R=M_{N-I}/M_N$ in terms of N(R(N)=?).

N-Ball tower ∞ *-limits*

3. Suppose each m_k is very much larger than m_{k+1} above it so that final v_{k+1} approaches its upper limit. Then top m_N goes off with nearly the highest velocity v_N attainable. Construct the velocity-velocity diagrams. Indicate each intermediate velocity limit value at each stage and the limiting top value for (a) N=2, (b) N=3, (c) N=4. (d) Give algebraic formula for *Absolute Maximum Amplified Velocity* factor in terms of N(AMAV(N) = ?).

The optimal idler (An algebra/calculus vs. geometry problem)

- 4.(a) To get highest final v_3 of mass m_3 find optimum mass m_2 in terms of masses m_1 and m_3 that will do that.
- (b) Consider this problem in Galileo-shifted frame with: $v_1^{IN} = 2$ and $0 = v_2^{IN} = v_3^{IN}$ (Algebra simplifies for this.)
- (c) Do V-V plots for case $m_1=4$ and $m_3=1$ (where $m_2=$ __?) ... for non-optimal case $m_1=4$, $m_2=3$, $m_3=1$. (d) Give formula for optimal top mass final velocity in terms of m_1 , m_2 , and m_3 and compare to result of 4(a). Plot that final velocity versus the idler mass $x=m_2=0$ to 4. How sensitive is the optimal final v_3 to x?

The backsides of exponentials

5. Some lesser known properties of exponentials and logarithms

(a) Do plots of exponential $y=e^x$ and $y=\log_e x$ functions on the same graph and draw any tangent-triangle whose hypotenuse is tangent to one of the curves and intercepts the x or y axis at integers -2, -1, 0, 1, 2, ...

(b) As a roller-coaster car moves down a track $y=e^x$ it shines one laser beam along the track and another beam vertically down so both makes spots on baseline y=0. Find the distance between spots as function of x.