Ex. 1 The "standard" Lorentzian (Note: Review complex 2-pole potential $\phi(z)=1 / z$ and $f(z)=-1 / z^{2}$ (10.42) in Unit 1-Ch.10 Fig.10.11.) In physics literature, a standard Lorentzian function generally means a form $\operatorname{Im} L(\Delta)=\Gamma /\left(\Delta^{2}+\Gamma^{2}\right)$ with constant Γ. In the Near-Resonant Approximation (NRA is (4.2.18) and (4.2.33)) the $L(\Delta)$ is a low Δ and Γ approximation to exact G-equations (4.2.15). A clear NRA derivation is given in Lect. 20 p. 49 to 53 and geometries of these NRA are sketched on p. 58 to 68.
(a) Reduce (4.2.15) to NRA $L(\Delta-i \Gamma)=\operatorname{Re} L+i \operatorname{Im} L=|L| e^{i \rho}$ functions of detuning "beat rate" $\Delta=\omega_{s}-\omega_{0}$, decay rate Γ, and phase lag angle ρ. Indicate what part of these expressions is the standard Lorentzian.
(b) Show that NRA for complex response $G=\operatorname{Re} G+\operatorname{iIm} G$ gives circular arcs in the complex $\omega=|\omega| \mathrm{e}^{1 \theta}=|\omega| \mathrm{e}^{\text {¢ }}=\Delta+\mathrm{i} \Gamma$ plane for constant decay rate Γ and variable detuning or beat rate Δ. How does this circle deviate from what is almost a circle in Fig. 4.2.6? (Consider higher Γ values for which NRA breaks down such as Fig. 4.2.14.) Relate to dipole scalar- Φ and vector-A potential field values plotted over coordinate lines for dipole force function $f(z)=1 / z^{2}$ discussed in Ch. 10 of Unit 1. (See (10.42) and Fig. 10.11.)
(c) Do ruler-\&-compass construction of NRA versions of the following Lorentz functions in figures below for $b=1 / 2$ and for $b=1 / 4$.

Construction is similar to that of IHO elliptical orbits (Unit 1 Fig. 3.6 p. 53 or Lect. 7 p .22) in that it involves 90° points of a zig-zags.
$\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{x}{x^{2}+b^{2}}$ and $\operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{b}{x^{2}+b^{2}}$.(See p. 58-68 of Lect. 20.)

(d) (Xtra credit)Study the Riemann-Cauchy equations for analytic function G^{*} of Δ - $\mathrm{i} \Gamma$ that relate Δ and Γ partial derivatives of G_{Re}^{*} and G_{Im}^{*} (Recall Unit 1 eq.(10.32) or (better) Lect. 12 p.61) and consider what max our min values result from those derivatives being zero.

Ex. 2 Max and min G-values (Part (b-c) involves some derivative algebra!)

Derive equations for the extreme values for the exact Lorentz-Green response functions $G_{\omega_{0}}\left(\omega_{s}\right)$ as asked below.
Compare these to Near-Resonant Approximations (NRA) given in preceding Ex.1.Exact plots by calculator help to check algebraic answers.
(\mathbf{a}_{1}) Find values which give maxima for: $\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right), \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)$, and $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ assuming ω_{0} is constant and ω_{s} varies.
(\mathbf{a}_{2}) Find values which give maxima for: $\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right), \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)$, and $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ assuming ω_{s} is constant and ω_{0} varies.
Do $\left(\mathbf{a}_{1}\right)$ and $\left(\mathbf{a}_{2}\right)$ give the same results?

Ex. 3 Coupled oscillation by projection \mathbf{P}-operators

Two identical mass $M=1 \mathrm{~kg}$ blocks slide friction-free on a rod and are connected by springs $k_{1}=16 \mathrm{~N} \cdot \mathrm{~m}^{-1}$ and $k_{2}=37 \mathrm{~N} \cdot \mathrm{~m}^{-1}$ to ends of a box and coupled to each other by spring $k_{12}=36 \mathrm{~N} \cdot \mathrm{~m}^{-1}$.
(a) Write Lagrangian equations of motion and derive a \mathbf{K}-matrix form of them.
(b) Solve for eigenmodes and eigenfrequencies of system and plot their directions on an X, Y-graph. Use spectral decomposition methods (Lect. 21 p. 36-53 or Appendix 4.C) to derive eigensolution projectors and eigenvectors.
(c) Given initial conditions $\left(X(0)=1, Y(0)=0, \mathbf{V}_{0}=0\right)$, plot the resulting path in the XY-plane. Show it is a parabola. (Tschebycheff function)
(d) Use spectral decomposition (Lect. 21 or Appendix 4.C) to derive square-roots $\mathbf{H}=\sqrt{ } \mathbf{K}$. (How many different square-roots does \mathbf{K} have?) (This is an important part of relating Classical coupled oscillators to Quantum coupled oscillators. See Lect. 22.)

