Assignment 1 Read Unit 1 Chapters 1 thru 4. Ex. 1.3.1-2 and 1.4.2 are due Tuesday Sept. 1

Exercise 1.3.1a Plot a $\left(\mathrm{V}_{\text {SUV-1 }}, \mathrm{V}_{\text {SUV-2 }}\right)=(60,10)$ collision diagram but with an identical mass $M=4$ SUV replacing the VW. Draw energy ellipses as precisely as possible. Compare to tensor algebraic solutions where you calculate the elastic kinetic energy $K E$, the totally inelastic kinetic energy $I E$, and ellipse radii ( $a_{K E}, b_{K E}, a_{I E}, b_{I E}$ ).
(Try to do geometric construction before peeking at answers in Fig. 3.1. Then use tensor bookkeeping to check.)

Exercise 1.3.1b Now do the same problem with a head-on initial velocity vector $\left(\mathrm{V}_{\mathrm{SUV}-1}, \mathrm{~V}_{\mathrm{SUV}-2}\right)=(60,-10)$.

Assignment 0 Optional geometry exercises with some later applications
Learn how to ruler \& compass construct $\arctan (y / x)$ and $\operatorname{arcsec}(r / x)$ and complimentary $\operatorname{arcot}(x / y)$ and $\operatorname{arcsec}(r / y)$ and geometric mean $\sqrt{a \cdot b}$ in Fig. 1.8 ( $3^{\text {rd }}$ frame). Use this to construct $\sqrt{ } 5$ and the Golden Means $G^{ \pm}=(1 \pm \sqrt{5}) / 2$. ( $G^{+}$satisfy $G^{+}+G^{-}=1$ and $G^{+} \cdot G^{-}=-1 . G^{+}$are important because they are the "most irrational" numbers.)
Exercise 1.1.4
Construct both Golden angles associated with the Golden Ratios $G_{+}$and $G_{-}$and measure their slopes in degrees on protractor graph paper below. Show a simpler (Pythagorean) construction of $\sqrt{ } 5$ ?
Exercise 1.1.5
Construct whirling rectangle diagram like Fig. Fig. 1.5 but for Golden slope angle to give whirling square sketched in Fig. 1.10. Use a protractor graph (Below or in class library) to measure $\left({ }^{\circ}\right)$ angles of slopes obtained this way.



Exercise 1.3.2. Ch. 1-5 contain geometric description of 1D-2-body collisions. Most examples originate from initial velocity vectors $\mathbf{V}_{l,-l}^{\mathbb{N}}=(1,-1)$ for which $m_{l}$ and $m_{2}$ have equal speeds (in this case $\pm u$ it speeds).

This exercise is intended to help match algebra and geometry by asking for the simplest formulas (in terms of $m_{1}$ and $m_{2}$ ) for the various velocities in a figure above that are final elastic results of the following IN-velocity vectors. (Give answers in terms of $m_{l}$ and $m_{2}$ by evaluating speeds $v, V$, etc., whichever apply.)
a. $\mathbf{V}_{1,-1}^{\mathbb{N}}=(1,-1)$
b. $\mathbf{V}_{v, 0}^{\mathbb{N}}=(v, 0)$
c. $\mathbf{V}_{0, V}^{\mathrm{IN}}=(0, V)$
d. $\mathbf{V}_{\text {COM }}^{\mathrm{IN}}=\left(v_{x}^{\text {COM }}, v_{y}^{\text {COM }}\right)$

Derive the IN and FIN vector components of all in terms of masses $m_{1}$ and $m_{2}$ only assuming the same total KE as $\mathbf{V}_{1,-1}^{\mathrm{IN}}=(1,-1)$ has. (Check results on figure where ratio $2=m_{1} / m_{2}$ holds. Do formulas depend on mass ratio only? ) Indicate where the time reversed vector $\mathbf{T} \cdot \mathbf{V}^{\text {IN }}$ of each $\mathbf{V}^{\text {IN }}$ lies.
Give a formula for the orange (dashed) and green (solid) tangent line slopes in terms of $m_{1}$ and $m_{2}$. $\ldots$ and compare to slope of the black line connecting major and minor radii in terms of $m_{1}$ and $m_{2}$.

Exercise 1.4.2: Continue the ( $v_{1}, v_{2}$ ) and ( $x_{1}, x_{2}$ ) collision plots begun in class and shown in Fig. 4.7 and Fig. 4.11. Continue until you reach the "gameover" point of last possible $M_{1}-M_{2}$ collision assuming the floor is open after Bang-1 so both masses can fall thru indefinitely. Indicate where on your graph would be this last last collision.

