Assignment 1 Read Unit 1 Chapters 1 thru 4. Ex. 1.3.1-2 and 1.4.2 are due Tuesday Sept. 1

Exercise 1.3.1a Plot a (V_{SUV-1},V_{SUV-2})=(60,10) collision diagram but with an identical mass M=4 SUV replacing the VW. Draw energy ellipses as precisely as possible. Compare to tensor algebraic solutions where you calculate the elastic kinetic energy *KE*, the totally inelastic kinetic energy *IE*, and ellipse radii (a_{KE} , b_{KE} , a_{IE} , b_{IE}). (Try to do geometric construction *before* peeking at answers in Fig. 3.1. Then use tensor bookkeeping to check.)

Exercise 1.3.1b Now do the same problem with a head-on initial velocity vector (V_{SUV-1},V_{SUV-2})=(60,-10).

Assignment 0 Optional geometry exercises with some later applications

Learn how to ruler & compass construct $\arctan(y/x)$ and $\operatorname{arcsec}(r/x)$ and $\operatorname{complimentary} \operatorname{arcot}(x/y)$ and $\operatorname{arcsec}(r/y)$ and $\operatorname{geometric}$ mean $\sqrt{a \cdot b}$ in Fig. 1.8 (3rd frame). Use this to construct $\sqrt{5}$ and the *Golden Means* $G^{\pm} = (1 \pm \sqrt{5})/2$.

(G^{\pm} satisfy $G^{+}+G^{-}=1$ and $G^{+}\cdot G^{-}=-1$. G^{\pm} are important because they are the "most irrational" numbers.)

Exercise 1.1.4

Construct both Golden *angles* associated with the *Golden Ratios* G_+ and G_- and measure their slopes in degrees on protractor graph paper below. Show a simpler (Pythagorean) construction of $\sqrt{5}$? Exercise 1.1.5

Construct whirling rectangle diagram like Fig. Fig. 1.5 but for Golden slope angle to give whirling square sketched in Fig. 1.10. Use a protractor graph (Below or in class library) to measure (°)angles of slopes obtained this way.

Exercise 1.3.2. Ch. 1-5 contain geometric description of 1D-2-body collisions. Most examples originate from initial velocity vectors $\mathbf{V}_{l,-l}^{\mathbb{IN}} = (1,-l)$ for which m_l and m_2 have equal speeds (in this case $\pm unit$ speeds).

This exercise is intended to help match algebra and geometry by asking for the simplest formulas (in terms of m_1 and m_2) for the various velocities in a figure above that are final elastic results of the following IN-velocity vectors. (Give answers in terms of m_1 and m_2 by evaluating speeds v, V, etc., whichever apply.)

a. $\mathbf{V}_{l,-l}^{IN} = (1,-1)$ b. $\mathbf{V}_{v,0}^{IN} = (v,0)$ c. $\mathbf{V}_{0,V}^{IN} = (0,V)$ d. $\mathbf{V}_{COM}^{IN} = (v_x^{COM}, v_y^{COM})$

Derive the IN and FIN vector components of all in terms of masses m_1 and m_2 only assuming the same total KE as $\mathbf{V}_{l-1}^{\text{IN}} = (1,-1)$ has. (Check results on figure where ratio $2=m_1/m_2$ holds. Do formulas depend on mass ratio only?)

Indicate where the time reversed vector $\mathbf{T} \cdot \mathbf{V}^{\text{IN}}$ of each \mathbf{V}^{IN} lies.

Give a formula for the orange (dashed) and green (solid) tangent line slopes in terms of m_1 and m_2 .

... and compare to slope of the black line connecting major and minor radii in terms of m_1 and m_2 .

Exercise 1.4.2: Continue the (v_1, v_2) and (x_1, x_2) collision plots begun in class and shown in Fig. 4.7 and Fig. 4.11. Continue until you reach the "gameover" point of <u>last possible</u> M_1 - M_2 collision assuming the floor is open after *Bang-1* so both masses can fall thru indefinitely. Indicate where on your graph would be this last last collision.