9/5 Assignment Set 3 - Read Unit 1 Ch. 3 thru Ch. 7 Due Wed. 9/18/19 Name

\qquad

Pseudo-Rotations for Independent Bounce Model

Exercise 1 Estrangian plot in Fig. 5.2 (Details on p.51-59 of Lecture 3) has mass ratio $M_{1} / m_{2}=49 / 1$ and has nearly periodic path plot. (Experiment using BounceIt link in Lect. 3 p.74-77. https://modphys.hosted.uark.edu/markup/Bounceltwe.php?scenario=1014) (Let small-mass be $m_{2}=1$ here.) Changing to $M_{1}=48.3$.. gives more nearly periodic symmetry paths seen below.

(a) What order $N=$ \qquad of C_{N} or D_{N} polygonal symmetry is appearing here?
(b) Give a closed formula for value of $M_{1}=48.3 \ldots$ (to 7 figures) that approaches exactly periodic behavior.

Simplest formula should relate the tangent of a desired Estrangian rotation half-angle $\theta / 2$ to mass M_{1}. Plot an Estrangian velocity path on the protractor graph-paper attached assuming initial velocity $V_{1}=1$ and $V_{2}=0$.
(c) Ceiling height (It is $y_{\max }=7.0$ for cases above) may eventually affect or destroy periodicity.

Use BounceIt to show cases that are affected. (Many have chaotic behavior.)

KE becomes PE

Exercise 2 A mass $m_{1}=1 \mathrm{~kg}$ ball is trapped (like Fig. 6.3) between two smaller mass $m_{2}=1 \mathrm{gm}$ balls of high speed $\left(v_{2}(0)=1000 \mathrm{~m} / \mathrm{s}\right.$ for $x=0$). Suppose this affects m_{1} with an effective force law $F(x)$ of isothermal approximation (6.11). Assume m_{l} motion is small and slow around $x=0$. ("Balls" idealize as point masses here.)
(a) A further approximation is the one-Dimensional Harmonic Oscillator (1D-HO) force and PE in (6.12). If each mass m_{2} start in an interval $Y_{0}=1 m$, derive approximate 1D-HO frequency and period for mass m_{l}.
(b) What if the adiabatic approximation is used instead? Does the frequency decrease, increase, or just become anharmonic? Compare isothermal and adiabatic quantitative results for $m_{l}=1 \mathrm{~kg}$ ball being hit by two $m_{2}=1 \mathrm{gm}$ balls each having speed of $v_{2}(0)=1000 \mathrm{~m} / \mathrm{s}$ as each starts bouncing in a space of $Y_{0}=1 \mathrm{~m}$ on either side of the equilibrium point $x=0$ for the 1 kg ball.
(c) How does the frequency decrease or increase in isothermal case versus the adiabatic case if we shorten the run interval $Y_{0}=1 m$ to one-quarter meter?...What if we reduce the mass ratio m_{l} / m_{2} by one-quarter?
(d) Derive the adiabatic frequency and period for the case $M=50 \mathrm{~kg}$ in adiabatic force of two $m=0.1 \mathrm{~kg}$ masses of initial speed $v_{0}=20 \mathrm{~m} / \mathrm{s}$ and range $Y_{0}=3 \mathrm{~m}$. Compare with Fig. 1.6.3c.

Assignment 3- Solutions to Ex. 1

Solution to Pseudo-Rotations for Independent Bounce Model
Ex.1(a) Symmetry is that of 22-point polygon (22-agon), a cyclic group C_{22} or dihedral group D_{22}.
(b) Solving the mass ratio equation (5.10b) for m_{1} / m_{2} in terms of angle θ that simplifies to:
$\cos \theta \equiv\left(\frac{m_{1}-m_{2}}{M}\right)$ and $: \sin \theta \equiv\left(\frac{2 \sqrt{m_{1} m_{2}}}{M}\right) \cos \theta=\frac{m_{1}-m_{2}}{m_{1}+m_{2}}=\frac{\frac{m_{1}}{m_{2}}-1}{\frac{m_{1}}{m_{2}}+1}$ and $: \frac{m_{1}}{m_{2}}=\frac{1+\cos \theta}{1-\cos \theta}=\frac{\cos ^{2} \frac{\theta}{2}}{\sin ^{2} \frac{\theta}{2}}=\cot ^{2} \frac{\theta}{2}$ or $: \cot \frac{\theta}{2}=\sqrt{\frac{m_{1}}{m_{2}}}$
Given angle $\theta=2 \pi / 22=\pi / 11$ or $\theta / 2=\pi / 22$ and $m_{2}=1$ predicts $m_{1}=\cot ^{2} \frac{\pi}{22}=48.3741500787$
Assignment 3 Solutions to Ex. 2.
Ex. 2 (a) A mass $m_{1}=1 \mathrm{~kg}$ ball is trapped (like Fig. 6.3) between two smaller mass $m_{2}=1 \mathrm{gm}$ balls of high speed $\left(v_{2}(0)=1000 \mathrm{~m} / \mathrm{s}\right.$ for $\left.x=0\right)$. Suppose this affects m_{1} as effective force law $F(x)$ of isothermal approximation (6.11).
For isothermal we set: $v_{2}=$ const. $=v_{2}^{I N}=v_{2}(0)$ to give: $F^{\text {isoth }}(1$ wall $Y)= \pm \frac{m_{2} v_{2}^{2}}{Y}= \pm \frac{m_{2} v_{2}^{2}(0)}{Y}= \pm \frac{\text { const. }}{Y}= \pm \frac{f}{Y}$
For $Y_{0}=10 \mathrm{~cm}$ there is an isothermal spring constant $k \equiv 2 f=2 \cdot \frac{m_{2} v_{2}^{2}(0)}{Y_{0}^{2}}$ due to left ($\left.Y_{0}+x\right)$ AND right (Yo-x) walls.
$F^{\text {isoth }}=\frac{f}{Y_{0}+x}-\frac{f}{Y_{0}-x}=\frac{f}{Y_{0}}\left[1-\frac{x}{Y_{0}}+\ldots\right]-\frac{f}{Y_{0}}\left[1+\frac{x}{Y_{0}}+\ldots\right] \approx-2 f \cdot \frac{x}{Y_{0}{ }^{2}}=-2 m_{2} v_{2}^{2}(0) \cdot \frac{x}{Y_{0}{ }^{2}}=-k \cdot x$
If $Y_{0}=1 \mathrm{~m}, m_{2}=1 \mathrm{gm}=10^{-3} \mathrm{~kg}$ has speed $v_{2}=1000 \mathrm{~m} / \mathrm{s}$ so $k=2 m_{2} v_{2}^{2}(0)=2\left(10^{-3}\right)(1000)^{2}=2000$.

(b) What if the adiabatic approximation is used instead? Does the frequency decrease, increase, or just become anharmonic? Compare isothermal and adiabatic quantitative results for Ex. 2(a).
For adiabatic v_{2} is not constant but inversely dependent on Y so we set:
$v_{2}=\frac{\text { const. }}{Y}=\frac{v_{2}^{I N} Y_{0}}{Y}, \quad F^{\text {adibad }}(1$ wall $)= \pm \frac{m_{2} v_{2}^{2}}{Y} \approx \pm m_{2} \frac{\left(v_{2}^{I N} Y_{0}\right)^{2}}{Y^{3}}= \pm \frac{g}{Y^{3}} \quad$ where: $g=m_{2}\left(v_{2}^{I N} Y_{0}\right)^{2 \sim f}($ for: $Y \sim 1)$.

$$
\begin{gathered}
F_{2-\text { wall }}{ }^{\text {adibad }}=\frac{g}{\left(Y_{0}+x\right)^{3}}-\frac{g}{\left(Y_{0}-x\right)^{3}}=\frac{g}{Y_{0}^{3}{ }_{0}}\left[\frac{g}{\left(1+\frac{x}{Y_{0}}\right)^{3}}-\frac{g}{\left(1-\frac{x}{Y_{0}}\right)^{3}}\right]=\frac{g}{Y_{0}^{3}}\left[1-3 \frac{x}{Y_{0}}+\ldots\right]-\frac{g}{Y_{0}^{3}{ }_{0}}\left[1+3 \frac{x}{Y_{0}}-\ldots\right]=-\frac{6 g}{Y_{0}^{4}} \cdot x+\ldots \\
=-\frac{6 \cdot m_{2} v_{2}^{2}(0) Y^{2}{ }_{0}}{Y_{0}^{4}} \cdot x+\ldots=-\frac{6 \cdot m_{2} v_{2}^{2}(0)}{Y_{0}^{2}{ }_{0}} \cdot x+\ldots \quad \text { (Effective spring constant increases by factor of } 3 \text {) }
\end{gathered}
$$

So 1 kg mass angular frequency is $\omega=\sqrt{ } 2000 \sqrt{ } 3=77.5 \mathrm{rad} / \mathrm{sec}$. (Increases by factor of $\sqrt{3}$ over the isothermal values.)

$$
v=\sqrt{ } 2000 \sqrt{ } 3 / 2 \pi=12.33 \mathrm{~Hz} . \quad 1 / v=\tau=1 / 12.33=0.0833 \mathrm{sec}
$$

(c) How does the frequency decrease or increase in isothermal case and in the adiabatic case if we shorten the run interval $Y_{0}=1 m$ to one-quarter meter?........if we reduce the mass ratio m_{l} / m_{2} by one-quarter?
(Both frequencies increase by factor of 4 .)
(Both frequencies increase by factor of 2.)
(d) Derive the adiabatic frequency and period for the case $M=50 \mathrm{~kg}$ in adiabatic force of two $m_{2}=0.1 \mathrm{~kg}$ masses of initial speed $v_{0}=20 \mathrm{~m} / \mathrm{s}$ and range $Y_{0}=3 \mathrm{~m}$. Compare with Fig. 1.6.3c.

$$
v=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{k}{M}}=\frac{1}{2 \pi} \sqrt{\frac{6 \cdot m_{2} v_{2}^{2}(0)}{M \cdot Y_{0}^{2}}}=\frac{1}{2 \pi} \sqrt{\frac{6 \cdot 0 \cdot 10 \cdot 20^{2}}{50 \cdot 3^{2}}}=\frac{1}{2 \pi} \sqrt{\frac{24}{45}}=\frac{.73}{2 \pi} \text { So period is } \tau=\frac{1}{v}=2 \pi \sqrt{\frac{15}{8}}=8.6 \text { sec. (Close to Fig. 6.3) }
$$

