Due Tuesday Sept. 15: Assignment 3- Read Unit 1 Chapters 6 thru 9.

KE becomes PE

Exercise 1.6.1 Suppose Fig. 6.3 shows a mass $m_{1}=1 \mathrm{~kg}$ ball trapped between two smaller mass $m_{2}=1 \mathrm{gm}$ balls of high speed $\left(v_{2}(0)=1000 \mathrm{~m} / \mathrm{s}\right.$ for $\left.x=0\right)$ that provide m_{1} with an effective force law $F(x)$ based on isothermal approximation (6.11) while assuming m_{l} moves only moderately far or fast from equilibrium at $x=0$.
(We idealize "balls" as point masses here and in many other CM problems.)
(a) A further approximation is the one-Dimensional Harmonic Oscillator (1D-HO) force and PE in (6.12). If each mass m_{2} start in an interval $Y_{0}=1 m$, derive approximate 1D-HO frequency and period for mass m_{1}.
(b) What if the adiabatic approximation is used instead? Does the frequency decrease, increase, or just become anharmonic? Compare isothermal and adiabatic quantitative results for $m_{l}=1 \mathrm{~kg}$ ball being hit by two $m_{2}=1 \mathrm{gm}$ balls each having speed of $v_{2}(0)=1000 \mathrm{~m} / \mathrm{s}$ as each starts bouncing in a space of $Y_{0}=1 \mathrm{~m}$ on either side of the equilibrium point $x=0$ for the 1 kg ball.
(c) How does the frequency decrease or increase in isothermal case versus the adiabatic case if we shorten the run interval $Y_{0}=1 m$ to one-quarter meter?...What if we reduce the mass ratio m_{1} / m_{2} by one-quarter?
(d) Derive the adiabatic frequency for the case $M=50 \mathrm{~kg}$ in adiabatic force of two $m=0.1 \mathrm{~kg}$ masses of initial speed $v_{0}=20 \mathrm{~m} / \mathrm{s}$ and range $Y_{0}=3 \mathrm{~m}$. Compare with Fig. 1.6.3c.

Action at the Monster Mash

Exercise 1.6.2 The moving ball-wall-trapped-ball constructions in Fig. 6.4 involves a plot of a "ball-wall" coming in with unit slope (velocity). (Again, we idealize "balls" as point masses.)
(a) Consider a construction where it has a velocity of $1 / 2$ and intercepts a trapped ball of velocity -1 at space-time point ($x=-2, t=4$) that is 2 units from the fixed wall. Construct six or more back-and-forth collisions and comment on what, if any, differences exist with Fig. 6.4. Also, construct one or two prior collisions (before $t=4$).
(b) Evaluate approximate-average action values as described in class or after Fig. 6.4 in Unit 1.

Ford circles and Farey sums

Exercise 1.6.3 Complete the fraction-geometry construction started in class up to denominator 10.

