Assignment Set 1 - Read Unit 1 Ch. 1 thru Ch.3 - Due Tue. Aug. 29, 2017

Exercise 1 Basic pool-shot kinetics

Consider V_1 vs V_2 graphs for 1D-collisions between masses M_1 and M_2 described in Ch. 2 and Ch. 3.

Draw a graph of a collision with initial velocities $V^{IN} = (V^{IN}_1, V^{IN}_2) = (0.5, 0.0)$ for equal masses $(M_1 = l = M_2)$.

For a totally inelastic '*ka-runch*' case derive final velocities $\mathbf{V}^{\text{FIN}} = (V^{\text{FIN}_1}, V^{\text{FIN}_2})$ from graph and plot KE ellipse[†]. For a totally elastic '*ka-bong*' case do the same. Compare final kinetic energy KE values for the two cases.

[†] At the end of Ch.3 is shown an easy ellipse construction given ellipse radii *a* and *b*. This should not be necessary for Exercise 1 but will come in handy for Exercise 2 below as will attached graph paper.

Exercise 2 Head-on collision kinetics

The full V_1 vs V_2 graphs for 1D-collisions of masses M_1 and M_2 described in Ch. 2 and Ch. 3 is needed here. Solve using tensor algebraic methods and compare results to a geometric solution on graph paper given below.

Analyze collisions for initial velocities $\mathbf{V}^{\text{IN}} = (V^{IN_1}, V^{IN_2}) = (0.4, -0.2)$ for masses $M_1 = 5$ and $M_2 = 1$. Derive final velocities $\mathbf{V}^{\text{FIN}} = (V^{FIN_1}, V^{FIN_2}) = \mathbf{V}^{\text{COM}}$ for a totally inelastic '*ka-runch*' case. Derive final velocities $\mathbf{V}^{\text{FIN}} = (V^{FIN_1}, V^{FIN_2})$ for totally elastic '*ka-bong*' case. Derive KE =______, KE-ellipse radii $a_1 = a$ ______, $a_2 = b =$ _______ for *ka-runch* case and construct its ellipse[†]. Derive KE =______, KE-ellipse radii $a_1 = a$ ______, $a_2 = b =$ _______ for *ka-bong* case and construct its ellipse[†].

Derive KE=_____, KE-ellipse radii $a_1=a$ _____, $a_2=b=$ _____ for ka-bong case as viewed in COM frame. Derive KE=_____, KE-ellipse radii $a_1=a$ _____, $a_2=b=$ _____ for ka-runch case as viewed in COM frame.

Construct resulting ellipse[†] for each case (if it exists).

Exercise 3 Not-So-Head-on collision kinetics (Xtra credit)

Analyze collisions for initial velocities $\mathbf{V}^{IN} = (V^{IN}_1, V^{IN}_2) = (0.4, +0.2)$ for masses $M_1 = 5$ and $M_2 = 1$. Do geometric solution on graph paper given below

