Assignment 11-Classical Mechanics 5103 11/07/167 Due Tue Nov. 14
Main Reading: In Class. Mech. with a BANG! Unit 2 thru 2.9. Unit 3 thru 3.8. - Lect. 19 p.73-74 \& p.102-110

An icy cycloid problem

Ex. 1 (a) A 1 kg . meter stick lies on a smooth icy hockey rink surface with two marbles sitting at its end on either side of the 0.0 cm mark. (See figure) A hammer give impulse $\mathbf{P}=(1 \mathrm{~N} \cdot \mathrm{~s}) \mathbf{e}_{\mathbf{x}}$ to the stick at the $h-\mathrm{cm}$. mark.
What height h is least likely to disturb the marbles.

(b) Now assume h-value from (a) and friction-free "icy" surface. At what distances $d, 2 d, 3 d, \ldots$ along x-axis should the $3^{r d}, 4^{t h}, 5^{t h}, \ldots$ marbles be placed so they are most likely to be knocked below the axis. Draw 6 equal time Δt interval snapshots of the stick as it flips by 180° and then to 360°. What is Δt for a 1 kg stick?

Electromagnetic cycloids

Ex. 2 A unit mass $m=1 \mathrm{~kg}$ and charge $Q=1$ Coul. (Dangerous!) starts at $(x=0=y)$ on a frictionless (x, y)-surface in vertical Earth gravity (Say $g_{y}=-10 \mathrm{~m} / \mathrm{s}^{2}$) and in a strong z-axial magnetic field $\mathbf{B}_{z}=\left(0,0, B_{z}\right)$ normal to surface.
(a) What field B_{z} (in Tesla) causes the mass with zero initial velocity $\left(v_{x}(0), v_{y}(0)\right)=(0,0)$ to follow a cycloid of 0.5 meter radius along $-x$ axis? What x-axis points does it hit? Are these hit points different for different $\mathbf{v}(0)$?
(b) What initial $\mathbf{v}(0)$ would cause the mass to fly a straight line along the $-x$-axis? \ldots along the $+x$-axis?
(c) Describe and plot the resulting trajectory if instead the mass is thrown down with $\left(v_{x}(0), v_{y}(0)\right)=(0,-2 \mathrm{~m} / \mathrm{s})$.

Pendulum on turntable (Soft-mode resonance)

Ex. 3 Suppose a pendulum supported by a circular ball bearing may swing without friction in the vertical plane of the bearing. The bearing plane is secured to a turntable that rotates at a constant angular frequency ω_{r}. The pendulum consists of a mass m at the end of a rod of length $\ell=1 \mathrm{~m}$ and negligible mass with natural frequency of small θ-angle motion at zero- ω_{r} in gravity acceleration (Say $g=10 \mathrm{~m} / \mathrm{s}^{2}$) given by $\omega_{0}\left(\omega_{r}=0\right)=$ \qquad .
(a) Derive the Lagrangian and Hamiltonian using spherical coordinates in the rotating frame.
(b) Derive the θ-equilibrium points and small-oscillation frequency as a function of the frequency ω_{r} and ω_{0}.

Overlay plots of effective θ-potential for several key values of ω_{r}. What ω_{r} value makes $\theta=0$ angle unstable?

