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Abstract

It is not widely known that crossed laser waves or waveguides produce a Minkowski space-time

coordinate system. Less known is that geometry exposed by such a system can add clarity to the

derivation and development of special relativity and quantum mechanics. Such a combination of

these two pillars of modern physics serves to demystify both in ways that are not available if

either stands alone. When explained in concert, students get clearer and more powerful theory

and more convenient computational tools.

(At current date above, this is undergoing final review and editing)
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I. INTRODUCTION

From about 1918 forward, Albert Einstein became a name associated with genius and

discovery of modern physics particularly with regard to relativity and quantum theory. These

new ideas seemed so startling and beyond previous thought. Many doubted that more than

a handful of scientists could begin to comprehend them. Even now in the 21st century we

find students reactions to courses in special relativity (SR) and quantum mechanics (QM)

contain comments such as (paraphrasing) “Well I didn’t understand all of that but I don’t

think the instructor did either!”

One may ask if all that is mysterious or difficult about SR and QM must exist forever.

More to the point, should the original logic used to discover a new area be its exclusive

pedagogy henceforward? Surely a clarifying change of view point should be welcome to

students of all ages. The Einstein library project provides suggestive paths to search for

clarity. First it reminds us that in spite of great brilliance there is no doubt that Albert

Einstein was human and to err is to be human. Evidence of that in both his personal and

scientific life can help to guide those who follow. A particular mishap involves Einstein’s

interaction with Herman Minkowski, his mathematical physics professor, who scolded him

for being a “lazy dog”. Shortly after Einstein’s annus mirabilis of 1905, Minkowski wrote

to Einstein about graphs he had discovered to help unravel subtleties of SR. Einstein did

not answer. Minkowski published in 1908 but then died in 1909. It is tragic that SR texts

do not fully employ his wonderful geometric aid. The thrust of this article is to rectify this

slight using optical wave grids of Minkowski coordinates that leads to a powerful geometric

and algebraic derivation of fundamentals for both SR and QM wherein they merge into a

single subject. Neither has to stand alone in future curricula, indeed, they should not. Wave

interference is our most precise tool to measure relative distance, time, and velocity. So this

new merged subject is named relawavity (RW).

This article first exposes how plane wave interference in crossed laser beams, a laser cavity,

or Fabry-Perot interferometer makes a Minkowski spacetime lattice out of wave nodes. RW

geometry of this lattice fixes seven oversights inherent to a standard SR approach and leads

to a QM theory derivation.

(1) RW deals with 1st-order effects first, in particular, Doppler shifts. Most treatments

of SR jump to quite tiny and mysterious 2nd-order effects (Lorentz contraction or Einstein

6



time-dilation). The relawavity approach makes it easy to see the latter are just due to the

former and not so mysterious.

(2) RW uses a (υ,cκ)-dispersion-plot of frequency vs wavenumber. It is an oversight

by both Einstein and Minkowski particularly since reciprocal space-time lattice geometry

matches that of Minkowski’s (x,ct) lattice. Students appreciate the idea of a wave-keyboard

or Fourier control-panel for simplifying (x,ct) wave dynamics.

(3) RW deals with the showstopper axiom of constant light speed c. Critical-thinking

students deserve a way to “see c”and clarify what we call Evenson’s RW Axiom: All colors

go c. (After Fig.2)

(4) RW shows quickly how Galileo’s failed velocity addition is replaced by addition of pa-

rameter ρRS (called rapidity), the natural log of Doppler shift ratio (R/S)= υRECEIV ER/υSOURCE .

(After Fig.3)

(5) RW provides a context for the space-proper-time approach to SR that uses the stellar

aberration angle σ as a 1st-order parameter. (Also known as a waveguide k-angle.) (After

Figs.9 - 12)

(6) RW geometry uses phase and group wave properties to map space-time and per-

space-time geometry by each phase and group wave’s period, wavelength, frequency, and

wavenumber dependency on parameters ρ, σ, and β. (β=u/c is the relativity parameter in

Standard SR.) (Table I. displays this all.)

(7) RW wave (υ,cκ)-dependencies then derive quantum relations of Planck (1900), De-

Broglie (1921), Compton and basic QM theory while giving insights into classical or semiclas-

sical mechanics. This lets a student understand more deeply what is behind quantities such

as energy, momentum, Hamiltonian, Lagrangian, action, and mass and lets us distinguish

three kinds of mass. (Figs.18-22)

It is remarkable that so much physics arises from relatively simple steps of geometric logic

based upon a single axiom, namely Evenson’s All colors go c, that virtually proves itself.

(Derivation following Fig.1 and Fig.2 uses linear Doppler effects.) Here laser technology,

unknown until after 1960, now sheds light on SR and QM theory.

Minkowski’s plot geometry starts with Relativity Baseball Diamonds (RBD) in Figs.1, 4,

and 5 that provide a top-down physics-first approach. Thales (600 BCE ) geometric means

then build upon the RBD to derive the circular-hyperbolic Trigonometric Road Maps (TRM)

in Fig.7.
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Most instructors are unaware that TRM dual circular-hyperbolic functions involve a

sextet of circular functions of σ co-equal to a sextet of hyperbolic functions of ρ : sinρ =

tanhρ, tanρ = sinhρ, cosσ = sechρ, secσ = coshρ, and cscσ = cothρ, cotσ = cschρ. Each of

the six pairs define one or more of six SR functions in space-time (x -contraction, t-slowing,

etc.) and one or more of six QM functions in per-space-time (momentum-p, Lagrangian-L,

etc.). An alternative way to do SR uses the σ-sextet.

TRM serve as templates to diagram laser guide modes, Lagrangian or Hamiltonian func-

tions, and transition properties such as Compton recoil effects and scattering geometry

shown by Feynman diagrams in either (x,ct) or (υ,cκ). Web-Based TRM and RGB provide

adjustable or animated plots of varying complexity, a welcome facility for a student who

has completed some hand-drawn examples by ruler & compass. However, one should not

minimize the pedagogical values of tactile exercises.

This first relawavity presentation is simplified by leaving out an important part of quan-

tum mechanics, namely optical polarization and spin mechanics. Such an omission is shared

by the early creators of quantum theory until Jordan, Pauli, Dirac, and others developed

spinor theories for electron spin and orbital mechanics. It should be noted that John Stokes

described a spin vector for light waves in 1863 and in 1843 Hamilton developed quaternion

algebra later related to that of spinors. So electromagnetic waves used in the following devel-

opment are restricted to one plane of polarization with field E normal to beam k-direction

of propagation. This restricts the waveguide modes to the simplest TE (Transverse-Electric)

type. Including full U(2)×U(2) polarization for each wave is a work in progress for a longer

and more complex article.

II. MAPPING SPACE AND TIME USING LIGHTWAVES

Relawavity begins by describing interference of a pair of CW (Continuous Wave) laser

beams of frequency υ=600THz=600·1012Hz=6·1014sec-1 shown colliding head-on in Fig.1a-c.

As is now common in the gedanken-experiments of the modern quantum optics literature,

we imagine points of interest A, B, and C manned or woman-ed by real people Alice, Bob,

and Carla. Alice and Carla aim their beams at Bob who sees their waves add up to a

standing-wave space-time interference pattern as beams collide in Fig.1b.
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FIG. 1: (x,ct)-plot for (a) Alice ΨR, (b) Bob ΨR+ ΨL, (c) Carla ΨL (d) (cκ,υ)-plot of (b)

Light or dark regions in Fig.1a-c are, respectively, crests or troughs of real part (ReΨ)

tracing a dark blue cos-curve that lags behind a cyan (ImΨ) sin-curve by 90◦-phase. Phasor

circles (ReΨ,ImΨ) below Fig.1a-c serve as clocks with ReΨ axis up and ImΨ axis left.

(Ideally, electric field amplitudes E ReΨ should be normal to (x,ct)-plane.) Here, the focus

is on real-zero (ReΨ=0) loci (the white lines in Fig.1a-c). In Fig.1b they form Cartesian

space-time coordinate grids and in Fig.4, Minkowski grids. First, wave variables of space-
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time and their inverse units are reviewed. (These often go missing in US curricula.)

A. Space-time grid units

Each of the upper three plots (Fig.1a-c) has vertical axis-ct time span of c∆t=10/3 fs

(1 femto-sec.=10-15 s.) and horizontal x -axis span of ∆x=1µm (1micron =10-6meter). Two

600THz wave periods of τ600THz=
5
3 fs versus two 600THz wavelengths of λ600THz=

1
2 micron

has a space/time ratio that is a 3-figure round-off value c=3.00·108m/s for speed of light.

∆x/∆t=λ600THz /τ600THz=3.00·108m/s ≃c=2.99792458·108m/s (1)

Ken Evenson’s light speed value c=299,792,458m/s became the international definition of

the meter due in part to his post-lab efforts.

A horizontal space x -axis with a vertical time axis c-scaled to y=ct gives a +45◦ light

wave trajectory y = cx for Alice in Fig.1a and the opposite trajectory y=-cx for Carla’s laser

wave in Fig.1c. The geometric unit for either axis in Fig.1a-c is a half-wavelength 1
2λ600THz=

1
4micron or else a half-period 1

2λ600THz= 5/6 fs. These apply as well to the real-wave-node

grid Bob sees in Fig.1b.

We choose Alice’s frequency υ=600THz=6·1014/s for arithmetic simplicity (Also for its

beautiful Mediterranean blue-green color.) The frequency υ is divisible by c=3.00·108m/s

to give an integral wavenumber κ=υ/c=2·106/m, i.e. 2 million waves per (rounded-off)

meter or 2000 per (rounded-off) millimeter or just 2 per micron. (Note for the record:

Unrounded meter sticks hold 2001.384571 of real 600Tera-Hertz lightwaves in each 1-

millimeter slot.) Fig.1d plots per-time units υ=300THz=3·1014s-1 vs per-space units

κ300THz=υ300THz/c=106m-1 as is discussed next.

B. Per-space-time grid units

We learn physical units like Joule of energy, Newton of force by names of famous physi-

cists. This is not the case for fundamental units of time (second) or distance (meter),

although, after its 1980 metrological redefinition, one might call 1 meter an Evenson.

However, there are some more or less well established proper names for units of per-space-

time. Most well known is the Hertz unit (1 wave per second=1s-1) named after Heinrich
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Hertz (1857-1894), an inventor of radio transmission. Less well known among atomic and

molecular spectroscopists is the Kayser unit of (1 wave per centimeter=1cm -1) named after

Heinrich Kayser (1853-1940) an early solar spectroscopist who was born four years before

Hertz and lived 46 years after him. We owe a lot to these two Heinrichs.

The horizontal axis of the per-space-time plot in Fig.1d is labeled by a Greek-k, that

is, kappa (κ) defined by wavenumber=κ(waves per meter)= 1
λ(meters per wave) . The angu-

lar equivalent k=2πκ used to express phase is defined by wavevector=k=2πκ=(radians)per

meter=2π/λ. The κ or k honor Kayser. Hertz frequency=υ=(waves per second) =1/τ has

angular equivalent ω=2πυ for temporal phase defined by angular frequency=ω=2πυ=(radians)

per second. The letters υ and ω do not honor Hertz like Kayser’s k. Instead, the Greek-n

or nu(υ) (presumably for number) is most used. However, ν in most fonts resembles italic-v

(ν) so we use υ (upsilon) for Hertz’s per-second variable s-1 that gives frequency. (Now,

Hertz might wonder why Greek H or eta (η) was never so employed.)

A c-scaled wavenumber-frequency (υ,cκ)-plot Fig.1d is the reciprocal of the space-time

(x,ct) plot of Fig.1b and both preserve the ±45◦ c-lines for points representing laser CW.

A more detailed (υ,cκ)-plot in Fig.2b underlies Bob and Alice using a Doppler shift in Fig.

2a to show why these c-lines are so special.

C. 1st order relativity: Doppler shifts and Evenson’s c-Axiom

In Fig.2a, as in Fig.1a-b, Alice is providing Bob with a 600THz green CW laser beam,

but she is doing it in a very sneaky (and expensive) way. Imagine she is millions of meters

away in the figures and communicating by a super cell-phone with her laser on a space ship

programmed to detune as she accelerates toward Bob by just enough to maintain a 600THz

reading on Bob’s spectrometer. At the moment shown she has paused her detuning and

acceleration leaving her laser at infrared 300THz and her speed toward Bob at a high rate

(to be calculated later) that blue-shifts 300THz to 600THz.

Supposing Bob’s receiver is a precise atomic frequency υ-meter, Alice asks about wave-

length λ or equivalently wavenumber κ=1/λ that is a very different experiment involving

fitting waves in space ∆x rather than time interval ∆t. We ask, Where on Bob’s 600THz line

..,B,C,D,..in Fig.2b is his κ-reading? Could a B reading of κ=106m-1 happen and somehow

reveal that Alice’s light was a “phony”green born in a 300THz (that is κ=106m-1) infrared
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FIG. 2: (a) Alice sends Bob a 600THz that is an octave blue-shift of 300THz.

(b) Is it a “phony”green? How could Bob tell?

laser? Or maybe a D reading of κ=3·106m-1 of a uv laser?

More to the point: How many kinds of this 600THz green can a spacetime vacuum sup-

port? It is either an infinite number or else just one. If we chose one then the answer here is

C or (κ=2·106m-1) that belongs to Alice’s original green with λ600THz=
1
2 micron=1/κ600THz.

Moreover, such uniqueness must hold for any color (frequency) that Alice sends to Bob: it

has to lie on the 45◦ line through C in Fig.2b.

This forbids waves like B in Fig.2b having speed υ/κ faster than c or slower-than-c ones

like D. It leads to what we will call Evenson’s c-Axiom: All CW colors go c en vacuo. It

is quite a retraction of Galileo’s claim that adding ∆u to your velocity subtracts ∆u from

all that surrounds you. Extra ∆u along or against a CW will, respectively, down-tune (red-

shift) or up-tune (blue-shift) equally both frequency υ and wavenumber κ so as to have zero

effect on ratio υ/κ=c. If CW light colors march in lockstep we can resolve objects billions

of light years away. But, if blue was even .01% slower than red, then it would arrive millions

of years later than red and make a night sky with smears of chromatic aberrations.
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FIG. 3: Rapidity sum of Alice-Bob ρBA and Bob-Carla ρCB gives Alice-Carla ρCA.

1. Doppler arithmetic and rapidity

With frequency precision one can measure relative velocity by Doppler shift ratio (R |S).

(R|S) = υRECEIV ER/υSOURCE υRECEIV ER= (R|S)υSOURCE (2)

If all frequencies go c (Evenson’s axiom) a geometric frequency ratio is independent of

υSOURCE . Not so for arithmetic difference υRS=υRECEIV ER-υSOURCE . Alice must detune

her 2GHZ cell phone to 1GHz, the same factor (R|S)=2 that she detuned her 600THz laser

to 300THz. (Or else, Bob will suspect she isn’t the stay-at-home he had assumed. She also

needs to attenuate her laser amplitude by that same factor as explained later.)

Geometric ratios suggest exponential-and-log-definitions by a variable called rapidity ρRS.

(R|S) = exp(ρRS) ρRS = ln(R|S) = ln(υRECEIV ER) - ln(υSOURCE) (3)

If ratio (R|S) is huge, ln(R|S) aids arithmetic, but the key use of ρRS is to simplify velocity

addition to a Galilean sum. This is developed below following Fig.3. First, note that (R|S)

is a fraction R-over-S in (2a) with source S-denominator always on the right and read like

Hebrew, right-to-left with source first as is the case for a Dirac bra-ket ⟨final| initial⟩.

When υSOURCE exceeds υRECEIV ER that will be a red shift (R|S)<1 with negative ρRS<0

due to R and S moving apart with positive radial velocity (quite like our stars and galaxies

seeming not to like us). On the other hand negative rapidity ρRS means positive radial

relative velocity. The opposite and more positive case (think of Carole and Bob getting

together) involves a blue shift (R|S)>1 and positive ρRS>0 due to R and S moving toward

each other.
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Fig.3 is a view in Bob’s frame with Alice approaching from the left at a high speed

(indicated by slanted cartoon contrails) and Carla departing to the right at a lesser speed

(shorter contrails). Alice’s beam is drawn as a 600THz wave that Bob sees (Recall Fig.2.)

but is redshifted to 400THz according Carla’s receiver. Digital readouts on Alice’s source and

receivers for Bob and Carla remain invariant if drawn for another frame, only appearance

(color) of Alice’s beam varies. Alice sees it as an infrared beam with the 300THz read-out

of her source. Also frame-invariant: Doppler ratio (B|A), (C|B), (C|A) and rapidity ρ(B|A),

ρ(C|B), or ρ(C|A) given by (3b). Bob’s rapidity relative to Alice and Carla is as follows.

ρ(B|A) = ln υB
υA

= ln 600
300 = 0.69(Approaching) , ρ(C|B) = ln υC

υB
= ln 400

600 = − 0.405(Separating)

Rapidity for Bob-relative-to-Alice plus Carla-relative-to-Bob gives Carla-relative-to-Alice.

ρ(B|A)+ρ(C|B) =ln υB
υA

+ln υC
υB

= ln υB
υA

υC
υB

= ln υC
υA

= ln 400
300= 0.69− 0.405 = 0.285 = ρ(C|A)(Approach)

Galileo might be pleased to see his defunct v-sum-rule recover as a ρ-sum-rule. Doppler ρ

is related below to classical v or u. Also effects of time reversal symmetry are used: Source

becomes Receiver and vice versa, Doppler ratio inverts (R|S)→(S|R)=1/(R|S), and relative

rapidity changes sign: ρ(R|S)=-ρ(S|R).

III. SPACE-TIME COORDINATE GRIDS BY WAVE ZEROS

Fig.1b is a sum eiR + eiL of Alice’s right-going wave eiR and Carla’s left-going wave

eiL. In Fig.1a, eiR phase R=kx -ωt goes right:x=ω
k t+R

k . In Fig.1c, eiL phase L=-kx-ωt

goes left: x=-ω
k t-L

k . Vectors R and L represent phases R and L in (cκ,υ)-space of Fig.1d .

R =

⎛

⎝ υ

cκ

⎞

⎠ =

⎛

⎝ 2

2

⎞

⎠ =

⎛

⎝ ω/2π

ck/2π

⎞

⎠ (a) L =

⎛

⎝ υ

−cκ

⎞

⎠ =

⎛

⎝ 2

−2

⎞

⎠ =

⎛

⎝ ω/2π

−ck/2π

⎞

⎠(b) (4)

Fig.1d plot has υ-units of 300THz and wavenumber κ-units of 106 waves per meter. This

matches wave-length λ-units of 1
4micron and period τ -units of 5

3 fs in Fig.1b.

White-line zeros in Fig.1b are found by factoring the plane wave sum eiR + eiL as follows.

Ψsum = eiR + eiL = ei R+L
2

(
ei R−L

2 + e−i R−L
2

)
= ei R+L

2 2 cos R−L
2 = ψphaseψgroup (5a)

= ψphaseψgroup = e−iωt2cos kx where: R=+kx−ωt and: L=−kx−ωt (5b)

Fig.1b plots factored wave sum eiR+eiL . The phase factor Ψphase is x -independent.

ψphase = ei R+L
2 = e−iωt = cos ωt−i sin ωt (5c)
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Ψphase is modulated by a t-independent group envelope factor Ψgroup (green 2-sided cosine).

ψgroup = 2 cos R−L
2 = 2 cos kx (5d)

In (cκ,υ) space (Fig.1d) factors Ψphase and Ψgroup go with vectors P and G, respectively.

P = R+L
2 =

⎛

⎝ υ

0

⎞

⎠ =

⎛

⎝ 2

0

⎞

⎠ =

⎛

⎝
ω
2π

0

⎞

⎠ (5e)

G = R−L
2 =

⎛

⎝ 0

cκ

⎞

⎠ =

⎛

⎝ 0

2

⎞

⎠ =

⎛

⎝ 0

ck
2π

⎞

⎠ (5f)

Real wave zeros (Re ψphaseψgroup =0) trace a square (x,ct) space-time grid in Fig.1b.

0=Reψphase = Reei
R+L

2 =Ree−iωt= cos ωt define horizontal t−lines :t= ± π
2ω ,± 3π

2ω ... (6a)

0=Reψgroup = Reei
R−L

2 =Ree−ikx= cos kx define vertical x−lines :x= ± π
2k ,±3π

2k ... (6b)

The(x,ct) coordinate lines mark half-periods τ
2=π

ω= 1
2υ and half-wavelengths λ

2=π
k = 1

2κ that

lie mid-way between crests (lighter regions) and troughs (darker regions) in Fig.1b. The real

part of each wave snapshot in Fig.1a-c is plotted in dark blue while its imaginary part is

plotted in cyan. The latter always leads by 90◦ in phase. A corporate aphorism Imagination

precedes Reality by one Quarter holds dearly for these waves or for any harmonic oscillation.

Group envelope zeros trace vertical coordinate lines parallel to G in Fig.1b. They have

zero x -velocity of a standing wave. This corresponds to a Group G-vector with zero slope

in the (υ,cκ) plot of Fig.1d. The Phase P-vector in Fig.1d has infinite slope. This indicates

an infinite velocity along the P vector in (x,ct) plot Fig.1b for ReΨphase zeros that happen

every 1
2 -period. Bob sees two “instantons” zip by in each period of τphase=

5
310

−15s=5
3fs due

to the colliding 600THz waves provided by Alice and Carla.

Bob’s (υ,cκ) plot in Fig.1d is what we call a Relawavity Baseball-Diamond (RBD). Origin

is home-plate, the R-vector is the 1st-baseline, the L-vector is the 3rd-baseline, R+L points

to 2nd-base. Phase P points to Pitcher’s mound. Group G points to a Grandstand.

G and P vectors of reciprocal spacetime (υ,cκ) Fig.1d trade positions in Bob’s spacetime

(x,ct) plot of Fig.1b. Zero group wave velocity is indicated by a vertical vector G. Its length

is period τ . Phase wave velocity (∞ here) is indicated by a horizontal vector P whose length

is wavelength λ. Together, G and P define a 2-by-2 square with 2 wave crests and 2 wave

troughs in each space-time lattice unit cell.
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A. Wave zeros trace Minkowski lattices

Bob sees warped cells if Alice and Carla have velocity u relative to him or equivalently if

he has velocity -u relative to them. Resulting Doppler effects are diagrammed in Fig.4.

FIG. 4: (x,ct) wave plots (a) Alice’s R′-CW (b) Bob’s Group G′ over Phase P′

(c) Carla’s L′-CW (d)(cκ,υ) plots of P′ over G′

Bob sees Alice’s υA=600THz laser beam blue-shifted due to her speed (derived later)

toward him. So a vector that Bob plots in Fig.4d for Alice is her original vector R = υA

(
1
+1

)

doubled in length by the blue shift to R′ = (B |A)υA

(
1
+1

)
= υA

(
2
+2

)
along the 1st-base line

(45◦). Her waves run head-on into Carla’s υC=600THz beam that Bob sees red-shifted

by (B |C) = e−ρBC = 1
2 due to Carla’s speed away from Bob. So her original vector

L = υA

(
1
−1

)
is halved in length to L′ = rBCυA

(
1
−1

)
= υA

( 1
2

−1
2

)
along 3rd-base line (-45◦).

Here Evenson’s axiom confines 1-CW light to the 1st-base line for positive κ and to the
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3rd-base line for negative κ. (Baseball rule: A 1-CW must run in its baseline!)

Alice’s right-going vector R (Bob’s view R′) and Carla’s left-going vector L (Bob’s view

L′) enter a half-sum P= 1
2(R+L) in(5e). Bob’s view is:P′= 1

2(R
′+L′) for the phase factor.

P′ =

⎛

⎝ υ′
phase

cκ′
phase

⎞

⎠= 1
2(R

′ + L′)=υA

⎛

⎝
1
2 (eρ + e−ρ)

1
2 (eρ − e−ρ)

⎞

⎠=υA

⎛

⎝ cosh ρ

sinh ρ

⎞

⎠ = υA

⎛

⎝
5
4

3
4

⎞

⎠
Bob′s
V iew

or :υA

⎛

⎝ 1

0

⎞

⎠
Alice′s
V iew

(7a)

Group wave factor of (5f) belongs to G= 1
2 (R−L) Bob’s view of G is G′ = 1

2 (R′ − L′).

G′ =

⎛

⎝ υ′
group

cκ′
group

⎞

⎠= 1
2 (R′ − L′)=υA

⎛

⎝
1
2 (eρ − e−ρ)

1
2 (eρ + e−ρ)

⎞

⎠= υA

⎛

⎝ sinh ρ

cosh ρ

⎞

⎠ = υA

⎛

⎝
3
4

5
4

⎞

⎠
Bob′s
V iew

or :υA

⎛

⎝ 0

1

⎞

⎠
Alice′s
V iew

(7b)

Slope of Bob’s group vector G′ in (cκ,υ)-plot of Fig.4d is group wave velocity in c-units.

V group

c
=

υ′
group

cκ′
group

=
sinh ρ

cosh ρ
= tanh ρ =

3
4
5
4

=
3

5
≡ u

c
≡ β (8a)

This is the speed u
c = 3

5 of Alice and Carla’s group or envelope wave in Bob’s space-time

plot of Fig. 4b. u/c is the conventional relativity parameter β ≡ u
c for velocity of Alice and

Carla relative to Bob. For Alice or Carla this group wave is a standing wave held by their

laser cavities. Fig.4b also shows a much faster phase or carrier wave that Bob would (if he

could!) record going 5
3 faster than light, always the inverse of the group wave speed..

V phase

c
=

υ′
phase

cκ′
phase

=
cosh ρ

sinh ρ
= coth ρ =

5
4
3
4

=
5

3
≡ c

u
≡ 1

β
(8b)

Noted before in Fig.1b were “instantons” seen by Bob to have infinite phase velocity. Bob

sees a slower phase velocity (8b) in Fig.4b. Close examination of Fig.4b or Fig.5b reveals

several phase-zero white lines intersecting the dark blue wave curves near the top of the

figure at which point they are going at the super-luminal speed of u
c = 5

3 (P′ slope is 5
3 off

of the x ′-axis in Fig.5b as P′ slope is 5
3 off of the cκ′-axis in reciprocal space of Fig.4d or

Fig.5a. (Per-space-time (P′,G′) vectors invert into (G′,P′) vectors in space-time.)

Fig.5a details Bob’s (cκ,υ)-plot of Fig.4d. Fig.5b details Bob’s (x,ct)=(λ,cτ)-plot in

Fig.4b. The (cκ,υ)-coordinates (7a) of P′ are cκphase = c/λphase and υphase = 1/τphase

and (cκ,υ)-coordinates (7b) of G′ give cκgroup = c/λgroup and υgroup = 1/τgroup in Alice

units that are υA=600THz in Fig.5a. In Fig.5b her x -units and ct-units are 1
2 micron:

υA=(0.5·10−6m). The interval between successive intercepts of P′-lines (or G′-lines) with

Bob’s space x ′-axis is half-wavelength 1
2λphase (or 1

2λgroup). Corresponding intercepts with
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FIG. 5: Relawavity parameters given as ρ-functions as they appear in (a) Per-space-time

and (b) Space-time

time ct′-axis is half-period 1
2τphase (or 1

2τgroup). These eight quantities, two wave velocities

(Vphase and Vgroup) and two Doppler shifts (e+ρ and e−ρ) appear in eight columns of Table I

showing their dependence on rapidity ρ, stellar aberration σ (defined below), and the old-

fashioned relativity parameter β=u
c . Numerical values are in the last row for the case β=u

c =
3
5

for examples done so far. The number in 1st column( 1
2=0.5) inverts in 8th column( 2

1=2.0),

2nd column( 3
5=0.6) inverts in the 7th(5

3 =1.67), and so forth.

B. Spatial and temporal wave-warping at warp-speed 3c/5

In Table I six coefficients (excluding Doppler exponentials e±ρ) give shrinkage or expan-

sion ratios seen by Bob to affect Alice’s spatial and temporal geometry. The first two, tanhρ

and sinhρ, are (like Doppler) 1st-order in rapidity ρ and first observable at terrestrial speeds

u ≪ c where both (and ρ) approximate the old-fashioned relativity parameter β = u/c. As

derived in (8a) tanhρ is exactly equal to β.
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TABLE I: Relawavity variables and dependency on rapidity ρ, stellar angle σ, and velocity

u=βc (for β=3
5)

β ≡ u

c
= tanh ρ −−→

u≪c
ρ or :β (9a)

υgroup

υA
= sinh ρ =

1√
β−2 − 1

=
β√

1 − β2
−−→
u≪c

β or :ρ (9b)

These two order-1 coefficients describe the biggest relativistic effects. First, is relative

velocity itself that is slope tanhρ. It is wave group velocity Vgroup=c tanhρ and slope of

Alice’s time ct-axis (x=0.)versus Bob’s ct ′-axis. Second, sinhρ gives slope tanhρ= of Alice’s

space x -axis in Fig. 5b (that is: ct=0 ) versus Bob’s x ′-axis (that he calls ct′=0). This past-

future asynchrony lets Bob see into Alice’s past (t<0) as he waits for her to pass his origin

(x ′=0), and to see into her future (t>0) after she passes. Now the next two coefficients,

sechρ and coshρ, are order-2 effects and tiny at normal speeds, but Table I is not normal.

(At speed needed for eρ=2 we circle Earth in a 1
4 -second.) These are ratios for Lorentz

length-contraction and Einstein time-dilation that sophomore students learn.

λgroup

λA
= sechρ =

√
1 − β2

∣∣∣
u
c =β= 3

5

=
4

5
= 0.8 (10a)

υphase

υA
= cosh ρ =

1√
1 − β2

∣∣∣∣∣
u
c =β= 3

5

=
5

4
= 1.25 (10b)
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λgroup in Fig.5b lies between two speed grid lines, one along G′ and the other just hitting

the tip of phase P′ vector after crossing Bob’s x ′-axis at x ′=4/5. That shows an 80%

contraction from unit distance (λA=λ600THz=
1
2micron) down to 2

5micron=0.4µm. (We ignore

1
2 -wave nodal lines and measure the full wavelength λ.)

A critically thinking student may ask if the 80% “squish”of the 0.5µm group light wave

down to 0.4µm would also apply to its 0.5µm Invar-steel optical cavity. Indeed, the cavity

must also “squish” by exactly 80% in order to maintain resonance!. Here Relawavity gets

serious as it seems that everything obeys such wave mechanical rules of distortion. This

leads to derivation of quantum wave mechanical rules. There QM phase frequency turns out

to be astronomically high. (Yet, the ratios of Table I apply to all frequencies.)

Remaining wave dimensions λphase and τgroup vary as cschρ from infinity at ρ=0 to finite

values as ρ→∞. Recall the Alice-Carla standing wave phase has infinite wavelength while

its group has infinite period. The Einstein time dilation (10b) is better stated as time

slowing experienced by moving Alice as Bob compares his reading of phase frequency to her

υA=600THz laser or else his reading of wave time period to her τA=5
3 fs. Along the vertical

axis of Fig. 5b, cτphase is marked-down by 4/5 so Bob sees an 80% period-contraction. That

is a 125%=5/4 frequency increase relative to what Alice sees. It is indicated by υphase-

coordinate 1.25 of P′-vector in Fig. 5a or 750THz.

Another way to mark time-slowing uses the tip of vector G′ in space-time plot Fig.5b

where Bob sees Alice passing her unit (ctA=1.0) time line just as she also passes Bob’s 5/4-

line (ct ′=1.25). So Bob says she ticks 4/5 slower than he does using either space-time and

per-space-time views. If Bob arranges to provide a 2-laser grid surrounding Alice, then she

observes Lorentz contraction, (P,G) inclination, and phase slowing, similar to Fig.5 only

now with Bob’s velocity to the left. So both Bob and Alice claim the other has lagging

clocks and shriveled meter sticks. This lovers’-quarrel is made less paradoxical by replacing

“clocks” and “meter-sticks” by light wave geometry. Then it is no more paradoxical than

both seeing the same shriveled (red) Doppler frequency shift e−|ρ| of the other’s laser when

moving apart (ρ > 0) or the same positive blue shift e+|ρ| when approaching (ρ < 0).
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C. Thales mean geometry and hyperbolic trigonometry

A re-analysis of Alice-Bob-Carla laser thought experiment is instructive. Suppose again

Bob detects counter-propagating laser beams of frequency ωR going left-to-right (due to

Alice’s laser) and ωL going right-to-left (due to Carla’s laser). Two questions arise:

(1.) To what velocity uE must Bob accelerate so he sees beams with equal frequency ωE?

(2.) What is that frequency ωE?

Query (1.) has Jeopardy style answer-by-question: What group velocity does Bob see?

uE = Vgroup =
ωgroup

kgroup
=

ωR − ωL

kR − kL
= c

ωR − ωL

ωR + ωL
where :ωR=ckR, and ωL=−ckL (11)

Query (2.) similarly: What ωE is blue-shift bωL of ωL and red-shift ωR/b of ωR?

ωE = bωL = ωR/b ⇒ b =
√

ωR/ωL ⇒ ωE =
√

ωR · ωL (12)

Vgroup/c is ratio of difference-mean ωgroup = ωR−ωL
2 to arithmetic-mean ωphase = ωR+ωL

2 .

Frequency ωE=B is the geometric mean
√

ωR · ωL of left and right-moving frequencies defin-

ing the geometry in Fig.6 as detailed in Fig.6a. Line sum of ωL = ωEe−ρ and ωR = ωEe+ρ is

bisected at center C of a circle connecting shifted phase vector P′ to its
√

ωR · ωL original P

(Pitcher’s mound) at the geometric mean point for Alice’s base frequency of B=υA=600THz.

(Fig.6 units are 300 THz.).

We construct points P′, P′′, P′′′,... on a hyperbola in Fig.6b that all frames use to mark

their 600 THz tic. Geometry begins by choosing to prick a C ′-point ck′ with compass needle.

Then compass pencil is set to point-P, and p-Circle arc P′P is drawn to locate hyperbola

point ω′(k′) over C ′-point ck′. (Arc is optional if vertical graph grid fixes P′C′ line.) Group

hyperbola points G′, G′′, G′′′,... are made similarly.

1. Trigonometric Road Maps (TRM)

The preceding top-down relativity development (physics before math) is paused to com-

pare a bottom-up approach. It begins with geometry and trigonometry of both hyperbola

and circle. (In this it matches 1st year physics students reviewing sines and cosines but in
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FIG. 6: (a) Thales-Euclid geometric, difference, and arithmetic means (b) Hyperbola

construction step by circle radius CP’

an unusual way.) As it turns out, it is easier to do algebra of hyperbolic functions before
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circular ones and the two have identical geometric “road-maps”(connection diagrams) shown

in Fig.7. This displays all functions in Table I as fractions made of sides of inter-lapped

3:4:5 triangles as per Doppler shift eρ = 2 or rapidity ρ = ln2 = 0.6931.

FIG. 7: (a) Circular functions of total sector area σ.

(b) Hyperbolic functions of total hyper-sector area ρ.

Instead of angles, both figures vary with diameter-swept area σ for the circle in Fig.7a

and ρ for the hyperbola in Fig.7b. The circle’s σ is the usual angle in radians. (Unit radius

sweeps π of arc while diameter sweeps up π of area.) The hyperbola has no arc-radian

equivalent but counts diameter-swept area ρ as diametrically-opposite ends follow points on

opposite branches. Unit radii (B=1) are assumed. To compare the basic TRM of Fig.7b

to Fig.6 some tangent lines and their intercepts are added to give Fig.8 below. This also

has points labeled as they are in Fig.6. In particular there is the Right-Doppler k-point

R, the Left-Doppler k-point L, and the phase point P in between, and all three lie on a

tangent line to hyperbola at P that intersects the horizontal axis at IP . A similar tangent

line thru R and group tangent point G to below where it intercepts vertical axis at IG. The

slopes of these lines are respectively, tanhρ and cothρ , the group velocity and phase velocity

functions in Table I, an interesting case where derivative dω
dk at P is exactly equal to discrete

difference ∆ω
∆k = ωR−ωL

kR−kL
.
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Of particular interest is the B-circle tangent line contact point S where the d-circle of

radius Bsinhρ (the difference-mean) is tangent to a circle of radius Bcschρ. That tangent

line slope (-sinhρ) also equals (-tanσ) by Table I and so is normal to stellar aberration radius

OS at angle σ to the vertical. The rapidity parameter ρ involves light moving longitudinally

or parallel to direction of relative velocity u=c tanhρ. Stellar aberration angle σ is between

light beam and a normal to direction of relative velocity u=c sinσ and leads to a transverse

view of relativity pioneered by Epstein. Details of this approach are in following sections.

In Fig.8 hyperbolic functions define points (x,y)=(sinhρ, coshρ) on unit hyperbola

y2=±12+x2 in analogy to points (x,y)=(sinσ, cosσ) on unit circle y2=±12-x2 . Here (x,y)

is space-time (x,ct) of Fig. 5b or per-space-time (ck,ω)=2π(cκ,) in Fig. 5a. There P and

G hyperbola belong to various radii B0=ω0=ck 0. A P-hyperbola exists for each proper

frequency ω0 and a G-hyperbola for proper-k0-vector k0=ω0/c.

In space-time Fig.5b a G-hyperbola exists for each proper time τ0 and a P-hyperbola

exists for each proper-distance x0=cτ0. It is important to relate and yet distinguish the per-

space-time hyperbolas ω(k) that are ω0-dispersion functions from the space-time invariant

hyperbolas that track proper x0 and τ0 grid-tics for any relative velocity.

ω(k) = ±
√

ω2
0 + c2k2 ω(P) − dispersion (a) x = ±

√
x2

0 + c2t2 (b) (13)

Proper time τ0 is an object’s “own-time” or age. By zooming about we don’t age as much!

(See Fig.10 in the following sub-section.) Entering gravity fields slows aging proportionally.

(Still a bit of a mystery.) Similarly, proper distance is an object’s own dimension or size.

As noted before this becomes reduced (Lorentz-contracted) by relative motion

D. Space-proper-time plots and stellar-aberration angle

Lewis C. Epstein1 developed a novel approach to space-time relativity that uses the

transverse stellar aberration angle σ to define relative velocity by u =c sinσ as sketched in

Fig. 9. It is an alternative to longitudinal form u =c tanhρ in terms of rapidity ρ in Doppler

factor eρ that was derived in (8a). Epstein’s alternative to Minkowski-(x,ct)-plots involves

choosing between proper-time definitions (2a). Instead of the hyperbolic form he picks the

Cartesian Pythagorean form:

(cτ)2 = (ct′)2 − (x′)2 ⇒ (cτ)2 + (x′)2 = (ct′)2 (14)
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FIG. 8: More detailed TRM expanding hyperbolic labeling of Fig. 6 to include tangent

lines.

A Pythagorean geometry for space-proper-time or (x,cτ)-plots is shown by Fig.10. There

it is imagined all things travel at light-speed c including a stationary object (x′= 0) that

“moves” parallel to the (cτ)-axis at light speed c. The moving object P is indicated by a

vector (ct′) that is inclined at aberration angle σ and also grows at rate c as given by (14) with

(x′ = u · t′). Then circular σ-functions describe the time dilation (secσ), length contraction

(cosσ), and time asynchrony (sinσ) that were previously given in terms of hyperbolic ρ-
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FIG. 9: Stellar aberration angle σ of light beam normal to direction of velocity u.

functions (coshρ), (sechρ), and (sinhρ) in (9) and (10). Epstein plots are better for analyzing

twin-paradox scenarios. Note how proper time cτ drops to zero as u nears c. (Light cannot

age!) (x,cτ)-plots are poorer at plotting space-time events or collisions between flying objects

or light beams. Such tasks are done better on Minkowski (x,ct) plots.

Fig.11 further connects the TRM of Fig.8 to earlier geometry in Fig.4 thru Fig.6 by

drawing together all hyperbolas, circles, and connecting tangents. This includes a clear

construction of the stellar aberration ray and the corresponding k-vector at stellar angle σ

it attains in TE waveguide of Fig.12 where the wavefront C′SY is normal to k.

Prime phase point P′ in Fig.11 at (υ, cκ)=B(sinhρ,coshρ) is on Alice’s υA-axis OP′ of

slope cothρ. P′ is a hyperbolic tangent point for line LP′R of slope tanhρ=LL′

RL′ with axis

intercepts equal to |QO|=Bcschρ and |AO|=Bsechρ. P′Q parallels G′ line of group cκA-

axis. Prime stellar point S′ at coordinates (υ, cκ)=B(sechρ,tanhρ) defines stellar ray OSk

of slope cschρ . S is b-circle tangent point for line C′SY of slope -sinhρ =-A′S
AS with axis

intercepts |C′O|=Bcoshρ and |OY|=Bcothρ. ρ-functions relate to σ-functions in Table I.

Applications that follow use a pattern-recognition aid labeled Occam’s Sword in Fig.
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FIG. 10: Epstein space-proper-cτ geometry of relativistic effects in terms of ρ or σ.

FIG. 11: Bob-(υ′,cκ′)-view of Alice-(υA,cκA) tangent geometry and (inset) Occam-Sword

pattern relates σ, ρ, and υ angles.

11(inset). It focuses on geometry of (sin!tan) and (cos!sec) columns of Table I. The

(cot!csc) intercepts are outliers for low u/c values and lie at ±∞ for ρ = 0 = σ.
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The sword has staircase steps following a (coshρ)n-geometric series: (Bcoshρ,B,Bsechρ,...).

Multiplying series by tanhρ gives line (|C′P′|=Bsinhρ), then line(|PB|=Btanhρ), and lowest

step (|AB′|=Btanhρ sechρ). Steps subtend a triple-cross-X -point of tangents C′XS, AXP′,

and b-baseline PXB. Extensions of the tangents have κ-axis (cot!csc)-intercepts on either

side of the sword in Fig.11. Compare Fig.11 to TRM of Fig. 8. The sword’s leading k -edge

defines wavevectors for TE-waveguides so them are easier to visualize as shown below.

1. TE-Waveguide geometry

Consider a sum of plane waves with wave-vectors k(+)=(ksinσ,+kcosσ)=(kx,ky) pointing

up in Fig.12a and k(-)=(ksinσ,-kcosσ)=(kx, ky) pointing down, each an angle ±σ relative

to the y-axis in Fig.12.

Ez(r, t) = ei(k(+)·r−ω·t) + ei(k(−)·r−ω·t) = ei(kx·x−ω·t)[eiky ·y + e−iky ·y] (15)

The result in xy-plane is a Transverse-Electric-(TE)-mode E-field with plane-normal z -

component Ez that vanishes on metallic floor and ceiling (y=±Y/2) of the waveguide.

Ez(r, t) = ei(k·x sin σ−ω·t)2 cos(ky cos σ)|y=Y
2

= 0 implies : k
Y

2
cos σ = n

π

2
(16)

Fig.12 shows two cases of lowest (n=1 ) guide modes with Occam-sword geometry. Pro-

jection Y cosσ of floor-to-ceiling Y onto k(±)-vectors is shown by right triangles at guide

ends (16) to be half-wave π
k = λ

2 . Waveguide angle σ and dispersion function υ(κ) follows.

υ = cκ = c
√

κ2
x + κ2

y = c
√

κ2
x + κ2cos2σ =

√
c2κ2

x + (
c

2Y
)
2

=
√

c2κ2
x + υ2

A (17)

Surprising insight into Fig.12 waves results if we note it is what Bob sees if Alice and

Carla point their υA = 600THz 2-CW beam across Bob’s x -line of motion at angle σ to y

and not along x as in Fig. 4b. Bob can Doppler shift his wave-number κxx and angle σ to

zero and reduce frequency υ in (17) to υ = υA. Then Bob will be co-moving with Alice and

Carla and see Alice’s k(+)-vector at zero aberration angle (σ = 0) if she is below Fig.12

beaming straight up the y-axis. Meanwhile, Carla’s k(-)-vector points straight down. For

(σ = 0) the wave given by (16) is a y-standing wave of wavelength λA=2Y between Alice

and Carla, not just a half-wave section (Y = λ
2 ) of a lowest mode of this xy-wave guide.

Ideally Alice and Carla’s laser mode viewed along y looks like their x -standing wave in

Fig.4b or Fig.5b and appears the same over its x -beam-width by having zero x -wave number
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(κx = κAsinσ = 0 ). Zero-κx or infinite x -wavelength (λx = λAcscσ = ∞) is a flat-line wave

parallel to the x -axis oscillating at Alice’s (or Carla’s) 600THz frequency υA.

FIG. 12: TE-Waveguide and Occam sword angle (a-b) σ = 60◦ and (c-d) σ = 30◦.

This x -flat wave is better known in wave guide theory as a cut-off-frequency mode where

the cut-off-frequency υCUTOFF = c
2Y = υA is the lower bound to frequency that can enter

a waveguide of width Y. In Fig. 12b it corresponds to dispersion function bottom point

B (or P) that is well separated from its phase point P′ in the upper right of the figure.

That separation |OC|=Bsinhρ =Btanσ gives a mode in Fig.12a that is more robust than

the near-cutoff mode in Fig.12c having less |OC| and a more nearly vertical k -vector in Fig.

12c-d. The tanσ-column of Table I represents the phase wave-number ratio κphase /κA of

Bob’s κphase to κA that Alice and Carla claim is their output. Later it is shown that |OC|

= κx is mode wave momentum while vertical interval |CP′|=Bcoshρ =B secσ = υphase or

phase frequency ratio υphase/υA in Table I correspond to mode carrier wave energy. These

determine wave robustness and phase velocity Vphase/c is equal to their ratio υphase/κphase =

λphase/τphase. The importance of waveguide phase or carrier behavior is matched by that of

group or signal wave dynamics. Each has six of twelve variables listed in Table I. Matching

phase velocity Vphase/c = cothρ = cscσ is reciprocal to Vgroup/c = tanhρ = sinσ.
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Both are indicated by arrow lengths at the base of Occam Sword plots in Fig.12b or

Fig.12d. The latter has Vgroup much lower than Vphase while the former has both closing

in on light speed c. Group velocity Vgroup equals projection c sinσ of ck̂-vector onto the

waveguide x -axis. One may imagine a signal bouncing off guide floor or ceiling riding on

the k-vectors normal to phase wavefronts moving at speed c along k(+) or k(-) in Fig.12a

or Fig.12c. So a signal wastes time bouncing around the guide x -axis while the phase

crests proceed via a greater speed c cscσ. A signal may be imagined as an extra wrinkle

in symmetry of identical wave crests due to lately added Fourier components limited by

envelope group velocity. Meanwhile an established underlying phase maintains Evenson’s

c-lock-step. Per-space-time (υ,cκx) geometry of Fig.12b or Fig.12d rules that of space-space

(x,y) in Fig.12a or Fig.12c.

E. Unbalanced optical amplitudes

What has been deduced so far has ignored the amplitude or quantity of light waves and

concentrated mostly on their quality as described by phase parameters such as angular

frequency ω and wave vector k. The Evenson 1-CW phase axiom (All colors go c.) leads

to Bob vs Alice-Carla transformation (7a) and (7b) while 2-CW amplitudes in (5) are not

defined beyond assuming that head-on 1-CW component amplitudes match. White-line

standing wave grid reference frames in Fig.1b and Fig.4b are just points where amplitudes

are zero, that is, loci of real wave function roots.

Discussion of asymmetric amplitudes begins with counter-propagating 2-CW dynamics

of two 1-CW amplitudes AR and AL that may be unmatched. (AR ̸= AL)

ARei(kRx−ωRt)+ALei(kLx−ωLt) = ei(kΣx−ωΣt)[ARei(k∆x−ω∆t)+ALe−i(k∆x−ω∆t)] (18)

This uses half-sum(or half-difference) k -vector kΣ (or k∆) and frequency ωΣ (or ω∆).

kΣ= (kR + kL)/2, k∆= (kR− kL)/2, ωΣ= (ωR + ωL)/2, ω∆= (ωR− ωL)/2.

Ratio of 1
2 -sum AΣ=(AR +AL)/2 and 1

2 -difference A∆=(AR − AL)/2 is Standing-Wave-

Ratio SWR or (inverse) Standing-Wave-Quotient SWQ that relate to real-wave velocity.

SWR =
AR − AL

AR + AL
, SWQ =

AR + AL

AR − AL
. (19)
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Frequency ratio (11) defining group velocity Vgroup is analogous to SWR and Vphase to SWQ.

Vgroup = c
ω∆

k∆
= c

ωR − ωL

ωR + ωL
, Vphase = c

ωΣ

kΣ
= c

ωR + ωL

ωR − ωL
. (20)

A 2-state amplitude continuum is bounded by a pure right-moving 1-CW (AR =1, AL =0)

of SWR=1 and a left-moving 1-CW (AR = 0, AL =1) of SWR=-1. Midway between is

the normalized 2-CW standing-wave having SWR=0.(AR= 1√
2=AL) Wave paths for other

SWR values are drawn in Fig.13.1a-e for 600THz 2-CW pairs and in Fig.13.2a-e for Doppler

shifted 300THz and 1200THz 2-CW pairs at the same SWR values. The SWQ is the ratio of

the envelope peak (interference maximum) to the envelope valley (interference minimum),

and vice versa for SWR=1/SWQ.

1. Wave galloping speed bounded by SWR

Single frequency 2-CW paths of nonzero-SWR in Fig.13.1 do a galloping motion (derived

below) while dichromatic 2-CW in Fig.13.2d-e have zero paths that follow Feynman-Wheeler

time switchbacks. Waves in Fig.13.1b speed up to a peak speed of c/SWR=5c as it shrinks

to squeeze through its envelope minima and then slows to minimum speed cSWR=c/5 as

it expands to its maximum amplitude. Only at zero-SWR do 2-CW zero-paths appear to

travel at a constant group speed (20a) and phase speed (20b) as in Fig.13.1c and in Fig.13.2c.

For SWR=1 or SWR=-1 there is just a single wave and one speed ±c following Evenson’s

axiom. Real and imaginary parts take turns. One gallops while the other rests and this

occurs twice each optical period.

Galloping is a fundamental interference property that may be clarified by analogy with

elliptic orbits of isotropic 2D-harmonic oscillators and in particular with elliptic polarization

of optical wave amplitudes. Fig.14 relates polarization states to wave states of Fig.13.1

beginning with left (right)-circular polarization that is analogous to a left (right)-moving

wave in Fig.14g (Fig.14a). As sketched in Fig.14(b-e), galloping waves are general cases

analogous to states of elliptic polarization or general 2D-HO orbits obeying a Keplerian

geometry shown in Fig.14h. Standing waves correspond to plane-polarization. Polarization

in x -plane of Fig.14d corresponds to a standing cosine wave. y-plane polarization (not

shown) corresponds to a standing sine wave.

Isotropic oscillator orbits obey Kepler’s law of constant orbital momentum. Orbit angular
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FIG. 13: 2-CW (x,ct)-paths for −3
5 "SWR" 3

5 (1a-e) Single-frequency (2a-e) 2-frequency.
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FIG. 14: 2-CW (x,ct)-paths for −3
5 "SWR" 3

5 (1a-e) Single-frequency (2a-e) 2-frequency.
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velocity slows down by a factor b/a at the aphelion a and then speeds up by a factor a/b

at the perihelion b just as a galloping wave, twice in each period, slows down to SWRc and

speeds up to SWQc. Galloping motion of the eccentric anomaly angle φ(t) in Fig.14h is a

projection of a uniformly rotating mean anomaly (phase angle ωt) of the isotropic oscillator

that relates these two angles.

tan φ(t) =
b

a
tan(ωt) (21)

Eccentric anomaly t-derivative gallops between ω b
a and ω a

b .

φ̇ =
dφ

dt
= ω

b

a

sec2ω t

sec2φ
=

ω b
a

cos2ω t + ( b
a)

2 · sin2ω t
=

⎧
⎨

⎩
ω b

a for:ω t = 0,π, 2π...

ω a
b for:ω t = π/2, 3π/2, ...

(22)

Angular moment r2 times φ̇ is proportional to orbital momentum and orbit ellipse area πab.

r2dφ

dt
= constant = (a2cos2ω t + b2 · sin2ω t)

dφ

dt
= ω · ab (23)

A monochromatic (ωR = ω0 =ωL) wave (18) can gallop like (22) with SWQ=a
b>1 in (19).

0 = ReΨ (x, t) = ReARei(k0x−ω0t) + ReALei(−k0x−ω0t) where: ωR=ω0= ωL =ckR=−ckL

This real-zero relation factors: (A→+A←)[cos k0x cos ω0t]=− (A→−A←)[sin k0x sin ω0t]. So

space k0x varies with time ω0t quite like eccentric anomaly φ(t) varies in (21) or (22).

tan k0x = −SWQ · cot ω0t = SWQ · tan ω0t̄ where : ω0t̄ = ω0t − π/2

dx

dt
= c·SWQ

sec2ω0t̄

sec2k0x
=

c·SWQ

cos2ω0t̄ + SWQ2·sin2ω0t̄
=

⎧
⎨

⎩
c·SWQ for: t̄ = 0,π, 2π...

c·SWR for: t̄ =π
2 , 3π

2 , ...
(24)

Single frequency 2-CW paths in Fig.13.1 have a constant product (23) of wave velocity and

wave amplitude analogous to constant product of orbital velocity and radius. Dichromatic

paths in Fig.13.2 are analogous to aniostropic 2D oscillators with varying (23). Fig.13.2d

wave-zero paths follow Feynman-Wheeler time switchbacks where pairs of zeros with slopes

of opposite sign are created then annihilated later by neighboring zeros. So optical amplitude

and phase motion obey strange versions of 14th century Keplerian geometry rules. It may

surprise some the extent to which such ancient rules underlie basic wave physics and quantum

wave dynamics that are described next.
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IV. RELAWAVITY GIVES QUANTUM MECHANICS OF MATTER

Since the last century, fundamental developments of quantum mechanics have relied on

concepts from advanced classical mechanics of Lagrange, Hamilton, Legendre, Jacobi, and

Poincare that were developed mostly in the preceding(19 th) century. The latter contain a

formidable web of formalism using ecclesiastical terms such as canonical that once implied

higher levels of truthiness, but for modern physics students, they mean not so much.

Below is a simpler approach that connects wave geometry of Sec.II B to 16th through 18th

century mechanics of Galileo, Kepler, and Newton and then derives mechanics fundamentals

for the 20th and 21st centuries. It also clarifies some 19th century concepts that are often

explained poorly or not at all. This includes Legendre contact transformations, canonical

momentum, Poincare invariant action, and Hamilton-Jacobi equations. Understanding of

these difficult classical ideas and connections is helped by the geometry of relawavity.

2-CW geometry of Fig.11 has hyperbolic coordinates of phase frequency υphase=Bcoshρ

and c-scaled wave number cκphase =Bsinhρ with slope equal to group velocity Vgroup/c =

u/c = tanhρ. Each depends on rapidity ρ that approaches u/c for Newtonian speeds u≪c.

υphase = B cosh ρ ≈ B + 1
2Bρ2 (for u ≪ c)

cκphase = B sinh ρ ≈ Bρ (for u ≪ c)

u/c = tanh ρ ≈ ρ (for u ≪ c)

(25)

At these low speeds κphase and υphase are functions of group velocity u=cρ or u2=c2ρ2.

The hyperbolic base coefficient B has frequency units (1Hz =1s−1) of υphase and cκphase so

the same scale factor B/c2 multiplies both u2 and u.

υphase ≈ B + 1
2 [B/c2]u2 ⇐ for(u ≪ c) ⇒ κphase ≈ [B/c2] u (26)

From freshman physics is recalled kinetic energy KE=const.+ 1
2Mu2 and Galilean momentum

p=Mu. One Joule·s scale factor h=Mc2/B gives υphase energy units and κphase momentum

units. Then these wave coordinates give classical KE and p formulas. But, an annoying

(and large) constant Mc2 is added to KE !

hυphase ≈ Mc2 +
1

2
Mu2 ⇐ for(u ≪ c) ⇒ hκphase ≈ M u (27)

One may ask, “Is this just a lucky coincidence?”
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The answer involves the base or bottom value B=υA of Alice’s frequency hyperbola.

It is also Bob’s bottom due to hyperbola invariance. The constant const.=hB=hυA=Mc2

may be the most famous formula in physics. Here it is Einstein’s rest-mass-energy equation.

It is an add-on to Newton’s kinetic energy 1
2Mu2 that is perhaps the second most famous

physics formula. This add-on does not contradict Newton’s result. Physical effects depend

only on difference or change of energy so effects of an add-on vanish. The question of

false coincidence criticizes (27) for Galilean-Newtonian formulas is valid only at low velocity

(u≪c) or low ρ. So approximate υphase and κphase in (27) need to be replaced by Table I

formulas υphase =Bcoshρ and cκphase = Bsinhρ that hold for all ρ.

E = hυphase = Mc2 cosh ρ ⇐ for all ρ ⇒ p = hκphase = Mc sinh ρ

= Mc2√
1−u2/c2

⇐ for |u| < c ⇒ = Mu√
1−u2/c2

(28)

The old-fashioned β=u/c form of coshρ (Table I) is Einstein2 1905 total energy formula.

Later in 1923, DeBroglie gives wave momentum formula3 p = !k = hκ that has a β=u/c

form for sinhρ, too. Three lines above derive both ρ-forms in (28) from Table I. This allows

physics students to enjoy one-button-press calculator-recall as well as the geometric and

algebraic elegance of relawavity insight discussed below.

Underlying (28) is considerable physics and mystery of “scale factor” h (or ! ≡ h/2π)

the Planck constant h=6.62607·10−34 Joule·sec that appears in his cavity energy axiom

EN=hNυ. Thus (28) gives just the lowest quantum level (N=1 ) of Planck’s axiom4. (Modern

form EN=!Nω has angular frequency ω=2πυ and angular !=1.0510−34J·s.) A quick-fix

replaces h with hN, but underlying quantum oscillator theory of electromagnetic cavity

waves is needed.

So far, the axioms needed for SR results (28) are Evenson’s (All colors go c! ) and time

reversal symmetry following Fig.2 and Fig.3. These involve space, time, frequency and phase

factors of plane light waves that are sufficient to develop the special relativity theory. But this

phase approach has so far ignored amplitude factor A of light wave ψ = Aei(k· r−ωt). While

phase factor ei(k·r−ωt) describes quality aspects of the light, an amplitude factor A describes

the quantity of light, or more to the point, an average number N of quanta or photons in

a wave having the N factor of Planck’s axiom. Raising N raises overall phase frequency

Nυphase and in proportion, both total energy hNυphase and total wave quantum-mass MN =

(hNυphase)/c2. (As seen below, this “light’s weight” is tiny unless N is astronomical.)
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The logical efficiency of optical axioms leading to (28) sheds some light on the three

of the most logically opaque concepts of physics, namely energy, momentum and mass by

expressing them as phase frequency υ (inverse time τ) and wavenumber κ (inverse length

λ). Perhaps, the terms energy and momentum could someday go the way of phlogiston5!

A. What is energy?

A student asks a professor lecturing on energy, “What is Energy?” The prof. replies, “It

measures ability to do Work.” The student persists:“What is Work?” The reply: “Well, it’s

Energy, of course!”

The Prof. might well give the same circular logic if asked about momentum, another

sine qua non of basic physics. A favorite flippant response to E and p questions is that

momentum is the “Bang” and energy is the $Buck$ that pays for it. ($1.00=10kWHr is

close to national average.) This belongs to an (unfortunate) U.S expression “Get more bang

for your buck!” Perhaps, but only on the 4th of July.

Wave energy and momentum results (28) defeat such circular logic by showing how energy

E is proportional to temporal frequency (υphase waves per second) and momentum pα is

proportional spatial frequency (κphase waves per meter in direction α). One should note the

ratio of momentum p and energy E in (50) is cp
E = ck

ω = u
c . It is a correct wave velocity

relation for any scale-factor h (or hN ).

The answer in (28) for wave energy inside Alice’s laser cavity is a product of her quantum

tick-rate υphase= υA = 600THz, scale factor h (actually hN ), and Einstein dilation factor

coshρ that is cosh0=1 for her and coshρ = 5
4 for Bob in Fig.4b. Bob might complain about

her 4
5 -shortened wavelength λgroup = (1

2µm)sechρ = 1
2

4
5µm instead of complimenting her

for 5
4 more wave energy. (When you can’t say something nice...) Bob may not see her

considerable increase of momentum from zero (sinh0=0) to

p = hNκphase = hNκA sinh ρ = hN υA
c

3
4 .

He is excused for overlooking such a tiny momentum. (p has a 1
c -factor that is not in E.)

E = hNυA cosh ρ = hNυA
5
4

A most remarkable thing about (energy, momentum)∝ (υphase,κphase) relations (28) (now

with hN in for h) and the Alice-Bob story is that (28) applies not just to Alice’s light
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wave but also to its laser cavity frame. (Recall discussion after (10).) In fact any mass

M (including Alice and Bob themselves) is made of waves with an internal “heartbeat”

frequency υphase = Mc2/Nh that is incredibly fast due to the c2-factor and tiny Planck-h

divisor. Also, Alice’s light wave with υphase= υA has a mass MA = NhυA/c2 that is incredibly

tiny here due to both a tiny Planck-h factor and enormous c2-divisor.

1. What’s the matter with energy?

Evenson axioms of optical dispersion and time symmetry imply a 2-CW light geometry

that leads directly to exact mass-energy-momentum and frequency relations (28) with low-

speed approximations (27). A light wave with rest mass and rest energy proportional to a

proper invariant phase frequency

υphase = υA = υ′
A

is effectively a quantum matter wave that, due to its Nυphase=NυA, has intrinsic rest mass.

MAN = NhυA/c2

In so doing, concepts of mass or matter lose classical permanence and become fungible.

We define three types of mass Mrest, Mmom and Meff distinguished by their dependence on

rapidity ρ or velocity u. The first is Mrest = MAN , a constant. The other two approach

Mrest at low u≪c.

Einstein rest mass MAN is invariant to ρ. It labels a hyperbola with a bottom base level

B.

EN(ρ = 0) = hB = MAN c2

This label is respected by all observers including Alice and Bob. Each mode A of Alice’s

cavity has a stack of N=1,2,3,... hyperbolas, one for each quantum number N -value.

E2
N = (hNυA )2 = (MAN c2)2cosh2ρ = (MAN c2)2(1 + sinh2ρ)

= (MAN c2)2 + (cpN)2
(29)

(E,cp)-space hyperbola E =
√

(Mc2)2 + (cp)2 in Fig.15 is a plot of an exact Einstein-Planck

matter wave dispersion (28). The inset is a plot of approximation (27) for low p and u≪c.

Properties and pitfalls of this Bohr6-Schrodinger7 approximation are discussed later.
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The second type of mass Mmom is momentum-mass defined by ratio p/u of relativistic

momentum p=Mc sinhρ from (28) with group velocity u=c tanhρ. Mmom follows the old

Galileian quasi-definition p=Mmomu with newly defined relativistic wave group velocity u =

ctanhρ substituted from (9a).

p
u ≡ Mmom = Mrestc

u sinh ρ = Mrest cosh ρ −−→
u→c

Mresteρ/2

= Mrest√
1−u2/c2

−−→
u≪c

Mrest

(30)

A third type of mass Meff is effective-mass defined by ratio dp/du of change of momen-

tum p=Mcsinhρ from (28) with change of group velocity du = csech2ρdρ. Meff satisfies

Newton’s quite old definition F=Meffa, but now using relativistic wave quantities.

F

a
≡ Meff ≡ dp

du
=

dp

dρ

/
dρ

du
= Mrestc cosh ρ/c sech2ρ = Mrestcosh

3ρ (31)

Another derivation of Meff uses group velocity Vgroup = dυ
dκ = u as the independent variable.

F
a ≡ Meff ≡ dp

du = hdκ
dVgroup

= h
/

d
dκ

dυ
dκ = h

/
d2υ
dκ2

= Mrest

/
(1 − u2/c2)3/2 −−→

u≪c
Mrest

(32)

Group velocity and its tangent geometry is a crucial but hidden part of the matter wave

theory. Physicists tend to commit to memory a derivative formula dυ
dκ = dω

dk for group velocity

and forget ∆υ
∆κ = ∆ω

∆k that is a finite-difference formula from which the former is derived. dυ
dκ

may give wrong results since ∆υ
∆κ is exact for discrete frequency spectra while dυ

dκ may be

ill-defined. The wave Minkowski coordinate geometry starts with half-difference ratios to

give V ′
group in primary u-formulae (8) and (9).

V ′
group/c =

∆υ

c∆κ
=

υR − υL

υR + υL
=

eρ − e−ρ

eρ + e−ρ
= tanh ρ (33)

What follows in Fig.4 through Fig.5 and Fig.11 is based entirely upon the more reliable

finite-difference definition ∆υ
∆κ = ∆ω

∆k that gives exactly the desired slope.

Nevertheless, Nature is kind to derivative definition dυ
dκ = dω

dk as seen in Fig.11. There

hyperbolic tangent slope of line RL with altitude ∆υ = υR − υL and base ∆κ = κR − κL

has a finite-difference slope exactly equal to the derivative of the hyperbola at tangent point

P′ on phase velocity line OP′. Geometry of Doppler action (33) is at play. That slope
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FIG. 15: (a) Einstein-Planck energy-momentum dispersion (b) Bohr-Schrodinger

approximation

dυ
dκ = dω

dk equals V′
group = u and is the velocity of Alice relative to Bob. It is also related to

the momentum/energy ratio cp
E = ck

ω = u
c noted before.

Vgroup = u =
∆υ

∆κ
=

dυ

dκ
=

dω

dk
=

dE

dp
=

c2p

E
(34)
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As slope dυ
dκ = u of dispersion hyperbola υ(κ) affects velocity u and relations with momentum

p, so does curvature affect acceleration a and its relation to force F or momentum time rate of

change dp
dt in the effective-mass Meff equations (31) and (32). One is inclined to regard Meff

as a quantum mechanical result since it is a product of Planck constant h with inverse d2υ
dκ2 ,

the approximate Radius of Curvature RoC=1/ d2υ
dκ2 of dispersion function υ(κ). Geometry of

a dispersion hyperbola υ = υA cosh ρ is such that its bottom (ρ = 0 = u) radius of curvature

RoC equals the rest frequency υA = Mrestc2/h that is labeled as the b-circle radius B in Fig.

15. Hyperbola curvature decreases as ρ increases, and so its RoC and Meff grow according

to (30) and (31) in proportion to exponential e3ρ as velocity u approaches c, or the cube of

eρ for high-ρ growth of momentum mass Mmom in (30).

2. How light is light?

Since 1-CW dispersion υ = ±cκ is flat, its RoC and photon effective mass are infinite

Mγ
eff = ∞. This is consistent with the Evenson’s axiom prohibiting c-acceleration (All

colors always go c.) . The other extreme is photon rest mass which is zero Mγ
rest = 0.

Between these extremes, photon momentum-mass Mγ
mom depends on quality, that is, CW

color or frequency υ.

(a) γ−restmass : Mγ
rest = 0,

(b) γ−momentum mass :Mγ
mom = p

c = hκ
c = hυ

c2 ,

(c) γ−effective mass :Mγ
eff = ∞.

(35)

Newton’s Optics text is famous for his rejection of wave nature of light in favor of a cor-

puscular one. He described interference effects as light’s ‘fits’. Perhaps, light having three

mass values in (35) would, for Newton, verify its schizophrenic insanity. Also, the fact that

2-CW 600THz cavity momentum p must average to zero while each photon adds a tiny

mass Mγ
mom, might support his corpuscular view.

Mγ
mom =

hυ

c2
= υ(7.4 · 10−51)kg · s = 4.4 · 10−36kg (for :υ= 600THz) (36a)

A 1-CW state has zero Mγ
rest, but (N=1 )-photon momentum (50) is non-zero pγ =Mγ

momc.

pγ = hκ =
hυ

c
= υ(2.2 · 10−42)kg · m = 1.3 · 10−27kg · m · s−1 (for :υ= 600THz) (36b)
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FIG. 16: 1st quantized mode stacks n=1,2,3 of 2nd quantized photon levels Nn=1,2,3..∞

In the form pγ = Mγ
momc Galileo’s p=MV is exact for light. With numbers so tiny it is a

wonder that subtle of a relativistic or quantum effects were ever noticed. Photons are light !

That is unless the photon quantum number N is huge as in thermonuclear blast8 (pg.70) or

a star8 (pg.92). Then light can be many tons!

B. Visualizing quantization of Maxwell light waves

Relativity and quantum theory, two pillars of modern (20 th-century) physics, are stunning

chapters in the long and still evolving story about light. Just forty years before, Maxwell

had developed the classical theory of light waves, a stunning alternative to Newton’s cor-
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puscular theory. Then Planck’s 1900 hypothesis of discrete light quanta and Eintein’s 1905

photoelectric theory showed light could exhibit both particle and wavelike behavior.

· Since then modern physics has revealed that the classical mechanical world has a well

hidden underlying wave-like quantum mechanical world. There classical quantities such as

energy and momentum become “quantized” or restricted to discrete values like notes of a

musical instrument. This results in the discrete frequency spectra of atomic matter.

· Quantization occurs when waves resonate in a trap or some kind of cavity or enclosure

where they must self-interfere. There results a natural selection by survival-by-the-fittest

waves able to fit discrete wave-numbers n of undulations into the enclosure.

1. 1st and 2nd quantization

For light (electromagnetic wave mode sums
∑

Ak,ωei(k•r−ωt)) there are two kinds of quan-

tization. 1st-quantization is of phase-(k·r-ωt) variables k and ω . 2nd-quantization is of field

amplitudes Ak,ω. Modes for 1st-quantum numbers n=1,2,3,.. of half-waves must fit in a

model cavity of length-ℓ and satisfy 1st quantization conditions for ωn=ckn in that cavity.

wave vector : kn =
π

λn
= n

π

ℓ
∠−frequency : ωn = ckn = cn

π

ℓ
(37)

In Fig.16 a wave-in-cavity is sketched for mode n=1, 2, and 3 above a stack of photon energy

levels for 2nd-quantum numbers Nn=1,2,.. of photons. Each photon level-Nn is drawn as a

relativistic hyperbola in a stack labeled by mode-n and it photon number. Each hyperbola

and its quanta n and N are invariant to transformation of space-time and (ωn, ckn).

2nd-quantization of cavity mode kn (or k in 3D cavity) uses normal coordinates Akn=Ak

satisfying Maxwell equations reduced to that of harmonic oscillators. A 2-CW-standing-wave

vector potential amplitude Ak ≡ A =e1 |A| sin (k·r−ωt+φ) has Maxwell E-and-B-fields.

E = −∂A

∂t
B = ∇× A

E = e1E0 cos (k·r−ωt+φ) B = (k × e1) B0 cos (k·r−ωt+φ)
(38)

Two unit polarization directions e1 of E and e2=k×e1
1
k of B share equal energy.(Let:k= ω

c )

(a) E0e1 = |A| ω e1 (b) B0 (k × e1) = |A| ke2 (39)
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With unit wavevector ek=
k
k this makes a triad of orthonormal unit vectors {e1,e2 ,ek}.

Average field energy ⟨U⟩V in a volume V containing the 2-CW vector potential amplitude:

A=e1 |A| sin (k·r−ωt+φ) is given by Maxwell’s relations.

⟨U⟩V =

〈
ε0

2
E•E +

1

2µ0
B•B

〉
V = V

(
ε0

2
|A|2ω2 +

|A|2

2µ0
k2

)
〈
cos2 (k · r − ωt + φ)

〉

=
ε0

2
ω2|A|2V =

1

2µ0
k2|A|2V given (r,t)-average:

〈
cos2 (k · r − ωt + φ)

〉
=

1

2

(40)

Constants ϵ0=8.854·10−7 Nm2

C2 and µ0=4π10−7 N
A2 have geometric mean c−1=

√
ϵ0µ0 , a still

awe inspiring expression for the speed of light. Feynman’s approach to field quantization

favors Fourier combinations of complex moving waves ei(kr−ωt) rather the real forms in (38).

A=
∑

k

[
(ak1e1+ ak2e2) ei(k·r−ωt) + c.c.

]
=

∑

k

2∑

α=1

[
akαeαei(k·r−ωt)+a∗

kαeαe−i(k·r−ωt)
]

(41)

The k-sum kα = Nα
2π
ℓ (Nα=1, 2, . . .∞; α=x, y, z) separates 2D polarization base vectors

of (39) belonging to its E and B oscillator dimensions. Fourier amplitudes akα of 1-CW

modes in (41) are complex and half the magnitude of the 2-CW amplitude Akα in (40) since

A cos φ=A
2 (eiφ+e−iφ). ⟨U⟩V in (40) and Planck’s εN="Nω relates amplitude A to quanta N .

⟨U⟩V = !Nω =
ε0

2
ω2|A|2V ⇒ |A|=

√
2!N
ε0ωV

⇒ |E|= ω|A|=
√

2!Nω

ε0V
(42)

State |Nkα⟩ confined to one quantum level Nkα of one cavity mode k of one polarization-α is

quite different from semi-classical coherent laser wave states able to make coordinate grids

in Fig.1b and Fig.4b. Laser waves are coherent combinations of harmonic oscillator number

states {|Nkα⟩}={..|0kα⟩,|1kα⟩,|2kα⟩,..}with Poisson-like distribution coefficients. The coeffi-

cients can be set to make amplitude-squeezed waves with minimum amplitude uncertainty,

or else phase-squeezed wave nodes desired for sharp coordinate grids in Fig.1b. Pure photon

number Nkα-states have maximum uncertainty for both phase and amplitude that smears

(x,ct)-grids. Fig.17 sketches low lying Nkα- quantum oscillator waves discussed below.
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2. Quantum numbering of photons and modes

Building 1-CW Fourier expansions of fields E and B to construct their energies UEV and

UBV from vector potential A in (41).

UEV =
∑

kα

ε0V

2

[
2|akα|2ω2 − a∗

−kαa∗
kαω2e−2iω t − a−kαakαω2e−2iω t

]

UBV =
∑

kα

ε0V

2

[
2|akα|2ω2 + a∗

−kαa∗
kαω2e−2iω t + a−kαakαω2e−2iω t

]
(43)

Cancellation of cross-terms simplifies total energy sum.

UV = (UE + UB) V =
∑

kα

2ε0ω
2|akα|2V =

∑

kα

2ε0V ω2a∗
kαakα (44)
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FIG. 17: 1st and 2nd quantized harmonic-oscillator cavity wave sketches.

This may be factored and relabeled into a harmonic oscillator Hamiltonian.

UV =
∑

kα

1
2

[
2ω

√
ε0V

(
aRe
kα − iaIm

kα

)] [
2ω

√
ε0V

(
aRe
kα − iaIm

kα

)]

=
∑
kα

1
2 [ωQkα + iPkα] [ωQkα + iPkα]

=
∑

kα

1
2

(
P 2

kα + ω2Q2
kα

)
(45)

Real and imaginary parts of phasor amplitudes akα are coordinates Qkα and momenta Pkα.

Qkα= 2
√

ε0V aRe
kα =

√
ε0V (akα+a∗

kα) where: akα=aRe
kα+iaIm

kα=
1

2
√

ε0V

(
Qkα+

iPkα

ω

)

Pkα= 2ω
√

ε0V aIm
kα=ω

√
ε0V (akα−a∗

kα)/i and: a∗
kα=aRe

kα−iaIm
kα=

1

2
√

ε0V

(
Qkα−

iPkα

ω

) (46)

Amplitudes akα and a∗
kα become operators of photon destruction akα and creation a†kα that

find 2D oscillator waves and energy spectrum for each k-mode and each polarization α=x, y.

Ek = !Ωk = !(Nk + 1)ωk = !(Nx,k + Ny,k + 1)ωk (47)

The ground quantum state has zero (Nk=0) photons with zero-point energy "ωk. (Zero

point energy is 1
2"ωk for each polarization dimension.) There are two energy-degenerate
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states having one photon (Nk=1) each with energy Ek="2ωk, that is, one photon with x-

polarization or else one photon with y-polarization. Similarly, there are three states of two

photons (Nk=2) with energy Ek="3ωk, that is, (Nx,k,Ny,k)=(2,0), (1,1), or (0,2). A general

Nk-photon energy level Ek="(Nk+1)ωk has polarization degeneracy of Nk+1.

A sketch of the first few quantum cavity wave states is given in Fig.17. It is companion

to Fig.16 showing a stack of Nk-labeled energy-level hyperbolas for each cavity mode kn=k.

The quantum numbers N (Number of photons) and n (number of “kinks” or anti-nodes per

cavity dimension ℓ) are invariant to observer rapidity ρ while wave energy (frequency) and

momentum (wave number) vary with observer rapidity as coshρ and sinhρ, respectively.

V. RELAWAVITY GEOMETRY OF HAMILTONIAN AND LAGRANGIAN FUNC-

TIONS

The 2-CW matter-wave in Fig.1 has a rest frame with origin x′ = 0 and k′ = 0 = kphase

where the invariant phase function Φ = kx − ωt = k′x′ − ω′t′ reduces to Φ = 0 − ϖτ , a

product of its proper or base frequency B = ϖ = Mc2/! defined after (28) with proper

time t′=τ defined by (13). The (x,t)-differential of phase is reduced as well to a similar

negative mass-frequency (ϖ)-term.

dΦ = kdx − ωdt = 0 · 0 − Mc2

! dτ ≡ −ϖdτ (48)

A proper-time interval dτ dilates to ρ-moving frame interval dt by Einstein dilation relations.

dt =
dτ√

1 − u2/c2
= dτ cosh ρ ⇔ dτ = dt

√
1 − u2/c2 = dt sechρ (49)

One of the more interesting tales of modern physics is a first meeting9 between Dirac10

and the younger Richard Feynman11. Both had been working on aspects of quantum phase

and classical Lagrangian mechanics. Dirac mused about some formulas in one of his papers

that showed similarities between a Lagrangian function and quantum phase. Feynman said

abruptly, “That’s because the Lagrangian is quantum phase!” That was a fairly radical bit

of insight at the time, but it needs its geometry clarified.
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A. Phase, action, and Lagrangian functions

Feynman’s observation needs some adjustment for units since Lagrangian L has Joule

units of energy while phase Φ=kx−ωt is a dimensionless invariant. A quantity S called

Action is quantum phase Φ scaled by Planck’s angular constant ! = h
2π = 1.05 · 10−34J · s

and is the following time integral of L.

S ≡ !Φ ≡
∫

Ldt where : ! ≡ h

2π
= 1.05 · 10−34Joule · Second (50)

Differentials of action and phase (48) with proper time (49) combine to re-express Ldt.

dS ≡ Ldt = ! dΦ = −Mc2dτ = −Mc2
√

1 − u2/c2 · dt = −Mc2dt sechρ (51)

From ρ-frame time derivative dt/dτ (57) arises the Lagrangian in terms of rapidity ρ or

stellar angle σ.

L = −Mc2
√

1 − u2/c2 = −Mc2sechρ = −Mc2 cos σ (52)

Table I supplies identity sechρ = cosσ for L in (51) and tanhρ = sinσ for group velocity u.

u ≡ Vgroup = c tanh ρ = c sin σ (53)

Lagrangian L is conventionally a function of velocity. This is consistent with the low-ρ

approximation to Lagrangian (51) that recovers the Newtonian KE = 1
2 Mu2 term in (27).

L = −Mc2
√

1 − u2/c2 −−→
u≪c

−Mc2 + 1
2Mu2 + ... (54)

The explicit functionality for Hamiltonian H(p) and Lagrangian L(u) involves geometry

of Legendre contact transformation shown in Fig.18a-b below and a Fig.19 that follows.

B. Hamiltonian functions and Legendre transformation

The invariant phase differential (48) with scale-factor as in (50) is a key relation.

dS ≡ Ldt ≡ ! dΦ = !kdx − !ωdt (55)

Energy E=hυphase=!ω =H and momentum p = hκphase=!k from (28) for N=1 are used.

dS ≡ Ldt ≡ ! dΦ = p dx − Hdt ⇒ L = p
dx

dt
− H = pẋ − H (56)
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Energy E equals Hamiltonian function H. This gives Poincare differential invariant Ldt=pdx-

Hdt and the Legendre transform L=pu-H of Lagrangian L to and from Hamiltonian H.

Remarkably, this shows L/Mc2 is the negative reciprocal of H/Mc2.

H = !ω = Mc2 cosh ρ = Mc2 sec σ =
Mc2

√
1 − u2/c2

(57a)

L = !Φ̇ = −Mc2sechρ = −Mc2 cos σ = −Mc2
√

1 − u2/c2 (57b)

Except for a (-)sign, H and L are co-inverse (cos,sec)-functions (middle-columns of Table I).

So are Einstein t-dilation and Lorentz x -contraction (10a) and (10b). H is explicit function

FIG. 18: Legendre transform:

(a) Slope u/c and intercept -L of H(p)-tangent LP′ give (u,L) point S on L(u)-circle.

(b) Slope cp and intercept H of L(u)-tangent C′S give (p,H ) point P′ on H(p)-hyperbola.

49



of momentum p. L is explicit function of velocity u. u and p are a (sin,tan) pair in Table I.

cp = !ck = Mc2 sinh ρ = Mc2 tan σ =
Mcu√

1 − u2/c2
(58a)

u ≡ Vgroup = c tanh ρ = c sin σ (58b)

Legendre contact transformation H(cp)=pu-L=cpu/c-L uses slope u/c and intercept-L of

tangent line LR contacting H-hyperbola in Fig.18a to locate contact point L(u) of La-

grangian plot. Inverse Legendre contact transformation L(u)=pu-H uses slope p and inter-

cept H of stellar tangent line C′SY contacting the L-circle in Fig.18b to locate point H(p)

of Hamiltonian plot. This construction is further clarified by separate plots of H(p) in Fig.

19a and L(u) in Fig.19b.

Tangent contact transformation is a concept based upon wave properties and goes back

to the Huygens and Hamilton principles discussed below. The basics of this lie in construc-

tion of space-time (x,ct) wave-grids given frequency-k-vectors (υ,cκ) like P′ and G′ in Fig.

5. Each P′ or G′ coordinate pair (υ,cκ) determines lines with speed υ/κ and t-intercept

spacing τ = 1/υ on ct-axis while x -intercept spacing is λ = 1/κ on x -axis. These phase and

group grid lines make Minkowski zero-line coordinates.

This geometry applies as well to energy-momentum (E,cp)=h(υ,cκ)=!(ω, ck) spaces. Func-

tional dependence of wave grid spacing and slopes determines classical variables, equations

of motion, as well as functional non-dependence. For example, Lagrangian L is an explicit

function of velocity u but not momentum p, that is, ∂L
∂p = 0. Hamiltonian H is explicit

function of momentum p but not velocity u, that is, ∂H
∂u = 0. Such 0th-equations combined

with L=pu-H give 1st-Hamilton and 1st-Lagrange equations.

0 =
∂L

∂p
=

∂

∂p
(pu−H) ⇒ u =

∂H

∂p

(
Hamilton′s
1stequation

)
(59a)

0 =
∂H

∂u
=

∂

∂u
(pu−L) ⇒ p =

∂L

∂u

(
Lagrange
1stequation

)
(59b)

In Fig.18a slope of H(p)-hyperbola at tangent contact point P′ is group velocity u/c=tanhρ=sinσ=3/5.

In Fig.18b slope of L(u)-circle at tangent point S is momentum cp=Bsinhρ=Btanσ =(Mc2)3
4

with a minus (-) sign. This minus sign in (57b) for Lagrangian L=-Mc2cosσ, for example,

is a result of (-) in basic phase (kx-ωt) and phasor conventions. (It makes phasor clocks

turn clockwise.(#)) For a low-(ρ ≈ u/c) approximate Lagrangian (54), one may drop the

-Mc2 term and just keep the Newtonian kinetic energy term ( Mu2

2 ) that is equal to the
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FIG. 19: Relativistic Legendre contact transformation between (a)Hamiltonian H(p) (b)

Lagrangian L(u).

corresponding kinetic term ( p2

2M ) in the approximate Hamiltonian. Of course, that reduces

to Mu2

2 if approximate momentum p=Mu is used, so students are well to ask, “Why be so

fussy to have only momentum p-dependence of H and only velocity u-dependence of L?”

It is true that Hamiltonian H(p) hyperbola minimum in Fig.18 or Fig.19a is nearly iden-

tical to the Lagrangian L(u) circle minimum in Fig.18b that lies below Fig.19b. There both

curves are nearly parabolic. But, at higher speeds the Lagrangian L(u) circle approaches

zero precipitously as stellar angle σ approaches π/2 and velocity u approaches c. Mean-

while, the hyperbolic Hamiltonian H(p)=Bcoshρ and its momentum p=Bsinhρ each zoom

away to approach Beρ/2 as rapidity ρ grows without bound. So it should be clear that

hyperbolic “country-cousin” functions involving rapidity ρ and momentum p must share

a Hamiltonian with infinite horizon, while circular “city-cousin” functions of the very re-

stricted stellar angle -π " σ " π and velocity -c " u " c must share a localized Lagrangian

that is the keeper of quantum phase. The third (csc,cot)-cousin pair phase=Bcschρ=Bcotσ

and V phase=Bcothρ=Bcscσ from Table I do not appear in any discussions of classical cor-

respondence. Instead, these describe the phase part or “quantum guts” of a 2-CW internal

structure, and as such were nonexistent for 19-century classicists, and one might add, still

today a bit sketchy and hard to observe. Now phase is seen as the “heartbeat” of quantum
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physics one may note DeBroglie wavelength phase and velocity Vphase in Fig.20 at the lower

edges of geometric constructions just inside the Doppler blue shift (b=eρ)-bottom line of

the R box. One may compare Fig.20 to Trigonometry Road Map (TRM) in Fig.8. They

share points P=1
2(R+L) and G=1

2(R-L). Fig.8 exhibits fundamental and ancient geometry

with triangular relations that have fundamental roles in Fig.20 to describe a relawavity of

relativistic quantum mechanics.

FIG. 20: Geometric elements elements of Hamiltonian and Lagrangian relativistic

quantum mechanics.
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C. Hamilton-Jacobi quantization

Invariant phase Φ or action S differential (64)-(65) are integrable under certain conditions.

dS ≡ Ldt ≡ ! dΦ = pdx − Hdt = !kdx − !ωdt (60)

Each coefficient of a differential term dq in dS must be a corresponding partial derivative.

∂S

∂x
= p,

∂S

∂t
= −H. (61)

These are known as Hamilton-Jacobi equations for the phase action function S. Classical

HJ -action theory serves to analyze families of trajectories (PW or particle paths). Dirac

and Feynman related this to matter-wave mechanics (CW phase paths) by proposing ap-

proximate semi-classical wavefunction Ψ based on Lagrangian action S=!Φ in its phase.

Ψ ≈ eiΦ = eiS/! = ei
∫

L dt/! (62)

Approximation symbol (≈) indicates that phase but not amplitude is expected to vary here.

HJ -form ∂S
∂x = p turns x -derivative of Ψ into standard quantum p-operator form p = !

i
∂
∂x .

∂

∂x
Ψ ≈ i

!
∂S

∂x
eiS/! =

i

!pΨ ⇒ !
i

∂

∂x
Ψ = pΨ (63a)

HJ -form ∂S
∂t = −H turns t-derivative of Ψ similarly into Hamiltonian operator H = !i ∂

∂t .

∂

∂t
Ψ ≈ i

!
∂S

∂t
eiS/! = − i

!HΨ ⇒ i! ∂

∂t
Ψ = HΨ (63b)

Action integral S =
∫

Ldt is to be minimized. Feynman’s interpretation of this is depicted

in Fig.21. Any mass M appears to fly so that its phase proper time τ is maximized. The

proper mass-energy frequency ω = Mc2/" is constant for a mass M. Minimizing -ωτ is thus

the same as maximizing +τ . Clocks near light cone tick slowly compared ones near max-τ .

Those on light cone do not tick at all!

One may explain how a flying mass finds and follows its max-τ path by imagining it is

first a wave that could spread Huygen’s wavelets out over many paths. But, an interference

of Huygen wavelets favors stationary and extreme phase. This quickly builds constructive

interference in the stationary phase regions where the fastest possible clock path lies. Nearby

paths contain a continuum of non-extreme or non-stationary wavelet phase that interfere

destructively to crush wave amplitude off the well-beaten max-τ path as seen in Fig. 22.
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FIG. 21: Feynman’s flying clock contest where winner has the greatest advance of time.

The very “best” are so-called stationary-phase rays that are extremes in phase and

thereby satisfy Hamilton’s Least-Action Principle requiring that S =
∫

Ldt is minimum

for “true” classical trajectories. This in turn enforces Poincare invariance by eliminating, by

de-phasing, any “false” or non-classical paths because they do not have an invariant (and

thereby stationary) phase. So “bad” rays cancel each other in a cacophonous mish-mash of

mismatched phases.

Each Huygen wavelet in Fig. 22 is tangent to the next wavefront being produced. That

contact point is precisely on a ray or true classical trajectory path of minimum action and

on the resulting “best” wavefront. Time evolution from any wavefront to the next is thus a

contact transformation between two wavefronts described by geometry of Huygens Principle.

Thus a Newtonian clockwork-world appears to be the perennial cosmic gambling-house

winner in a kind of wave dynamical lottery on an underlying wave fabric. Einstein’s God

may not play dice12, but some persistently wavelike entities seem to be gaming at enormous

Mc2/!-rates down in the cellar! And in so doing, geometric order is somehow created out of
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FIG. 22: Quantum waves interfere constructively on “True” path but mostly cancel

elsewhere.

what seems like chaos.

It is ironic that Evenson and other metrologists have made the greatest advances of

precision in human history, not with metal bars or ironclad classical mechanics, but by

using the most ethereal and dicey stuff in the universe: light waves. This motivates a view

of classical matter or particle mechanics that is more simply and elegantly done by its relation

to light and its built-in relativity, resonance, and quantization that occurs when waves are

subject to boundary conditions or otherwise confined. While Newton was grousing about

“fits” of light, perhaps his crazy stuff was just trying to tell him something!

Derivation of quantum phenomena using a classical particle paradigm seems as silly now

as deriving Newtonian results from an Aristotelian paradigm. It now seems much more likely

that particles are made by waves, optical or otherwise, rather than vice versa as Newton

believed. Also, CW trumps PW as CW axioms of Evenson (All colors go c.) and Doppler

time-reversal (r=1/b) can easily derive Lorentz-Einstein-Minkowski algebra and geometry

summarized in Table I and re-derive exact relations (28) for relativity and quantum wave

mechanics using geometry summarized in Fig. 20. It all reduces to a redrawn trigonometry
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lesson based on Fig.7 and Fig.8.

VI. RELATIVISTIC OPTICAL TRANSITIONS

This elementary development of SR and then QM rests upon the surprising behavior of

a pair of ideal laser continuous waves (CW). (A more detailed treatment would show that

CW also denotes a Coherent Wave, that is, a coherent state combination of photon-number

states of quantum field.) A single continuous wave (1CW) has no rest frame, rest energy, or

rest mass.

However, a suitably arranged pair of CW (or 2CW) has non-zero parameters for all three,

namely group velocity u=ctanhρ of its rest frame in which 2CW lab energy (Hamiltonian)

H=Mc2coshρ is reduced to a minimum value Mc2 of rest energy due to its rest mass M at

just the point where its 2CW lab momentum p=Mcsinhρ vanishes.

So an elementary model that promised less mysterious pedagogy finally confronts our

greatest mystery wherein a box of 2CW light obeys rules of mechanics for massive particles

where their mass, energy, and momentum depend upon a total phase frequency υphase and

wavenumber phase according to (28). As given after (28) the mass-frequency relation is

proportional with constants N, h, and 1/c2.

M = Nhυphase/c
2 = N!ωphase/c

2(h = 6.626 · 10−34J · s, ! = 1.05 · 10−34J · s) (64)

The tiny proportionality constant of Planck (! ∼ 10−34) and (1/c2∼ 10−17) means the

quantum number N and phase frequency υphase have to be enormous to make appreciable

mass out of 2CW light.

Now this mysterious mass model is extended to describe transitions in which a mass

(presumably a molecular, atomic, or nuclear particle) emits or absorbs light quanta or pho-

tons. The geometric analysis of photon-affiliated transitions begins with the simple Doppler

shifted or Lorentz transformed “baseball-diamond”geometry shown in Fig. 23. Most figures

showing this geometry so far, including Fig.18, Fig.20 and the original Fig.4, are drawn for

velocity u/c=3/5 or Doppler shift b=2. Here, Fig.23 uses odd values b=3/2 or u/c=5/13 to

avoid distracting crossings. The Planck-Einstein-DeBroglie relation (28) is labeled by energy

E="Ω plotted versus c-scaled momentum cp=!ck so that both have the same dimensions

of energy.
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A. Photon transitions obey rocket-science formula

Tiny photon momentum p=!k needs a c-factor to show up in plots. Also, Fig.23 is

bisected by a wavy right-angle HP′K inscribed in a g-circle that represents photon (ω,ck)-

vectors connecting levels of high-state at rest frequency ωh=3, middle-state at ωm=2, and

low-state at ωℓ=4/3. Each frequency relates to one above it (or below it) by blue-shift factor

e+ρ =3/2 (or red-shift factor e−ρ =2/3). Thus the middle frequency ωm=2 is the geometric

mean of those above and below.

3 = ωh = e+ρωm 2 = ωm = e+ρωℓ
4

3
= ωℓ = e−ρωm = e−2ρωh (65)

Wavy segment HP′ represents a photon of energy !ΩHP′ = !ωm sinh ρ that would be emitted

in a transition from a stationary mass MH = !ωh/c2 at point H to a mass MH = !ωh/c2

moving with rapidity ρ at point P′. Implicit in Fig.23 is the choice of right-to-left direction

for the outgoing photon momentum cp = −!ωm sinh ρ recoiling left-to-right by just enough

to conserve momentum. Mass MH loses energy (frequency) equal to momentum (wavevector)

of outgoing photon. Since MH is initially stationary, it must lose energy by reducing rest-

mass from MH to MP by Doppler shift ratio e+ρ.

MH

MP
=

ωh

ωm
= eρ (66)

A rest mass formula results for recoil rapidity ρ with a simple low-ρ (ρ ≈u/c)-approximation.

ρ = ln
MH

MP
−−−→
ρ→u

c

u = c ln
MH

MP
(67)

Interestingly, this quantum recoil formula is reminiscent of a famous rocket formula.

Vburnout = cexhaust ln
Minitial

Mfinal
(68)

Quantum transitions are said to be infinite discrete “jumps”with emitted (or absorbed)

photons acting like bullets. This contrasts with a relativistic picture of an atom or nucleus

in (66) gradually “exhaling”its mass like a rocket with an optical exhaust velocity of c.

The H-to-P′ transition just discussed could be followed by a P′-to-K transition with

forward emission of a photon with the same energy and further reduction of mass from M ′
P

to a stationary mass MK at lowest energy level !ωℓ = MKc2 in Fig.23. It has frequency ωℓ

= 4/3 and zero momentum due to its leftward recoil from rightward emitted photon.
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FIG. 23: Feynman diagrams of 1-photon transitions connecting 3-levels ωh, ωm, and ωℓ.

Feynman diagrams in right-hand inset panels of Fig.23 are scale models of photon energy-

momentum kab-vectors emitted from head of initial mass-MA,KA-vector on the tail point of

recoiling mass-MB,KB-vector. One may imagine per-space-time (ω,k) diagrams as space-

time (x,ct) mass and photon tracks due to Fourier reciprocity demonstrated in Fig.4 and

Fig.5. Also K-vectors rearrange into head-to-tail zero-sum triangles representing energy-

momentum conservation for perfectly resonant transitions.

B. Geometric level and transition sequences

Level sequence {. . ., ωℓ, ωm, ωh,. . .} in (65) is part of an infinite geometric series having

blue-shift ratio b=e+ρ=3
2 or red-shift ratio r=e−ρ=2

3 ranging from 0 to ∞. The energy

Em = !ωm or frequency ωm value labeling hyperbola-ωm may be scaled to give an infinite
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sequence based on ratio b1=
3
2=r−1.

. . . , r3ωm, r2ωm, r1ωm, b0ωm, b1ωm, b2ωm, b3ωm, . . . , bqωm, . . . (69)

This labels a geometric sequence stack of hyperbolas shown in Fig.24. Meanwhile, rapid-

ity ρ = ln 3
2 labeling velocity line-(u/c= 5

13) is boosted through a sequence of ρp-values

{...,−2ρ ,−ρ , 0 , 2ρ , 3ρ , .., pρ , ..} and defines p-points of momentum cpp, q=bqωmsinhρp

(where: ρp = p·ρ) on each bqωm-hyperbola.

FIG. 24: Rapidity-ρp=pρ and rest-frequency-ωmeqρ and Pp,q-lattice based on integer

powers of b=e+ρ = 3
2 .

The result is a lattice in Fig.24 of transition points Pp,q=(cpp,q ,Eq) that are scaling-

and-Lorentz-boost-equivalent to the point P ′=P1,0 at the center of Fig.24 or else the point

P′=P1,0 that is the center of transitions in that figure. Choice of origin is quite arbitrary in a

symmetry manifold defined by group operations. The ±45◦-light-cone boundaries and their
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intersection (cp,E)=(0,0) lie outside of this open set of Pp,q points. The choice of the base

Doppler ratio b=eρ is also arbitrary and may be irrational. However, a rational b guarantees

all 16 functions in Table I are also rational. The lattice in Fig. 24 may be viewed at ±45◦

as a quasi-Cartesian grid of lines. Each line is positioned according to rest-frequency power

ωmeqρ at its meeting point on the vertical ω-axis (or 2nd-base of a Doppler baseball diamond)

as shown in Fig 21. The +45◦ R-axis (1st-baseline) is marked-off by sequence ωR=ωmeRρ

(R=-2,-1,0,1,2...) and the -45◦ L-axis (3rd-baseline) is marked-off by sequence ωL=ωmeLρ

(L=-2,-1,0,1,2...). (Here base constants b=eρ=3
2 and ωm=2 are fixed.) At the intersections

of R and L grid-lines are discrete transition (p,q)-points Pp,q.

Pp,q = (ckp,q,ωp,q) = ωmeqρ(sinh pρ, cosh pρ) (70)

FIG. 25: Hyperbolic lattice of (p,q)-transition points for base b = eρ = 3
2 and

half-sum-difference coordinate relations.
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C. Half-sum-and-difference transition web

Each coordinate point is related by half-sum or half-difference coordinate transformations.

p =
R − L

2
, q =

R + L

2
⇔ R = p + q, L = q − p (71)

These are integer versions of the phase and group relations (5) and (7) to right and left laser

K-vectors, yet another result of factoring optical wave coordinate functions. The geometric

structure represented here might become a useful basis for a kind of lattice-gauge theory to

explore cavity quantum electro-dynamics (CQED) or pseudo-relativistic theories of graphene

gauge dynamics.

Such a structure offers a possible solution to the flaw that made Feynman path integration

so difficult due its uncountable universe of possible paths. The structure in Fig. 25 offers a

labeling of every discrete path and state by an operation in a discrete subgroup of the con-

tinuous Poincare-Lorentz group (PLG) that has a discrete Poincare-Lorentz algebra (PLA).

The discrete paths may be made as fine as desired so that each PLA becomes a larger and

better approximation to the parent PLG. Each PLA has a discrete spectral decomposition

that could derive and solve a range of Hamiltonian eigensolutions and transition amplitudes

parametrized by discrete paths.
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