Assignment 10 Oct. 31,2017 Exercises due Tue. Nov. 7 Constrained motion theory in Unit 3 Ch.9 and Lect.19

Parabolic Fly-off vs. Spherical Fly-Off

Ex.1. The frictionless constraint problem with mass *m* trapped in a parabolic well is shown to be an anharmonic oscillator in Sec. 3.9. Consider how *m* on a barrier might fall off under gravity $g=10m \cdot s^{-2}$.

(a) Suppose an inverted parabolic road $y=-\frac{1}{2}kx^2$ with *m* starting with near-zero v(0) at x=0 on top. Show whether there are x_{fly} , y_{fly} , and v_{fly} values where the mass *m* would fly off the road. Analyze and discuss.

(b) Do a similar analysis for a particle on a sphere of radius R. Compare to parabolic result of (a).

"Easy as rolling off a log"

Ex.2. A ball of radius *r* and mass m=1kg starting at the top of a fixed log of radius *R* and begins rolling down it. Assuming the sphere rolls without slipping calculate the angle from vertical where it last contacts the log. Give algebraic answers first. Then try R=20cm and r=1cm with $g=10m \cdot s^{-2}$, and then try R=1cm and r=20cm. Compare these answers with each other and with those involving sliding particles in exercise **1(b)**. *Xtra credit:* For a given coefficient μ_s of stiction, find angle Θ_{slid} where rolling ball starts sliding.

Even more scary roller coasters

Ex.3. Sophomore Physics Earth (SPE) subways and scary cycloidal coasters are now rising from their graves (Asssignments 6 and 9) with ghostly problems involving hypo-cycloids and hyper-cycloids (See attached figures).

(a) First review the geometry of the optimal V-subway for a given longitudinal $\Delta\Phi$ separation angle and show to construct it simply by ruler and compass. Describe finding V and "kiss-arcs" for angle $\Delta\Phi=30^{\circ}$, 60° , 90° , and 120° .

(b) Derive a formula for a hypo-cycloid made by a circle of radius *r* rolling inside a circle of radius *R* of an SPE. Attached figures may serve as a guide. Sketch resulting hypo-cycloid over optimal V for angles $\Delta \Phi$ in (b).

(c) Derive the equation motion for the subway that would follow an (r,R)-hypo-cycloid assuming initial and final velocity is zero at both initial and final points. Give simple formula for angular rates $\dot{\theta}$ and $\dot{\phi}$ in terms of fundamental angular frequency ω_{\oplus} of SPE. Compare 1-way travel times $\tau_{\oplus}/2=\pi/\omega_{\oplus}$ to the SPE time of 42*min*.

(*d*) *Extra credit and possible AJP project*. Discuss the dynamics of hyper-cycloidal constraint paths under a repulsive SPE IHO potential such as might result for a very rapidly rotating SPE. Would Coriolis accelerations alter the periods?

