Assignment Set 2 - Read Unit 1 Ch. 3 thru Ch. 5 Due 9/05/17

Name \qquad
Basic IBM \dagger Physics

1. Many are surprised by a little "explosion" that occurs when a 90 gm superball is dropped with a 10 gm pen on top. (a) Under ideal ${ }^{\dagger}$ conditions the pen is fired upward with a speed that is \qquad \dagger times the speed with which the two hit the floor and rises \qquad ${ }^{\dagger} \dagger$ times the height from which they were dropped.
(They usually don't notice that the ball rises only \qquad ${ }^{\dagger} \dagger$ times that drop height.)
\dagger "Ideal" means negligible internal friction and air drag and valid Independent Bang Model (IBM).
$\dagger \dagger$ Use geometry or algebra to give factors to 2 -figure precision.
(b) Under less ideal conditions an evil student might spoil the professor's demo toy by putting a drop of Sticky$S t u f f^{\circ}$ between the ball and pen. Assuming that drop wastes as much energy as possible, derive the final speed and height factors that may result.
$V_{B A L L}=$ \qquad - $v_{\text {INIT }} \quad V_{P E N}=$ \qquad - $v_{\text {INIT }}$
$h_{B A L L}=$ \qquad - $h_{\text {INIT }} \quad h_{P E N}=$ \qquad . $h_{\text {INIT }}$
Discuss briefly why the approximate IBM † works so well in "superball theory."

Random Banging Around

2. These same people might not be so surprised by what goes on in a low-temperature high-vacuum atomic vapor chamber that has a mixture of Hydrogen (atomic weight 1.0) and Beryllium (atomic weight 9.0). On the average the H atoms have a speed that is \qquad times that of the Be atoms. If the chamber is opened to a large enclosing ultra-high vacuum chamber, then H atoms could rise \qquad times as high as the Be atoms, on the average. Compare to answers in 1 and discuss briefly. (Discussion after Fig. 5.2(d-e) is important here.)

Woo-Pig and Click-Ding-a-ling
3. Physics has decided to spend another $\$ 10,000$ to design a ... BONG!, Click-Ding, Click-Ding, ...(some number N of Click-Dings)...Click-BONG!-...(repeat) toy to add to our contraption that currently greets visitors. The idea (as silly as it sounds) is to have exactly N Click-Dings (M_{B} hits $\mathrm{m}_{\mathrm{D}}=1 \mathrm{gm}$ with a click and m_{D} hits right bell with a Ding!) after a first $B O N G!$ is heard when mass M_{B} initially bounces off the huge left bell with velocity $v_{I N I T}=10 \mathrm{~m} / \mathrm{s}$ toward the initially stationary little mass m_{D} that makes N trips between $\mathrm{M}_{\mathrm{B}}($ Click!) and right bell (Ding!). Finally, M_{B} returns with final velocity $v_{F I N}=-v_{I N I T}$ after a final $\mathrm{M}_{\mathrm{B}}-\mathrm{m}_{\mathrm{D}}$ Click! and a Bong! to start over.

Can you save the department a high design fee? What mass M_{B} will give exactly N-Click-Ding-Click trips?
Is this possible for $N=4$? ... for $N=3$? ... for $N=2$? ... for $N=1$?... for $N=0$? (Hint: start with lower N.)
Plot ($\mathrm{v}_{\mathrm{B}}, \mathrm{v}_{\mathrm{D}}$) velocity-velocity diagrams in Lagrangian and/or l'Etrangian form for each allowed N and give M_{B}.
Plot corresponding ($\mathrm{x}_{\mathrm{B}}, \mathrm{x}_{\mathrm{D}}$) position-position diagrams for $N=2$ case.
Within each allowed N-sequence plot\&write peak speed $v_{D \max }$ of Ding-ing mass m_{D}.
Within each allowed N-sequence plot\&write minimum speed $v_{B m i n}$ of Bong-ing mass M_{B}.
Give a convenient general formula for allowed $M_{B}(N)$.

