Assignment Set 1-8.26.19 Read Unit 1 Chapters 1 thru Ch.3- Exercises due Wed. September 4

Exercise 1 Class exercise continued...

Complete VW (10 mph) vs. SUV (60 mph) collision analysis and plot of IN and FIN velocity states done in class. Extra ± 80 by ± 120 graphpaper attached is same as used in class
(a) For a totally inelastic ' $k a$-runch' case derive final velocities \mathbf{V} FIN $=\left(V^{F I N}{ }_{1}, V^{F I N}\right)$ from plot
(b) Derive and plot IN and FIN KE ellipses ${ }^{\dagger}$ and velocity vectors. (Use tensor algebra to clarify formulas.)
(c) For a totally elastic 'ka-bong' case do the same. Compare IN and FIN KE values and ellipses ${ }^{\dagger}$ for the two cases.
(d) On the same plot draw ellipse(s) and velocity vectors as seen in the COM frame for both cases.
\dagger At the end of Ch. 1 is shown an easy ellipse construction given ellipse radii a and b. This should not be necessary for Exercise 2 but will come in handy for Exercise 1 and 3. Both use attached graph paper (also available online).

Exercise 2 Basic pool-shot (equal-mass) kinetics

Use blank ± 0.5 by ± 1.0 graph paper (attached and available on-line).
Consider V_{l} vs V_{2} graphs for 1D-collisions between masses M_{l} and M_{2} described in Ch. 2 and Ch .3 .
(a) Draw a graph of a collision with initial velocities $\mathbf{V}^{I N}=\left(V_{I N}, V^{I N}\right)=(0.5,0)$ for equal masses $\left(M_{1}=1=M_{2}\right)$.
(b) For a totally inelastic 'ka-runch' case find final velocities $\mathbf{V F I N}^{\mathrm{FIN}}=\left(V^{F I N_{l}}, V^{F I N_{2}}\right)$ from graph and plot KE ellipse ${ }^{\dagger}$.
(c) For a totally elastic 'ka-bong' case do the same. Compare final kinetic energy KE values for the two cases.
(d) On the same plot draw ellipse(s) and velocity vectors as seen in the COM frame for both cases.

Exercise 3 Head-on collision kinetics

Solve using tensor algebraic methods and compare to geometric solution on ± 0.5 by ± 1.0 graph paper.

Analyze collisions for head-on initial velocities $\left.\mathbf{V}^{\mathrm{IN}}=\left(V_{I N}, V^{I N}\right)_{2}\right)=(0.4,-0.2)$ for masses $M_{1}=5$ and $M_{2}=1$.
Derive final velocities \mathbf{V} FIN $=\left(V^{F I N}, V^{\prime 2} N_{2}\right)=\mathbf{V C O M}$ for a totally inelastic 'ka-runch' case.
Derive final velocities $\mathbf{V} \mathrm{FIN}=\left(V^{F I N}, V_{1} V^{F I N}\right)$ for totally elastic ' $k a$-bong' case.
Derive $K E=$ \qquad , KE-ellipse radii $a_{1}=a _, a_{2}=b=$ \qquad for ka-runch case and construct its ellipse ${ }^{\dagger}$.
Derive $K E=$ \qquad , KE-ellipse radii $a_{l}=a$ \qquad , $a_{2}=b=$ \qquad for ka-bong case and construct its ellipse ${ }^{\dagger}$.

Derive $K E=$ \qquad , KE-ellipse radii $a_{l}=a$ \qquad , $a_{2}=b=$ \qquad for ka-bong case as viewed in COM frame.
Derive $K E=$ \qquad , KE-ellipse radii $a_{l}=a$ \qquad , $a_{2}=b=$ \qquad for $k a$-runch case as viewed in COM frame.

Construct resulting ellipse ${ }^{\dagger}$ for each case (if it exists).

Extra credit

Do the same algebra and geometric plot for non-head-on case $\mathbf{V}^{I N}=\left(V^{I N}, V^{I N} 2\right)=(0.4,+0.2)$ for same masses.

