Assignments for Physics 5103 - Reading in Classical Mechanics with a BANG! and Lectures

Assignment Set 3 - Read Unit 1 Ch. 3 thru Ch.7 Due 9/12/17 Name\_\_\_\_\_

## Pseudo-Rotations for Independent Bounce Model

*Exercise 1* Estrangian plot in Fig. 5.2 (Details on p.30-33 of Lecture 3) has mass ratio  $M_1/m_2 = 49/1$  and has nearly periodic path plot. (Experiment using BounceIt on web. http://www.uark.edu/ua/modphys/testing/markup/BounceItWeb.html) (Let the pen-mass be  $m_2=1$  here.) Changing to  $M_1 = 48.37$  gives more nearly periodic symmetry paths seen below.



(a) What order N= of  $C_N$  or  $D_N$  polygonal symmetry is appearing here?

(b) Give a closed formula for value of  $M_1 = 48.37...$  (to 7 figures) that approaches *exactly* periodic behavior. Simplest formula should relate the tangent of a desired Estrangian rotation half-angle  $\theta/2$  to mass  $M_1$ . (c) Ceiling height (It is  $y_{max} = 7.0$  for cases above) may eventually affect or destroy periodicity. Use BounceIt to show cases that are affected and discuss. (Many have chaotic behavior.)

## KE becomes PE

*Exercise* 2 A mass  $m_1 = 1kg$  ball is trapped (like Fig. 6.3) between two smaller mass  $m_2 = 1gm$  balls of high speed ( $v_2(0) = 1000m/s$  for x=0). Suppose this affects  $m_1$  with an effective force law F(x) of isothermal approximation (6.11). Assume  $m_1$  motion is small and slow around x=0. ("Balls" idealize as point masses here.)

(a) A further approximation is the one-Dimensional Harmonic Oscillator (1D-HO) force and PE in (6.12). If each mass  $m_2$  start in an interval  $Y_0=1m$ , derive approximate 1D-HO frequency and period for mass  $m_1$ .

(b) What if the adiabatic approximation is used instead? Does the frequency decrease, increase, or just become anharmonic? Compare isothermal and adiabatic quantitative results for  $m_1=1kg$  ball being hit by two  $m_2=1gm$  balls each having speed of  $v_2(0)=1000m/s$  as each starts bouncing in a space of  $Y_0=1m$  on either side of the equilibrium point x=0 for the 1kg ball.

(c) How does the frequency decrease or increase in isothermal case *versus* the adiabatic case if we shorten the run interval  $Y_0=1m$  to one-quarter meter?...What if we reduce the mass ratio  $m_1/m_2$  by one-quarter?

(d) Derive the adiabatic frequency and period for the case M=50kg in adiabatic force of two m=0.1kg masses of initial speed  $v_0=20m/s$  and range  $Y_0=3m$ . Compare with Fig. 1.6.3c.