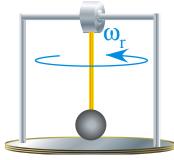

Assignment 11 - Classical Mechanics 5103 11/07/167 Due Tue Nov. 14

Main Reading: In Class. Mech. with a BANG! Unit 2 thru 2.9. Unit 3 thru 3.8. - Lect.19 p.73-74 & p.102-110

An icy cycloid problem


Ex.1 (a) A lkg meter stick lies on a smooth icy hockey rink surface with two marbles sitting at its end on either side of the 0.0cm mark. (See figure) A hammer give impulse $P=(IN \cdot s)e_x$ to the stick at the h-cm. mark. What height h is least likely to disturb the marbles.

(b) Now assume *h*-value from (a) and friction-free "icy" surface. At what distances *d*, 2*d*, 3*d*, ... along *x*-axis should the 3^{rd} , 4^{th} , 5^{th} ,...marbles be placed so they are most likely to be knocked below the axis. Draw 6 equal time Δt interval snapshots of the stick as it flips by 180° and then to 360°. What is Δt for a 1kg stick?

Electromagnetic cycloids

- **Ex.2** A unit mass m=1 kg and charge Q=1 Coul. (Dangerous!) starts at (x=0=y) on a frictionless (x,y)-surface in vertical Earth gravity (Say $g_y=-10m/s^2$) and in a strong z-axial magnetic field $\mathbf{B}_z=(0,0,B_z)$ normal to surface.
- (a) What field B_z (in Tesla) causes the mass with zero initial velocity $(v_x(\theta), v_y(\theta)) = (\theta, \theta)$ to follow a cycloid of 0.5 meter radius along -x axis? What x-axis points does it hit? Are these hit points different for different $\mathbf{v}(0)$?
- **(b)** What initial $\mathbf{v}(0)$ would cause the mass to fly a straight line along the -x-axis? ... along the +x-axis?
- (c) Describe and plot the resulting trajectory if instead the mass is thrown down with $(v_x(0), v_y(0)) = (0, -2m/s)$.

Pendulum on turntable (Soft-mode resonance)

- **Ex.3** Suppose a pendulum supported by a circular ball bearing may swing without friction in the vertical plane of the bearing. The bearing plane is secured to a turntable that rotates at a constant angular frequency $ω_r$. The pendulum consists of a mass m at the end of a rod of length $\ell=1m$ and negligible mass with natural frequency of small θ-angle motion at zero- $ω_r$ in gravity acceleration (Say $g=10m/s^2$) given by $ω_0(ω_r=0)=$
- (a) Derive the Lagrangian and Hamiltonian using spherical coordinates in the rotating frame.
- **(b)** Derive the θ-equilibrium points and small-oscillation frequency as a function of the frequency ω_r and ω_θ . Overlay plots of effective θ-potential for several key values of ω_r . What ω_r value makes $\theta = \theta$ angle unstable?