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Assignment 12 - PHYS 5103-11/13/17-Due Wed. Nov. 14  CMwBang! Ch 4.1 thru Ch.4.4. and Lectures 20-24 

Ex.1 The “standard” Lorentzian (Note: Review complex 2-pole potential  φ(z)=1/z (10.42) in Unit 1-Ch. 10 Fig. 10.11.) 
In physics literature, a standard Lorentzian function generally means a form !  with constant A.  In the Near-Resonant 
Approximation (NRA is (4.2.18)) the L(Δ) or its derivative is an approximation to exact G-equations (4.2.15). 
(a) Use NRA (4.2.18) to reduce (4.2.15a-d) and identify a standard Lorentzian function of the detuning parameter Δ=ωs-ω0. 
(b) Show that NRA for complex response G=Re G +iIm G gives circular arcs in the complex ω=| ω |e ιθ =Δ+iΓ plane for constant decay rate 
Γ and variable detuning or beat rate  Δ.  How does this circle deviate from what is almost a circle in Fig. 4.2.6?  (Consider higher Γ values 
for which NRA breaks down such as Fig. 4.2.14.) What curve does fixed Δ with varying Γ give? Relate to dipole scalar-Φ and vector-A 
potential field lines for dipole field function f(z)=1/z2 discussed on Ch. 10 of Unit 1. 
(c) Do ruler-&-compass construction of NRA Lorentz functions following figures below for b=1/2  and for b=1/3. 

! .(See p. 58-66 of Lect. 20.) 

     !  
Ex.2 Max and min G-values (Part (b-c) involves some derivative algebra!) 
Derive equations for the extreme values for the Lorentz-Green response function or function related to G as asked below.  
For part (a) only use Near-Resonant Approximation (NRA): See preceding Ex.1. 
(a1) Find  values which give maxima for:  assuming  is constant and  varies. 
(a2) Find  values which give maxima for:  assuming  is constant and  varies. 
(b) Do (a) for exact ! . Exact plots by calculator help to check algebraic answers.

Ex.3 Coupled oscillation by projection "
Two identical mass M=1kg blocks slide friction-free on a rod and are connected by springs k1=16N·m-1 and k2=37N·m-1 to ends of a box 
and coupled to each other by spring k12=36N·m-1. 
(a) Write Lagrangian equations of motion and derive a K-matrix form of them. 
(b) Solve for eigenmodes and eigenfrequencies of system and plot their directions on an X,Y-graph. Use spectral decomposition methods 
(Lect. 20 or Appendix 4.C) to derive eigensolution projectors and eigenvectors. 
(c) Given initial conditions (X(0)=1,Y(0)=0), plot the resulting path in the XY-plane. Show it is a parabola.(Tschebycheff function) 
(d) Use spectral decomposition (Lect. 20 or Appendix 4.C) to derive square-roots H=√K. (How many square-roots does K have?) 

Ex.4 U(2) view of AB-coupled oscillation 
(a) Rewrite the spring K-matrix for Ex.3 into an H-matrix where K= H2 as in (4.4.8). 
(b) Give the resulting H-matrix as an (A,B,C,D) combination of 1, σA, σB, and  σC as in (4.4.9). (++ root of K results for H.) 
(c) Sketch the resulting Ω-whirl vector or “crank” in real 3D (A,B,C)–space as in (4.4.10). 
(d) For (X(0)=1,Y(0)=0) find initial S-state (“spin”)vector  in (A,B,C)–space as in (4.4.16). Show its evolution by Ω as in Fig. 4.4.2. 
(e) Plot H-eigenvalues (ε1, ε2) as energy levels and indicate transition rate Ω=ε1- ε2 spinor rate ω=(ε1-ε2)/2 and phase rate Ω0=(ε1+ε2)/2. 

Ex.5 U(2) view of Bilaterally symmetric coupled oscillation 
Redo Ex.3 and Ex.4 for a B-symmetric version of the system having k1=4N·m-1 =k2 and k12=30N·m-1. 
(Ex.3(c) should give a different Tschebycheff function)  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