Assignment 11 Oct. 31,2018 Exercises due Wed. Nov. 7 Constrained motion theory in Unit 3 Ch.9 and Lect.19. Lecture 19 was not presented this year but last year's lecture is available online as is Unit 3 Ch. 9

Parabolic Fly-off vs. Spherical Fly-Off

Ex.1. The frictionless constraint problem with mass *m* trapped in a parabolic well is shown to be an anharmonic oscillator in Sec. 3.9. Consider how *m* on a barrier might fall off under gravity $g=10m \cdot s^{-2}$.

(a) Suppose an inverted parabolic road $y=-\frac{1}{2}kx^2$ with *m* starting with near-zero v(0) at x=0 on top. Show whether there are x_{fly} , y_{fly} , and v_{fly} values where the mass *m* would fly off the road. Analyze and discuss.

(b) Do a similar analysis for a particle on a sphere of radius *R*. Compare to parabolic result of (a).

"Easy as rolling off a log"

Ex.2. A ball of radius *r* and mass m=1kg starting at the top of a fixed log of radius *R* and begins rolling down it. Assuming the sphere rolls without slipping calculate the angle from vertical where it last contacts the log. Give algebraic answers first. Then try R=20cm and r=1cm with $g=10m \cdot s^{-2}$, and then try R=1cm and r=20cm. Compare these answers with each other and with those involving sliding particles in exercise **1(b)**.

Pendulum on turntable (Soft-mode resonance)

Ex.3 Suppose a pendulum supported by a circular ball bearing may swing without friction in the vertical plane of the bearing. The bearing plane is secured to a turntable that rotates at a constant angular frequency ω_r . The pendulum consists of a mass *m* at the end of a rod of length $\ell = Im$ and negligible mass with natural frequency of small θ -angle motion at zero- ω_r in gravity acceleration (Say $g=10m/s^2$) given by $\omega_0(\omega_r=0)=$.

(a) Derive the Lagrangian and Hamiltonian using spherical coordinates in the rotating frame.

(b) Derive the θ -equilibrium points and small-oscillation frequency as a function of the frequency ω_r and ω_{θ} . Overlay plots of effective θ -potential for several key values of ω_r . What ω_r value makes $\theta = \theta$ angle unstable?