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Ex.1 The “standard” Lorentzian (Note: Review complex 2-pole potential O(z)=1/z and f(z)=-1/2z2 (10.42) in Unit 1-Ch.10 Fig.10.11.)

In physics literature, a standard Lorentzian function generally means a form Im L(A) =T/ (A2 + Fz) with constant I. In the Near-Resonant
Approximation (NRA is (4.2.18) and (4.2.33)) the L(A) is a low A and I" approximation to exact G-equations (4.2.15). A clear NRA
derivation is given in Lect. 20 p. 49 to 53 and geometries of these NRA are sketched on p. 58 to 68.

(a) Reduce (4.2.15) to NRA [(A—i')=Re L+iIm L =|L|
Indicate what part of these expressions is the standard Lorentzian.

¢ functions of detuning “beat rate” A=ws-wo, decay rate I, and phase lag angle p.

(b) Show that NRA for complex response G=Re G +ilm G gives circular arcs in the complex w=|® |e'*=| ® |e'? =A+iI plane for constant
decay rate I" and variable detuning or beat rate A. How does this circle deviate from what is almost a circle in Fig. 4.2.6? (Consider higher
I" values for which NRA breaks down such as Fig. 4.2.14.) Relate to dipole scalar-® and vector-A potential field values plotted over
coordinate lines for dipole force function f{z)=1/z? discussed in Ch. 10 of Unit 1. (See (10.42) and Fig. 10.11.)

(¢) Do ruler-&-compass construction of NRA versions of the following Lorentz functions in figures below for b=% and for b=%.
Construction is similar to that of IHO elliptical orbits (Unit 1 Fig. 3.6 p. 53 or Lect.7 p.22) in that it involves 90° points of a zig-zags.

Re Gﬂ’o (0,)= % and ImGwO (0,)= (See p. 58-68 of Lect. 20.)
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(d) (Xtra credif)Study the Riemann-Cauchy equations for analytic function G* of A-iI" that relate A and I' partial derivatives of G, and G,
(Recall Unit 1 eq.(10.32) or (better) Lect. 12 p.61) and consider what max our min values result from those derivatives being zero.

Ex.2 Max and min G-values (Part (b-c) involves some derivative algebra!)

Derive equations for the extreme values for the exact Lorentz-Green response functions Gw0 (@,) as asked below.

Compare these to Near-Resonant Approximations (NRA) given in preceding Ex.1.Exact plots by calculator help to check algebraic answers.
(a1) Find values which give maxima for: Re G“’o (ws ), Im G“’O (ws ), and | G‘*’o (ws) | assuming (), is constant and (), varies.

(a2) Find values which give maxima for: Re Gwo (@), Im G“’o (o), and | G“’o (@) ] assuming @, is constant and @, varies.

Do (a1) and (a2) give the same results?
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Ex.3 Coupled oscillation by projection P-operators

Two identical mass M=1kg blocks slide friction-free on a rod and are connected by springs k;=16N-m-! and k>=37N-m-! to ends of a box
and coupled to each other by spring k;2=36N-m-..

(a) Write Lagrangian equations of motion and derive a K-matrix form of them.

(b) Solve for eigenmodes and eigenfrequencies of system and plot their directions on an X,Y-graph. Use spectral decomposition methods
(Lect. 21 p. 36-53 or Appendix 4.C) to derive eigensolution projectors and eigenvectors.

(¢) Given initial conditions (X(0)=1,Y(0)=0,V¢=0), plot the resulting path in the XY-plane. Show it is a parabola.(Zschebycheff function)

(d) Use spectral decomposition (Lect. 21 or Appendix 4.C) to derive square-roots H=\K. (How many different square-roots does K have?)
(This is an important part of relating Classical coupled oscillators to Quantum coupled oscillators. See Lect. 22.)



