Assignment Set 1 - Read Unit 1 Ch. 1 thru Ch.3-Due Tue.Aug. 29, 2017

Exercise 1 Basic pool-shot kinetics

Consider V_{l} vs V_{2} graphs for 1D-collisions between masses M_{l} and M_{2} described in Ch. 2 and Ch .3 .

Draw a graph of a collision with initial velocities $\mathbf{V}^{I N}=\left(V^{I N}, V^{I N}\right)=(0.5,0.0)$ for equal masses $\left(M_{1}=1=M_{2}\right)$.

For a totally inelastic ' $k a$-runch' case derive final velocities $\mathbf{V F I N}^{\text {FIN }}=\left(V^{F I N_{1}}, V^{F I N_{2}}\right)$ from graph and plot KE ellipse ${ }^{\dagger}$. For a totally elastic 'ka-bong' case do the same. Compare final kinetic energy KE values for the two cases.
\dagger At the end of Ch. 3 is shown an easy ellipse construction given ellipse radii a and b. This should not be necessary for Exercise 1 but will come in handy for Exercise 2 below as will attached graph paper.

Exercise 2 Head-on collision kinetics

The full V_{1} vs V_{2} graphs for 1D-collisions of masses M_{1} and M_{2} described in Ch .2 and Ch .3 is needed here. Solve using tensor algebraic methods and compare results to a geometric solution on graph paper given below.

Analyze collisions for initial velocities $\mathbf{V}^{\mathrm{IN}}=\left(V_{I N_{1}}, V^{I N}\right)=(0.4,-0.2)$ for masses $M_{l}=5$ and $M_{2}=1$.
Derive final velocities $\mathbf{V}^{\mathrm{FIN}}=\left(V^{F I N_{1}}, V^{\text {FIN }} 2\right)=\mathbf{V}^{\mathrm{COM}}$ for a totally inelastic ' $k a$-runch' case.
Derive final velocities $\mathbf{V}^{\mathrm{FIN}}=\left(V^{F I N}, V^{F I N} 2\right)$ for totally elastic ' $k a$-bong' case.
Derive $K E=$ \qquad , KE-ellipse radii $a_{1}=a_{_}, a_{2}=b=$ \qquad for ka-runch case and construct its ellipse ${ }^{\dagger}$.
Derive $K E=$ \qquad , KE-ellipse radii $a_{1}=a$ \qquad , $a_{2}=b=$ \qquad for $k a$-bong case and construct its ellipse ${ }^{\dagger}$.

Derive $K E=$ \qquad , KE-ellipse radii $a_{1}=a$ \qquad , $a_{2}=b=$ \qquad for ka-bong case as viewed in COM frame.
Derive $K E=$ \qquad , KE-ellipse radii $a_{1}=a$ \qquad , $a_{2}=b=$ \qquad for $k a$-runch case as viewed in COM frame.

Construct resulting ellipse ${ }^{\dagger}$ for each case (if it exists).

Exercise 3 Not-So-Head-on collision kinetics (Xtra credit)

Analyze collisions for initial velocities $\mathbf{V}^{\mathrm{IN}}=\left(V^{I N_{1}}, V^{I N_{2}}\right)=(0.4,+0.2)$ for masses $M_{1}=5$ and $M_{2}=1$.
Do geometric solution on graph paper given below

