Parabolic Fly-off vs. Spherical Fly-Off

Ex.1. The frictionless constraint problem with mass m trapped in a parabolic well is shown to be an anharmonic oscillator in Sec. 3.9. Consider how m on a barrier might fall off under gravity $g=10 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.
(a) Suppose an inverted parabolic road $y=-\frac{1}{2} k x^{2}$ with m starting with near-zero $v(0)$ at $x=0$ on top. Show whether there are $x_{f l y}, y_{f l y}$, and $v_{f l y}$ values where the mass m would fly off the road. Analyze and discuss.
(b) Do a similar analysis for a particle on a sphere of radius R. Compare to parabolic result of (a).

"Easy as rolling off a log"
Ex.2. A ball of radius r and mass $m=1 \mathrm{~kg}$ starting at the top of a fixed \log of radius R and begins rolling down it.
Assuming the sphere rolls without slipping calculate the angle from vertical where it last contacts the log.
Give algebraic answers first. Then try $R=20 \mathrm{~cm}$ and $r=1 \mathrm{~cm}$ with $g=10 \mathrm{~m} \cdot \mathrm{~s}^{-2}$, and then try $R=1 \mathrm{~cm}$ and $r=20 \mathrm{~cm}$.
Compare these answers with each other and with those involving sliding particles in exercise $\mathbf{1}(\mathbf{b})$.
Xtra credit: For a given coefficient μ_{S} of stiction, find angle $\Theta_{\text {slid }}$ where rolling ball starts sliding.

Even more scary roller coasters

Ex.3. Sophomore Physics Earth (SPE) subways and scary cycloidal coasters are now rising from their graves (Asssignments 6 and 9) with ghostly problems involving hypo-cycloids and hyper-cycloids (See attached figures).
(a) First review the geometry of the optimal V-subway for a given longitudinal $\Delta \Phi$ separation angle and show to construct it simply by ruler and compass. Describe finding V and "kiss-arcs" for angle $\Delta \Phi=30^{\circ}, 60^{\circ}, 90^{\circ}$, and 120°.
(b) Derive a formula for a hypo-cycloid made by a circle of radius r rolling inside a circle of radius R of an SPE. Attached figures may serve as a guide. Sketch resulting hypo-cycloid over optimal V for angles $\Delta \Phi$ in (b).
(c) Derive the equation motion for the subway that would follow an (r, R)-hypo-cycloid assuming initial and final velocity is zero at both initial and final points. Give simple formula for angular rates $\dot{\theta}$ and $\dot{\phi}$ in terms of fundamental angular frequency ω_{\oplus} of SPE. Compare 1-way travel times $\tau_{\oplus} / 2=\pi / \omega_{\oplus}$ to the SPE time of 42 min .
(d) Extra credit and possible AJP project. Discuss the dynamics of hyper-cycloidal constraint paths under a repulsive SPE IHO potential such as might result for a very rapidly rotating SPE.Would Coriolis accelerations alter the periods?

