Assignment 11 Oct. 31,2018 Exercises due Wed. Nov. 7 Constrained motion theory in Unit 3 Ch. 9 and Lect. 19. Lecture 19 was not presented this year but last year's lecture is available online as is Unit 3 Ch. 9

Parabolic Fly-off vs. Spherical Fly-Off

Ex.1. The frictionless constraint problem with mass m trapped in a parabolic well is shown to be an anharmonic oscillator in Sec. 3.9. Consider how m on a barrier might fall off under gravity $g=10 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.
(a) Suppose an inverted parabolic road $y=-\frac{1}{2} k x^{2}$ with m starting with near-zero $v(0)$ at $x=0$ on top. Show whether there are $x_{f l}, y_{f l y}$, and $v_{f l y}$ values where the mass m would fly off the road. Analyze and discuss.
(b) Do a similar analysis for a particle on a sphere of radius R. Compare to parabolic result of (a).

"Easy as rolling off a log"
Ex.2. A ball of radius r and mass $m=1 \mathrm{~kg}$ starting at the top of a fixed \log of radius R and begins rolling down it. Assuming the sphere rolls without slipping calculate the angle from vertical where it last contacts the log. Give algebraic answers first. Then try $R=20 \mathrm{~cm}$ and $r=1 \mathrm{~cm}$ with $g=10 \mathrm{~m} \cdot \mathrm{~s}^{-2}$, and then try $R=1 \mathrm{~cm}$ and $r=20 \mathrm{~cm}$. Compare these answers with each other and with those involving sliding particles in exercise $\mathbf{1 (b)}$.

Pendulum on turntable (Soft-mode resonance)

Ex. 3 Suppose a pendulum supported by a circular ball bearing may swing without friction in the vertical plane of the bearing. The bearing plane is secured to a turntable that rotates at a constant angular frequency ω_{r}. The pendulum consists of a mass m at the end of a rod of length $\ell=1 \mathrm{~m}$ and negligible mass with natural frequency of small θ-angle motion at zero- ω_{r} in gravity acceleration (Say $g=10 \mathrm{~m} / \mathrm{s}^{2}$) given by $\omega_{0}\left(\omega_{r}=0\right)=$ \qquad .
(a) Derive the Lagrangian and Hamiltonian using spherical coordinates in the rotating frame.
(b) Derive the θ-equilibrium points and small-oscillation frequency as a function of the frequency ω_{r} and ω_{0}.

Overlay plots of effective θ-potential for several key values of ω_{r}. What ω_{r} value makes $\theta=0$ angle unstable?

